[go: up one dir, main page]

JP2020088119A - Manufacturing method of carbon material for electrical double layer capacitor - Google Patents

Manufacturing method of carbon material for electrical double layer capacitor Download PDF

Info

Publication number
JP2020088119A
JP2020088119A JP2018219224A JP2018219224A JP2020088119A JP 2020088119 A JP2020088119 A JP 2020088119A JP 2018219224 A JP2018219224 A JP 2018219224A JP 2018219224 A JP2018219224 A JP 2018219224A JP 2020088119 A JP2020088119 A JP 2020088119A
Authority
JP
Japan
Prior art keywords
nitrogen
double layer
layer capacitor
carbon
electric double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018219224A
Other languages
Japanese (ja)
Inventor
壮志 白石
Soji Shiraishi
壮志 白石
かおり 今井
Kaori Imai
かおり 今井
和成 相澤
Kazunari Aizawa
和成 相澤
裕幸 眞板
Hiroyuki Maita
裕幸 眞板
啓介 岡野
Keisuke Okano
啓介 岡野
雄磨 神山
Yuma Kamiyama
雄磨 神山
健一 能登
Kenichi Noto
健一 能登
威 下村
Takeshi Shimomura
威 下村
治人 秋元
Haruto Akimoto
治人 秋元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunma University NUC
Komatsu Ltd
Original Assignee
Gunma University NUC
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunma University NUC, Komatsu Ltd filed Critical Gunma University NUC
Priority to JP2018219224A priority Critical patent/JP2020088119A/en
Publication of JP2020088119A publication Critical patent/JP2020088119A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

【課題】従来の窒素ドープ法と比べて簡便、かつ高電圧充電耐性が改善された、電気二重層キャパシタ用炭素材料の製造方法を提供する。【解決手段】製造方法は、多孔質炭素とアミノ基を有する含窒素複素環式化合物とを8:1〜1:4の質量比で混合することにより、多孔質炭素と前記アミノ基を有する含窒素複素環式化合物との混合物を得る工程と、混合物を不活性ガス雰囲気下熱処理して、多孔質の表面に窒素原子を導入する工程、を含む。【選択図】図1A method for producing a carbon material for an electric double layer capacitor is provided which is simpler than the conventional nitrogen doping method and has improved high voltage charging resistance. The production method comprises mixing the porous carbon and the nitrogen-containing heterocyclic compound having an amino group in a mass ratio of 8:1 to 1:4 to obtain a nitrogen-containing heterocyclic compound having the amino group. Obtaining a mixture with a nitrogen heterocyclic compound, and heat-treating the mixture under an inert gas atmosphere to introduce nitrogen atoms into the porous surface. [Selection drawing] Fig. 1

Description

本発明は、電気二重層キャパシタの電極に用いられる炭素材料を製造する方法に関するものである。 TECHNICAL FIELD The present invention relates to a method for producing a carbon material used for an electrode of an electric double layer capacitor.

充電して繰り返し使える電気二重層キャパシタ(Electric Double Layer Capacitor (EDLC))は、活性炭などの多孔質炭素電極内の細孔に形成されるイオンの吸着層、即ち電気二重層に電荷を蓄えるコンデンサである。この電気二重層キャパシタは長寿命で高出力であるため、コンピュータのメモリのバックアップ用電源として普及しており、最近では、鉄道車両に搭載した電力貯蔵システムやハイブリッド車の補助電源として急激に注目されている。 An electric double layer capacitor (EDLC) that can be charged and used repeatedly is a capacitor that stores electric charges in the adsorption layer of ions formed in the pores of a porous carbon electrode such as activated carbon, that is, the electric double layer. is there. Since this electric double layer capacitor has a long life and a high output, it has been widely used as a backup power source for computer memories, and recently, it has been receiving a great deal of attention as an electric power storage system mounted on railway vehicles and an auxiliary power source for hybrid vehicles. ing.

電気二重層キャパシタは、一般的に二次電池に比べて(1)高速での充放電が可能、(2)充放電サイクルの可逆性が高い、(3)サイクル寿命が長い、(4)電極や電解質に重金属を用いていないので環境に優しい、といった特徴を有する。これらの特徴は、電気二重層キャパシタが重金属を用いておらず、またイオンの物理的吸脱離によって作動し、化学種の電子移動反応を伴わないことに由来する。 Electric double layer capacitors are generally (1) faster charge/discharge than secondary batteries, (2) high reversibility of charge/discharge cycle, (3) long cycle life, (4) electrode Also, because it does not use heavy metals in the electrolyte, it is environmentally friendly. These characteristics are derived from the fact that the electric double layer capacitor does not use heavy metals, operates by physical adsorption/desorption of ions, and does not involve electron transfer reaction of chemical species.

電気二重層キャパシタに蓄電されるエネルギー(E)は、充電電圧(V)の二乗と電気二重層容量(C)の積に比例するため(E=CV2/2)、エネルギー密度の改善には容量並びに充電電圧の向上が有効である。 The energy (E) stored in the electric double layer capacitor is proportional to the product of the square of the charging voltage (V) and the electric double layer capacity (C) (E=CV 2 /2). It is effective to improve the capacity and charging voltage.

しかしながら、現状での電気二重層キャパシタは二次電池等に比べてエネルギー密度が低い問題点があり、また、過酷な環境下での充放電サイクルにおける信頼性が低いといった問題もあった。従って、上記新たな用途を開拓するためには、電気二重層キャパシタのエネルギー密度の改善と信頼性の向上が必要であり、電極材の高容量化並びに過酷環境下での容量安定性が求められている。重量比容量、体積比容量、面積比容量などの二重層容量は活性炭電極の細孔構造、結晶構造、化学組成などのナノ構造に依存するため、キャパシタに適した電極材を設計する必要があった。 However, current electric double layer capacitors have a problem that the energy density is lower than that of secondary batteries and the like, and there is also a problem that reliability in a charge/discharge cycle in a harsh environment is low. Therefore, in order to develop the above new applications, it is necessary to improve the energy density and reliability of the electric double layer capacitor, and it is necessary to increase the capacity of the electrode material and capacity stability under harsh environments. ing. Double-layer capacity such as weight specific capacity, volume specific capacity, and area specific capacity depends on the nanostructure such as the pore structure, crystal structure, and chemical composition of the activated carbon electrode, so it is necessary to design an electrode material suitable for capacitors. It was

上記課題を解決するための研究として、本発明者らは活性炭などの多孔質炭素をヘリウムなどの不活性ガスで数千ppmに希釈した一酸化窒素(NO)含有ガス雰囲気下で熱処理することによって、窒素を導入した多孔質炭素材料を簡便に乾式で製造する方法(以下、この方法をNO法という。)を開発した(例えば、特許文献1,2参照。)。 As a study for solving the above-mentioned problems, the present inventors performed heat treatment in a nitrogen monoxide (NO)-containing gas atmosphere prepared by diluting porous carbon such as activated carbon to several thousand ppm with an inert gas such as helium. , A method for easily producing a porous carbon material into which nitrogen is introduced by a dry method (hereinafter, this method is referred to as NO method) has been developed (see, for example, Patent Documents 1 and 2).

このNO法では、上記雰囲気下での熱処理によって、以下の式(1)に示す反応スキームにより、窒素は多孔質炭素表面上の含窒素官能基としてN/C原子比で約1〜2%の割合で導入される。 In this NO method, by heat treatment in the atmosphere described above, nitrogen is present as a nitrogen-containing functional group on the surface of porous carbon in an N/C atomic ratio of about 1 to 2% according to the reaction scheme shown in the following formula (1). Introduced in proportion.

C + NO → C(N) + CO ……(1)
そして、得られた窒素導入多孔質炭素材料を電気二重層キャパシタの電極主材として評価したところ、3V以上の充電電圧で充放電しても容量が低下しない、具体的には、容量維持率が80%から90%に改善することを見出し、高電圧充電での電気二重層キャパシタの劣化を抑制することに成功した。
C + NO → C(N) + CO ……(1)
When the obtained nitrogen-introduced porous carbon material was evaluated as an electrode main material of an electric double layer capacitor, the capacity did not decrease even when charged/discharged at a charging voltage of 3 V or higher. The inventors have found that the rate is improved from 80% to 90%, and succeeded in suppressing the deterioration of the electric double layer capacitor due to high voltage charging.

しかしながら、上記特許文献1,2に示されるNO法による窒素導入多孔質炭素材料を実用化する場合、一酸化窒素は数千ppmにまで希釈したものを使用しているとはいえ、一酸化窒素は大気に大量に放出されると腐食性の硝酸ガスに変化するので、安全性に問題があった。 However, when the nitrogen-introduced porous carbon material by the NO method shown in Patent Documents 1 and 2 above is put to practical use, nitric oxide is diluted to several thousands ppm, but nitric oxide is used. When it is released into the atmosphere in large quantities, it turns into corrosive nitric acid gas, which is a safety issue.

