[go: up one dir, main page]

JP2020085386A - Waste treatment equipment and operating method of waste treatment equipment - Google Patents

Waste treatment equipment and operating method of waste treatment equipment Download PDF

Info

Publication number
JP2020085386A
JP2020085386A JP2018223298A JP2018223298A JP2020085386A JP 2020085386 A JP2020085386 A JP 2020085386A JP 2018223298 A JP2018223298 A JP 2018223298A JP 2018223298 A JP2018223298 A JP 2018223298A JP 2020085386 A JP2020085386 A JP 2020085386A
Authority
JP
Japan
Prior art keywords
heat
turbine
supercharger
air
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018223298A
Other languages
Japanese (ja)
Other versions
JP7156922B2 (en
Inventor
晃治 坂田
Koji Sakata
晃治 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2018223298A priority Critical patent/JP7156922B2/en
Publication of JP2020085386A publication Critical patent/JP2020085386A/en
Application granted granted Critical
Publication of JP7156922B2 publication Critical patent/JP7156922B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Air Supply (AREA)
  • Incineration Of Waste (AREA)

Abstract

To provide a waste treatment facility capable of rapidly reducing rotational frequency even when there is a risk that an operating region of a supercharger might reach an abnormally high rotation region under a situation where waste heat recovery amount of a heat exchanger becomes excessive.SOLUTION: A waste treatment facility includes: a heat treat furnace 2; a heat exchanger 5 preheating combustion air by using exhaust gas; and a supercharger 40 including a turbine 40t rotated by the preheated combustion air and a compressor 40c supplying the combustion air to the heat exchanger through the rotation of the turbine. The waste treatment facility further includes: an input heat amount adjustment mechanism 50 adjusting input heat amount of the combustion air to be supplied to the turbine; a pressure release mechanism 55 rapidly reducing driving force of the supercharger; and a control section 70 that controls the input heat amount adjustment mechanism 50 so that combustion air amount to be supplied to the compressor becomes target air amount and that monitors rotational frequency of the supercharger and activates the pressure release mechanism 55 when the rotational frequency exceeds a predetermined upper limit allowable value.SELECTED DRAWING: Figure 1

Description

本発明は、汚泥等の廃棄物を焼却処理する熱処理炉を備えている廃棄物処理設備及び廃棄物処理設備の運転方法に関する。 The present invention relates to a waste treatment facility equipped with a heat treatment furnace for incinerating waste such as sludge and a method for operating the waste treatment facility.

様々な汚水が微生物を用いた生物処理により浄化された後に河川等に放流され、或いは再利用されている。このような生物処理によって発生する大量の汚泥は脱水処理された後に最終処分場に埋め立てられ、または流動床炉及びシャフト炉を含む熱処理炉で焼却処理されている。 Various sewage is purified by biological treatment using microorganisms and then discharged into rivers or reused. A large amount of sludge generated by such biological treatment is dewatered, then landfilled in a final disposal site, or incinerated in a heat treatment furnace including a fluidized bed furnace and a shaft furnace.

このような熱処理炉では、押込み送風機を用いて十分な量の燃焼用空気を炉内に供給するとともに、誘引送風機を用いて排ガスを誘引して炉内を負圧に維持する必要があり、押込み送風機及び誘引送風機に要する動力コストつまり電力費が非常に高額になっている。 In such a heat treatment furnace, it is necessary to supply a sufficient amount of combustion air into the furnace using a forced draft fan and to attract exhaust gas using an induced draft fan to maintain a negative pressure in the furnace. The power cost of the blower and the induced blower, that is, the electric power cost is very high.

特許文献1には、押込み送風機に要する動力コストを抑制した操炉が可能な廃棄物処理設備が提案されている。当該廃棄物処理設備は、汚泥等の廃棄物を焼却処理する流動床炉及びシャフト炉を含む熱処理炉を備えている廃棄物処理設備であって、熱処理炉の炉内燃焼熱及び/または煙道に導かれる排ガスの保有熱により燃焼用空気を予熱する熱交換器と、熱交換器で予熱された燃焼用空気により回転するタービンと、タービンの回転により熱交換器に燃焼用空気を供給するコンプレッサとを含む過給機と、コンプレッサへ燃焼用空気を予備圧縮して供給する押込み送風機と、を備えている。 Patent Document 1 proposes a waste treatment facility capable of operating a furnace while suppressing the power cost required for a forced draft blower. The waste treatment facility is a waste treatment facility including a heat treatment furnace including a fluidized bed furnace and a shaft furnace for incinerating waste such as sludge, and the heat of combustion in the furnace of the heat treatment furnace and/or the flue gas. A heat exchanger that preheats the combustion air by the heat of the exhaust gas that is guided to the turbine, a turbine that rotates by the combustion air that is preheated by the heat exchanger, and a compressor that supplies the combustion air to the heat exchanger by the rotation of the turbine. And a forced air blower for precompressing and supplying combustion air to the compressor.

このような廃棄物処理設備では、コンプレッサによる圧縮仕事に押込み送風機による圧縮仕事が嵩上げされるので、熱処理炉に燃焼用空気を供給する際に生じる通気圧損等の損失分を差し引いても、十分に燃焼用空気を供給することができ、そのために要する押込み送風機の動力も、過給機と熱交換器を備えることにより十分に抑制でき、全体として動力コストを下げることができるようになる。 In such waste treatment equipment, the compression work by the compressor is pushed up by the compression work by the compressor, so even if the loss such as ventilation pressure loss that occurs when supplying combustion air to the heat treatment furnace is subtracted, it is sufficient. Combustion air can be supplied, and the power of the forced draft fan required therefor can be sufficiently suppressed by providing the supercharger and the heat exchanger, and the power cost can be reduced as a whole.

特開2016−180528号公報JP, 2016-180528, A

上述した廃棄物処理設備では、熱交換器による廃熱回収量の増加に伴って押込み送風機で供給すべき空気圧が低減し、その結果、押込み送風機に要する動力が抑制されるようになるのであるが、熱交換器による廃熱回収量が過大になると、過給機の回転数が上限回転数を超過して上昇する虞があった。 In the waste treatment facility described above, the air pressure to be supplied by the forced draft fan is reduced as the amount of waste heat recovered by the heat exchanger is increased, and as a result, the power required for the forced draft fan is suppressed. If the amount of waste heat recovered by the heat exchanger becomes excessive, the rotation speed of the supercharger may exceed the upper limit rotation speed and rise.

そこで、図3(b)に示すように、本願発明者は、熱交換器による廃熱回収量が過大になるような状況下であっても、熱処理炉に燃焼用空気量を安定的に供給可能とするべく、タービンへ供給する燃焼用空気の入熱量を調整する入熱量調整機構を備えて、前記コンプレッサへ供給される燃焼用空気量が目標空気量となるように入熱量調整機構を調整し、余剰分をバイパスすることを提案している。 Therefore, as shown in FIG. 3B, the inventor of the present application stably supplies the combustion air amount to the heat treatment furnace even in a situation where the waste heat recovery amount by the heat exchanger becomes excessive. As much as possible, a heat input amount adjustment mechanism that adjusts the heat input amount of the combustion air supplied to the turbine is provided, and the heat input amount adjustment mechanism is adjusted so that the combustion air amount supplied to the compressor becomes the target air amount. However, it is proposed to bypass the surplus.

そのために、入熱量調整機構として高圧空気の流量を調整可能な流量調整弁を用いているが、流量調整弁を用いた調整では、応答の遅れから過給機の回転数が異常に上昇して、過給機が破損する虞があった。 For that reason, a flow rate adjusting valve that can adjust the flow rate of high-pressure air is used as a heat input adjusting mechanism.However, in the adjustment using the flow rate adjusting valve, the rotation speed of the supercharger rises abnormally due to the delay in response. There was a risk of damage to the supercharger.

過給機の回転数が異常に上昇するような場合に、例えば押込み送風機とコンプレッサとの間にダンパ機構を設けて、当該ダンパ機構を閉止するような構成を採用すると、サージングと呼ばれる異常現象が発生してコンプレッサや配管系が破損する虞があった。 When the rotation speed of the supercharger rises abnormally, for example, if a damper mechanism is provided between the forced draft fan and the compressor and the damper mechanism is closed, an abnormal phenomenon called surging occurs. There is a risk that the compressor and the piping system may be damaged.

本発明の目的は、熱交換器による廃熱回収量が過大になるような状況下で、過給機が異常な高回転域での運転に到る危険性のある場合でも、急速に回転数を低下させることが可能な廃棄物処理設備及び廃棄物処理設備の運転方法を提供する点にある。 The object of the present invention is to rapidly rotate the rotation speed even when there is a risk that the supercharger will operate in an abnormally high rotation range under the situation where the waste heat recovery amount by the heat exchanger becomes excessive. The present invention is to provide a waste treatment facility and a method of operating the waste treatment facility that can reduce the waste.

