[go: up one dir, main page]

JP2020084258A - Method for producing carbonaceous material-containing particles and method for producing carbonaceous material-containing sintered ore - Google Patents

Method for producing carbonaceous material-containing particles and method for producing carbonaceous material-containing sintered ore Download PDF

Info

Publication number
JP2020084258A
JP2020084258A JP2018219089A JP2018219089A JP2020084258A JP 2020084258 A JP2020084258 A JP 2020084258A JP 2018219089 A JP2018219089 A JP 2018219089A JP 2018219089 A JP2018219089 A JP 2018219089A JP 2020084258 A JP2020084258 A JP 2020084258A
Authority
JP
Japan
Prior art keywords
carbonaceous material
particles
containing particles
raw material
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018219089A
Other languages
Japanese (ja)
Other versions
JP6992734B2 (en
Inventor
一洋 岩瀬
Kazuhiro Iwase
一洋 岩瀬
山本 哲也
Tetsuya Yamamoto
哲也 山本
隆英 樋口
Takahide Higuchi
隆英 樋口
友司 岩見
Tomoji Iwami
友司 岩見
頌平 藤原
Shohei Fujiwara
頌平 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2018219089A priority Critical patent/JP6992734B2/en
Publication of JP2020084258A publication Critical patent/JP2020084258A/en
Application granted granted Critical
Publication of JP6992734B2 publication Critical patent/JP6992734B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

【課題】焼結機へ搬送され、焼結機に装入される工程において炭材内装粒子の崩壊を抑制できる炭材内装粒子の製造方法を提供する。【解決手段】炭材内装粒子の製造方法であって、粉状の鉄含有原料と、石灰含有原料と、有機バインダーおよびベントナイトのうち少なくとも1種と、セメント粉と、を混合して混合粉とし、混合粉と、炭材とを造粒して、炭材核の周囲に混合粉からなる外層が形成された炭材内装粒子を製造する。【選択図】図1PROBLEM TO BE SOLVED: To provide a method for producing carbonaceous interior particles capable of suppressing the collapse of carbonaceous interior particles in a process of being transported to a sintering machine and charged into the sintering machine. SOLUTION: This is a method for producing carbonaceous material interior particles, in which a powdery iron-containing raw material, a lime-containing raw material, at least one of an organic binder and bentonite, and cement powder are mixed to obtain a mixed powder. , The mixed powder and the carbonaceous material are granulated to produce carbonaceous material interior particles in which an outer layer composed of the mixed powder is formed around the carbonaceous material core. [Selection diagram] Fig. 1

Description

本発明は、高炉などで製鉄原料として使用される焼結鉱の製造技術に関するものであり、具体的には、炭材を内装した炭材内装粒子の製造方法および当該炭材内装粒子を焼結原料の一部として製造される炭材内装焼結鉱の製造方法に関する。 The present invention relates to a manufacturing technology of a sinter used as a raw material for iron making in a blast furnace or the like, and specifically, a method for manufacturing carbonaceous material-containing particles containing carbonaceous material and sintering the carbonaceous material-containing particles. The present invention relates to a method for producing a carbonaceous material-containing sintered ore produced as a part of a raw material.

高炉製鉄法では、鉄源として焼結鉱や鉄鉱石、ペレットなどの鉄含有原料を主に用いている。ここで、焼結鉱は、塊成鉱の一種であり、以下の手順にて製造される。まず、粒径が10mm以下の鉄鉱石やダスト等の鉄含有原料と、石灰石や生石灰、製鋼スラグなどの石灰含有原料と、精錬ニッケルスラグ、ドロマイト、蛇紋岩などのMgO含有原料と、珪石などからなるSiO含有原料と、粉コークスや無煙炭などからなる凝結材と、から構成される造粒原料に適量の水を添加し、ドラムミキサーなどを用いて混合、造粒して擬似粒子とする。次いで、擬似粒子とした造粒原料を、焼結機の循環移動するパレットに装入し、造粒原料に含まれる凝結材を燃焼させて焼結ケーキとする。その後、焼結ケーキを、破砕、冷却、整粒し、一定の粒径以上のものを成品焼結鉱として回収している。 In the blast furnace ironmaking method, iron-containing raw materials such as sinter, iron ore and pellets are mainly used as an iron source. Here, the sintered ore is a kind of agglomerated ore and is manufactured by the following procedure. First, from iron-containing raw materials such as iron ore and dust with a particle size of 10 mm or less, lime-containing raw materials such as limestone, quick lime, and steelmaking slag, MgO-containing raw materials such as refined nickel slag, dolomite, and serpentine, and silica stones. An appropriate amount of water is added to a granulation raw material composed of a SiO 2 -containing raw material and a coagulating material made of powdered coke or anthracite, and mixed and granulated using a drum mixer or the like to obtain pseudo particles. Next, the granulation raw material as pseudo particles is charged into a pallet of the sintering machine that moves in a circulating manner, and the coagulating material contained in the granulation raw material is burned to form a sintered cake. After that, the sinter cake is crushed, cooled, and sized, and those having a certain particle size or more are collected as product sinter.

従来、焼結ベッド全体を均一に液相焼結する方法が主体であったが、近年、従来通り液相焼結主体の部分と、液相生成を抑えた部分とを焼結ベッドに混在させ、あえて不均一な構造を指向する焼結方法が検討されている。その理由は、融点が高く溶融しにくい部分は、焼成後には多くの細かい気孔が残存し、還元性ガスとの接触面積が増え、還元されやすい焼結鉱組織を形成できるからである。 Conventionally, a method of uniformly performing liquid phase sintering on the entire sintering bed has been the main method, but in recent years, as in the past, a portion mainly of liquid phase sintering and a portion of which liquid phase generation is suppressed are mixed in the sintering bed. A sintering method aiming at a non-uniform structure has been studied. The reason is that, in the portion having a high melting point and hardly melting, many fine pores remain after firing, the contact area with the reducing gas increases, and a sintered ore structure that is easily reduced can be formed.

このような塊成鉱の製造方法として、特許文献1には、高融点で液相生成を抑えたものとして、炭材を鉄鉱石粉とCaO含有原料で被覆した湿潤ペレットを作製し、これを従来の液相焼結主体の焼結原料に混合後、下方吸引型焼結機において焼結する方法が開示されている。 As a method for producing such an agglomerated ore, in Patent Document 1, a wet pellet in which a carbonaceous material is coated with iron ore powder and a CaO-containing raw material is prepared as a conventional method, which has a high melting point and suppresses liquid phase formation. The method of sintering in a lower suction type sintering machine after being mixed with the sintering raw material mainly composed of liquid phase sintering is disclosed.

特許第5790966号公報Patent No. 5790966

特許文献1に開示されたように、炭材内装焼結鉱は、炭材核を有する炭材内装粒子を、炭材核を有しない通常の造粒粒子に混合して焼結原料とし、焼結機で焼結することで製造される。しかしながら、炭材内装粒子が造粒機で造粒され、焼結機へ搬送、装入される工程で崩壊してしまうと、液相生成を抑えた部分が生成されず、還元されやすい焼結鉱組織を形成させることができない。本発明は上記課題を鑑みてなされたものであって、その目的は、焼結機へ搬送され、焼結機に装入される工程において炭材内装粒子の崩壊を抑制できる炭材内装粒子の製造方法を提供することにある。 As disclosed in Patent Document 1, a carbonaceous material-containing sintered ore is prepared by mixing carbonaceous material-containing particles having a carbonaceous material core with ordinary granulated particles having no carbonaceous material nucleus to obtain a sintering raw material and firing. It is manufactured by sintering with a binder. However, when the carbonaceous material-containing particles are granulated by the granulator and collapsed in the process of being conveyed and charged to the sintering machine, the portion that suppresses the liquid phase generation is not generated and the sintering is easily reduced. It cannot form a mineral structure. The present invention has been made in view of the above problems, and an object thereof is to convey the carbonaceous material-containing particles to a sintering machine and suppress the collapse of the carbonaceous material-containing particles in the step of charging the sintering machine. It is to provide a manufacturing method.