このため、本発明者らは、カルバミン酸アンモニウム、炭酸水素アンモニウム及び炭酸アンモニウムからなる群より選ばれた1種又は2種以上の試薬を充填した充填筒に不活性ガスに通じ、多孔質炭素を、上記試薬の分解反応により発生させた少なくともアンモニアと二酸化炭素を含む不活性ガス雰囲気下で熱処理することを特徴とする電気二重層キャパシタ用炭素材料の製造方法を提案した(例えば、特許文献3参照。)。特許文献3に開示される発明では、安全性に問題がある従来の一酸化窒素を用いた製造方法に比べて、比較的安全なカルバミン酸アンモニウム等を試薬とし、この試薬の分解反応により発生させた微量のアンモニアと二酸化炭素を含む不活性ガス雰囲気下で多孔質炭素を熱処理して窒素を導入した多孔質炭素を製造するため、安全性に優れた製造方法である(以下「CA法」という)。 For this reason, the inventors of the present invention pass an inert gas through a filling cylinder filled with one or more reagents selected from the group consisting of ammonium carbamate, ammonium hydrogen carbonate, and ammonium carbonate to remove porous carbon. Proposed a method for producing a carbon material for an electric double layer capacitor, characterized by performing a heat treatment in an inert gas atmosphere containing at least ammonia and carbon dioxide generated by the decomposition reaction of the above reagent (see, for example, Patent Document 3). ..). In the invention disclosed in Patent Document 3, as compared with the conventional manufacturing method using nitric oxide, which has a problem in safety, ammonium carbamate or the like, which is relatively safe, is used as a reagent and is generated by the decomposition reaction of this reagent. Since the porous carbon is heat-treated in an inert gas atmosphere containing a small amount of ammonia and carbon dioxide to produce nitrogen-introduced porous carbon, it is a highly safe production method (hereinafter referred to as “CA method”). ).

特開2008−141116号公報(請求項2、明細書段落[0018]〜[0020])JP 2008-141116 A (claim 2, paragraphs [0018] to [0020] in the specification) 特開2010−135647号公報(請求項5、明細書段落[0025]〜[0029])JP, 2010-135647, A (claim 5, paragraphs [0025]-[0029] of the specification). 特許第5817286号公報(請求項1、明細書段落[0020]〜[0028])Japanese Patent No. 5817286 (claim 1, paragraphs [0020] to [0028] in the specification)

しかしながら、特許文献3に開示された発明では、アンモニウム塩を熱分解させて発生したアンモニア、二酸化炭素等の存在下で多孔質炭素を熱処理(800〜1000℃)することで窒素ドープを行う。この手法では、多孔質炭素と分解ガスを均一に熱処理するための回転式電気炉及びアンモニウム塩を熱分解させるための電気炉が別途必要であった。このため、従来の窒素ドープ法であるCA法と比べて簡便、かつ高電圧充電耐性が改善された電気二重層キャパシタ用炭素材料の製造方法が求められていた。 However, in the invention disclosed in Patent Document 3, nitrogen doping is performed by heat-treating (800 to 1000° C.) porous carbon in the presence of ammonia, carbon dioxide, etc. generated by thermally decomposing an ammonium salt. In this method, a rotary electric furnace for uniformly heat-treating the porous carbon and the decomposition gas and an electric furnace for thermally decomposing the ammonium salt were separately required. Therefore, there has been a demand for a method for producing a carbon material for an electric double layer capacitor, which is simpler than the conventional nitrogen doping method CA and has improved high voltage charging resistance.

本発明の目的は、従来の窒素ドープ法であるCA法と比べて簡便、かつ高電圧充電耐性が改善された、電気二重層キャパシタ用炭素材料の製造方法を提供することにある。 An object of the present invention is to provide a method for producing a carbon material for an electric double layer capacitor, which is simpler than the conventional nitrogen doping method CA and has improved high voltage charging resistance.

本発明の第1の観点は、多孔質炭素とアミノ基を有する含窒素複素環式化合物とを8:1〜1:4の質量比で混合することにより、前記多孔質炭素と前記アミノ基を有する含窒素複素環式化合物との混合物を得る工程と、前記混合物を不活性ガス雰囲気下熱処理して、前記多孔質の表面に窒素原子を導入する工程、を含む電気二重層キャパシタ用炭素材料の製造方法にある。 A first aspect of the present invention is to mix the porous carbon and the amino group by mixing the porous carbon and the nitrogen-containing heterocyclic compound having an amino group in a mass ratio of 8:1 to 1:4. A step of obtaining a mixture with a nitrogen-containing heterocyclic compound having, and a step of heat-treating the mixture under an inert gas atmosphere to introduce a nitrogen atom into the surface of the porous, a carbon material for electric double layer capacitor It is in the manufacturing method.

本発明の第2の観点は、前記熱処理が横型管状炉内で600〜1000℃で30分間〜2時間保持することにより行われる第1の観点に基づく電気二重層キャパシタ用炭素材料の製造方法にある。 A second aspect of the present invention relates to the method for producing a carbon material for an electric double layer capacitor based on the first aspect, wherein the heat treatment is performed by holding at 600 to 1000° C. for 30 minutes to 2 hours in a horizontal tubular furnace. is there.

本発明の第3の観点は、前記窒素原子の含有量が1〜7原子%である第1又は第2の観点に基づく電気二重層キャパシタ用炭素材料の製造方法にある。 A third aspect of the present invention is the method for producing a carbon material for an electric double layer capacitor based on the first or second aspect, wherein the nitrogen atom content is 1 to 7 atom %.

本発明の第4の観点は、前記炭素材料に含まれる窒素がピリジン型窒素である第1〜3の観点のいずれかに基づく電気二重層キャパシタ用炭素材料の製造方法にある。 A fourth aspect of the present invention is the method for producing a carbon material for an electric double layer capacitor according to any one of the first to third aspects, wherein the nitrogen contained in the carbon material is pyridine type nitrogen.

本発明の第1の観点の製造方法では、多孔質炭素とアミノ基を有する含窒素複素環式化合物とを混合することにより、前記多孔質炭素と前記アミノ基を有する含窒素複素環式化合物との混合物を得る工程と、前記混合物を不活性ガス雰囲気下熱処理して、前記多孔質の表面に窒素原子を導入する工程とを含むことにより、従来のCA法で必要な複雑な構造の回転式電気炉が不要となり、簡便な方法で、高電圧充電耐性が向上した電気二重層キャパシタに好適な電極用多孔質炭素が得られる。 In the production method according to the first aspect of the present invention, a porous carbon and a nitrogen-containing heterocyclic compound having an amino group are mixed to obtain a nitrogen-containing heterocyclic compound having the porous carbon and the amino group. And a step of heat-treating the mixture under an inert gas atmosphere to introduce a nitrogen atom into the porous surface, thereby providing a rotary structure having a complicated structure required in the conventional CA method. An electric furnace is not required, and porous carbon suitable for an electric double layer capacitor having improved high voltage charging resistance can be obtained by a simple method.

本発明の第2の観点の方法では、前記熱処理が横型管状炉内で保持することにより行われるので、従来のCA法と比べて簡便な、電気二重層キャパシタ用炭素材料の製造方法が得られる。 In the method of the second aspect of the present invention, since the heat treatment is performed by holding in a horizontal tubular furnace, a method for producing a carbon material for an electric double layer capacitor, which is simpler than the conventional CA method, can be obtained. ..

本発明の第3の観点の方法では、前記窒素原子の含有量が1〜7原子%であるので、高電圧充電耐性がより一層向上した、電気二重層キャパシタ用炭素材料の製造方法が得られる。 In the method of the third aspect of the present invention, since the content of the nitrogen atom is 1 to 7 atom %, a method for producing a carbon material for an electric double layer capacitor, which has further improved high voltage charging resistance, can be obtained. ..

本発明の第4の観点の方法では、前記炭素材料に含まれる窒素がピリジン型窒素であるから、多孔質炭素の含酸素表面官能基等の電気化学的活性点による電解液の分解を抑制するため、電気二重層キャパシタの長寿命化を図ることができる。 In the method according to the fourth aspect of the present invention, since the nitrogen contained in the carbon material is pyridine type nitrogen, decomposition of the electrolytic solution due to electrochemically active sites such as oxygen-containing surface functional groups of porous carbon is suppressed. Therefore, the life of the electric double layer capacitor can be extended.

本発明の実施形態の電気二重層キャパシタ用炭素材料の製造方法を模式的に表した図である。It is a figure showing typically the manufacturing method of the carbon material for electric double layer capacitors of the embodiment of the present invention. 実施例、比較例、及び参考例で使用した電気二重層キャパシタ評価用の二極式セルの構造を示す図である。It is a figure which shows the structure of the bipolar cell for electric double layer capacitor evaluation used in the Example, the comparative example, and the reference example. 実施例、比較例、及び参考例の炭素材料の窒素脱吸着等温線を示す図である。It is a figure which shows the nitrogen desorption adsorption isotherm of the carbon material of an Example, a comparative example, and a reference example. 実施例、比較例、及び参考例の炭素材料のNlsスペクトルを示す図である。It is a figure which shows the Nls spectrum of the carbon material of an Example, a comparative example, and a reference example. 各種窒素官能基の結合様式及びNlsの結合エネルギーを示す図である。It is a figure which shows the binding mode of various nitrogen functional groups, and the binding energy of Nls. 実施例、比較例、及び参考例の電気二重層キャパシタの耐久試験前後の充放電曲線を示す図である。It is a figure which shows the charging/discharging curve before and behind the endurance test of the electric double layer capacitor of an Example, a comparative example, and a reference example. メラミンを用いた窒素ドープに関する比表面積とN/Cとの関係を示す図である。It is a figure which shows the relationship between the specific surface area and N/C regarding nitrogen doping using melamine.

先ず、本発明を実施するための形態の概略を図面に基づいて説明する。 First, an outline of a mode for carrying out the present invention will be described with reference to the drawings.

図1に示すように、本発明の電気二重層キャパシタ用炭素材料は、電気二重層キャパシタ用多孔質炭素とアミノ基を有する含窒素複素環式化合物とを混合し、この混合物を窒素雰囲気下で一定の昇温速度により昇温し、その温度で一定時間保持することで得られる。 As shown in FIG. 1, the carbon material for an electric double layer capacitor of the present invention is obtained by mixing porous carbon for an electric double layer capacitor with a nitrogen-containing heterocyclic compound having an amino group, and mixing the mixture under a nitrogen atmosphere. It can be obtained by raising the temperature at a constant rate of heating and maintaining that temperature for a certain period of time.

次に、本発明を実施するための形態を詳細に説明する。 Next, a mode for carrying out the present invention will be described in detail.