上述の目的を達成するため、本発明による廃棄物処理設備の第一の特徴構成は、汚泥等の廃棄物を焼却処理する熱処理炉と、前記熱処理炉の炉内燃焼熱及び/または煙道に導かれる排ガスの保有熱により燃焼用空気を予熱する熱交換器と、前記熱交換器で予熱された燃焼用空気により回転するタービンと前記タービンの回転により前記熱交換器に燃焼用空気を供給するコンプレッサとを含む過給機と、を備えている廃棄物処理設備であって、前記タービンへ供給する燃焼用空気の入熱量を調整する入熱量調整機構と、前記過給機の駆動力を急低下させる圧力開放機構と、前記コンプレッサへ供給される燃焼用空気量が目標空気量となるように前記入熱量調整機構を調整するとともに、前記過給機の回転数をモニターして当該回転数または当該回転数の変化率が所定の上限許容値を超えると、前記圧力開放機構を作動させる制御部を備えている点にある。 In order to achieve the above-mentioned object, the first characteristic configuration of the waste treatment facility according to the present invention is a heat treatment furnace for incinerating waste such as sludge and a combustion heat and/or a flue of the heat treatment furnace. A heat exchanger that preheats the combustion air by the retained heat of the exhaust gas that is introduced, a turbine that is rotated by the combustion air that is preheated by the heat exchanger, and the combustion air that is supplied to the heat exchanger by the rotation of the turbine. A waste treatment facility comprising a supercharger including a compressor, wherein a heat input amount adjusting mechanism for adjusting the heat input amount of combustion air supplied to the turbine and a driving force for the supercharger are set rapidly. A pressure release mechanism for reducing the amount of combustion air supplied to the compressor is adjusted so that the amount of combustion air supplied to the compressor is a target air amount, and the number of revolutions of the supercharger is monitored by monitoring the number of revolutions of the supercharger. When the rate of change of the rotation speed exceeds a predetermined upper limit allowable value, a control unit for activating the pressure release mechanism is provided.

熱交換器による廃熱回収量が過大になり、コンプレッサへの空気供給量つまりコンプレッサによる吸引空気量が目標空気量を超えるような場合に、制御部によって入熱量調整機構を介してタービンへ供給される燃焼用空気の入熱量が調整される。また、過給機の回転数または当該回転数の変化率が所定の上限許容値を超える場合に、制御部によって圧力開放機構が作動される。その結果、コンプレッサへの空気供給量を目標空気量に調整でき、過給機が破損に到るような異常な高回転域で駆動されることが回避できる。 If the amount of waste heat recovered by the heat exchanger becomes excessive and the amount of air supplied to the compressor, that is, the amount of air sucked in by the compressor, exceeds the target amount of air, the control unit supplies it to the turbine via the heat input adjustment mechanism. The heat input of the combustion air is adjusted. Further, when the rotational speed of the supercharger or the rate of change of the rotational speed exceeds a predetermined upper limit allowable value, the pressure releasing mechanism is operated by the control unit. As a result, the amount of air supplied to the compressor can be adjusted to the target amount of air, and it can be avoided that the supercharger is driven in an abnormally high rotation range that may cause damage.

同第二の特徴構成は、上述の第一の特徴構成に加えて、前記圧力開放機構は、前記コンプレッサから送出され前記熱交換器に導かれる空気を直接前記タービンの送出ポート側に導くバイパス路と、前記バイパス路に設けられた開閉弁機構とで構成されている点にある。 In the second characteristic configuration, in addition to the above-described first characteristic configuration, the pressure release mechanism includes a bypass passage that directly guides the air delivered from the compressor and introduced to the heat exchanger to the delivery port side of the turbine. And an on-off valve mechanism provided in the bypass passage.

バイパス路に設けられた開閉弁機構が開放されると、コンプレッサから送出され熱交換器に導かれる空気が熱交換されることなくタービンの送出ポート側に流れ、過給機の回転動力源となる高温の圧縮空気がタービンに供給されなくなるため、過給機の回転数が急激に低下する。 When the on-off valve mechanism provided in the bypass passage is opened, the air sent from the compressor and guided to the heat exchanger flows to the output port side of the turbine without heat exchange, and becomes the rotational power source for the supercharger. Since the hot compressed air is no longer supplied to the turbine, the rotational speed of the supercharger drops sharply.

同第三の特徴構成は、上述の第二の特徴構成に加えて、前記開閉弁機構と並列して前記バイパス路に流量調整機構を備え、前記バイパス路と前記流量調整機構により前記入熱量調整機構が構成されている点にある。 The third characteristic configuration is, in addition to the above-described second characteristic configuration, provided with a flow rate adjustment mechanism in the bypass passage in parallel with the opening/closing valve mechanism, and the heat input amount adjustment by the bypass passage and the flow rate adjustment mechanism. The point is that the mechanism is configured.

開閉弁機構を閉止した状態で流量調整機構を作動させることにより、タービンへ供給される燃焼用空気の入熱量を高精度に調整でき、過給機の回転数または当該回転数の変化率が所定の上限許容値を超える場合に、開閉弁機構を開放することにより、過給機の回転数を急激に低下させることができる。 By operating the flow rate adjustment mechanism with the on-off valve mechanism closed, the heat input amount of the combustion air supplied to the turbine can be adjusted with high accuracy, and the rotation speed of the supercharger or the change rate of the rotation speed can be set to a predetermined value. When the upper limit allowable value of is exceeded, the rotational speed of the supercharger can be rapidly reduced by opening the on-off valve mechanism.

同第四の特徴構成は、上述の第一の特徴構成に加えて、前記圧力開放機構は、前記熱交換器から前記タービンの導入ポートに導かれる空気を直接前記タービンの送出ポート側に導くバイパス路と、前記バイパス路に設けられた開閉弁機構とで構成されている点にある。 In the fourth characteristic configuration, in addition to the first characteristic configuration described above, the pressure release mechanism is a bypass that directly guides the air guided from the heat exchanger to the introduction port of the turbine to the delivery port side of the turbine. And a switching valve mechanism provided in the bypass passage.

熱交換器からタービンの導入ポートに導かれる空気がバイパス路を介して直接タービンの送出ポート側に導かれ、過給機の回転動力源となる高温の圧縮空気がタービンに供給されなくなるため、過給機の回転数が急激に低下する。 The air guided from the heat exchanger to the inlet port of the turbine is directly guided to the outlet port side of the turbine through the bypass passage, and the hot compressed air that serves as the rotational power source for the supercharger is not supplied to the turbine. The rotation speed of the feeder suddenly drops.

同第五の特徴構成は、上述の第一の特徴構成に加えて、燃焼用空気を前記コンプレッサに供給する押込み送風機を備え、前記圧力開放機構は、前記押込み送風機から前記コンプレッサの導入ポートに導かれる空気を直接タービンの送出ポート側に導くバイパス路と、前記バイパス路に設けられた開閉弁機構とで構成されている点にある。 In the fifth characteristic configuration, in addition to the first characteristic configuration described above, a forced air blower for supplying combustion air to the compressor is provided, and the pressure release mechanism guides the forced air blower to the introduction port of the compressor. The point is that it is composed of a bypass passage that guides the generated air directly to the delivery port side of the turbine, and an opening/closing valve mechanism provided in the bypass passage.

コンプレッサの導入ポートに導かれる空気がバイパス路を介して直接タービンの送出ポート側に導かれ、過給機の回転動力源となる高温の圧縮空気がタービンに供給されなくなるため、過給機の回転数が急激に低下する。 The air guided to the compressor inlet port is directly guided to the turbine outlet port side via the bypass passage, and the hot compressed air that serves as the rotational power source for the turbocharger is no longer supplied to the turbine, which causes the turbocharger rotation. The number drops sharply.

同第六の特徴構成は、上述の第一の特徴構成に加えて、前記圧力開放機構は、前記コンプレッサから送出され前記熱交換器に導かれる空気を系外に排出する開放路と、前記開放路に設けられた開閉弁機構とで構成されている点にある。 In the sixth characteristic configuration, in addition to the first characteristic configuration described above, the pressure release mechanism includes an open path for discharging the air sent from the compressor and guided to the heat exchanger to the outside of the system, and the release path. It is composed of an on-off valve mechanism provided on the road.

コンプレッサから送出され熱交換器に導かれる空気が開放路を介して系外に排出され、過給機の回転動力源となる高温の圧縮空気がタービンに供給されなくなるため、過給機の回転数が急激に低下する。 The air sent from the compressor and guided to the heat exchanger is discharged to the outside of the system through the open path, and the high-temperature compressed air that serves as the rotational power source for the supercharger is no longer supplied to the turbine. Drops sharply.

同第七の特徴構成は、上述の第一から第六の何れかの特徴構成に加えて、前記開閉弁機構がボール弁で構成されている点にある。 The seventh characteristic configuration is that in addition to any one of the first to sixth characteristic configurations described above, the opening/closing valve mechanism is configured by a ball valve.

開閉弁機構は、緊急時に急激に過給機の回転数を低下させて、過給機の破損を回避する必要があるため、通風抵抗が少なく動作速度が速い特性を備えていることが望まれる。そのような開閉弁機構としてボール弁が好適に用いられる。 The on-off valve mechanism is required to rapidly reduce the rotation speed of the supercharger in an emergency to avoid damage to the supercharger. .. A ball valve is preferably used as such an on-off valve mechanism.

本発明による廃棄物処理設備の運転方法の特徴構成は、汚泥等の廃棄物を焼却処理する熱処理炉と、前記熱処理炉の炉内燃焼熱及び/または煙道に導かれる排ガスの保有熱により燃焼用空気を予熱する熱交換器と、前記熱交換器で予熱された燃焼用空気により回転するタービンと前記タービンの回転により前記熱交換器に燃焼用空気を供給するコンプレッサとを含む過給機と、前記タービンへ供給される燃焼用空気の入熱量を調整する入熱量調整機構と、前記過給機の駆動力を急低下させる圧力開放機構と、を備えている廃棄物処理設備の運転方法であって、前記過給機の回転数をモニターし、当該回転数または当該回転数の変化率が所定の上限許容値を超えると、前記圧力開放機構を作動させて前記過給機の駆動力を急低下させる点にある。 The operating method of the waste treatment facility according to the present invention is characterized by a heat treatment furnace for incinerating waste such as sludge, and a combustion heat of the heat treatment furnace and/or combustion heat of exhaust gas introduced to a flue. A supercharger including a heat exchanger for preheating the working air, a turbine rotated by the combustion air preheated in the heat exchanger, and a compressor for supplying the combustion air to the heat exchanger by the rotation of the turbine. A method for operating a waste treatment facility, comprising: a heat input amount adjusting mechanism for adjusting a heat input amount of combustion air supplied to the turbine; and a pressure releasing mechanism for rapidly reducing a driving force of the supercharger. Then, the rotation speed of the supercharger is monitored, and when the rotation speed or the rate of change of the rotation speed exceeds a predetermined upper limit allowable value, the pressure release mechanism is operated to increase the driving force of the supercharger. It is in the point of sudden drop.