このような課題を解決できる本発明の特徴は、以下の通りである。
(1)粉状の鉄含有原料と、石灰含有原料と、有機バインダーおよびベントナイトのうち少なくとも1種と、セメント粉と、を混合して混合粉とし、前記混合粉と、炭材とを造粒して、炭材核の周囲に前記混合粉からなる外層が形成された炭材内装粒子を製造する、炭材内装粒子の製造方法。
(2)前記混合粉に対する有機バインダーおよびベントナイトのうち少なくとも1種の混合割合が0.1質量%以上3質量%以下であり、前記混合粉に対するセメント粉の混合割合が4質量%以上10質量%以下になるように、前記有機バインダーおよびベントナイトの少なくとも1種と、前記セメント粉とを混合する(1)に記載の炭材内装粒子の製造方法。
(3)(1)または(2)に記載の炭材内装粒子の製造方法で製造された炭材内装粒子を、鉄含有原料と、副原料と、凝結材と、を混合、造粒した造粒粒子に配合して焼結原料とし、前記焼結原料を焼結機のパレットに装入して焼結する、炭材内装焼結鉱の製造方法。
The features of the present invention that can solve such problems are as follows.
(1) A powdery iron-containing raw material, a lime-containing raw material, at least one of an organic binder and bentonite, and a cement powder are mixed into a mixed powder, and the mixed powder and a carbonaceous material are granulated. Then, the method for producing the carbonaceous material-containing particles, wherein the carbonaceous material-containing particles in which the outer layer made of the mixed powder is formed around the carbonaceous material core are produced.
(2) The mixing ratio of at least one of the organic binder and the bentonite to the mixed powder is 0.1% by mass or more and 3% by mass or less, and the mixing ratio of the cement powder to the mixed powder is 4% by mass or more and 10% by mass. The method for producing carbonaceous material-containing particles according to (1), wherein at least one of the organic binder and bentonite is mixed with the cement powder as described below.
(3) Granulation of the carbon material-containing particles produced by the method for producing carbon material-containing particles according to (1) or (2), by mixing and granulating an iron-containing raw material, an auxiliary raw material, and a coagulating material. A method for producing a carbonaceous material-containing sintered ore, which is compounded into granular particles as a sintering raw material, and the sintering raw material is charged into a pallet of a sintering machine and sintered.

本発明の炭材内装焼結鉱の製造方法を実施することで、搬送工程での落下衝撃に対する耐性や、圧潰強度の高い炭材内装粒子を製造できるので、造粒されたのち焼結機に装入される工程において、崩壊する炭材内装粒子を少なくできる。これにより、その後の焼結工程で液相生成を抑えた部分が生成され、還元されやすい焼結鉱組織が形成された炭材内装焼結鉱を高い歩留で製造できる。 By carrying out the method for producing a carbonaceous material-containing sintered ore of the present invention, it is possible to produce carbonaceous material-containing particles having high resistance to drop impact in the transporting step and high crushing strength. In the charging step, the carbonaceous material-containing particles that collapse can be reduced. As a result, a carbonaceous material-containing sintered ore in which a portion in which liquid phase generation is suppressed is generated in the subsequent sintering step and a sintered ore structure that is easily reduced is formed can be manufactured at a high yield.

本実施形態に係る炭材内装粒子の製造方法が実施できる炭材内装粒子の製造工程10の一例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing process 10 of the carbonaceous material interior particle which can implement the manufacturing method of the carbonaceous material interior particle which concerns on this embodiment. 混練機28での混合時間と、造粒機38で造粒された炭材内装粒子の圧潰強度分布との関係を示すグラフである。7 is a graph showing the relationship between the mixing time in the kneader 28 and the crushing strength distribution of the carbonaceous material-containing particles granulated by the granulator 38. 造粒機38に存在する混合粉30、コークス粒子32(成長途中の炭材内装粒子を含む)および炭材内装粒子40を示す写真である。5 is a photograph showing mixed powder 30, coke particles 32 (including carbonaceous material-containing particles in the middle of growth) and carbonaceous material-containing particles 40 existing in the granulator 38. 炭材内装焼結鉱の製造方法が実施できる炭材内装焼結鉱の製造工程100の一例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing process 100 of the carbon material interior sintered ore which can implement the manufacturing method of a carbon material interior sintered ore. PVAの混合割合と炭材内装粒子の落下強度との関係を示すグラフである。It is a graph which shows the relationship between the mixing ratio of PVA and the drop strength of carbonaceous material interior particles. 養生期間と炭材内装粒子の圧潰強度との関係を示すグラフである。It is a graph which shows the relationship between a curing period and the crushing strength of carbonaceous material interior particles. セメント粉の混合割合と炭材内装粒子の圧潰強度との関係を示すグラフである。3 is a graph showing the relationship between the mixing ratio of cement powder and the crush strength of carbonaceous material-containing particles. セメント粉の混合割合と炭材内装焼結鉱の気孔率との関係を示すグラフである。It is a graph which shows the relationship between the mixing ratio of cement powder and the porosity of the carbonaceous material-containing sintered ore. 実施例および比較例の焼結鉱のRIを示すグラフである。It is a graph which shows RI of the sintered ore of an Example and a comparative example.

以下、本発明の実施形態を通じて本発明を説明する。図1は、本実施形態に係る炭材内装粒子の製造方法が実施できる炭材内装粒子の製造工程10の一例を示す模式図である。図1を用いて、本実施形態に係る炭材内装粒子の製造方法を説明する。 Hereinafter, the present invention will be described through embodiments of the present invention. FIG. 1 is a schematic view showing an example of a carbonaceous material-containing particle manufacturing process 10 by which the method for manufacturing carbonaceous material-containing particles according to the present embodiment can be implemented. The method for producing carbonaceous material-containing particles according to the present embodiment will be described with reference to FIG.

炭材内装粒子の製造工程10では、まず、貯蔵槽14に貯蔵された鉄含有原料12と、貯蔵槽18に貯蔵された石灰含有原料16と、貯蔵槽22に貯蔵された有機バインダー20またはベントナイト21と、貯蔵槽24に貯蔵されたセメント粉23とがそれぞれの貯蔵槽から搬送機25に所定量切り出される。鉄含有原料12、石灰含有原料16、有機バインダー20またはベントナイト21およびセメント粉23は、搬送機25によってインテンシブミキサーなどの混練機28に搬送される。鉄含有原料12、石灰含有原料16、有機バインダー20またはベントナイト21およびセメント粉23は、混練機28で適量の水26とともに混合されて混合粉30となる。 In the carbonaceous material-containing particle manufacturing process 10, first, the iron-containing raw material 12 stored in the storage tank 14, the lime-containing raw material 16 stored in the storage tank 18, and the organic binder 20 or bentonite stored in the storage tank 22. 21 and the cement powder 23 stored in the storage tank 24 are cut out from the respective storage tanks by a predetermined amount to the carrier 25. The iron-containing raw material 12, the lime-containing raw material 16, the organic binder 20, or the bentonite 21 and the cement powder 23 are conveyed by a conveyor 25 to a kneader 28 such as an intensive mixer. The iron-containing raw material 12, the lime-containing raw material 16, the organic binder 20 or the bentonite 21, and the cement powder 23 are mixed together with an appropriate amount of water 26 in the kneading machine 28 to form a mixed powder 30.