(a)電気二重層キャパシタ用多孔質炭素粉末とアミノ基を有する含窒素複素環式化合物との混合
本製造方法で処理される電気二重層キャパシタ用多孔質炭素としては、粉末状の活性炭に限らず、繊維状、布状、ブロック体の多孔質炭素であってもよい。例えば、株式会社クラレ製ファイン活性炭(YP50F)粉末を用いる。本製造方法の処理対象である多孔質炭素としては、賦活処理により活性化された活性炭に限らず、賦活処理されていない多孔質炭素も適用可能である。ヤシ殻系活性炭、木質系活性炭、ピッチ系活性炭、石炭系活性炭、カーボンゲル、カーボンナノファイバ、メソポーラスカーボン等も使用することができる。多孔質炭素に窒素を含有させることにより窒素ドープ炭素材料を製造する際に、含窒素表面官能基の生成に伴い細孔が閉塞され、比表面積が小さくなる傾向があるため、多孔質炭素は少なくとも1000m2/g以上、好ましくは1200〜2500m2/gの比表面積を有する材料を使用することが好適である。
(A) Mixing Porous Carbon Powder for Electric Double Layer Capacitor and Nitrogen-Containing Heterocyclic Compound Having Amino Group The porous carbon for electric double layer capacitor to be treated by the present production method is not limited to powdered activated carbon. Instead, it may be fibrous, cloth-like, or block-like porous carbon. For example, fine activated carbon (YP50F) powder manufactured by Kuraray Co., Ltd. is used. The porous carbon to be treated in the present production method is not limited to activated carbon activated by the activation treatment, and porous carbon that has not been activated can also be applied. Coconut shell-based activated carbon, wood-based activated carbon, pitch-based activated carbon, coal-based activated carbon, carbon gel, carbon nanofiber, mesoporous carbon and the like can also be used. When producing a nitrogen-doped carbon material by containing nitrogen in the porous carbon, the pores tend to be blocked due to the generation of the nitrogen-containing surface functional group, and the specific surface area tends to be small, so that the porous carbon is at least 1000 m 2 / g or more, preferably preferred to use a material having a specific surface area of 1200~2500m 2 / g.

また、この多孔質炭素に窒素をドープするためのドープ源としては、アミノ基を有する含窒素複素環式化合物、例えばメラミンを用いる。他にもアセトグアナミン、アデニン、1,4-フェニレンジアミン等も用いることができる。 As a doping source for doping the porous carbon with nitrogen, a nitrogen-containing heterocyclic compound having an amino group, for example, melamine is used. Besides, acetoguanamine, adenine, 1,4-phenylenediamine and the like can also be used.

まず、多孔質炭素粉末とメラミン粉末を、乳鉢を用いて混合する。なお、多孔質炭素が繊維状、布状、ブロック体の活性炭である場合には、メラミン粉末を多孔質炭素に散布するようにして混合する。多孔質炭素とメラミン粉末との質量比は8:1〜1:4であることが好ましく、4:1〜1:2であることがより好ましい。多孔質炭素の比率が上限を越えると多孔質炭素中の窒素の比率が低くなり得られた二重層キャパシタが十分な高電圧充電耐性を有さず、下限未満であると多孔質炭素の比表面積の低下をもたらし得られた二重層キャパシタが十分な容量を有さないという不具合が生ずるからである。また、質量比が4:1〜1:2であることが好ましいのは、多孔質炭素の比率が4を越えると窒素ドープが不均一になりやすいからであり、メラミンの比率が2を越えても多孔質炭素中の窒素の比率はそれ程増加しないからである。 First, the porous carbon powder and the melamine powder are mixed using a mortar. When the porous carbon is fibrous, cloth-like or block-like activated carbon, the melamine powder is sprinkled and mixed on the porous carbon. The mass ratio of the porous carbon to the melamine powder is preferably 8:1 to 1:4, more preferably 4:1 to 1:2. When the ratio of porous carbon exceeds the upper limit, the ratio of nitrogen in the porous carbon becomes low, and the obtained double layer capacitor does not have sufficient high voltage charge resistance, and when the ratio is less than the lower limit, the specific surface area of the porous carbon This is because there is a problem that the obtained double layer capacitor does not have sufficient capacitance. Further, the mass ratio is preferably 4:1 to 1:2 because the nitrogen doping tends to become non-uniform when the porous carbon ratio exceeds 4, and the melamine ratio exceeds 2 The reason is that the ratio of nitrogen in the porous carbon does not increase so much.

(b)多孔質炭素とメラミンとの混合物の熱処理
次に、多孔質炭素とメラミンとの混合物をアルミナボートに載せ、熱処理炉に入れる。熱処理炉には横型管状電気炉を使用する。次に、炉内を不活性ガス雰囲気とした熱処理炉を加熱し、室温から600〜1000℃、好ましくは700〜900℃の範囲まで昇温速度1〜10℃/分で昇温し、不活性ガス雰囲気下、昇温した温度で30分間〜2時間保持し熱処理する。熱処理後、電気炉を室温まで徐冷する。上記条件の熱処理を施すことにより、多孔質炭素粉末の細孔表面に窒素をドープして窒素を原子比で1〜7原子%含んだ炭素材料を簡便に製造することができる(以下「メラミン法」という)。ここでは、窒素ドープはメラミンの熱分解物が炭素表面と反応して進行すると考えられる。不活性ガスには、窒素、アルゴン、ヘリウム等のガスを用いる。昇温する温度を上記範囲に規定したのは、下限値未満では細孔のほとんどが閉塞されてしまうという不具合があり、上限値を超えると炭素表面に必要量の窒素がドープされないという不具合があるからである。また、下限値未満の処理時間での熱処理では炭素表面に必要量の窒素が含有されず、本発明の効果が発揮されず、上限値を越える処理時間での熱処理では、製造される炭素材料の収率が非常に小さくなるためである。
(B) Heat treatment of a mixture of porous carbon and melamine Next, the mixture of porous carbon and melamine is placed on an alumina boat and placed in a heat treatment furnace. A horizontal tubular electric furnace is used as the heat treatment furnace. Next, the heat treatment furnace is heated in an inert gas atmosphere to raise the temperature from room temperature to 600 to 1000° C., preferably 700 to 900° C. at a heating rate of 1 to 10° C./min. In a gas atmosphere, heat treatment is performed by holding the temperature at a raised temperature for 30 minutes to 2 hours. After the heat treatment, the electric furnace is gradually cooled to room temperature. By carrying out the heat treatment under the above conditions, it is possible to dope nitrogen on the surface of the pores of the porous carbon powder to easily produce a carbon material containing 1 to 7 atomic% of nitrogen (hereinafter referred to as “melamine method”). ")). Here, it is considered that nitrogen doping proceeds by the thermal decomposition product of melamine reacting with the carbon surface. A gas such as nitrogen, argon, or helium is used as the inert gas. The temperature to be raised is regulated within the above range, there is a problem that most of the pores are closed when the amount is less than the lower limit value, and there is a problem that the necessary amount of nitrogen is not doped on the carbon surface when the upper limit value is exceeded. Because. Further, the heat treatment at a treatment time of less than the lower limit does not contain the necessary amount of nitrogen on the carbon surface, and the effect of the present invention is not exhibited. This is because the yield is very small.

本発明の製造方法で得られた電気二重層キャパシタ用炭素材料は、炭素表面に窒素を導入され、窒素を原子比で1〜7原子%含み、ピリジン類似の含窒素表面官能基が生成した状態で存在している。多孔質炭素の表面にピリジン型窒素を含有することにより、多孔質炭素の含酸素表面官能基による電解液の分解を抑制するため、電気二重層キャパシタの長寿命化を図ることができる。窒素の原子比が上記のような構成の炭素材料を用いることで、従来のCA法で得られる炭素材料と同様に、単位面積当たりの二重層容量を向上させた電気二重層キャパシタを製造することができる。また、本発明の製造方法で得られる電気二重層キャパシタ用炭素材料を使用したキャパシタは、従来のCA法で得られる炭素材料を使用したキャパシタよりも高い高電圧充電耐性を実現できる。
なお、窒素の含有量が下限値より少ないと、電気分解の抑制効果が低減し、電気二重層キャパシタの高電圧充電耐性が低下するという問題が生ずる。また、窒素の含有量が上限値より多いと、比表面積の低下のため電気二重層キャパシタの容量低下を引き起こしてしまう、細孔閉塞のため細孔内のイオン伝導率が低下して内部抵抗が増加する、という問題が生ずる。
The carbon material for an electric double layer capacitor obtained by the production method of the present invention is a state in which nitrogen is introduced on the carbon surface and contains nitrogen in an atomic ratio of 1 to 7 atomic %, and a nitrogen-containing surface functional group similar to pyridine is produced. Exists in. By containing pyridine type nitrogen on the surface of the porous carbon, the decomposition of the electrolytic solution by the oxygen-containing surface functional groups of the porous carbon is suppressed, so that the life of the electric double layer capacitor can be extended. By using a carbon material having an atomic ratio of nitrogen as described above, an electric double layer capacitor having an improved double layer capacitance per unit area, like a carbon material obtained by a conventional CA method, is manufactured. You can Further, the capacitor using the carbon material for electric double layer capacitors obtained by the manufacturing method of the present invention can realize higher high voltage charge resistance than the capacitor using the carbon material obtained by the conventional CA method.
If the nitrogen content is less than the lower limit value, the effect of suppressing electrolysis is reduced, and the high voltage charging resistance of the electric double layer capacitor deteriorates. Further, if the content of nitrogen is more than the upper limit value, the capacity of the electric double layer capacitor is reduced due to the reduction of the specific surface area, and the ionic conductivity in the pores is reduced due to the pore clogging, and the internal resistance is reduced. There is a problem of increase.