以上説明した通り、本発明によれば、熱交換器による廃熱回収量が過大になるような状況下で、過給機が異常な高回転域での運転に到る危険性のある場合でも、急速に回転数を低下させることが可能な廃棄物処理設備及び廃棄物処理設備の運転方法を提供することができるようになった。 As described above, according to the present invention, even when there is a risk that the supercharger will operate in an abnormally high rotation range under a situation where the waste heat recovery amount by the heat exchanger becomes excessive. It has become possible to provide a waste treatment facility and a method of operating the waste treatment facility that can rapidly reduce the rotation speed.

本発明による廃棄物処理設備及び廃棄物処理設備の運転方法の説明図Explanatory diagram of a waste treatment facility and a method of operating the waste treatment facility according to the present invention (a),(b),(c)は過給機のブレイトンサイクルを説明する線図、(d)は送風機動力と廃熱回収量の相関関係を示す特性図(A), (b), (c) is a diagram explaining the Brayton cycle of a supercharger, (d) is a characteristic diagram which shows the correlation of blower power and waste heat recovery. (a)は過給機の回転数と流量及び圧力比の関係を示す説明図、(b)は必用動力以上に廃熱回収量が増大した場合に入熱量調整機構が作動される様子を示す廃熱発生量と熱交換器を用いた廃熱回収量との関係説明図(A) is explanatory drawing which shows the relationship of the rotation speed of a supercharger, a flow volume, and a pressure ratio, (b) shows a mode that a heat input amount adjustment mechanism is operated when waste heat recovery amount increases more than necessary power. Explanatory diagram of relationship between waste heat generation and waste heat recovery using heat exchanger 圧力開放機構の別実施形態を示す廃棄物処理設備の説明図Explanatory drawing of waste treatment equipment showing another embodiment of the pressure release mechanism 圧力開放機構の別実施形態を示す廃棄物処理設備の説明図Explanatory drawing of waste treatment equipment showing another embodiment of the pressure release mechanism 圧力開放機構の別実施形態を示す廃棄物処理設備の説明図Explanatory drawing of waste treatment equipment showing another embodiment of the pressure release mechanism 入熱量調整機構の別実施形態を示す廃棄物処理設備の説明図Explanatory drawing of waste treatment equipment showing another embodiment of heat input adjustment mechanism 入熱量調整機構の別実施形態を示す廃棄物処理設備の説明図Explanatory drawing of waste treatment equipment showing another embodiment of heat input adjustment mechanism 入熱量調整機構の別実施形態を示す廃棄物処理設備の説明図Explanatory drawing of waste treatment equipment showing another embodiment of heat input adjustment mechanism 入熱量調整機構の別実施形態を示す廃棄物処理設備の説明図Explanatory drawing of waste treatment equipment showing another embodiment of heat input adjustment mechanism 入熱量調整機構の別実施形態を示す廃棄物処理設備の説明図Explanatory drawing of waste treatment equipment showing another embodiment of heat input adjustment mechanism

以下、本発明による廃棄物処理設備及び廃棄物処理設備の運転方法の実施形態を説明する。 Embodiments of the waste treatment facility and the method for operating the waste treatment facility according to the present invention will be described below.

図1には、汚泥等の廃棄物を焼却処理する廃棄物処理設備100が示されている。廃棄物処理設備100は、被焼却物である汚泥が貯留された汚泥貯留槽1と、汚泥投入機構11と、熱処理炉の一例である流動床式焼却炉2と、排ガス処理設備等を備えている。 FIG. 1 shows a waste treatment facility 100 that incinerates waste such as sludge. The waste treatment facility 100 includes a sludge storage tank 1 in which sludge, which is a substance to be incinerated, is stored, a sludge input mechanism 11, a fluidized bed incinerator 2 which is an example of a heat treatment furnace, and an exhaust gas treatment facility. There is.

流動床式焼却炉2は、空気供給機構3から供給される高温空気によって形成される流動床に汚泥投入機構11から供給される汚泥を投入して加熱し、ガス化された汚泥をフリーボード部20で燃焼させる熱処理炉である。フリーボード部20の下方には立上げ時に炉内を加熱する昇温バーナ21が配置され、炉が昇温した後に汚泥の燃焼に必要な熱量を補う補助バーナ22が設けられている。 The fluidized bed incinerator 2 puts the sludge supplied from the sludge feeding mechanism 11 into the fluidized bed formed by the high temperature air supplied from the air supply mechanism 3 to heat the fluidized bed, and the gasified sludge is freeboarded. It is a heat treatment furnace that burns at 20. Below the freeboard section 20, a temperature raising burner 21 for heating the inside of the furnace at startup is arranged, and an auxiliary burner 22 for supplementing the amount of heat necessary for burning the sludge after the temperature of the furnace is raised.

流動床式焼却炉2の煙道10に沿って順に、排ガスの保有熱により燃焼用空気を予熱する第1熱交換器5、煤塵を捕集する集塵装置6、アルカリ剤を噴霧して排ガス中の酸性ガス成分を中和する排煙処理塔7等が配置されている。 Along with the flue 10 of the fluidized bed incinerator 2, the first heat exchanger 5 that preheats the combustion air by the heat of the exhaust gas, the dust collector 6 that collects soot dust, and the exhaust gas that sprays the alkaline agent in order. A flue gas treatment tower 7 and the like for neutralizing the acidic gas components therein is arranged.

排煙処理塔7の下流側には煙道10の排ガスを誘引して炉内を負圧に維持する誘引送風機8が設けられ、誘引送風機8によって誘引された排ガスが各排ガス処理設備で浄化された後に煙突9から排気される。 At the downstream side of the smoke exhaust treatment tower 7, an induced air blower 8 that attracts the exhaust gas from the flue 10 to maintain a negative pressure in the furnace is provided, and the exhaust gas attracted by the induced air blower 8 is purified by each exhaust gas treatment facility. After being exhausted, the chimney 9 is exhausted.

上述した空気供給機構3は、押込み送風機30と、インバータ75と、過給機40と、第1熱交換器5を備えて構成されている。過給機40は、駆動軸40aで一体に回転可能に連結されたコンプレッサ40c及びタービン40tを備えている。 The air supply mechanism 3 described above includes the forced air blower 30, the inverter 75, the supercharger 40, and the first heat exchanger 5. The supercharger 40 includes a compressor 40c and a turbine 40t that are integrally and rotatably connected by a drive shaft 40a.

押込み送風機30により約5kPaに予備圧縮された燃焼用空気が過給機40を構成するコンプレッサ40cの給気口に供給されて約100〜300kPaに圧縮された後に第1熱交換器5に供給される。 The combustion air pre-compressed to about 5 kPa by the forced draft blower 30 is supplied to the air supply port of the compressor 40c constituting the supercharger 40 and compressed to about 100 to 300 kPa, and then supplied to the first heat exchanger 5. It

第1熱交換器5で800〜1000℃の排ガスと熱交換されて500〜750℃に予熱された燃焼用空気が後段のタービン40tに供給されて、タービン40tが回転駆動され、駆動軸40aと連結されたコンプレッサ40cが回転駆動される。 Combustion air that has been heat-exchanged with exhaust gas of 800 to 1000° C. in the first heat exchanger 5 and preheated to 500 to 750° C. is supplied to the turbine 40t in the subsequent stage, the turbine 40t is rotationally driven, and the drive shaft 40a and The connected compressor 40c is rotationally driven.

タービン40tから排出された400〜650℃、約40kPaの圧縮空気は、流動用及び燃焼用空気として流動床式焼却炉2に供給されて流動床が形成される。尚、本明細書で説明する圧力はゲージ圧である。 The compressed air of 400 to 650° C. and about 40 kPa discharged from the turbine 40t is supplied to the fluidized bed incinerator 2 as air for fluidization and combustion, and a fluidized bed is formed. The pressure described in this specification is a gauge pressure.

押込み送風機30により予備圧縮された燃焼用空気が過給機40のコンプレッサ40cに供給されるので、コンプレッサ40cのみならず押込み送風機30によっても圧縮された空気が、熱交換器30で予熱されるようになる。これにより、タービン40tの膨張仕事量が、コンプレッサ40cの圧縮仕事量以上になり、過給機40の駆動が維持されるため、流動床式焼却炉2に流動床を形成する際の通気圧損より高い圧力で燃焼用空気を供給することができるように構成されている。 Since the combustion air pre-compressed by the forced air blower 30 is supplied to the compressor 40c of the supercharger 40, the air compressed not only by the compressor 40c but also by the forced air blower 30 is preheated by the heat exchanger 30. become. As a result, the expansion work of the turbine 40t becomes equal to or larger than the compression work of the compressor 40c, and the drive of the supercharger 40 is maintained. Therefore, the ventilation pressure loss in forming the fluidized bed in the fluidized bed incinerator 2 is less than The combustion air can be supplied at a high pressure.