本実施形態において、鉄含有原料12は、粉状の鉄含有原料の一例であり、例えば、粒径が150μm以下、比表面積が2000cm/g程度の鉄鉱石粉や、製鉄所内で発生するダストやスラッジ等である。石灰含有原料16としては、生石灰、石灰石および消石灰の何れか1つ以上を用いてもよい。但し、混合粉30を造粒するという観点から、造粒効果の高い生石灰や消石灰を用いることが好ましい。また、焼結時に生じる融液の粘度を増加させるドロマイト[CaMg(CO]を石灰含有原料16に添加してもよい。すなわち、石灰含有原料とは、生石灰、消石灰、石灰石およびドロマイトの何れか1つ以上を含有する原料である。有機バインダー20は、水と作用して造粒物に可塑性を付与する機能を有する材料であり、例えば、ポリビニルアルコール(PVA)や澱粉である。ベントナイト21も、有機バインダーと同様に、水と作用して造粒物に可塑性を付与する機能を有する材料である。ベントナイト21は造粒物中のスラグ分を増加させるので、水と作用して造粒物に可塑性を付与する材料としては、ベントナイトを用いるよりもスラグ分を含まない有機バインダー20を用いることが好ましい。セメント粉23は、水硬性のセメントであって、例えば、ポルトランドセメント、混合セメント、高炉スラグセメントなどである。なお、セメント粉23には酸化カルシウム(CaO)も含まれるので、セメント粉23を加える場合には、セメント粉23に含まれる酸化カルシウムの分だけ生石灰の切り出し量を減少させる。なお、以下の実施形態ではセメント粉23として、以下の表1に示すポルトランドセメントを用いた。セメントは種類によって数か月の長期強度に差が有るが、本発明の用途では4週間かそれ以内の強度があればよく、数か月の長期強度は求められていない。このため、本実施形態では、いずれの種類のセメントも用いることができる。なお、寒冷地などではアルミナセメントを用いることでさらに短時間で強度が発現するので、より好ましい。 In the present embodiment, the iron-containing raw material 12 is an example of a powdery iron-containing raw material, and for example, iron ore powder having a particle size of 150 μm or less and a specific surface area of about 2000 cm 2 /g, dust generated in an iron mill, Sludge, etc. As the lime-containing raw material 16, any one or more of quick lime, limestone and slaked lime may be used. However, from the viewpoint of granulating the mixed powder 30, it is preferable to use quicklime or slaked lime having a high granulation effect. Further, dolomite [CaMg(CO 3 ) 2 ] that increases the viscosity of the melt generated during sintering may be added to the lime-containing raw material 16. That is, the lime-containing raw material is a raw material containing any one or more of quick lime, slaked lime, limestone and dolomite. The organic binder 20 is a material having a function of acting on water to impart plasticity to the granulated material, and is, for example, polyvinyl alcohol (PVA) or starch. The bentonite 21 is also a material having a function of acting on water and imparting plasticity to the granulated material, like the organic binder. Since the bentonite 21 increases the slag content in the granulated material, it is preferable to use the organic binder 20 containing no slag content as compared with the bentonite, as the material that acts on water to impart plasticity to the granulated material. . The cement powder 23 is a hydraulic cement, and is, for example, Portland cement, mixed cement, blast furnace slag cement, or the like. Since the cement powder 23 also contains calcium oxide (CaO), when the cement powder 23 is added, the cutout amount of quicklime is reduced by the amount of calcium oxide contained in the cement powder 23. In the following embodiments, Portland cement shown in Table 1 below was used as the cement powder 23. Although there are differences in the long-term strength of several months depending on the type of cement, in the application of the present invention, it is sufficient that the cement has a strength of 4 weeks or less, and long-term strength of several months is not required. Therefore, in this embodiment, any type of cement can be used. In cold regions and the like, the use of alumina cement is more preferable because the strength is developed in a shorter time.

混練機28では各原料を混練機28で十分に混合し、各原料を均一に分散させることが好ましい。これにより、炭材内装粒子40の品質を安定させることができる。例えば、生石灰の分散が不十分となり、炭材内装粒子に設定品位よりも生石灰が過剰に混合されると、後の焼結工程で炭材核の周囲の外層が溶融してしまい炭材内装焼結鉱を得られない場合がある。また、有機バインダー20やセメント粉23の分散が不十分となり、炭材内装粒子に混合される有機バインダー20やセメント粉23の混合量が設定品位よりも不足すると、搬送等のハンドリングに耐える十分な強度が得られず、歩留りが低下するおそれがある。さらに、水26の均一化が不十分となると、後の造粒機38による造粒に支障をきたすおそれがある。 In the kneading machine 28, it is preferable that the respective raw materials are sufficiently mixed by the kneading machine 28 to uniformly disperse the respective raw materials. Thereby, the quality of the carbonaceous material-containing particles 40 can be stabilized. For example, if the quick lime is not sufficiently dispersed and quick-lime is mixed with the carbonaceous material interior particles in excess of the set quality, the outer layer around the carbonaceous material core will be melted in the subsequent sintering step, and the carbonaceous material interior burned. You may not be able to obtain mine. Further, when the organic binder 20 and the cement powder 23 are not sufficiently dispersed and the mixing amount of the organic binder 20 and the cement powder 23 mixed with the carbonaceous material interior particles is less than the set quality, it is sufficient to withstand handling such as transportation. The strength may not be obtained, and the yield may be reduced. Further, if the homogenization of the water 26 is insufficient, there is a possibility that the subsequent granulation by the granulator 38 may be hindered.

図2は、混練機28での混合時間と、造粒機38で造粒された炭材内装粒子の圧潰強度分布との関係を示すグラフである。図2において、横軸は、セメント養生4週間後の炭材内装粒子の圧潰強度(N/個)であり、縦軸は頻度(個)である。図2の点線は、混練機28で各原料を混合せずに造粒機38を用いて炭材内装粒子に造粒し、その後、セメント養生を4週間行った後の炭材内装粒子の圧潰強度の分布を示す。破線は、混練機28で各原料を10秒間混合した混合粉を、造粒機38を用いて炭材内装粒子に造粒し、その後、セメント養生を4週間行った後の炭材内装粒子の圧潰強度の分布を示す。実線は、混練機28で各原料を60秒間混合した混合粉を、造粒機38を用いて炭材内装粒子に造粒し、その後、セメント養生を4週間行った後の炭材内装粒子の圧潰強度の分布を示す。なお、混練機28に各原料が連続的に装入され、混練が連続的になされる場合の混合時間は、混練機28内部の各原料の滞留量を装入速度で除することで算出できる。 FIG. 2 is a graph showing the relationship between the mixing time in the kneading machine 28 and the crushing strength distribution of the carbonaceous material-containing particles granulated by the granulating machine 38. In FIG. 2, the horizontal axis is the crush strength (N/piece) of the carbonaceous material-containing particles after 4 weeks of cement curing, and the vertical axis is the frequency (pieces). The dotted line in FIG. 2 indicates that the carbonaceous material-containing particles are granulated using the granulator 38 without mixing the raw materials in the kneading machine 28, and then the cement material is crushed for 4 weeks and then the carbonaceous material-containing particles are crushed. The intensity distribution is shown. The broken line indicates that the mixed powder obtained by mixing the respective raw materials for 10 seconds by the kneading machine 28 is granulated into the carbonaceous material-containing particles by using the granulating machine 38, and thereafter the cement material is subjected to cement curing for 4 weeks. The distribution of crushing strength is shown. The solid line indicates that the mixed powder obtained by mixing the raw materials for 60 seconds with the kneading machine 28 is granulated into the carbonaceous material-containing particles using the granulating machine 38, and then the cement material is subjected to cement curing for 4 weeks. The distribution of crushing strength is shown. The mixing time when each raw material is continuously charged into the kneading machine 28 and kneading is continuously performed can be calculated by dividing the retention amount of each raw material inside the kneading machine 28 by the charging speed. ..