電気二重層キャパシタ用電極を形成するには、本発明の製造方法で得られる炭素材料に導電性補助剤、バインダを所定の割合で添加し、混練した後に、任意の形状に成形することが好適である。導電補助剤としてはカーボンブラックが挙げられる。バインダとしてはPTFE(ポリテトラフルオロエチレン)、PVdF(ポリビリデンフルオライド)、ポリアクリル酸、SBR(スチレン・ブタジエンゴム)系のもの等が挙げられる。また、集電体、セパレーター等は従来より知られている既存の材料を適用することが可能である。 In order to form an electrode for an electric double layer capacitor, it is preferable to add a conductive auxiliary agent and a binder in a predetermined ratio to the carbon material obtained by the manufacturing method of the present invention, knead the mixture, and then mold it into an arbitrary shape. Is. Carbon black is mentioned as a conductive auxiliary agent. Examples of the binder include PTFE (polytetrafluoroethylene), PVdF (polyvinylidene fluoride), polyacrylic acid, and SBR (styrene-butadiene rubber)-based binder. Further, as the current collector, the separator, etc., it is possible to apply existing materials that have been conventionally known.

次に本発明の実施例を比較例とともに詳しく説明する。 Next, examples of the present invention will be described in detail together with comparative examples.

<実施例1>
まず、多孔質炭素としてヤシ殻系活性炭(水蒸気賦活品)(株式会社クラレ製、YP50F)を用意した。ヤシ殻系活性炭はフェノール樹脂系活性炭と同様に電気二重層キャパシタ用の電極主材として典型的なミクロ孔性の活性炭である。なお、このヤシ殻系活性炭は参考例としても用いた。このヤシ殻系活性炭粉末0.3gとメラミン粉末(東京化成工業株式会社製)0.3gとを、乳鉢を用いて両粉末を粉砕しながら均一に混合した(メラミン/YP(質量比)=1)。次に、この混合物を30×15×118mmのサイズのアルミナボートに載せて、横型管状炉を用いて窒素雰囲気下で昇温速度5℃/minにより800℃まで昇温し、1時間保持し、窒素ドープ活性炭を得た。
<Example 1>
First, coconut shell-based activated carbon (steam activated product) (YP50F manufactured by Kuraray Co., Ltd.) was prepared as porous carbon. Coconut shell-based activated carbon is a typical microporous activated carbon as an electrode main material for electric double layer capacitors, similar to phenol resin-based activated carbon. The coconut shell-based activated carbon was also used as a reference example. 0.3 g of this coconut shell-based activated carbon powder and 0.3 g of melamine powder (manufactured by Tokyo Kasei Kogyo Co., Ltd.) were uniformly mixed while pulverizing both powders using a mortar (melamine/YP (mass ratio)=1). ). Next, this mixture was placed on an alumina boat having a size of 30×15×118 mm, heated to 800° C. at a heating rate of 5° C./min in a nitrogen atmosphere in a horizontal tubular furnace, and kept for 1 hour, Nitrogen-doped activated carbon was obtained.

<比較例1>
まず、多孔質炭素として、実施例1と同様のヤシ殻系活性炭を用意した。次に、カルバミン酸アンモニウム2gを充填筒に充填し、ヤシ殻系活性炭1.0gを、熱処理炉であるロータリーキルン電気炉内に入れた。次いで、充填筒を40℃に保ち、充填筒にキャリアガスを800ml/minの流速で通じた。次に、熱処理炉内に充填筒で発生させたアンモニアと二酸化炭素を含むキャリアガスを供給し、炉内雰囲気をアンモニアと二酸化炭素を含むキャリアガス雰囲気として、温度850℃で4時間熱処理することにより、窒素ドープ活性炭を得た。
<Comparative Example 1>
First, the same coconut shell-based activated carbon as in Example 1 was prepared as the porous carbon. Next, 2 g of ammonium carbamate was filled in a filling cylinder, and 1.0 g of coconut shell-based activated carbon was put in a rotary kiln electric furnace which is a heat treatment furnace. Then, the filling cylinder was kept at 40° C., and the carrier gas was passed through the filling cylinder at a flow rate of 800 ml/min. Next, a carrier gas containing ammonia and carbon dioxide generated in the filling cylinder was supplied into the heat treatment furnace, and the atmosphere in the furnace was changed to a carrier gas atmosphere containing ammonia and carbon dioxide, and heat treatment was performed at a temperature of 850° C. for 4 hours. , Nitrogen-doped activated carbon was obtained.

<参考例1>
実施例1と同様のヤシ殻系活性炭を用意し、これを参考例1の多孔質炭素とした。
<Reference example 1>
The same coconut shell activated carbon as in Example 1 was prepared, and this was used as the porous carbon of Reference Example 1.

<比較試験1及び評価>
実施例1、比較例1、及び参考例1で得られた活性炭(炭素材料)の物性を測定した。
<Comparative test 1 and evaluation>
The physical properties of the activated carbon (carbon material) obtained in Example 1, Comparative Example 1 and Reference Example 1 were measured.

・ BET比表面積、メソ孔容積、ミクロ孔容積及び平均ミクロ孔幅
実施例1、比較例1、及び参考例1で得られた活性炭について、77Kにおける窒素吸脱着測定をそれぞれ行った。得られた吸着等温線からBET比表面積(SBET)、Dollimore−Heal(DH)法を用いてメソ孔容積(Vmeso)、Dubinin−Radushkevich(DR)法を用いてミクロ孔容積(Vmicro)及び平均ミクロ孔幅(wmicro)を求めた。なお、ミクロ孔は2nm未満、メソ孔は2〜50nmの範囲の細孔のことを言う。活性炭中の窒素含有割合(N/C原子比)は燃焼用による元素分析により求めた。
BET Specific Surface Area, Mesopore Volume, Micropore Volume, and Average Micropore Width The activated carbon obtained in Example 1, Comparative Example 1 and Reference Example 1 was subjected to nitrogen adsorption/desorption measurement at 77K. From the obtained adsorption isotherm, BET specific surface area (S BET ), mesopore volume (V meso ) using the Dollimore-Heal (DH) method, micropore volume (V micro ) using the Dubinin-Radushkevich (DR) method And the average micropore width (w micro ) were determined. In addition, the micropores are less than 2 nm, and the mesopores are pores in the range of 2 to 50 nm. The nitrogen content ratio (N/C atomic ratio) in the activated carbon was obtained by elemental analysis for combustion.

図3に、実施例1、比較例1、及び参考例1の窒素脱吸着等温線を示す。図3の横軸は相対圧(ある圧力Pと飽和蒸気圧Poとの比)を示し、縦軸は固体分子表面に吸着するガス(窒素)吸着量を示す。また、表1に、細孔構造パラメーターであるBET比表面積、メソ孔容積、ミクロ孔容積及び平均ミクロ孔幅、収率、並びに窒素含有割合を示す。図3より、実施例1は、比較例1及び参考例1と同様に、ミクロ孔の発達したI型等温線を示した。また、表1より、メラミンによる窒素ドープによって比表面積及び細孔容積がわずかに減少していることが分かる。実施例1及び比較例1のN/C原子比は、それぞれ0.029及び0.027でほぼ同じであるので、単純な窒素含有量という観点からはメラミン法による窒素ドープはCA法と遜色ないと言える。 FIG. 3 shows nitrogen desorption adsorption isotherms of Example 1, Comparative Example 1 and Reference Example 1. The horizontal axis of FIG. 3 represents the relative pressure (the ratio of a certain pressure P to the saturated vapor pressure P o ), and the vertical axis represents the amount of gas (nitrogen) adsorbed on the surface of the solid molecule. In addition, Table 1 shows the BET specific surface area, mesopore volume, micropore volume and average micropore width, yield, and nitrogen content, which are pore structure parameters. From FIG. 3, like Example 1 and Reference Example 1, Example 1 showed an I-type isotherm with developed micropores. Further, it can be seen from Table 1 that the specific surface area and the pore volume are slightly reduced by nitrogen doping with melamine. Since the N/C atomic ratios of Example 1 and Comparative Example 1 are 0.029 and 0.027, respectively, which are almost the same, the nitrogen doping by the melamine method is comparable to the CA method from the viewpoint of simple nitrogen content. Can be said.

Figure 2020088119
Figure 2020088119

図4に、実施例1及び比較例1の窒素ドープ活性炭のNlsピーク範囲におけるX線光電子分光スペクトル(XPS)を示す。また、図5に、各種窒素官能基の結合様式及びNlsの結合エネルギーを示す。更に、表2に、XPS分析から得られた窒素/炭素原子比(N/CXPS)及びピーク分離により得られた各種窒素官能基の存在比をまとめた。 FIG. 4 shows X-ray photoelectron spectroscopy (XPS) spectra in the Nls peak range of the nitrogen-doped activated carbons of Example 1 and Comparative Example 1. Further, FIG. 5 shows the binding modes of various nitrogen functional groups and the binding energy of Nls. Further, in Table 2, the nitrogen/carbon atomic ratio (N/C XPS ) obtained from XPS analysis and the abundance ratio of various nitrogen functional groups obtained by peak separation are summarized.