図2(a)に示すように、ガスタービンや過給機はブレイトンサイクルに従って動作する装置であり、コンプレッサでの圧縮プロセス(図中、1→2)と、燃焼器や熱交換器での給熱プロセス(図中、2→3)と、タービンでの膨張プロセス(図中、3→4)で構成される。タービンでの膨張仕事がコンプレッサでの圧縮仕事を上回る場合に回転が維持される。 As shown in FIG. 2( a ), the gas turbine and the supercharger are devices that operate according to the Brayton cycle, and the compression process in the compressor (1→2 in the figure) and the feed in the combustor or the heat exchanger are performed. It consists of a thermal process (2→3 in the figure) and an expansion process in the turbine (3→4 in the figure). Rotation is maintained when the expansion work in the turbine exceeds the compression work in the compressor.

しかし、図2(b)に示すように、コンプレッサ40cの給気口を大気開放して外気を直接吸引するような構成を採用すると、タービン40tでの膨張仕事量xが流動床への通気圧損x1と通風抵抗x2で制約を受ける場合に、タービン40tでの膨張仕事量xがコンプレッサ40cでの圧縮仕事量yより少なくなり(x<y)、過給機40の駆動を維持できなくなる。 However, as shown in FIG. 2(b), if a structure is adopted in which the air supply port of the compressor 40c is opened to the atmosphere and the outside air is directly sucked, the expansion work amount x in the turbine 40t causes a loss of ventilation pressure to the fluidized bed. When restricted by x1 and ventilation resistance x2, the expansion work amount x in the turbine 40t becomes smaller than the compression work amount y in the compressor 40c (x<y), and the drive of the supercharger 40 cannot be maintained.

そこで、押込み送風機30から送風路を介してコンプレッサ40cに空気を供給するように構成されている。 Therefore, the forced air blower 30 is configured to supply air to the compressor 40c via the air passage.

図2(c)に示すように、押込み送風機30により予備圧縮された燃焼用空気がコンプレッサ40cの給気口に供給されるので、コンプレッサ40cでの圧縮仕事量yが予備圧縮分y1だけ実質的に小さくなり(x>y)、流動床への通気圧損x1と通風抵抗x2があっても過給機40の駆動を維持させることができるようになる。 As shown in FIG. 2C, since the combustion air precompressed by the forced air blower 30 is supplied to the air supply port of the compressor 40c, the compression work amount y in the compressor 40c is substantially equal to the precompression amount y1. Therefore, even if there is a ventilation pressure loss x1 to the fluidized bed and a ventilation resistance x2, the drive of the supercharger 40 can be maintained.

また、過給機40を使用しない場合よりも押込み送風機30による吐出圧力を低下させることができるので、押込み送風機30の消費電力を低減させることができる。但し、流動床式焼却炉2の立上げ初期には専ら押込み送風機30のみで流動床を形成するために送風圧力を上昇させる必要があるが、過給機40の通風抵抗は小さく、立ち上げにより昇温されるに伴い過給機40による動力コストの低減効果を得られる。 Moreover, since the discharge pressure by the forced draft blower 30 can be made lower than when the supercharger 40 is not used, the power consumption of the forced draft blower 30 can be reduced. However, at the initial stage of startup of the fluidized bed incinerator 2, it is necessary to raise the blast pressure in order to form the fluidized bed only by the forced draft blower 30, but the ventilation resistance of the supercharger 40 is small, and it depends on the startup. As the temperature rises, the power cost reduction effect of the supercharger 40 can be obtained.

廃棄物処理設備100には制御部70が備えられている。制御部70は、フリーボード部20の出口部に備えた酸素ガスセンサSgにより検出される排ガスの酸素濃度に基づいて押込み送風機30の回転数を制御することにより、流動床式焼却炉2が適切な燃焼状態に維持されるように、燃焼用空気の供給量を調整するように構成されている。 The waste treatment facility 100 is provided with a control unit 70. The control unit 70 controls the rotation speed of the forced draft blower 30 based on the oxygen concentration of the exhaust gas detected by the oxygen gas sensor Sg provided at the outlet of the freeboard unit 20, so that the fluidized bed incinerator 2 is suitable. The supply amount of the combustion air is adjusted so that the combustion state is maintained.

制御部70は、酸素ガスセンサSgにより検出される排ガスの酸素濃度と目標酸素濃度との偏差に基づいて所定の制御演算を行なうことにより、炉内に供給されるべき目標空気量を算出する。 The control unit 70 calculates the target air amount to be supplied into the furnace by performing a predetermined control calculation based on the deviation between the oxygen concentration of the exhaust gas detected by the oxygen gas sensor Sg and the target oxygen concentration.

予め想定される理論空気量に基づいて完全燃焼に要する空気量を設定し、そのときに排ガスに残存する基準酸素濃度が算出されている。酸素ガスセンサSgにより検出される排ガスの酸素濃度が基準酸素濃度より高い場合に目標空気量を減少し、排ガスの酸素濃度が基準酸素濃度より低い場合に目標空気量を増加するようにフィードバック演算が行なわれる。 The air amount required for complete combustion is set based on the theoretical air amount assumed in advance, and the reference oxygen concentration remaining in the exhaust gas at that time is calculated. Feedback calculation is performed so that the target air amount is decreased when the oxygen concentration of the exhaust gas detected by the oxygen gas sensor Sg is higher than the reference oxygen concentration, and the target air amount is increased when the oxygen concentration of the exhaust gas is lower than the reference oxygen concentration. Be done.

制御部70は、押込み送風機30とコンプレッサ40cとの間に設置された流量計Sqで検知された空気量と目標空気量との偏差に基づいて押込み送風機30の目標回転数を算出し、押込み送風機30が当該目標回転数となるようにインバータ75を制御する。 The control unit 70 calculates the target rotation speed of the forced draft fan 30 based on the deviation between the target air amount and the air amount detected by the flow meter Sq installed between the forced draft fan 30 and the compressor 40c, and the forced blower 30 is driven. The inverter 75 is controlled so that 30 becomes the target rotation speed.

排ガスに含まれる酸素濃度を指標に用いることにより、流動床式焼却炉2で燃焼する汚泥の有機成分に対して適正な量の燃焼用空気量が把握でき、その指標に基づいて目標量が設定されるので、必要量に対して大きく過不足することなく燃焼用空気を供給することができるようになる。 By using the oxygen concentration contained in the exhaust gas as an index, it is possible to grasp the amount of combustion air that is appropriate for the organic components of the sludge burned in the fluidized bed incinerator 2, and set the target amount based on that index. As a result, the combustion air can be supplied without a significant excess or deficiency with respect to the required amount.

図2(d)には、燃焼用空気量を一定に維持するとの前提の下で、第1熱交換器5による廃熱回収量と押込み送風機30に要する動力との関係が示され、廃熱回収量が増加するに連れて押込み送風機30に要する動力が低減されることが示されている。第1熱交換器5による廃熱回収量が増加するとコンプレッサ40cで引き込まれる圧縮空気量で十分な量が得られ、押込み送風機30による送風量が不要になる。 FIG. 2D shows the relationship between the amount of waste heat recovered by the first heat exchanger 5 and the power required for the forced draft blower 30 under the assumption that the amount of combustion air is kept constant. It is shown that the power required for the forced draft blower 30 decreases as the amount of recovery increases. When the amount of waste heat recovered by the first heat exchanger 5 increases, a sufficient amount of compressed air drawn in by the compressor 40c can be obtained, and the amount of air blown by the forced air blower 30 becomes unnecessary.

そのような状態で第1熱交換器5による廃熱回収量が急激に変動すると、制御部70によって流動床式焼却炉2に必要な燃焼用空気量となるように送風量を調整することができなくなり、流動床式焼却炉2の安定操炉が困難になる虞がある。 When the amount of waste heat recovered by the first heat exchanger 5 fluctuates rapidly in such a state, the control unit 70 can adjust the amount of air blown so that the amount of combustion air required for the fluidized bed incinerator 2 is adjusted. It may not be possible, and stable operation of the fluidized bed incinerator 2 may become difficult.

第1熱交換器5による廃熱回収量が過大になった場合に応答の遅れから、過給機40が異常な高回転域で駆動されて、破損に到る虞がある。 If the amount of waste heat recovered by the first heat exchanger 5 becomes excessively large, the response may be delayed, and the supercharger 40 may be driven in an abnormally high rotation range, resulting in damage.

そのため、コンプレッサ40cへの空気供給量が目標空気量となるように、タービン40tへの入熱量を調整する入熱量調整機構50やインバータ75を備えるとともに、過給機40の駆動力を急低下させる圧力開放機構55を備えている。 Therefore, the heat input amount adjusting mechanism 50 and the inverter 75 that adjust the heat input amount to the turbine 40t are provided so that the air supply amount to the compressor 40c becomes the target air amount, and the driving force of the supercharger 40 is rapidly reduced. A pressure release mechanism 55 is provided.

入熱量調整機構50は、コンプレッサ40cから送出され第1熱交換器5に導かれる空気の一部を直接タービン40tの送出ポート側に導くバイパス路51と、バイパス路51に設けられた流量調整機構である流量調整弁52とで構成されている。流量調整弁52として精度良く流量を調整可能なニードル弁が好適に用いられる。 The heat input amount adjusting mechanism 50 includes a bypass passage 51 that guides a part of the air sent from the compressor 40c and led to the first heat exchanger 5 directly to the sending port side of the turbine 40t, and a flow rate adjusting mechanism provided in the bypass passage 51. And a flow rate adjusting valve 52 which is As the flow rate adjusting valve 52, a needle valve capable of accurately adjusting the flow rate is preferably used.