図2に示すように、混合を全く行わない場合、圧潰強度の分布幅が広くなり、比較的低強度の炭材内装粒子が多く確認された。混合を10秒間行うと、混合を全く行わない場合よりも低強度の炭材内装粒子が減少した。混合を60秒間行うと、さらに、低強度の炭材内装粒子が減少して高強度の炭材内装粒子が増加し、圧潰強度の分布幅も狭くなった。この時の混合仕事率は330W/kgであった。なお、混合仕事率は、混合機の消費電力÷混合物の質量から算出した。また、混合を10秒間行った場合の混合エネルギーは、3300J/kgであり、混合を60秒間行った場合の混合エネルギーは、19800J/kgであった。この結果から、混練機28で各原料を混合し、均一に分散させることで、炭材内装粒子の強度品質を高めることができるとともに強度品質を均一化でき、炭材内装粒子の品質を安定化できることがわかる。なお、各原料を十分に混合できる混合時間は、炭材内装焼結鉱の製造に用いる原料、混練機および造粒機を用いて図2に示したような混合時間と圧潰強度の分布との関係を確認することで定めることができる。 As shown in FIG. 2, when the mixing was not performed at all, the distribution width of the crushing strength was wide, and many carbonaceous material-containing particles having a relatively low strength were confirmed. When the mixing was performed for 10 seconds, the carbonaceous material-containing particles having a lower strength were reduced as compared with the case where the mixing was not performed at all. When mixing was carried out for 60 seconds, the low-strength carbonaceous material-containing particles were further decreased, the high-strength carbonaceous material-containing particles were increased, and the crushing strength distribution width was narrowed. The mixing power at this time was 330 W/kg. The mixing power was calculated from the power consumption of the mixer/the mass of the mixture. The mixing energy when the mixing was performed for 10 seconds was 3300 J/kg, and the mixing energy when the mixing was performed for 60 seconds was 19800 J/kg. From these results, it is possible to improve the strength quality of the carbonaceous material interior particles and to make the strength quality uniform by stabilizing the quality of the carbonaceous material interior particles by mixing and uniformly dispersing each raw material in the kneading machine 28. I know that I can do it. It should be noted that the mixing time for which the respective raw materials can be sufficiently mixed is determined by using the raw materials used for producing the carbonaceous material-containing sintered ore, the mixing time and the distribution of crushing strength as shown in FIG. 2 using a kneader and a granulator. It can be determined by checking the relationship.

次に、混練機28で混合された混合粉30と、貯蔵槽34に貯蔵されたコークス粒子32と、が搬送機36に所定量切り出され、造粒原料となる。本実施形態では、造粒原料に対するコークス粒子32の混合割合が1質量%以上5質量%以下、より好ましくは、2質量%以上4質量%以下になるように、混合粉30およびコークス粒子32を切り出している。 Next, a predetermined amount of the mixed powder 30 mixed by the kneader 28 and the coke particles 32 stored in the storage tank 34 are cut out by the carrier 36 to be a granulation raw material. In the present embodiment, the mixed powder 30 and the coke particles 32 are so mixed that the mixing ratio of the coke particles 32 to the granulation raw material is 1% by mass or more and 5% by mass or less, more preferably 2% by mass or more and 4% by mass or less. It is cut out.

本実施形態において、コークス粒子32は、炭材の一例であり、当該炭材は、周囲に混合粉30からなる外層が形成されて炭材核となる。炭材として無煙炭等を用いてもよい。コークス粒子および無煙炭は揮発分が少ないので、これらを用いることで焼結時に炭材から生じるガスが少なくなり、当該炭材内装粒子を用いて製造される炭材内装焼結鉱の強度低下が抑制される。これにより、炭材内装焼結鉱の歩留低下を抑制できる。 In the present embodiment, the coke particles 32 are an example of a carbonaceous material, and the carbonaceous material has an outer layer made of the mixed powder 30 formed around it and becomes a carbonaceous material core. Anthracite or the like may be used as the carbonaceous material. Since coke particles and anthracite have a low volatile content, the use of these reduces the gas generated from the carbonaceous material during sintering and suppresses the decrease in strength of the carbonaceous material-containing sintered ore produced using the carbonaceous material-containing particles. To be done. As a result, it is possible to suppress a decrease in the yield of the carbonaceous material-containing sintered ore.

造粒原料は、搬送機36によってディスクペレタイザーなどの造粒機38に搬送される。造粒原料は、造粒機38で適量の水26とともに転動され、水の架橋力等によってコークス粒子32が炭材核となり、その周囲に混合粉30からなる外層が形成された炭材内装粒子40が製造される。 The granulation raw material is conveyed by a conveyor 36 to a granulator 38 such as a disc pelletizer. The granulation raw material is tumbled together with an appropriate amount of water 26 in the granulator 38, the coke particles 32 become the carbon material core by the bridging force of water, etc., and the carbon material interior in which the outer layer made of the mixed powder 30 is formed around the coke particles 32. Particles 40 are produced.

図3は、造粒機38に存在する混合粉30、コークス粒子32(成長途中の炭材内装粒子を含む)および炭材内装粒子40を示す写真である。図1に示した炭材内装粒子の製造工程10に従って炭材内装粒子40が製造されるが、炭材内装粒子40の強度が低いと、炭材内装粒子40を次工程へ搬送する過程で崩壊する。このため、本実施形態に係る炭材内装粒子の製造方法では、造粒直後の炭材内装造粒粒子へ落下衝撃に対する耐性を付与するために、鉄含有原料12および石灰含有原料16に有機バインダー20またはベントナイト21を混合している。これにより、コークス粒子32の周囲に外層として形成される混合粉30の落下衝撃耐性が高められ、次工程へ搬送される過程における炭材内装粒子40の崩壊を抑制できる。また、本実施形態では製造した炭材内装粒子を一度ヤードで保管し、一定期間の養生を経たのち焼結機へ搬送し、装入する。これは炭材内装粒子の在庫にバッファーを持たせ、焼結機への操業影響を最小限に抑えることと、一定の養生期間中に炭材内装粒子の更なる強度向上を目的としたものである。このため、本実施形態に係る炭材内装粒子の製造方法では、養生期間中に強度を向上させるため、鉄含有原料12および石灰含有原料16にセメント粉23を混合している。これにより、ヤードでの養生期間中、セメントと炭材内装粒子中の水が水和反応を起こし、コークス粒子32の周囲に外層として形成される混合粉30の強度が高められ、焼結機へ搬送し、焼結機に装入される工程における炭材内装粒子40の崩壊を抑制できる。 FIG. 3 is a photograph showing the mixed powder 30, the coke particles 32 (including the carbonaceous material-containing particles being grown), and the carbonaceous material-containing particles 40 existing in the granulator 38. The carbonaceous material-containing particles 40 are manufactured according to the carbonaceous material-containing particle manufacturing process 10 shown in FIG. 1. However, if the strength of the carbonaceous material-containing particles 40 is low, the carbon material-containing particles 40 collapse in the process of being conveyed to the next step. To do. Therefore, in the method for producing carbonaceous material-containing particles according to the present embodiment, the organic binder is added to the iron-containing raw material 12 and the lime-containing raw material 16 in order to impart resistance to drop impact to the carbonaceous material-containing granulated particles immediately after granulation. 20 or bentonite 21 is mixed. As a result, the drop impact resistance of the mixed powder 30 formed as the outer layer around the coke particles 32 is enhanced, and the collapse of the carbonaceous material-containing particles 40 in the process of being conveyed to the next step can be suppressed. In the present embodiment, the produced carbonaceous material-containing particles are once stored in the yard, and after being cured for a certain period of time, transported to the sintering machine and loaded. This aims to add a buffer to the inventory of carbonaceous material interior particles to minimize the operational impact on the sintering machine and to further improve the strength of the carbonaceous material interior particles during a certain curing period. is there. Therefore, in the method for producing carbonaceous material-containing particles according to the present embodiment, cement powder 23 is mixed with the iron-containing raw material 12 and the lime-containing raw material 16 in order to improve the strength during the curing period. As a result, during the curing period in the yard, the cement and water in the carbonaceous material interior particles cause a hydration reaction, and the strength of the mixed powder 30 formed as an outer layer around the coke particles 32 is increased, and the mixed powder 30 is transferred to the sintering machine. It is possible to suppress the collapse of the carbonaceous material-containing particles 40 in the process of transporting and loading into the sintering machine.