図4から明らかなように、実施例1及び比較例1のNlsスペクトルは、両者共に、398.5eV及び401.5eVの付近にピークが確認され、スペクトル形状も非常に類似していた。また、図4に示すように、スペクトルを波形分離すると、エネルギーの低い方からそれぞれピリジン型窒素、ピロール/ピリドン型窒素、第四級窒素、酸化型窒素に帰属される。いずれの試料においても最も寄与の大きなものはピリジン型窒素であり、このことから、ドープされた窒素は主にピリジン型の結合状態で存在することが分かった。また、表2より、実施例1のN/CXPSはN/C燃焼法より明らかに大きい値を示し、比較例1はいずれの値も同程度であることが分かる。過去の研究結果から、CA法による窒素ドープでは、N/CXPSはN/C燃焼法とほぼ一致することが分かっている。これらの結果から、XPSが表面分析であることを考慮すれば、CA法では活性炭表面及び内部が均一に窒素ドープされるのに対し、メラミン法では活性炭表面により多くの窒素がドープされることが示唆された。 As is clear from FIG. 4, in both the Nls spectra of Example 1 and Comparative Example 1, peaks were confirmed near 398.5 eV and 401.5 eV, and the spectrum shapes were also very similar. Further, as shown in FIG. 4, when the spectrum is separated into waveforms, they are assigned to pyridine type nitrogen, pyrrole/pyridone type nitrogen, quaternary nitrogen, and oxidized type nitrogen in the order of lower energy. The pyridine-type nitrogen had the largest contribution in all the samples, which indicates that the doped nitrogen exists mainly in the pyridine-type bonded state. In addition, it can be seen from Table 2 that N/C XPS of Example 1 shows a clearly larger value than that of the N/C combustion method , and Comparative Example 1 has almost the same values. From the past research results, it is known that N/C XPS is almost the same as N/C combustion method in nitrogen doping by CA method. From these results, considering that XPS is a surface analysis, in the CA method, the activated carbon surface and the inside are uniformly nitrogen-doped, whereas in the melamine method, the activated carbon surface is more doped with nitrogen. It was suggested.

Figure 2020088119
Figure 2020088119

<比較試験2及び評価>
(電気二重層キャパシタ用電極の作製)
実施例1、比較例1、及び参考例1で得られた活性炭粉末を乾燥させ、導電補助剤及び結着剤で混練し、プレス機でディスク状に成型して活性炭電極とした後、集電体に導電接着塗料を塗布して活性炭電極を重ね接着することにより、活性炭電極と集電体とを一体化させて、電気二重層キャパシタ用電極を作製した。
<Comparative test 2 and evaluation>
(Preparation of electrode for electric double layer capacitor)
The activated carbon powders obtained in Example 1, Comparative Example 1 and Reference Example 1 were dried, kneaded with a conductive auxiliary agent and a binder, molded into a disk shape with a pressing machine to form an activated carbon electrode, and then a current collector. A conductive adhesive coating was applied to the body, and the activated carbon electrode was overlaid and adhered, whereby the activated carbon electrode and the current collector were integrated to produce an electrode for an electric double layer capacitor.

具体的には、まず、実施例1、比較例1、及び参考例1の活性炭粉末を、熱真空乾燥機により200℃で2時間乾燥させた。次に、乾燥後の活性炭粉末と、導電補助剤としてのアセチレンブラック(電気化学工業株式会社製、デンカブラック(登録商標))と、結着剤としてのポリテトラフルオロエチレン(PTFE)(三井・デュポン フロロケミカル株式会社製、PTFE6・J)とを85:10:5の質量比で混練した後、プレス機でディスク状に成型した。次に、EDLC用集電体としてのエッチドアルミ箔(日本蓄電器工業株式会社製、厚さ20μm)にEDLC用導電接着塗料(日立化成株式会社製、ヒタゾルGA・715)を塗布し、これに実施例1、比較例1、及び参考例1のディスク状活性炭を貼り合わせて、電極をそれぞれ作製した。 Specifically, first, the activated carbon powders of Example 1, Comparative Example 1, and Reference Example 1 were dried at 200° C. for 2 hours with a thermal vacuum dryer. Next, the activated carbon powder after drying, acetylene black (Denka Black (registered trademark) manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive auxiliary agent, and polytetrafluoroethylene (PTFE) as a binder (Mitsui DuPont) PTFE6.J) manufactured by Fluorochemicals Co., Ltd. was kneaded at a mass ratio of 85:10:5 and then molded into a disk shape by a press machine. Next, a conductive adhesive paint for EDLC (Hitasol GA.715, manufactured by Hitachi Chemical Co., Ltd.) was applied to an etched aluminum foil (manufactured by Nihon Denki Kogyo Co., Ltd., thickness: 20 μm) as a current collector for EDLC. The disk-shaped activated carbons of Example 1, Comparative Example 1 and Reference Example 1 were attached to each other to produce electrodes.

(電気二重層キャパシタ用二極式セルの作製)
電気二重層キャパシタの容量測定及び耐久試験を行うために、実施例1、比較例1、及び参考例1で得られた活性炭電極2枚を正極用電極及び負極用電極として用いて、図2に示す構造を有するアルミニウム製二極式セルをそれぞれ作製した。この二極式セルは、電気配線を有する正極側アルミニウム製ボディ21上に、正極側電極23・セパレーター24・フッ素樹脂ガイド25・負極側電極26の順に重ね、両電極間に電解液を含浸させた後、重ね合わせた負極側集電体27上にスプリング29を備えた電極押さえ31、電気配線を有する負極側アルミニウム製ボディ32を載せ、正極側アルミニウム製ボディ21と負極側アルミニウム製ボディ32とで挟み込んで作製した。電気二重層キャパシタの電解液には、1.0M濃度のトリエチルメチルアンモニウムテトラフルオロボレート((C2H5)3CH3NBF4)を電解質塩として含むプロピレンカーボネート溶液(東洋合成工業株式会社製)を用いた。この電解液は、電気二重層キャパシタの有機系電解液として一般的である。
(Fabrication of bipolar cell for electric double layer capacitor)
In order to perform the capacitance measurement and the durability test of the electric double layer capacitor, two activated carbon electrodes obtained in Example 1, Comparative Example 1 and Reference Example 1 were used as a positive electrode and a negative electrode. Aluminum bipolar cells each having the structure shown were produced. In this bipolar cell, a positive electrode side aluminum electrode body 23, a separator 24, a fluororesin guide 25 and a negative electrode side electrode 26 are stacked in this order on a positive electrode side aluminum body 21 having electric wiring, and an electrolytic solution is impregnated between both electrodes. After that, an electrode holder 31 provided with a spring 29 and a negative electrode side aluminum body 32 having electric wiring are placed on the negative electrode side current collector 27 that has been overlapped, and a positive electrode side aluminum body 21 and a negative electrode side aluminum body 32 are provided. It was sandwiched between. A propylene carbonate solution (manufactured by Toyo Gosei Co., Ltd.) containing 1.0 M concentration of triethylmethylammonium tetrafluoroborate ((C2H5)3CH3NBF4) as an electrolyte salt was used as the electrolytic solution of the electric double layer capacitor. This electrolytic solution is generally used as an organic electrolytic solution for electric double layer capacitors.

また、活性炭電極部への電解液の含浸は、活性炭電極を熱真空乾燥器により200℃において2時間乾燥後、セルロース系セパレーターと共にアルゴングローブボックス内に移し、活性炭電極を電解液中に浸したまま30分間保持することにより行った。 Further, the impregnation of the activated carbon electrode portion with the electrolytic solution is performed by drying the activated carbon electrode at 200° C. for 2 hours with a thermal vacuum dryer, and then transferring the activated carbon electrode into an argon glove box together with the cellulose-based separator and leaving the activated carbon electrode immersed in the electrolytic solution. It was carried out by holding for 30 minutes.

(初期容量及び容量維持率評価)
実施例1、比較例1、及び参考例1の活性炭を電極主材として用いた電気二重層キャパシタの耐久試験前後の充放電曲線、並びに初期容量及び耐久試験後の容量維持率を求めた。
(Evaluation of initial capacity and capacity retention rate)
The charge/discharge curves before and after the durability test of the electric double layer capacitors using the activated carbons of Example 1, Comparative Example 1 and Reference Example 1 as the electrode main material, and the initial capacity and the capacity retention rate after the durability test were determined.

(耐久試験)
電気二重層キャパシタの耐久性評価のための容量測定は、40℃において定電流法(電流密度:80mA/g;測定電圧範囲:0〜2.5V)により行った。まず、充放電を5サイクル行い、5サイクル目の容量を初期容量とした。次に、容量測定後、70℃においてセルに3.4Vの電圧を100時間印加することにより耐久試験を行った。続いて、耐久試験後、再び40℃に戻し、容量を定電流法(電流密度:80mA/g:測定電圧範囲:0〜2.5V)により求めた。その後充放電を5サイクル行い、5サイクル目の容量を終止容量とした。そして耐久試験前後の容量の比(終止容量と初期容量の比)を容量維持率とした。図6に実施例1、比較例1、及び参考例1の活性炭を用いた電気二重層キャパシタの耐久試験前後の充放電曲線を示す。表3に初期容量及び耐久試験後の容量維持率を示す。なお、容量は充放電曲線から求めた容量を正負極の合計質量で規格化した比容量(重量比容量)である。また、キャパシタの内部抵抗を放電開始から0.1秒間の電圧降下の値を用いて、以下の式により算出した。
R=ΔV/(2I)(R:セル抵抗(Ω)、ΔV:0.1秒間の電圧降下、I:電流)
(An endurance test)
The capacitance measurement for evaluating the durability of the electric double layer capacitor was performed at 40° C. by the constant current method (current density: 80 mA/g; measurement voltage range: 0 to 2.5 V). First, charge and discharge were performed for 5 cycles, and the capacity at the 5th cycle was used as the initial capacity. Next, after measuring the capacity, a durability test was performed by applying a voltage of 3.4 V to the cell at 70° C. for 100 hours. Then, after the durability test, the temperature was returned to 40° C. again, and the capacity was determined by the constant current method (current density: 80 mA/g: measurement voltage range: 0 to 2.5 V). After that, charging and discharging were performed for 5 cycles, and the capacity at the 5th cycle was defined as the final capacity. The capacity ratio before and after the durability test (ratio between the final capacity and the initial capacity) was taken as the capacity retention rate. FIG. 6 shows charge/discharge curves before and after the endurance test of the electric double layer capacitors using the activated carbons of Example 1, Comparative Example 1 and Reference Example 1. Table 3 shows the initial capacity and the capacity retention rate after the durability test. The capacity is a specific capacity (weight specific capacity) obtained by normalizing the capacity obtained from the charge/discharge curve with the total mass of the positive and negative electrodes. Further, the internal resistance of the capacitor was calculated by the following formula using the value of the voltage drop for 0.1 second from the start of discharge.
R=ΔV/(2I) (R: cell resistance (Ω), ΔV: voltage drop for 0.1 second, I: current)

Figure 2020088119
Figure 2020088119

図6の結果を比較すると、すべての試料とも耐久試験前にはキャパシタに特有な直線的な充放電曲線が示された。しかし、耐久試験後では、実施例1、比較例1、及び参考例1において、耐久試験後の充放電曲線が変化し、放電に要する時間が減少した。これは、耐久試験によって容量が低下したことを意味する。なお、参考例1においては、耐久試験後の充放電曲線の変化は大きかった。 Comparing the results of FIG. 6, all the samples showed a linear charge/discharge curve peculiar to the capacitor before the durability test. However, after the durability test, in Example 1, Comparative Example 1, and Reference Example 1, the charge/discharge curves after the durability test changed, and the time required for discharging decreased. This means that the capacity was reduced by the durability test. In Reference Example 1, the change in the charge/discharge curve after the durability test was large.