バイパス路51に備えた流量調整弁52によりタービン40tへの入熱量及び空気量が調整されるようになる。タービン40tから送出される予熱空気とバイパス路51に導かれた空気が合流して燃焼用空気として流動床式焼却炉2に供給される。 The amount of heat input to the turbine 40t and the amount of air are adjusted by the flow rate adjusting valve 52 provided in the bypass passage 51. The preheated air sent from the turbine 40t and the air guided to the bypass passage 51 join and are supplied to the fluidized bed incinerator 2 as combustion air.

圧力開放機構55は、コンプレッサ40cから送出され第1熱交換器5に導かれる空気を直接タービン40tの送出ポート側に導くバイパス路54と、バイパス路56に設けられた開閉弁機構57とで構成されている。開閉弁機構57として緊急時に急激に過給機40の回転数を低下させて、過給機40の破損を回避する必要があるため、通風抵抗が少なく動作速度が速い特性を備えているボール弁が好適に用いられる。本実施形態では、バイパス路54はバイパス路51と並列配置されているので、共通のバイパス路に開閉弁機構57と流量調整弁52が並列配置された態様となる。 The pressure release mechanism 55 includes a bypass passage 54 that directly guides the air delivered from the compressor 40c and guided to the first heat exchanger 5 to the delivery port side of the turbine 40t, and an opening/closing valve mechanism 57 provided in the bypass passage 56. Has been done. As the opening/closing valve mechanism 57, it is necessary to rapidly reduce the rotation speed of the supercharger 40 in an emergency to avoid damage to the supercharger 40. Therefore, a ball valve having a characteristic that the ventilation resistance is low and the operation speed is fast. Is preferably used. In the present embodiment, since the bypass passage 54 is arranged in parallel with the bypass passage 51, the opening/closing valve mechanism 57 and the flow rate adjusting valve 52 are arranged in parallel in the common bypass passage.

第1熱交換器5による廃熱回収量が過大になり、コンプレッサ40cへの空気供給量つまりコンプレッサ40cによる吸引空気量が必要量を超えるような場合に、入熱量調整機構50によってタービン40tへの入熱量が調整される。その結果、コンプレッサ40cの回転数が低下して空気供給量を目標空気量に調整できるようになる。 When the amount of waste heat recovered by the first heat exchanger 5 becomes excessive and the amount of air supplied to the compressor 40c, that is, the amount of suction air by the compressor 40c exceeds the required amount, the heat input adjustment mechanism 50 supplies the turbine 40t with the heat. Heat input is adjusted. As a result, the rotation speed of the compressor 40c decreases, and the air supply amount can be adjusted to the target air amount.

また、第1熱交換器5による廃熱回収量が過大になり、過給機40が異常な高回転域で駆動されて破損に到る虞がある場合に、圧力開放機構55により圧縮空気が開放されて過給機40が破損に到るような異常な高回転域で駆動されることが回避できる。 In addition, when the amount of waste heat recovered by the first heat exchanger 5 becomes excessive and the supercharger 40 is driven in an abnormally high rotation range and may be damaged, compressed air is generated by the pressure release mechanism 55. It is possible to prevent the supercharger 40 from being opened and being driven in an abnormally high rotation range where it may be damaged.

詳述すると、制御部70は、第1熱交換器5での熱交換量が上昇して、流量計Sqで検知された空気量が目標量よりも上昇すると、バイパス路51でバイパスされる空気量を増加させるように流量調整機構52を調整することにより、タービン40tへの入熱量を低下させ、逆に第1熱交換器5での熱交換量が下降して、流量計Sqで検知された空気量が目標量よりも低下すると、バイパス路51でバイパスされる空気量を増加させるように流量調整機構52を調整することにより、タービン40tへの入熱量を上昇させるように制御する。 More specifically, when the heat exchange amount in the first heat exchanger 5 increases and the air amount detected by the flow meter Sq rises above the target amount, the control unit 70 causes the air bypassed in the bypass passage 51. By adjusting the flow rate adjusting mechanism 52 so as to increase the amount, the heat input amount to the turbine 40t is decreased, and conversely, the heat exchange amount in the first heat exchanger 5 is decreased and detected by the flow meter Sq. When the amount of air is reduced below the target amount, the flow rate adjusting mechanism 52 is adjusted so as to increase the amount of air bypassed in the bypass passage 51, thereby controlling the amount of heat input to the turbine 40t to be increased.

また、過給機40の回転数をモニターする回転数計Srが駆動軸40aに取付けられ、制御部70は、回転数計Srの出力に基づいて過給機40の回転数が所定の上限許容値を超えると、圧力開放機構55を作動させるように制御する。上限許容値を、過給機40の上限回転数に安全率を見込んだ回転数に設定することが好ましい。 Further, a revolution counter Sr for monitoring the revolution speed of the supercharger 40 is attached to the drive shaft 40a, and the control unit 70 controls the revolution speed of the supercharger 40 based on the output of the revolution counter Sr to a predetermined upper limit. When the value is exceeded, the pressure release mechanism 55 is controlled to operate. It is preferable to set the upper limit allowable value to a rotation speed that allows for a safety factor in the upper limit rotation speed of the supercharger 40.

なお、過給機40の圧力比(Po/Pi)と流量Qの関係を示す図3(a)に示す性能特性曲線に基づいて回転数を推定することも可能であるが、回転数計Srを設置した方が正確に回転数を捕捉できる。 It is also possible to estimate the rotation speed based on the performance characteristic curve shown in FIG. 3A showing the relationship between the pressure ratio (Po/Pi) of the supercharger 40 and the flow rate Q. It is possible to accurately capture the rotation speed by installing.

本実施形態では、過給機40の回転数が所定の上限許容値を超えると、圧力開放機構55を作動させるように制御する例を示したが、過給機40の回転数の変化率が所定の上限許容値を超えるときに、圧力開放機構55を作動させるように制御してもよい。回転数の変化率の上限許容値として、所定時間以内に過給機40の上限回転数に安全率を見込んだ回転数に到達するような変化率を設定することができる。所定時間以内とは、急激に回転数が上限許容値に到るような時間をいい、例えば3秒以下の時間に設定されることが好ましい。 In the present embodiment, an example in which the pressure release mechanism 55 is controlled to operate when the rotation speed of the supercharger 40 exceeds a predetermined upper limit allowable value has been described. The pressure release mechanism 55 may be controlled to operate when the predetermined upper limit allowable value is exceeded. As the upper limit allowable value of the rotational speed change rate, a change rate can be set such that the upper limit rotational speed of the supercharger 40 reaches a rotational speed in which a safety factor is expected within a predetermined time. The term “within a predetermined time period” means a time period during which the rotation speed rapidly reaches the upper limit allowable value, and is preferably set to, for example, 3 seconds or less.

入熱量調整機構50は、押込み送風機30が予め設定された低電力状態になると押込み送風機30を停止することなく作動するように制御されることが好ましい。大型の押込み送風機30を一端停止すると、その後必要なときに直ちに起動するのが困難なためである。 The heat input amount adjusting mechanism 50 is preferably controlled so as to operate without stopping the forced draft fan 30 when the forced draft fan 30 enters a preset low power state. This is because if the large-sized forced draft blower 30 is once stopped, it is difficult to immediately start it when necessary.

押込み送風機30が予め設定された低電力状態になると、その状態を維持して入熱量調整機構50を作動させることにより、コンプレッサ40cへの空気供給量を目標空気量に調整し、入熱量調整機構50により空気供給量を目標空気量に調整できない場合には直ちにインバータ75を制御して押込み送風機30による送風量を増加できるようになる。 When the forced draft fan 30 enters a preset low power state, the state is maintained and the heat input amount adjusting mechanism 50 is operated to adjust the air supply amount to the compressor 40c to the target air amount, and the heat input amount adjusting mechanism. When the air supply amount cannot be adjusted to the target air amount by 50, the inverter 75 can be immediately controlled to increase the blowing amount by the forced draft blower 30.

なお、押込み送風機30が予め設定された低電力状態になると、押込み送風機30を停止するように構成してもよいことはいうまでもない。また、押込み送風機30が予め設定された低電力状態になると入熱量調整機構50を作動させる例を説明したが、押込み送風機30への給電電力にかかわらず入熱量調整機構50や圧力開放機構55を作動させるように構成されていてもよい。 It is needless to say that the forced air blower 30 may be configured to stop when the forced air blower 30 enters a preset low power state. Further, although the example in which the heat input amount adjusting mechanism 50 is operated when the forced draft fan 30 enters the preset low power state has been described, the heat input amount regulating mechanism 50 and the pressure release mechanism 55 may be operated regardless of the power supplied to the forced draft fan 30. It may be configured to operate.

第1熱交換器5による廃熱回収量が過大になり、コンプレッサへの空気供給量つまりコンプレッサによる吸引空気量が目標空気量を超えるような場合に、制御部70によって入熱量調整機構50を介してタービン40tへ供給される燃焼用空気の入熱量が調整される。その結果、コンプレッサ40cへの空気供給量を目標空気量に調整できる。 When the waste heat recovery amount by the first heat exchanger 5 becomes excessive and the air supply amount to the compressor, that is, the suction air amount by the compressor exceeds the target air amount, the control unit 70 controls the heat input amount adjustment mechanism 50. The heat input amount of the combustion air supplied to the turbine 40t is adjusted. As a result, the air supply amount to the compressor 40c can be adjusted to the target air amount.