図4は、炭材内装焼結鉱の製造方法が実施できる炭材内装焼結鉱の製造工程100の一例を示す模式図である。炭材内装焼結鉱の製造工程100では、図1に示した炭材内装粒子の製造工程10と平行して、粒径が10mm以下の鉄鉱石やダスト等の鉄含有原料と、石灰石、生石灰、製鋼スラグなどのCaO含有原料を含む副原料と、粒径3mm未満の粉コークスや無煙炭等からなる凝結材と、を含む原料50を、ドラムミキサー等の造粒機52で造粒して造粒粒子とする。なお、副原料には、精錬ニッケルスラグ、ドロマイト、蛇紋岩などのMgO含有原料や、珪石などからなるSiO含有原料が含まれてもよい。 FIG. 4 is a schematic view showing an example of a carbonaceous material-containing sintered ore manufacturing step 100 in which the method for producing a carbonaceous material-containing sintered ore can be carried out. In the carbon material-containing sintered ore manufacturing step 100, in parallel with the carbon material-containing particle manufacturing step 10 shown in FIG. 1, iron-containing raw materials such as iron ore and dust having a particle size of 10 mm or less, limestone, and quicklime. , A raw material 50 containing an auxiliary raw material including a CaO-containing raw material such as steelmaking slag and a coagulating material such as powder coke or anthracite having a particle diameter of less than 3 mm is granulated by a granulator 52 such as a drum mixer. Grained particles. The auxiliary raw materials may include MgO-containing raw materials such as refined nickel slag, dolomite, and serpentine, and SiO 2 -containing raw materials such as silica stone.

次いで、原料50を造粒した造粒粒子に、炭材内装粒子40を配合して焼結原料とする。焼結原料のうち、原料50を造粒した造粒粒子が液相焼結主体の部分となり、炭材内装粒子40が液相生成を抑えた部分となる。焼結原料に対する炭材内装粒子40の配合割合が10質量%以上30質量%以下になるように、造粒粒子に炭材内装粒子40を配合することが好ましい。これにより、焼結原料の通気性が向上し、炭材内装焼結鉱の生産性が向上する。 Then, the carbonaceous material-containing particles 40 are blended with the granulated particles obtained by granulating the raw material 50 to obtain a sintering raw material. Among the sintering raw materials, the granulated particles obtained by granulating the raw material 50 become the main part of the liquid phase sintering, and the carbonaceous material-containing particles 40 become the part in which the liquid phase generation is suppressed. It is preferable to mix the carbon material-containing particles 40 with the granulated particles so that the mixing ratio of the carbon material-containing particles 40 to the sintering raw material is 10% by mass or more and 30% by mass or less. This improves the air permeability of the sintering raw material and improves the productivity of the carbonaceous material-containing sintered ore.

炭材内装粒子が配合された焼結原料は、下方吸引式焼結機60のサージホッパーに搬入される。焼結原料は、サージホッパーから無端移動式のパレットに装入され、装入層が形成される。装入層は、上方に設置された点火炉によって点火され、下方に設置されたウインドボックスから上方のガスを下方に吸引されることで装入層は順次燃焼、焼結される。装入層は、当該燃焼により発生する燃焼熱で焼結されて焼結ケーキとなる。焼結ケーキは、排鉱部で破砕および整粒され、粒径4mm以上の塊成物が成品の炭材内装焼結鉱として回収される。このようにして製造された炭材内装焼結鉱が高炉70の製鉄原料として使用される。なお、本実施形態における粒径とは、JIS(日本工業規格) Z 8801−1に準拠した公称目開きの篩を用いて篩分けされた粒径であり、例えば、粒径4mm以上とは、JIS Z 8801−1に準拠した公称目開き4mmの篩を用いて篩上に篩分けされる粒径をいう。 The sintering raw material containing the carbonaceous material-containing particles is carried into the surge hopper of the downward suction type sintering machine 60. The sintering raw material is charged from the surge hopper into an endless moving type pallet to form a charging layer. The charging layer is ignited by an ignition furnace installed above, and the upper gas is sucked downward from a wind box installed below, whereby the charging layer is sequentially burned and sintered. The charging layer is sintered by the combustion heat generated by the combustion to form a sintered cake. The sinter cake is crushed and sized in the effluent section, and an agglomerate having a particle size of 4 mm or more is recovered as a product-containing carbonaceous material-containing sinter. The carbonaceous material-containing sinter produced in this manner is used as an iron-making raw material for the blast furnace 70. In addition, the particle size in the present embodiment is a particle size screened using a sieve having a nominal mesh size according to JIS (Japanese Industrial Standard) Z 8801-1. For example, a particle size of 4 mm or more means It refers to a particle size which is sieved on a sieve using a sieve having a nominal opening of 4 mm according to JIS Z8801-1.

本実施形態に係る炭材内装粒子の製造方法で用いるコークス粒子32の粒径は、2mm以上であることが好ましい。粒径が2mm以上のコークス粒子を用いることで、炭材内装粒子を配合した焼結原料を焼結機で焼結する工程でコークス粒子が消失してしまうことを抑制できる。コークス粒子32の粒径は、3mm以上であることがより好ましい。粒径が3mm以上の炭材を用いることで、コークス粒子の消失をさらに抑制できる。 The particle size of the coke particles 32 used in the method for producing carbonaceous material-containing particles according to the present embodiment is preferably 2 mm or more. By using coke particles having a particle size of 2 mm or more, it is possible to prevent the coke particles from disappearing in the step of sintering the sintering raw material containing the carbonaceous material-containing particles in a sintering machine. The particle size of the coke particles 32 is more preferably 3 mm or more. By using a carbonaceous material having a particle size of 3 mm or more, the disappearance of coke particles can be further suppressed.

一方、粒径が大きいコークス粒子を用いると、焼結時にコークスから発生する燃焼ガス量が増加し、炭材内装焼結鉱においてコークス粒子を被覆する外層に亀裂が生じる。コークス粒子を被覆する外層に亀裂が生じると炭材内装焼結鉱の強度が大きく低下し、この結果、炭材内装焼結鉱の歩留が大きく低下する。このため、コークス粒子32の粒径は、8mm以下であることが好ましく、6mm以下であることがより好ましい。 On the other hand, when coke particles with a large particle size are used, the amount of combustion gas generated from coke during sintering increases, and cracks occur in the outer layer covering the coke particles in the carbonaceous material-containing sintered ore. When a crack is generated in the outer layer covering the coke particles, the strength of the carbonaceous material-containing sintered ore is greatly reduced, and as a result, the yield of the carbonaceous material-containing sintered ore is significantly reduced. Therefore, the particle size of the coke particles 32 is preferably 8 mm or less, and more preferably 6 mm or less.