一方、表3より、実施例1は、比較例1、及び参考例1とほぼ同程度の初期容量を示した。また、参考例1の窒素未ドープの活性炭を使用した電気二重層キャパシタでは、耐久試験後の容量維持率が48%しかないが、実施例1のメラミン法によって窒素を導入した活性炭を使用した電気二重層キャパシタでは容量維持率は75%であり、CA法によって窒素を導入した比較例1の72%よりも高い値であった。このことから、メラミン法でもCA法と同様に、高電圧充電耐性を有する窒素ドープ活性炭を調製できることが明らかとなった。 On the other hand, from Table 3, Example 1 showed almost the same initial capacity as Comparative Example 1 and Reference Example 1. Further, in the electric double layer capacitor using the non-nitrogen-doped activated carbon of Reference Example 1, although the capacity retention rate after the durability test is only 48%, the electric double layer capacitor using the activated carbon into which nitrogen was introduced by the melamine method of Example 1 was used. The double layer capacitor had a capacity retention rate of 75%, which was higher than 72% of Comparative Example 1 in which nitrogen was introduced by the CA method. From this, it became clear that the melamine method can prepare a nitrogen-doped activated carbon having high-voltage charge resistance as in the CA method.

<比較試験3及び評価>
(ドープ窒素量のメラミン量及び仕込み量依存性)
<Comparative test 3 and evaluation>
(Dependence of doping nitrogen amount on melamine amount and charging amount)

<実施例2>
メラミン粉末の量を0.0375gとし(メラミン/YP(質量比)=0.125)、20×13×80mmのサイズのアルミボートを用いた以外、実施例1と同様にして、窒素ドープ活性炭を得た。
<Example 2>
Nitrogen-doped activated carbon was prepared in the same manner as in Example 1 except that the amount of melamine powder was 0.0375 g (melamine/YP (mass ratio)=0.125) and an aluminum boat having a size of 20×13×80 mm was used. Obtained.

<実施例3>
メラミン粉末の量を0.075gとし(メラミン/YP(質量比)=0.25)、20×13×80mmのサイズのアルミボートを用いた以外、以外、実施例1と同様にして、窒素ドープ活性炭を得た。
<Example 3>
Nitrogen doping was performed in the same manner as in Example 1 except that the amount of melamine powder was 0.075 g (melamine/YP (mass ratio)=0.25) and an aluminum boat of 20×13×80 mm was used. Activated carbon was obtained.

<実施例4>
メラミン粉末の量を0.15gとし(メラミン/YP(質量比)=0.5)、20×13×80mmのサイズのアルミボートを用いた以外、以外、実施例1と同様にして、窒素ドープ活性炭を得た。
<Example 4>
Nitrogen doping was performed in the same manner as in Example 1 except that the amount of melamine powder was 0.15 g (melamine/YP (mass ratio)=0.5) and an aluminum boat having a size of 20×13×80 mm was used. Activated carbon was obtained.

<実施例5>
20×13×80mmのサイズのアルミボートを用いた以外、実施例1と同様にして、窒素ドープ活性炭を得た。
<Example 5>
Nitrogen-doped activated carbon was obtained in the same manner as in Example 1 except that an aluminum boat having a size of 20×13×80 mm was used.

<実施例6>
メラミン粉末の量を0.6gとし(メラミン/YP(質量比)=2)、20×13×80mmのサイズのアルミボートを用いた以外、実施例1と同様にして、窒素ドープ活性炭を得た。
<Example 6>
Nitrogen-doped activated carbon was obtained in the same manner as in Example 1 except that the amount of melamine powder was set to 0.6 g (melamine/YP (mass ratio)=2) and an aluminum boat having a size of 20×13×80 mm was used. ..

<実施例7>
メラミン粉末の量を1.2gとし(メラミン/YP(質量比)=4)、20×13×80mmのサイズのアルミボートを用いた以外、実施例1と同様にして、窒素ドープ活性炭を得た。
<Example 7>
Nitrogen-doped activated carbon was obtained in the same manner as in Example 1 except that the amount of melamine powder was 1.2 g (melamine/YP (mass ratio)=4) and an aluminum boat having a size of 20×13×80 mm was used. ..

<実施例8>
活性炭粉末の量を2g及びメラミンの量を2gとした(メラミン/YP(質量比)=1)以外、実施例1と同様にして、窒素ドープ活性炭を得た。
<Example 8>
A nitrogen-doped activated carbon was obtained in the same manner as in Example 1 except that the amount of activated carbon powder was 2 g and the amount of melamine was 2 g (melamine/YP (mass ratio)=1).

<実施例9>
活性炭粉末の量を3g及びメラミンの量を3gとした(メラミン/YP(質量比)=1)以外、実施例1と同様にして、窒素ドープ活性炭を得た。
<Example 9>
A nitrogen-doped activated carbon was obtained in the same manner as in Example 1 except that the amount of activated carbon powder was 3 g and the amount of melamine was 3 g (melamine/YP (mass ratio)=1).

表4に、窒素ドープ活性炭のメラミンと活性炭の質量比、活性炭の仕込み量、燃焼法による窒素含有量、及び収率をまとめた。実施例1〜7では、メラミンの質量比が増加するにつれて、窒素ドープ量は増加し、最大で約5原子%(N/C=0.05)までドープできると考えられる。一方、実施例8及び9に示すように、メラミンと活性炭の質量比を1に固定して活性炭の量を2g、3gと増加した場合、窒素含有量が5.2原子%(N/C=0.052)、5.3原子%(N/C=0.053)であり、活性炭の量が0.3gである実施例1〜6の場合よりも高くなった。このことから、メラミン法では仕込み量が多い方が窒素ドープ量を高めることができると言える。 Table 4 summarizes the mass ratio of melamine to activated carbon of nitrogen-doped activated carbon, the charged amount of activated carbon, the nitrogen content by the combustion method, and the yield. In Examples 1 to 7, it is considered that the nitrogen doping amount increases as the mass ratio of melamine increases, and that the maximum doping amount is about 5 atom% (N/C=0.05). On the other hand, as shown in Examples 8 and 9, when the mass ratio of melamine and activated carbon was fixed to 1 and the amount of activated carbon was increased to 2 g and 3 g, the nitrogen content was 5.2 atomic% (N/C= 0.052), 5.3 atomic% (N/C=0.053), which was higher than in the case of Examples 1 to 6 in which the amount of activated carbon was 0.3 g. From this, it can be said that in the melamine method, the nitrogen doping amount can be increased as the charging amount increases.

Figure 2020088119
Figure 2020088119

表5に、表4で示した試料の細孔構造のデータをまとめた。メラミン/活性炭の質量比が大きい程、あるいは活性炭の仕込み量が多い程、比表面積及び細孔容積の減少が顕著になった。図7に、メラミン法による窒素ドープに関する比表面積と窒素含有割合(N/C)との関係を示す。横軸は活性炭中の窒素含有割合(N/C原子比)を示し、縦軸はBET比表面積を表す。図7に示すように、メラミン法では、窒素ドープ量と細孔構造の維持はトレードオフの関係になっていると考えられる。これらの結果を考慮すると、高電圧充電耐性を実現でき、かつ容量低下を引き起こさない電気二重層キャパシタを得るためには、混合する活性炭とメラミンの質量比を1:1とするのが良いと考えられる。 Table 5 summarizes the pore structure data of the samples shown in Table 4. The larger the mass ratio of melamine/activated carbon or the larger the amount of activated carbon charged, the more remarkable the decrease in specific surface area and pore volume. FIG. 7 shows the relationship between the specific surface area and the nitrogen content ratio (N/C) regarding nitrogen doping by the melamine method. The horizontal axis represents the nitrogen content ratio (N/C atomic ratio) in the activated carbon, and the vertical axis represents the BET specific surface area. As shown in FIG. 7, in the melamine method, it is considered that there is a trade-off relationship between the nitrogen doping amount and the maintenance of the pore structure. Considering these results, in order to obtain an electric double layer capacitor that can realize high voltage charging resistance and does not cause a capacity decrease, it is considered that the mass ratio of activated carbon and melamine to be mixed should be 1:1. Be done.

Figure 2020088119
Figure 2020088119

<実施例10>
活性炭粉末の量を1g及びメラミンの量を1gとした(メラミン/YP(質量比)=1)以外、実施例1と同様にして、窒素ドープ活性炭を得た。
<Example 10>
A nitrogen-doped activated carbon was obtained in the same manner as in Example 1 except that the amount of activated carbon powder was 1 g and the amount of melamine was 1 g (melamine/YP (mass ratio)=1).