また、過給機40の回転数または当該回転数の変化率が所定の上限許容値を超える場合に、制御部70によって圧力開放機構55が作動される。バイパス路56に設けられた開閉弁機構57が開放されると、コンプレッサ40cから送出され第1熱交換器5に導かれる空気が熱交換されることなくタービン40tの送出ポート側に流れ、過給機40の回転動力源となる高温の圧縮空気がタービン40tに供給されなくなるため、過給機40の回転数が急激に低下する。なお、制御部70は、開閉弁機構57を開放するとともに押込み送風機30を停止することが好ましい。 Further, when the rotation speed of the supercharger 40 or the rate of change of the rotation speed exceeds a predetermined upper limit allowable value, the control unit 70 activates the pressure release mechanism 55. When the opening/closing valve mechanism 57 provided in the bypass path 56 is opened, the air sent from the compressor 40c and guided to the first heat exchanger 5 flows to the sending port side of the turbine 40t without heat exchange, and the supercharging is performed. Since the high-temperature compressed air that serves as the rotational power source of the machine 40 is not supplied to the turbine 40t, the rotation speed of the supercharger 40 sharply decreases. It is preferable that the control unit 70 opens the on-off valve mechanism 57 and stops the forced draft fan 30.

上述した実施形態では、熱交換器が煙道に導かれる排ガスの保有熱により燃焼用空気を予熱する熱交換器で構成された例を説明したが、熱処理炉2の炉内燃焼熱で燃焼用空気を予熱する熱交換器であってもよい。後者の場合、熱交換器は熱処理炉2に設置される。 In the above-described embodiment, the example in which the heat exchanger is configured by the heat exchanger that preheats the combustion air by the retained heat of the exhaust gas guided to the flue has been described. It may be a heat exchanger for preheating air. In the latter case, the heat exchanger is installed in the heat treatment furnace 2.

即ち、本発明による廃棄物処理設備の運転方法は、汚泥等の廃棄物を焼却処理する熱処理炉2と、熱処理炉2の炉内燃焼熱及び/または煙道に導かれる排ガスの保有熱により燃焼用空気を予熱する熱交換器と、熱交換器で予熱された燃焼用空気により回転するタービンとタービンの回転により熱交換器に燃焼用空気を供給するコンプレッサとを含む過給機と、タービンへ供給される燃焼用空気の入熱量を調整する入熱量調整機構と、過給機の駆動力を急低下させる圧力開放機構と、を備えている廃棄物処理設備の運転方法であって、過給機の回転数をモニターし、当該回転数または当該回転数の変化率が所定の上限許容値を超えると、圧力開放機構を作動させて過給機の駆動力を急低下させるように構成されている。 That is, the operation method of the waste treatment facility according to the present invention is performed by the heat treatment furnace 2 for incinerating waste such as sludge, the combustion heat of the heat treatment furnace 2 and/or the heat of the exhaust gas guided to the flue. To a turbine, a supercharger including a heat exchanger for preheating the working air, a turbine rotated by the combustion air preheated by the heat exchanger, and a compressor for supplying the combustion air to the heat exchanger by the rotation of the turbine, A method for operating a waste treatment facility, comprising: a heat input amount adjusting mechanism for adjusting the heat input amount of supplied combustion air; and a pressure releasing mechanism for rapidly reducing the driving force of a supercharger. It is configured to monitor the number of revolutions of the machine and, when the number of revolutions or the rate of change of the number of revolutions exceeds a predetermined upper limit allowable value, activate the pressure release mechanism to rapidly reduce the driving force of the supercharger. There is.

以下、別実施形態を説明する。
図4に示すように、圧力開放機構55は、第1熱交換器5からタービン40tの導入ポートに導かれる空気を直接タービン40tの送出ポート側に導くバイパス路56と、バイパス路56に設けられた開閉弁機構57とで構成されていてもよい。
Hereinafter, another embodiment will be described.
As shown in FIG. 4, the pressure release mechanism 55 is provided in the bypass passage 56 and the bypass passage 56 that directly introduces the air guided from the first heat exchanger 5 to the introduction port of the turbine 40t to the delivery port side of the turbine 40t. It may be configured with the open/close valve mechanism 57.

第1熱交換器5からタービン40tの導入ポートに導かれる空気がバイパス路56を介して直接タービン40tの送出ポート側に導かれ、過給機40の回転動力源となる高温の圧縮空気がタービン40tに供給されなくなるため、過給機40の回転数が急激に低下する。 The air guided from the first heat exchanger 5 to the introduction port of the turbine 40t is directly guided to the delivery port side of the turbine 40t via the bypass path 56, and the high-temperature compressed air that serves as the rotational power source of the supercharger 40 is the turbine. Since it is no longer supplied to 40t, the rotation speed of the supercharger 40 sharply decreases.

図5に示すように、圧力開放機構55は、押込み送風機30からコンプレッサ40cの導入ポートに導かれる空気を直接タービン40tの送出ポート側に導くバイパス路56と、バイパス路56に設けられた開閉弁機構57とで構成されていてもよい。 As shown in FIG. 5, the pressure release mechanism 55 includes a bypass passage 56 that guides the air guided from the forced air blower 30 to the introduction port of the compressor 40c directly to the delivery port side of the turbine 40t, and an opening/closing valve provided in the bypass passage 56. It may be configured with the mechanism 57.

コンプレッサ40cの導入ポートに導かれる空気がバイパス路56を介して直接タービン40tの送出ポート側に導かれ、過給機40の回転動力源となる高温の圧縮空気がタービン40tに供給されなくなるため、過給機40の回転数が急激に低下する。 The air guided to the introduction port of the compressor 40c is directly guided to the delivery port side of the turbine 40t via the bypass passage 56, and the high-temperature compressed air that serves as the rotational power source of the supercharger 40 is not supplied to the turbine 40t. The rotation speed of the supercharger 40 sharply decreases.

図6に示すように、圧力開放機構55は、コンプレッサ40cから送出され第1熱交換器5に導かれる空気を系外に排出する開放路56と、開放路56に設けられた開閉弁機構57とで構成されていてもよい。 As shown in FIG. 6, the pressure release mechanism 55 discharges the air sent from the compressor 40c and guided to the first heat exchanger 5 to the outside of the system, and the open/close valve mechanism 57 provided in the open passage 56. It may be composed of and.

コンプレッサ40cから送出され第1熱交換器5に導かれる空気が開放路56を介して系外に排出され、過給機40の回転動力源となる高温の圧縮空気がタービン40tに供給されなくなるため、過給機40の回転数が急激に低下する。上述したように、何れの場合でも開閉弁機構57はボール弁で構成されていることが好ましい。 The air sent from the compressor 40c and guided to the first heat exchanger 5 is discharged to the outside of the system through the open path 56, and the high-temperature compressed air that serves as the rotational power source of the supercharger 40 is not supplied to the turbine 40t. The rotation speed of the supercharger 40 sharply decreases. As described above, in any case, it is preferable that the opening/closing valve mechanism 57 be a ball valve.

以下では、入熱量調整機構50に関する実施形態を説明する。図8〜図11には、圧力開放機構55が明示されていないが、以下に説明する入熱量調整機構50の別実施形態では、上述した図1,4,5,6の何れかの圧力開放機構55が採用されている。 Hereinafter, an embodiment regarding the heat input amount adjusting mechanism 50 will be described. Although the pressure release mechanism 55 is not clearly shown in FIGS. 8 to 11, in another embodiment of the heat input amount adjustment mechanism 50 described below, the pressure release mechanism of any one of FIGS. The mechanism 55 is adopted.

図7に示すように、入熱量調整機構50は、コンプレッサ40cから送出され第1熱交換器5に導かれる空気の一部を直接タービン40tの導入ポート側に導くバイパス路51と、バイパス路51に設けられた流量調整機構としての流量調整弁52で構成されていてもよい。 As shown in FIG. 7, the heat input adjustment mechanism 50 includes a bypass passage 51 that directly guides a part of the air sent from the compressor 40c and guided to the first heat exchanger 5 to the introduction port side of the turbine 40t, and a bypass passage 51. It may be configured by a flow rate adjusting valve 52 as a flow rate adjusting mechanism provided in the.

図8に示すように、入熱量調整機構50の作動時にタービン40tから送出された予熱空気の温度を調整する第2熱交換器4を備えていることが好ましい。 As shown in FIG. 8, it is preferable to include the second heat exchanger 4 that adjusts the temperature of the preheated air sent from the turbine 40t when the heat input amount adjusting mechanism 50 operates.

そして、タービン40tから送出される予熱空気を第2熱交換器4に導く流路にバイパス路61を設けるとともにバイパス路61に流量調整機構62としてのダンパ機構を設けた温度調整機構60を備え、第2熱交換器4により加熱された空気とバイパス路61を通過した空気を合流させた燃焼用空気を流動床式焼却炉2へ供給するように構成することが好ましい。 Then, the bypass passage 61 is provided in the flow path that guides the preheated air sent from the turbine 40t to the second heat exchanger 4, and the bypass passage 61 is provided with the temperature adjusting mechanism 60 that is provided with the damper mechanism as the flow rate adjusting mechanism 62. It is preferable that the combustion air obtained by merging the air heated by the second heat exchanger 4 and the air passing through the bypass passage 61 is supplied to the fluidized bed incinerator 2.