また、製造される炭材内装粒子40の粒径は、8mm以上18mm以下であることが好ましい。上述したように、粒径が4mm以上の炭材内装焼結鉱が成品焼結鉱として回収され、粒径4mm未満の焼結鉱は、焼結原料にリサイクル(返鉱)される。また、炭材内装粒子40は、焼結機で焼結すると水分の蒸発や部分的な溶融によって体積が小さくなる。従って、炭材内装粒子40がそのまま焼結されたとしても返鉱にならないように、炭材内装粒子40の粒径は、8mm以上であることが好ましく、10mm以上であることがより好ましい。 Further, the particle diameter of the carbonaceous material-containing particles 40 produced is preferably 8 mm or more and 18 mm or less. As described above, the carbonaceous material-containing sinter having a particle diameter of 4 mm or more is recovered as a product sinter, and the sinter having a particle diameter of less than 4 mm is recycled (returned) as a sintering raw material. When the carbonaceous material-containing particles 40 are sintered by a sintering machine, the volume thereof becomes small due to evaporation of water or partial melting. Therefore, the particle diameter of the carbonaceous material-containing particles 40 is preferably 8 mm or more, and more preferably 10 mm or more, so that the carbonaceous material-containing particles 40 will not be returned to mine even if they are directly sintered.

一方、炭材内装粒子40に形成されたコークス粒子32の外層の厚さが5mmを超えると、限られた焼結時間内に炭材内装粒子40の全ての外層を焼結することが困難になる。焼結が不十分な部分が炭材内装焼結鉱に存在すると、炭材内装焼結鉱の強度は低下し、炭材内装焼結鉱の歩留が低下する。従って、炭材内装粒子40の外層の厚さは5mm以下であることが好ましく、例えば、コークス粒子32の粒径が8mmであって外層の厚さが5mmである場合の炭材内装粒子の粒径は18mmになる。このため、炭材内装粒子40の粒径は18mm以下であることが好ましい。 On the other hand, when the thickness of the outer layer of the coke particles 32 formed on the carbonaceous material-containing particles 40 exceeds 5 mm, it becomes difficult to sinter all the outer layers of the carbonaceous material-containing particles 40 within a limited sintering time. Become. When a portion of insufficient sintering is present in the carbonaceous material-containing sintered ore, the strength of the carbonaceous material-containing sintered ore decreases and the yield of the carbonaceous material-containing sintered ore decreases. Therefore, the thickness of the outer layer of the carbonaceous material-containing particles 40 is preferably 5 mm or less. For example, the grain size of the carbonaceous material-containing particles when the particle diameter of the coke particles 32 is 8 mm and the thickness of the outer layer is 5 mm. The diameter is 18 mm. Therefore, the particle diameter of the carbonaceous material-containing particles 40 is preferably 18 mm or less.

本実施形態に係る炭材内装粒子の製造方法では、混合粉に有機バインダー20またはベントナイト21、および、セメント粉23を混合し、これにより、製造される炭材内装粒子40の強度を高めている。 In the method for producing carbonaceous material-containing particles according to the present embodiment, the organic binder 20 or the bentonite 21 and the cement powder 23 are mixed with the mixed powder, thereby increasing the strength of the carbonaceous material-containing particles 40 produced. ..

次に、炭材内装粒子40の強度について説明する。炭材内装粒子40が製造されてから下方吸引式焼結機60に装入されるまでに、炭材内装粒子40は、複数の搬送コンベアを乗り継ぎ、ヤードで保管され、一定期間養生されたのち焼結機へ搬送される。このため、炭材内装粒子40は、複数の搬送コンベアの乗り継ぎと、下方吸引式焼結機60のパレット装入時の衝撃に耐える強度を有することが好ましい。まず、落下強度を変えた炭材内装粒子を試験的に製造し、搬送コンベアの乗り継ぎを行った後における炭材内装粒子の崩壊状況を確認した。その結果、炭材内装粒子の落下強度を5回以上にすることでセメント養生ヤードまで搬送したとしても崩壊せず、セメント養生後の炭材内装粒子は複数の搬送コンベアの乗り継ぎと下方吸引式焼結機60のパレット装入時の衝撃に耐え、下方吸引式焼結機60への直送が可能になることが判明した。なお、本実施形態において、落下強度とは、45cmの高さから炭材内装粒子を落下させて、粒子が崩壊するまでに要した落下回数である。 Next, the strength of the carbonaceous material-containing particles 40 will be described. From the time the carbonaceous material-containing particles 40 are manufactured to the time when the carbonaceous material-containing particles 40 are charged into the lower suction type sintering machine 60, the carbon material-containing particles 40 are transferred to a plurality of conveyors, stored in a yard, and cured for a certain period of time. Transferred to a sintering machine. For this reason, it is preferable that the carbonaceous material-containing particles 40 have a strength that can withstand the impact of connecting a plurality of transfer conveyors and the impact of loading the pallet of the downward suction sintering machine 60. First, carbonaceous material-containing particles having different drop strengths were manufactured on a trial basis, and the state of collapse of the carbonaceous material-containing particles after the transfer of the transfer conveyor was confirmed. As a result, even if the carbonaceous material interior particles are transported to the cement curing yard by making the drop strength of the carbonaceous material interior particles 5 times or more, the carbonaceous material interior particles after cement curing do not transfer the carbonaceous material interior particles to a plurality of transfer conveyors and downward suction type firing. It has been found that the binder 60 can withstand the impact of loading the pallet and can be directly fed to the downward suction type sintering machine 60. In the present embodiment, the drop strength is the number of drops required until the carbonaceous material-containing particles are dropped from a height of 45 cm and the particles collapse.

粒物に可塑性を付与することのできる有機バインダー20やベントナイト21を用いることで、造粒直後の炭材内装粒子の落下強度を早期に高めることができる。有機バインダー20は造粒物中の水に溶解して水の粘度を向上させる。この粘度が向上した水が造粒物中の空隙を埋めることで造粒物に可塑性が付与され、落下衝撃に対する耐性が向上する。また、ベントナイト21は、造粒物中の水を取り込んで膨潤し、造粒物中の空隙を埋めることで造粒物に可塑性が付与され落下衝撃に対する耐性が向上する。そこで、炭材の周囲に形成される外層の混合粉30に有機バインダーの一種であるポリビニルアルコール(PVA)粉を混合し、炭材内装粒子の落下強度を5回以上にできるか否かを確認するべく、図1に示した炭材内装粒子の製造工程10に従って、炭材内装粒子の製造を行った。 By using the organic binder 20 and the bentonite 21 that can impart plasticity to the granules, the drop strength of the carbonaceous material-containing particles immediately after granulation can be increased at an early stage. The organic binder 20 dissolves in water in the granulated product to improve the viscosity of water. The viscosity-improved water fills the voids in the granulated product, thereby imparting plasticity to the granulated product and improving the resistance to drop impact. Further, the bentonite 21 takes in water in the granulated product and swells it, and fills the voids in the granulated product, thereby imparting plasticity to the granulated product and improving resistance to a drop impact. Therefore, polyvinyl alcohol (PVA) powder, which is a kind of organic binder, is mixed with the mixed powder 30 of the outer layer formed around the carbonaceous material, and it is confirmed whether or not the drop strength of the carbonaceous material-containing particles can be made 5 times or more. In order to do so, carbonaceous material-containing particles were produced according to the carbonaceous material-containing particle producing step 10 shown in FIG.