<比較例2>
窒素源として炭酸アンモニウムを使い、さらに熱処理時間を2時間とした以外、比較例1と同様にして、CA法による窒素ドープ活性炭を得た。
<Comparative example 2>
Nitrogen-doped activated carbon was obtained by the CA method in the same manner as in Comparative Example 1 except that ammonium carbonate was used as the nitrogen source and the heat treatment time was 2 hours.

実施例10及び比較例2で得られた炭素材料の物性を測定した。その結果を以下の表6に示す。 The physical properties of the carbon materials obtained in Example 10 and Comparative Example 2 were measured. The results are shown in Table 6 below.

Figure 2020088119
Figure 2020088119

<比較試験4及び評価>
実施例10、比較例1、及び参考例1の活性炭を電極主材として用いた電気二重層キャパシタの保持電圧を3.2Vとしたこと以外は比較試験2と同様に耐久試験を行い、初期容量及び耐久試験後の容量維持率を求めた。その結果を表7に示す。
<Comparative test 4 and evaluation>
An endurance test was conducted in the same manner as in Comparative Test 2 except that the holding voltage of the electric double layer capacitor using the activated carbon of Example 10, Comparative Example 1 and Reference Example 1 as the electrode main material was set to 3.2 V, and the initial capacity was changed. And the capacity retention rate after the durability test was determined. The results are shown in Table 7.

表7から明らかなように、実施例10は、比較例2、及び参考例1とほぼ同程度の初期容量を示した。また、参考例1の窒素未ドープの活性炭を使用した電気二重層キャパシタでは、耐久試験後の容量維持率が74%しかないが、実施例9のメラミン法によって窒素を導入した活性炭を使用した電気二重層キャパシタでは容量維持率は92%であり、CA法によって窒素を導入した比較例1の91%よりも高い値であった。このことから、メラミン法でもCA法と同様に、高電圧充電耐性を大幅に改善出来ることが確認された。 As is clear from Table 7, Example 10 showed almost the same initial capacity as Comparative Example 2 and Reference Example 1. Further, in the electric double layer capacitor using the non-nitrogen-doped activated carbon of Reference Example 1, the capacity retention rate after the durability test was only 74%, but the electricity using the activated carbon into which nitrogen was introduced by the melamine method of Example 9 was used. In the double layer capacitor, the capacity retention rate was 92%, which was higher than the value of 91% in Comparative Example 1 in which nitrogen was introduced by the CA method. From this, it was confirmed that the melamine method can significantly improve the high voltage charge resistance as in the CA method.

Figure 2020088119
Figure 2020088119

<比較試験5及び評価>
(メラミンとの熱処理温度依存性)
<Comparative test 5 and evaluation>
(Heat treatment temperature dependence with melamine)

<実施例11>
処理温度を600℃とした以外、実施例10と同様にして、窒素ドープ活性炭を得た。
<Example 11>
Nitrogen-doped activated carbon was obtained in the same manner as in Example 10 except that the treatment temperature was 600°C.

<実施例12>
処理温度を1000℃とした以外、実施例10と同様にして、窒素ドープ活性炭を得た。
<Example 12>
Nitrogen-doped activated carbon was obtained in the same manner as in Example 10 except that the treatment temperature was 1000°C.

<比較例3>
処理温度を400℃とした以外、実施例10と同様にして、窒素ドープ活性炭を得た。
<Comparative example 3>
A nitrogen-doped activated carbon was obtained in the same manner as in Example 10 except that the treatment temperature was 400°C.

表8に、窒素ドープ活性炭の処理温度、燃焼法による窒素含有量、収率、及びBET比表面積をまとめた。処理温度が600〜1000℃の実施例10〜12では処理温度が増加するにつれて窒素ドープ量及び収率が減少したが、比表面積はわずかながら増加した。これに対し処理温度が400℃の比較例3では、窒素ドープ量は約30原子%(N/C=0.3)と非常に高いが、比表面積はわずか40m2/gであった。メラミンの熱分解物が活性炭表面に大量に析出して細孔を閉塞していると推察される。キャパシタ用多孔質炭素電極として十分な二重層容量を示すためには比表面積は1000m2/g以上が必要であることを考えると、メラミン法での熱処理温度は600℃以上が適していると言える。 Table 8 summarizes the treatment temperature of nitrogen-doped activated carbon, the nitrogen content by the combustion method, the yield, and the BET specific surface area. In Examples 10 to 12 in which the treatment temperature was 600 to 1000°C, the nitrogen doping amount and the yield decreased as the treatment temperature increased, but the specific surface area slightly increased. On the other hand, in Comparative Example 3 in which the treatment temperature was 400° C., the nitrogen doping amount was about 30 atomic% (N/C=0.3), which was extremely high, but the specific surface area was only 40 m 2 /g. It is presumed that a large amount of the thermal decomposition product of melamine was deposited on the surface of the activated carbon and blocked the pores. Considering that a specific surface area of 1000 m 2 /g or more is required to show sufficient double layer capacity as a porous carbon electrode for capacitors, it can be said that a heat treatment temperature of 600° C. or more is suitable for the melamine method. ..

Figure 2020088119
Figure 2020088119

実施例10に加えて、実施例11、実施例12、及び比較例3の活性炭を電極主材として用いたこと以外は比較試験4と同様に耐久試験を行い、初期容量及び耐久試験後の容量維持率を求めた。その結果を表9に示す。 In addition to Example 10, a durability test was performed in the same manner as Comparative Test 4 except that the activated carbons of Example 11, Example 12, and Comparative Example 3 were used as the electrode main material, and the initial capacity and the capacity after the durability test were performed. The maintenance rate was calculated. The results are shown in Table 9.

Figure 2020088119
Figure 2020088119

表9から明らかなように、実施例11、12は、実施例10とほぼ同程度の初期容量と容量維持率を示した。処理温度が400℃の比較例3は初期容量がかなり小さいだけでなく、容量維持率も非常に低かった。このことから、メラミン法での熱処理温度が600℃以上1000℃以下の範囲であれば、高電圧充電耐性の優れた電気二重層キャパシタが作製できることが明らかになった。 As is clear from Table 9, Examples 11 and 12 showed almost the same initial capacity and capacity retention rate as Example 10. In Comparative Example 3 in which the treatment temperature was 400° C., not only the initial capacity was considerably small, but also the capacity retention rate was very low. From this, it became clear that an electric double layer capacitor excellent in high voltage charge resistance could be produced if the heat treatment temperature in the melamine method was in the range of 600° C. or higher and 1000° C. or lower.

<比較試験6及び評価>
(メラミン以外の窒素源の効果について)
<Comparative test 6 and evaluation>
(About the effects of nitrogen sources other than melamine)

<実施例13>
窒素源として1gのアセトグアナミンを用いたこと(アセトグアナミン/YP(質量比)=1)以外、実施例10と同様にして、窒素ドープ活性炭を得た。
<Example 13>
A nitrogen-doped activated carbon was obtained in the same manner as in Example 10 except that 1 g of acetoguanamine was used as a nitrogen source (acetoguanamine/YP (mass ratio)=1).

<実施例14>
窒素源として2gのアデニンを用いたこと(アデニン/YP(質量比)=2)以外、実施例10と同様にして、窒素ドープ活性炭を得た。
<Example 14>
Nitrogen-doped activated carbon was obtained in the same manner as in Example 10 except that 2 g of adenine was used as the nitrogen source (adenine/YP (mass ratio)=2).

表10に、窒素ドープ活性炭の窒素源、活性炭の仕込み量、窒素源と活性炭の質量比、燃焼法による窒素含有量、収率、BET比表面積、メソ孔容積、ミクロ孔容積及び平均ミクロ孔幅をまとめた。窒素源がアセトグアナミンあるいはアデニンの場合でもメラミンを用いた場合とほぼ同等の窒素含有量と細孔構造を有する窒素ドープ活性炭が調製できると言える。 Table 10 shows the nitrogen source of nitrogen-doped activated carbon, the charged amount of activated carbon, the mass ratio of the nitrogen source and activated carbon, the nitrogen content by the combustion method, the yield, the BET specific surface area, the mesopore volume, the micropore volume and the average micropore width. Summarized. It can be said that even when the nitrogen source is acetoguanamine or adenine, it is possible to prepare a nitrogen-doped activated carbon having a nitrogen content and a pore structure that are almost the same as when melamine is used.

Figure 2020088119
Figure 2020088119

実施例10に加えて、実施例13、実施例14、及び比較例3の活性炭を電極主材として用いたこと以外は比較試験4と同様に耐久試験を行い、初期容量及び耐久試験後の容量維持率を求めた。その結果を表11に示す。 In addition to Example 10, a durability test was performed in the same manner as Comparative Test 4 except that the activated carbons of Examples 13, 14 and Comparative Example 3 were used as the electrode main material, and the initial capacity and the capacity after the durability test were performed. The maintenance rate was calculated. The results are shown in Table 11.

Figure 2020088119
Figure 2020088119

表11から明らかなように、実施例13,14は、実施例10とほぼ同程度の初期容量を示し、容量維持率もほぼ同等であった。このことから、メラミンだけでなくアセトグアナミン及びアデニンといったアミノ基を有する含窒素複素環式化合物を用いて多孔質炭素電極に窒素ドープを行うことで高電圧充電耐性の優れた電気二重層キャパシタが作製できることが確認された。 As is clear from Table 11, Examples 13 and 14 showed almost the same initial capacity as that of Example 10, and the capacity retention rate was also substantially the same. From this, by using nitrogen-containing heterocyclic compounds having amino groups such as acetoguanamine and adenine as well as melamine, the porous carbon electrode was nitrogen-doped to produce an electric double-layer capacitor excellent in high voltage charge resistance. It was confirmed that it was possible.