この場合、流動床式焼却炉2への燃焼用空気の供給部に温度センサStを備え、制御部70が温度センサStにより検出された温度が目標温度となるように流量調整機構62を制御するように構成されていることが好ましい。 In this case, a temperature sensor St is provided in the supply section of the combustion air to the fluidized bed incinerator 2, and the control section 70 controls the flow rate adjusting mechanism 62 so that the temperature detected by the temperature sensor St becomes the target temperature. It is preferable that it is configured as follows.

入熱量調整機構50が作動して、タービン40tから送出され燃焼用空気として流動床式焼却炉2に導かれる予熱空気の温度が変動して流動床式焼却炉2の安定操炉に支障を来す虞がある場合でも、第2熱交換器4を備えることによりタービン40tから送出され流動床式焼却炉2に導かれる予熱空気の温度が適切な温度に調整できるようになる。 The heat input amount adjusting mechanism 50 operates, and the temperature of the preheated air sent from the turbine 40t and guided to the fluidized bed incinerator 2 as combustion air fluctuates, which hinders stable operation of the fluidized bed incinerator 2. Even if there is a possibility that the preheated air is supplied from the turbine 40t to the fluidized bed incinerator 2 by providing the second heat exchanger 4, the temperature of the preheated air can be adjusted to an appropriate temperature.

さらに、図9に示すように、流動床式焼却炉2に供給する燃焼用空気の温度を調整すべく、第2熱交換器4に配した伝熱管を流れる排ガスの流れ方向に沿って最下流側と最下流側よりも上流側の2か所に燃焼用空気を供給する空気流入部4a,4bを設けるとともに、タービン40tから送出された空気を第2熱交換器4に導く流路71に、空気流入部4a及び空気流入部4bから流入する空気量を調整する流量調整機構72としてのダンパ機構を設けてもよい。 Furthermore, as shown in FIG. 9, in order to adjust the temperature of the combustion air supplied to the fluidized bed incinerator 2, the most downstream side along the flow direction of the exhaust gas flowing through the heat transfer pipe arranged in the second heat exchanger 4. Side and the air inflow portions 4a and 4b for supplying combustion air are provided at two locations on the upstream side of the downstream side and the flow path 71 that guides the air sent from the turbine 40t to the second heat exchanger 4. A damper mechanism may be provided as the flow rate adjusting mechanism 72 that adjusts the amount of air flowing in from the air inflow portion 4a and the air inflow portion 4b.

この場合も、流動床式焼却炉2への燃焼用空気の供給部に温度センサStを備え、制御部70が温度センサStにより検出された温度が目標温度となるように流量調整機構72を制御するように構成すればよい。 Also in this case, the temperature sensor St is provided in the supply unit of the combustion air to the fluidized bed incinerator 2, and the control unit 70 controls the flow rate adjusting mechanism 72 so that the temperature detected by the temperature sensor St becomes the target temperature. It may be configured to do so.

図10に示すように、入熱量調整機構50は、第1熱交換器5から送出されタービン40tの導入ポートに導かれる予熱空気の一部を直接タービン40tの送出ポート側に導くバイパス路51と、バイパス路51に設けられた流量調整機構52としてのダンパ機構で構成されていてもよい。 As shown in FIG. 10, the heat input amount adjusting mechanism 50 includes a bypass passage 51 that directly guides part of the preheated air that is sent from the first heat exchanger 5 and is guided to the introduction port of the turbine 40t to the delivery port side of the turbine 40t. Alternatively, the damper mechanism may be configured as the flow rate adjusting mechanism 52 provided in the bypass path 51.

なお、何れの流量調整機構も、ダンパ機構を採用する例に限るものではなく、バルブ機構など公知の流量調整機構を適宜採用できることはいうまでもない。 It is needless to say that any flow rate adjusting mechanism is not limited to the example in which the damper mechanism is adopted, and a known flow rate adjusting mechanism such as a valve mechanism can be appropriately adopted.

コンプレッサ40cから送出される空気の全量が第1熱交換器5に導かれ、第1熱交換器5で予熱された空気の一部が流量調整機構52を介してバイパス路51に案内され、その残余がタービン40tに導かれる結果、タービン40tへの入熱量が調整されるようになる。タービン40tから送出される予熱空気とバイパス路51に導かれた予熱空気が合流して燃焼用空気として流動床式焼却炉2に供給される。 The entire amount of air sent from the compressor 40c is guided to the first heat exchanger 5, and part of the air preheated by the first heat exchanger 5 is guided to the bypass passage 51 via the flow rate adjusting mechanism 52, and As a result of the residue being guided to the turbine 40t, the amount of heat input to the turbine 40t is adjusted. The preheated air sent from the turbine 40t and the preheated air guided to the bypass passage 51 are combined and supplied to the fluidized bed incinerator 2 as combustion air.

図11に示すように、煙道10に配置される第2熱交換器4と第1熱交換器5とが排ガスの流れ方向に沿って並列配置されるように配置されていてもよい。 As shown in FIG. 11, the second heat exchanger 4 and the first heat exchanger 5 arranged in the flue 10 may be arranged in parallel along the flow direction of the exhaust gas.

上述した実施形態では、第1熱交換器5が煙道10に配され、煙道に導かれる排ガスの保有熱により燃焼用空気を予熱するように構成された例を説明したが、第1熱交換器5は流動床式焼却炉2に設けられ、炉内燃焼熱により燃焼用空気を予熱するように構成されていてもよい。 In the above-described embodiment, the example in which the first heat exchanger 5 is arranged in the flue 10 and is configured to preheat the combustion air by the retained heat of the exhaust gas guided to the flue has been described. The exchanger 5 may be provided in the fluidized bed incinerator 2 and configured to preheat the combustion air by the heat of combustion in the furnace.

上述した実施形態は、熱処理炉として流動床式焼却炉2を採用した場合について説明したが、本発明が適用される焼却炉は流動床式焼却炉2に限らず、流動床式焼却炉2と同様に通気圧損が大きいシャフト炉等の他の形式の工業炉にも適用可能である。例えば、底部にコークスベッドが形成され、当該コークスベッドに燃焼用空気を供給する羽口が形成されたシャフト炉の上方から汚泥を投入して溶融するような熱処理炉やスクラップを投入して溶解するキュポラ等であっても、本発明が適用可能である。 Although the above-mentioned embodiment explained the case where fluidized bed type incinerator 2 was adopted as a heat treatment furnace, the incinerator to which the present invention is applied is not limited to fluidized bed type incinerator 2 and fluidized bed type incinerator 2 is used. Similarly, it can be applied to other types of industrial furnaces such as a shaft furnace having a large ventilation pressure loss. For example, a coke bed is formed in the bottom part, and a heat treatment furnace or scrap is put into the coke bed to melt the sludge from above the shaft furnace where the tuyere for supplying combustion air is formed. The present invention can be applied to a cupola or the like.

上述した実施形態は、何れも本発明の一例であり、当該記載により本発明が限定されるものではなく、夫々の特徴構成を適宜向き合わせてもよく、また各部の具体的構成を本発明の作用効果が奏される範囲で適宜変更設計してもよいことはいうまでもない。 The above-described embodiments are all examples of the present invention, and the present invention is not limited to the description, and the respective characteristic configurations may be appropriately opposed to each other, and the specific configurations of the respective portions may be the same as those of the present invention. It goes without saying that the design may be appropriately changed within the range where the action and effect are exhibited.

100:廃棄物処理設備
2:流動床式焼却炉(熱処理炉)
3:空気供給機構
4:第2熱交換器
5:第1熱交換器
10:煙道
30:押込み送風機
40:過給機
40c:コンプレッサ
40t:タービン
50:入熱量調整機構
51:バイパス路
52:流量調整機構(ニードル弁)
55:圧力開放機構
56:バイパス路(開放路)
57:開放弁機構(ボール弁)
70:制御部
75:インバータ
100: Waste treatment facility 2: Fluidized bed incinerator (heat treatment furnace)
3: Air supply mechanism 4: Second heat exchanger 5: First heat exchanger 10: Flue 30: Push blower 40: Supercharger 40c: Compressor 40t: Turbine 50: Heat input adjustment mechanism 51: Bypass path 52: Flow rate adjustment mechanism (needle valve)
55: Pressure release mechanism 56: Bypass path (open path)
57: Open valve mechanism (ball valve)
70: Control unit 75: Inverter

Claims (8)