炭材内装粒子の製造は、以下の手順にて実施した。まず、粒径150μm以下であってBlaine比表面積が約1500cm/gの鉄鉱石粉と、生石灰と、粒径150μm以下のPVA粉とを、質量比で95:4:1の割合で混合し、インテンシブミキサーを用いて均一に混合して混合粉とした。この混合粉と、粒径2mm以上8mm以下のコークス粒子を質量比98:2の割合で混合した造粒原料とした。この造粒原料を、ディスクペレタイザーを用いて転動させて造粒原料を造粒し、炭材の周囲に混合粉からなる外層が形成された炭材内装粒子を製造した。造粒原料の造粒に必要な水は、インテンシブミキサーおよびディスクペレタイザー内へ適量噴霧して供給した。 The carbonaceous material-containing particles were manufactured by the following procedure. First, iron ore powder having a particle size of 150 μm or less and a Blaine specific surface area of about 1500 cm 2 /g, quick lime, and PVA powder having a particle size of 150 μm or less are mixed at a mass ratio of 95:4:1, A mixed powder was obtained by uniformly mixing with an intensive mixer. This mixed powder was mixed with coke particles having a particle size of 2 mm or more and 8 mm or less at a mass ratio of 98:2 to prepare a granulation raw material. This granulation raw material was tumbled by using a disc pelletizer to granulate the granulation raw material to produce carbonaceous material-containing particles in which an outer layer made of mixed powder was formed around the carbonaceous material. The water necessary for granulating the granulating raw material was supplied by spraying an appropriate amount into the intensive mixer and the disk pelletizer.

図5は、PVAの混合割合と炭材内装粒子の落下強度との関係を示すグラフである。図5において、横軸はPVAの混合割合(質量%)であり、縦軸は炭材内装粒子の45cm落下強度(回)である。図5に示すように、PVAの混合割合を増加させると炭材内装粒子の落下強度は向上した。図5から、炭材内装粒の落下強度を目標の5回以上にするにはPVAの混合割合を0.1質量%以上にすればよいことがわかる。一方、PVAの混合割合を2質量%より高くしても炭材内装粒子の落下強度があまり向上せず、飽和傾向が見られた。さらに、混合粉に対するポリビニルアルコール粉の混合割合が3質量%以上となるようにポリビニルアルコール粉を混合すると、鉄鉱石粉の持ち込み水および造粒時に供給される水にポリビニルアルコール粉が溶け込み、粘度が上昇して安定した造粒が困難になった。これらの結果から、混合粉に対するPVAの混合割合が0.1質量%以上3質量%以下となるようにPVAを混合することが好ましく、混合粉に対するPVAの混合割合が0.1質量%以上2質量%以下となるようにPVAを混合することがさらに好ましい。また、有機バインダーであるPVAに代えて、または、有機バインダーとともにベントナイトを用いてもよい。有機バインダーおよびベントナイトによる強度の向上は、有機バインダーやベントナイトを焼結原料の粒子間に必要最小限の厚さで行き渡らせることで発現する。このため、これらの種類に関わらず、混合粉に対して0.1質量%以上3%質量%以下の混合割合で混合することで、同様の強度向上効果が得られる。 FIG. 5 is a graph showing the relationship between the mixing ratio of PVA and the drop strength of carbonaceous material-containing particles. In FIG. 5, the horizontal axis is the PVA mixing ratio (mass %), and the vertical axis is the 45 cm drop strength (times) of the carbonaceous material-containing particles. As shown in FIG. 5, when the mixing ratio of PVA was increased, the drop strength of the carbonaceous material-containing particles was improved. From FIG. 5, it can be seen that the PVA mixing ratio can be set to 0.1% by mass or more in order to achieve the target drop strength of the carbonaceous material-containing particles 5 times or more. On the other hand, even if the mixing ratio of PVA was higher than 2% by mass, the drop strength of the carbonaceous material-containing particles was not significantly improved, and a saturation tendency was observed. Furthermore, when the polyvinyl alcohol powder is mixed so that the mixing ratio of the polyvinyl alcohol powder to the mixed powder is 3% by mass or more, the polyvinyl alcohol powder is dissolved in the water brought in the iron ore powder and the water supplied at the time of granulation, and the viscosity is increased. And stable granulation became difficult. From these results, it is preferable to mix PVA so that the mixing ratio of PVA to the mixed powder is 0.1% by mass or more and 3% by mass or less, and the mixing ratio of PVA to the mixed powder is 0.1% by mass or more 2 It is more preferable to mix PVA so as to be not more than mass %. Further, bentonite may be used instead of PVA, which is an organic binder, or together with an organic binder. The improvement in strength due to the organic binder and bentonite is manifested by allowing the organic binder and bentonite to spread between the particles of the sintering raw material with a necessary minimum thickness. Therefore, regardless of these types, the same strength improving effect can be obtained by mixing the mixed powder at a mixing ratio of 0.1% by mass or more and 3% by mass or less.

また、混合原料にセメント粉を混合することでも炭材内装粒子の強度は向上する。セメント粉は安価なので、焼結鉱の製造といった大量生産プロセスに用いることで製造コスト抑制効果が大きくなる。まず、目標とする強度を確認するため、圧潰強度を変えた炭材内装粒子を試験的に製造し、搬送コンベアの乗り継ぎとパレット装入を行った後における炭材内装粒子の崩壊状況を確認した。その結果、炭材内装粒子の圧潰強度を49N/個以上にすることで、重機やリクレーマーでハンドリングしたとしても崩壊せず、複数の搬送コンベアの乗り継ぎと下方吸引式焼結機60のパレット装入時の衝撃に耐え、下方吸引式焼結機60への直送が可能になることが判明した。そこで、炭材の周囲に形成される外層の混合粉30にセメント粉を混合して炭材内装粒子の圧潰強度を49N/個以上にできるか否かを確認するべく、図1に示した炭材内装粒子の製造工程10に従って、炭材内装粒子の製造を行った。なお、本実施形態において、圧潰強度とは、圧縮試験機を用いて、圧縮速度1mm/minで炭材内装粒子を圧縮して測定される最大強度である。 In addition, the strength of the carbonaceous material-containing particles is also improved by mixing cement powder with the mixed raw material. Since cement powder is inexpensive, it is highly effective in suppressing manufacturing costs when it is used in a mass production process such as the production of sinter. First, in order to confirm the target strength, carbonaceous material interior particles with different crush strengths were manufactured on a trial basis, and the state of collapse of the carbonaceous material interior particles was confirmed after transfer conveyor transfer and pallet charging. .. As a result, by setting the crushing strength of the carbonaceous material interior particles to 49 N/piece or more, it does not collapse even if it is handled by a heavy machine or reclaimer, and the transfer of multiple conveyors and the pallet loading of the downward suction type sintering machine 60 are performed. It has been found that it can withstand the impact at the time of entry and can be directly sent to the downward suction type sintering machine 60. Therefore, in order to confirm whether or not the crushing strength of the carbonaceous material-containing particles can be increased to 49 N/piece or more by mixing the cement powder with the mixed powder 30 of the outer layer formed around the carbonaceous material, the charcoal shown in FIG. Carbon material-containing particles were manufactured according to the manufacturing step 10 of material-containing particles. In the present embodiment, the crush strength is the maximum strength measured by compressing the carbonaceous material-containing particles at a compression rate of 1 mm/min using a compression tester.