本発明の方法により製造された炭素材料は、電気二重層キャパシタの高電圧充電耐性を大幅に改善出来るため、鉄道車両に搭載した電力貯蔵システムやハイブリッド車の補助電源として用いられる。 Since the carbon material manufactured by the method of the present invention can significantly improve the high voltage charging resistance of the electric double layer capacitor, it is used as an electric power storage system mounted on a railway vehicle or an auxiliary power source for a hybrid vehicle.

Claims (4)

多孔質炭素とアミノ基を有する含窒素複素環式化合物とを8:1〜1:4の質量比で混合することにより、前記多孔質炭素と前記アミノ基を有する含窒素複素環式化合物との混合物を得る工程と、前記混合物を不活性ガス雰囲気下熱処理して、前記多孔質の表面に窒素原子を導入する工程、を含む電気二重層キャパシタ用炭素材料の製造方法。 By mixing the porous carbon and the nitrogen-containing heterocyclic compound having an amino group in a mass ratio of 8:1 to 1:4, the porous carbon and the nitrogen-containing heterocyclic compound having an amino group can be prepared. A method for producing a carbon material for an electric double layer capacitor, comprising: a step of obtaining a mixture; and a step of heat-treating the mixture under an inert gas atmosphere to introduce nitrogen atoms into the porous surface. 前記熱処理が横型管状炉内で600〜1000℃で30分〜2時間保持することにより行われる請求項1記載の電気二重層キャパシタ用炭素材料の製造方法。 The method for producing a carbon material for an electric double layer capacitor according to claim 1, wherein the heat treatment is performed by holding at 600 to 1000° C. for 30 minutes to 2 hours in a horizontal tubular furnace. 前記窒素原子の含有量が1〜7原子%である請求項1又は2に記載の電気二重層キャパシタ用炭素材料の製造方法。 The method for producing a carbon material for an electric double layer capacitor according to claim 1, wherein the content of the nitrogen atom is 1 to 7 atom %. 前記炭素材料に含まれる窒素がピリジン型窒素である請求項1〜2のいずれか1項に記載の電気二重層キャパシタ用炭素材料の製造方法。 The method for producing a carbon material for an electric double layer capacitor according to claim 1, wherein the nitrogen contained in the carbon material is pyridine type nitrogen.
JP2018219224A 2018-11-22 2018-11-22 Manufacturing method of carbon material for electrical double layer capacitor Pending JP2020088119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018219224A JP2020088119A (en) 2018-11-22 2018-11-22 Manufacturing method of carbon material for electrical double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018219224A JP2020088119A (en) 2018-11-22 2018-11-22 Manufacturing method of carbon material for electrical double layer capacitor

Publications (1)

Publication Number Publication Date
JP2020088119A true JP2020088119A (en) 2020-06-04

Family

ID=70908790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018219224A Pending JP2020088119A (en) 2018-11-22 2018-11-22 Manufacturing method of carbon material for electrical double layer capacitor

Country Status (1)

Country Link
JP (1) JP2020088119A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113903598A (en) * 2021-09-24 2022-01-07 深圳市贝特瑞新能源技术研究院有限公司 Activated carbon material, preparation method thereof and supercapacitor
CN114156091A (en) * 2021-10-28 2022-03-08 诺莱特电池材料(苏州)有限公司 a super capacitor
WO2025009364A1 (en) * 2023-07-05 2025-01-09 パナソニックホールディングス株式会社 Porous carbon material, storage battery using porous carbon material, power-generating device using porous carbon material, and method for producing porous carbon material

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4859092A (en) * 1971-11-27 1973-08-18
JPS4863988A (en) * 1971-12-07 1973-09-05
WO2006068291A1 (en) * 2004-12-21 2006-06-29 Teijin Limited Electric double layer capacitor
JP2009054922A (en) * 2007-08-29 2009-03-12 Norio Aibe Catalyst
JP2009269765A (en) * 2008-04-30 2009-11-19 Kansai Coke & Chem Co Ltd Method for manufacturing mesopore activated carbon
JP2011111384A (en) * 2009-11-30 2011-06-09 National Institute Of Advanced Industrial Science & Technology Nitrogen-containing porous carbon material, process for producing the same, and electric double layer capacitor using the nitrogen-containing porous carbon material
CN103626150A (en) * 2013-11-20 2014-03-12 南京工程学院 Preparation method of nitrogenous porous carbon
KR20150059433A (en) * 2013-11-22 2015-06-01 한국전기연구원 Nitrogen-doped activated carbon electrode materials, its manufacturing method and electric double layer capacitor thereby
JP2016531382A (en) * 2013-09-19 2016-10-06 カウンスィル オブ サイエンティフィック アンド インダストリアル リサーチCouncil Of Scientific & Industrial Research Nitrogen-doped porous carbon electrode catalyst and method for producing the same
CN108516551A (en) * 2018-07-11 2018-09-11 河南师范大学 A kind of preparation method of Heteroatom doping porous carbon electrode material for double layer capacitor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4859092A (en) * 1971-11-27 1973-08-18
JPS4863988A (en) * 1971-12-07 1973-09-05
WO2006068291A1 (en) * 2004-12-21 2006-06-29 Teijin Limited Electric double layer capacitor
JP2009054922A (en) * 2007-08-29 2009-03-12 Norio Aibe Catalyst
JP2009269765A (en) * 2008-04-30 2009-11-19 Kansai Coke & Chem Co Ltd Method for manufacturing mesopore activated carbon
JP2011111384A (en) * 2009-11-30 2011-06-09 National Institute Of Advanced Industrial Science & Technology Nitrogen-containing porous carbon material, process for producing the same, and electric double layer capacitor using the nitrogen-containing porous carbon material
JP2016531382A (en) * 2013-09-19 2016-10-06 カウンスィル オブ サイエンティフィック アンド インダストリアル リサーチCouncil Of Scientific & Industrial Research Nitrogen-doped porous carbon electrode catalyst and method for producing the same
CN103626150A (en) * 2013-11-20 2014-03-12 南京工程学院 Preparation method of nitrogenous porous carbon
KR20150059433A (en) * 2013-11-22 2015-06-01 한국전기연구원 Nitrogen-doped activated carbon electrode materials, its manufacturing method and electric double layer capacitor thereby
CN108516551A (en) * 2018-07-11 2018-09-11 河南师范大学 A kind of preparation method of Heteroatom doping porous carbon electrode material for double layer capacitor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113903598A (en) * 2021-09-24 2022-01-07 深圳市贝特瑞新能源技术研究院有限公司 Activated carbon material, preparation method thereof and supercapacitor
CN113903598B (en) * 2021-09-24 2023-09-12 深圳市贝特瑞新能源技术研究院有限公司 Activated carbon material, preparation method thereof and supercapacitor
CN114156091A (en) * 2021-10-28 2022-03-08 诺莱特电池材料(苏州)有限公司 a super capacitor
CN114156091B (en) * 2021-10-28 2022-12-13 诺莱特电池材料(苏州)有限公司 a supercapacitor
WO2025009364A1 (en) * 2023-07-05 2025-01-09 パナソニックホールディングス株式会社 Porous carbon material, storage battery using porous carbon material, power-generating device using porous carbon material, and method for producing porous carbon material

Similar Documents

Publication Publication Date Title
Wang et al. Enhancing capacitance of supercapacitor with both organic electrolyte and ionic liquid electrolyte on a biomass-derived carbon
Chen et al. Rich nitrogen-doped ordered mesoporous phenolic resin-based carbon for supercapacitors
Gu et al. Functionalized carbon onions, detonation nanodiamond and mesoporous carbon as cathodes in Li-ion electrochemical energy storage devices
CN101517678B (en) Electrochemical capacitor
Zhang et al. Pyrolyzed graphene oxide/resorcinol-formaldehyde resin composites as high-performance supercapacitor electrodes
JP5931326B2 (en) Activated carbon for electric double layer capacitors
WO2009157162A1 (en) Activated carbon for electrochemical element and electrochemical element using the same
WO2011077663A1 (en) Activated carbon for electrochemical element and electrochemical element using the same
CN101194328A (en) Electrode for electric double layer capacitor and electric double layer capacitor
JP6213971B2 (en) Li-ion supercapacitor equipped with graphene / CNT composite electrode and manufacturing method thereof
JP2014530502A (en) High voltage electrochemical double layer capacitor
Pullini et al. Enhancing the capacitance and active surface utilization of supercapacitor electrode by graphene nanoplatelets
US10276312B2 (en) High surface area carbon materials and methods for making same
Zheng et al. Nitrogen-doped porous graphene–activated carbon composite derived from “bucky gels” for supercapacitors
Yun et al. Nitrogen-enriched multimodal porous carbons for supercapacitors, fabricated from inclusion complexes hosted by urea hydrates
TW201522219A (en) High-voltage and high-capacitance activated carbon and carbon-based electrodes
JP2006310514A (en) Electrode material for electric double layer capacitors
JP2020088119A (en) Manufacturing method of carbon material for electrical double layer capacitor
JP6006624B2 (en) Activated carbon for power storage device doped with sulfur and method for producing the same
JP5145496B2 (en) Method for producing carbon nanostructure
WO2016057914A1 (en) Electrical double-layer capacitor for high-voltage operation at high-temperatures
KR101660313B1 (en) Method of preparing activated carbon
JP2018092978A (en) Electric double layer capacitor
JP4943828B2 (en) Method for producing carbon material for electric double layer capacitor and electric double layer capacitor using carbon material obtained by the method
Kalpana et al. Effects of temperature and pore structure on high surface area-activated carbon obtained from peanut shells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211111

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20220414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240416

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240424

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20240614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20250407