汚泥等の廃棄物を焼却処理する熱処理炉と、
前記熱処理炉の炉内燃焼熱及び/または煙道に導かれる排ガスの保有熱により燃焼用空気を予熱する熱交換器と、
前記熱交換器で予熱された燃焼用空気により回転するタービンと前記タービンの回転により前記熱交換器に燃焼用空気を供給するコンプレッサとを含む過給機と、
を備えている廃棄物処理設備であって、
前記タービンへ供給する燃焼用空気の入熱量を調整する入熱量調整機構と、
前記過給機の駆動力を急低下させる圧力開放機構と、
前記コンプレッサへ供給される燃焼用空気量が目標空気量となるように前記入熱量調整機構を調整するとともに、前記過給機の回転数をモニターして当該回転数または当該回転数の変化率が所定の上限許容値を超えると、前記圧力開放機構を作動させる制御部を備えている廃棄物処理設備。
A heat treatment furnace that incinerates waste such as sludge,
A heat exchanger for preheating combustion air by the heat of combustion in the heat treatment furnace and/or the heat of the exhaust gas introduced to the flue;
A supercharger including a turbine rotated by combustion air preheated in the heat exchanger, and a compressor that supplies combustion air to the heat exchanger by rotation of the turbine,
A waste treatment facility comprising:
A heat input amount adjusting mechanism for adjusting the heat input amount of the combustion air supplied to the turbine,
A pressure release mechanism for rapidly reducing the driving force of the supercharger,
While adjusting the heat input amount adjusting mechanism so that the amount of combustion air supplied to the compressor becomes a target air amount, the rotation speed of the supercharger is monitored and the rotation speed or the rate of change of the rotation speed is A waste treatment facility including a control unit that activates the pressure release mechanism when a predetermined upper limit is exceeded.
前記圧力開放機構は、前記コンプレッサから送出され前記熱交換器に導かれる空気を直接前記タービンの送出ポート側に導くバイパス路と、前記バイパス路に設けられた開閉弁機構とで構成されている請求項1記載の廃棄物処理設備。 The pressure release mechanism is configured by a bypass passage that guides air sent from the compressor and introduced into the heat exchanger directly to the delivery port side of the turbine, and an opening/closing valve mechanism provided in the bypass passage. Item 1. Waste treatment equipment according to item 1. 前記開閉弁機構と並列して前記バイパス路に流量調整機構を備え、前記バイパス路と前記流量調整機構により前記入熱量調整機構が構成されている請求項2記載の廃棄物処理設備。 The waste treatment facility according to claim 2, wherein a flow rate adjusting mechanism is provided in the bypass passage in parallel with the on-off valve mechanism, and the heat input adjusting mechanism is constituted by the bypass passage and the flow rate adjusting mechanism. 前記圧力開放機構は、前記熱交換器から前記タービンの導入ポートに導かれる空気を直接前記タービンの送出ポート側に導くバイパス路と、前記バイパス路に設けられた開閉弁機構とで構成されている請求項1記載の廃棄物処理設備。 The pressure release mechanism is configured by a bypass passage that guides the air guided from the heat exchanger to the introduction port of the turbine directly to the delivery port side of the turbine, and an opening/closing valve mechanism provided in the bypass passage. The waste treatment facility according to claim 1. 燃焼用空気を前記コンプレッサに供給する押込み送風機を備え、前記圧力開放機構は、前記押込み送風機から前記コンプレッサの導入ポートに導かれる空気を直接前記タービンの送出ポート側に導くバイパス路と、前記バイパス路に設けられた開閉弁機構とで構成されている請求項1記載の廃棄物処理設備。 A pressure blower for supplying combustion air to the compressor, wherein the pressure release mechanism directs the air guided from the pusher blower to the introduction port of the compressor to the delivery port side of the turbine; and the bypass passage. The waste treatment facility according to claim 1, wherein the waste treatment facility is provided with an on-off valve mechanism provided in the. 前記圧力開放機構は、前記コンプレッサから送出され前記熱交換器に導かれる空気を系外に排出する開放路と、前記開放路に設けられた開閉弁機構とで構成されている請求項1記載の廃棄物処理設備。 2. The pressure release mechanism according to claim 1, wherein the pressure release mechanism includes an open passage for discharging the air sent from the compressor and guided to the heat exchanger to the outside of the system, and an opening/closing valve mechanism provided in the open passage. Waste treatment equipment. 前記開閉弁機構がボール弁で構成されている請求項1から6の何れかに記載の廃棄物処理設備。 The waste treatment facility according to any one of claims 1 to 6, wherein the on-off valve mechanism is composed of a ball valve. 汚泥等の廃棄物を焼却処理する熱処理炉と、
前記熱処理炉の炉内燃焼熱及び/または煙道に導かれる排ガスの保有熱により燃焼用空気を予熱する熱交換器と、
前記熱交換器で予熱された燃焼用空気により回転するタービンと前記タービンの回転により前記熱交換器に燃焼用空気を供給するコンプレッサとを含む過給機と、
前記タービンへ供給される燃焼用空気の入熱量を調整する入熱量調整機構と、
前記過給機の駆動力を急低下させる圧力開放機構と、
を備えている廃棄物処理設備の運転方法であって、
前記過給機の回転数をモニターし、当該回転数または当該回転数の変化率が所定の上限許容値を超えると、前記圧力開放機構を作動させて前記過給機の駆動力を急低下させる廃棄物処理設備の運転方法。
A heat treatment furnace that incinerates waste such as sludge,
A heat exchanger for preheating combustion air by the heat of combustion in the heat treatment furnace and/or the heat of the exhaust gas introduced to the flue;
A supercharger including a turbine rotated by combustion air preheated in the heat exchanger, and a compressor that supplies combustion air to the heat exchanger by rotation of the turbine,
A heat input amount adjusting mechanism for adjusting the heat input amount of the combustion air supplied to the turbine,
A pressure release mechanism for rapidly reducing the driving force of the supercharger,
A method of operating a waste treatment facility comprising:
The rotation speed of the supercharger is monitored, and when the rotation speed or the rate of change of the rotation speed exceeds a predetermined upper limit allowable value, the pressure release mechanism is operated to rapidly reduce the driving force of the supercharger. How to operate waste treatment equipment.
JP2018223298A 2018-11-29 2018-11-29 Waste treatment equipment and operation method of waste treatment equipment Active JP7156922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018223298A JP7156922B2 (en) 2018-11-29 2018-11-29 Waste treatment equipment and operation method of waste treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018223298A JP7156922B2 (en) 2018-11-29 2018-11-29 Waste treatment equipment and operation method of waste treatment equipment

Publications (2)

Publication Number Publication Date
JP2020085386A true JP2020085386A (en) 2020-06-04
JP7156922B2 JP7156922B2 (en) 2022-10-19

Family

ID=70907482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018223298A Active JP7156922B2 (en) 2018-11-29 2018-11-29 Waste treatment equipment and operation method of waste treatment equipment

Country Status (1)

Country Link
JP (1) JP7156922B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023112768A1 (en) * 2021-12-14 2023-06-22 メタウォーター株式会社 Incineration system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53117110A (en) * 1977-03-22 1978-10-13 Nissan Motor Co Ltd Overrun preventing arrangement for a gas turbine engine
JP2017020689A (en) * 2015-07-09 2017-01-26 株式会社クボタ Waste treatment facility and operation method of waste treatment facility
JP2017170351A (en) * 2016-03-24 2017-09-28 株式会社クボタ Waste treatment equipment and furnace operation method for waste treatment equipment
JP2017190930A (en) * 2016-04-15 2017-10-19 メタウォーター株式会社 Waste treatment facility
JP2017203434A (en) * 2016-05-12 2017-11-16 株式会社クボタ Method for operating waste treatment facility and waste treatment facility
JP2018165583A (en) * 2017-03-28 2018-10-25 メタウォーター株式会社 Method and apparatus for avoiding surge in a supercharger attached to an incinerator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53117110A (en) * 1977-03-22 1978-10-13 Nissan Motor Co Ltd Overrun preventing arrangement for a gas turbine engine
JP2017020689A (en) * 2015-07-09 2017-01-26 株式会社クボタ Waste treatment facility and operation method of waste treatment facility
JP2017170351A (en) * 2016-03-24 2017-09-28 株式会社クボタ Waste treatment equipment and furnace operation method for waste treatment equipment
JP2017190930A (en) * 2016-04-15 2017-10-19 メタウォーター株式会社 Waste treatment facility
JP2017203434A (en) * 2016-05-12 2017-11-16 株式会社クボタ Method for operating waste treatment facility and waste treatment facility
JP2018165583A (en) * 2017-03-28 2018-10-25 メタウォーター株式会社 Method and apparatus for avoiding surge in a supercharger attached to an incinerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023112768A1 (en) * 2021-12-14 2023-06-22 メタウォーター株式会社 Incineration system

Also Published As

Publication number Publication date
JP7156922B2 (en) 2022-10-19

Similar Documents

Publication Publication Date Title
JP6490466B2 (en) Waste treatment facility and method of operating waste treatment facility
JP6655467B2 (en) Furnace operation method of waste treatment equipment and waste treatment equipment
JP5067653B2 (en) Pressurized incinerator equipment and operating method thereof
JP6580398B2 (en) Waste treatment facility and operation method of waste treatment facility
JP6333021B2 (en) Incineration processing equipment and incineration processing method
JP6800594B2 (en) Waste treatment equipment and how to operate the waste treatment equipment
JP5401302B2 (en) Operating method of pressurized fluidized incinerator and pressurized fluidized incinerator equipment
JP2008025966A (en) Pressure incinerator equipment and its startup method
JP2017190929A (en) Waste treatment facility
JP6297417B2 (en) Waste treatment facility and waste treatment method
JP2015194307A (en) Incineration processing equipment and incineration processing method
JP7156922B2 (en) Waste treatment equipment and operation method of waste treatment equipment
JP5574911B2 (en) Incineration equipment and its operating method
JP6947608B2 (en) How to operate waste treatment equipment and waste treatment equipment
JP5508022B2 (en) Batch waste gasification process
JP4343931B2 (en) Combustion melting furnace and operation method of combustion melting furnace
EP0805307A1 (en) Combustion system and combustion furnace
JP7254438B2 (en) Operation method of waste disposal facility and waste disposal facility
JP7156923B2 (en) Waste treatment equipment and operation method of waste treatment equipment
JP5956211B2 (en) Operating method of pressurized fluidized furnace system
WO2000022348A1 (en) Waste disposal device
JP2013200087A5 (en)
JP2015049012A (en) Pressurized fluidized bed incinerator facilities and pressurized fluidized bed incinerator facilities control method
JP7316922B2 (en) Furnace operation method for waste treatment equipment
JP2018159481A (en) Incinerator with supercharger and method for operating the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221006

R150 Certificate of patent or registration of utility model

Ref document number: 7156922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150