炭材内装粒子の製造は、以下の手順にて実施した。まず、粒径150μm以下であってBlaine比表面積が約1500cm/gの鉄鉱石粉と、生石灰と、セメント粉とを、質量比で95:1:4の割合で混合し、インテンシブミキサーを用いて均一に混合させて混合粉とした。この混合粉と、粒径2mm以上8mm以下のコークス粒子を質量比98:2の割合で混合した造粒原料とした。この造粒原料を、ディスクペレタイザーを用いて転動させて造粒原料を造粒し、炭材の周囲に混合粉からなる外層が形成された炭材内装粒子を製造した。造粒原料の造粒に必要な水は、インテンシブミキサーおよびディスクペレタイザー内へ適量噴霧して供給した。 The carbonaceous material-containing particles were manufactured by the following procedure. First, iron ore powder having a particle size of 150 μm or less and a Blaine specific surface area of about 1500 cm 2 /g, quicklime, and cement powder are mixed at a mass ratio of 95:1:4, and an intensive mixer is used. The mixture was uniformly mixed to obtain a mixed powder. This mixed powder was mixed with coke particles having a particle size of 2 mm or more and 8 mm or less at a mass ratio of 98:2 to prepare a granulation raw material. This granulation raw material was tumbled by using a disc pelletizer to granulate the granulation raw material to produce carbonaceous material-containing particles in which an outer layer made of mixed powder was formed around the carbonaceous material. The water necessary for granulating the granulating raw material was supplied by spraying an appropriate amount into the intensive mixer and the disk pelletizer.

図6は、養生期間と炭材内装粒子の圧潰強度との関係を示すグラフである。図6において、横軸は養生期間(Week)であり、縦軸は炭材内装粒子の圧潰強度(N/個)である。また、図6において、( )内の値は、炭材内装粒子の水分含有割合(質量%)を示し、白丸プロットは圧潰強度の実測値を示し、黒丸プロットは圧潰強度の平均値を示す。図6に示すように、養生後に重機やリクレーマーでハンドリングしたとしても崩壊しない圧潰強度である49N/個以上にするには、養生期間を3週間以上にすればよいことがわかった。 FIG. 6 is a graph showing the relationship between the curing period and the crush strength of carbonaceous material-containing particles. In FIG. 6, the horizontal axis represents the curing period (Week), and the vertical axis represents the crushing strength (N/piece) of the carbonaceous material-containing particles. Further, in FIG. 6, the value in parentheses indicates the water content ratio (mass %) of the carbonaceous material-containing particles, the white circle plots indicate the measured values of the crush strength, and the black circle plots indicate the average value of the crush strength. As shown in FIG. 6, it was found that the curing period should be 3 weeks or more in order to achieve a crushing strength of 49 N/piece or more, which does not collapse even when handled by a heavy machine or a reclaimer after curing.

この結果から、混合粉に対するセメント粉の混合割合が4質量%となるようにセメント粉を混合することで、炭材内装粒子の圧潰強度を49N/個以上の圧潰強度を有する炭材内装粒子を製造できることが確認された。一方、セメント粉を混合しない場合には、炭材内装粒子の圧潰強度は2.0〜3.9N/個となり、49N/個以上の圧潰強度にできなかった。 From this result, by mixing the cement powder so that the mixing ratio of the cement powder to the mixed powder is 4% by mass, the carbon material-containing particles having the crush strength of 49 N/piece or more are obtained. It was confirmed that it can be manufactured. On the other hand, when the cement powder was not mixed, the crush strength of the carbonaceous material-containing particles was 2.0 to 3.9 N/piece, and the crush strength of 49 N/piece or more could not be achieved.

次に、混合原料に対するセメント粉の混合割合について説明する。混合原料に対するセメント粉の混合割合を0〜6質量%に変えて炭材内装粒子を製造し、各炭材内装粒子の圧潰強度を測定した。なお、セメント粉の混合割合を増やした場合には、その分だけ、鉄鉱石粉の混合割合を減じて調整した。炭材内装粒子の圧潰強度の測定結果を図7に示す。 Next, the mixing ratio of cement powder to the mixed raw materials will be described. The carbonaceous material-containing particles were manufactured by changing the mixing ratio of the cement powder to the mixed raw material to 0 to 6% by mass, and the crushing strength of each carbon material-containing particle was measured. In addition, when the mixing ratio of the cement powder was increased, the mixing ratio of the iron ore powder was reduced by that amount for adjustment. FIG. 7 shows the measurement results of the crushing strength of the carbonaceous material-containing particles.

図7は、セメント粉の混合割合と炭材内装粒子の圧潰強度との関係を示すグラフである。図7において、横軸は混合粉に対するセメント粉の混合割合(質量%)であり、縦軸は炭材内装粒子の4週間後の圧潰強度(N/個)である。図7に示すように、混合粉に対するセメント粉の混合割合を高くすることで、炭材内装粒子の圧潰強度は向上する。図7に示すように、圧潰強度を49N/個以上にするには、セメント粉の混合割合を4質量%以上にすればよいことがわかる。 FIG. 7 is a graph showing the relationship between the mixing ratio of cement powder and the crush strength of carbonaceous material-containing particles. In FIG. 7, the horizontal axis is the mixing ratio (mass %) of the cement powder to the mixed powder, and the vertical axis is the crush strength (N/piece) of the carbonaceous material-containing particles after 4 weeks. As shown in FIG. 7, the crushing strength of the carbonaceous material-containing particles is improved by increasing the mixing ratio of the cement powder to the mixed powder. As shown in FIG. 7, it is understood that the mixing ratio of the cement powder should be 4% by mass or more in order to obtain the crushing strength of 49 N/piece or more.

次に、セメント粉の配合割合を0〜12質量%に変えて製造した炭材内装粒子を含む焼結原料を用いて炭材内装焼結鉱を製造し、各炭材内装焼結鉱の中から炭材内装粒子に由来する部分を抜き出した。炭材内装焼結鉱の中の炭材内装粒子に由来する部分の気孔率をJIS R 1655:2003に規定される方法で測定した。各炭材内装焼結鉱の中の炭材内装粒子に由来する部分の気孔率の測定結果を図8に示す。 Next, a carbonaceous material-containing sintered ore is produced using a sintering raw material containing the carbonaceous material-containing particles produced by changing the blending ratio of cement powder to 0 to 12% by mass. A portion derived from the carbonaceous material-containing particles was extracted from the above. The porosity of the portion derived from the carbonaceous material-containing particles in the carbonaceous material-containing sintered ore was measured by the method specified in JIS R 1655:2003. FIG. 8 shows the measurement result of the porosity of the portion derived from the carbonaceous material-containing particles in each carbonaceous material-containing sintered ore.

図8は、セメント粉の混合割合と炭材内装焼結鉱の中の炭材内装粒子に由来する部分の気孔率との関係を示すグラフである。図8において、横軸は混合粉に対するセメント粉の混合割合(質量%)であり、縦軸は炭材内装焼結鉱の中の炭材内装粒子に由来する部分の気孔率(%)である。図8に示すように、混合粉に対するセメント粉の混合割合を高くすると、炭材内装焼結鉱の中の炭材内装粒子に由来する部分の気孔率は低下する。炭材内装焼結鉱の中の炭材内装粒子に由来する部分の気孔率が高い方が高炉における還元反応性に有利となる。さらに、セメント粉の混合割合を高くすると、高炉原料におけるスラグ分が増えることになり好ましくない。このため、セメント粉の混合割合はなるべく低いことが好ましく、これらのことから、セメント粉の混合割合を10質量%以下にすることが好ましく、6質量%以下にすることがより好ましい。 FIG. 8 is a graph showing the relationship between the mixing ratio of cement powder and the porosity of the portion derived from carbonaceous material-containing particles in the carbonaceous material-containing sintered ore. In FIG. 8, the horizontal axis is the mixing ratio (mass %) of the cement powder to the mixed powder, and the vertical axis is the porosity (%) of the portion derived from the carbonaceous material-containing particles in the carbonaceous material-containing sintered ore. .. As shown in FIG. 8, when the mixing ratio of the cement powder to the mixed powder is increased, the porosity of the portion derived from the carbon material-containing particles in the carbon material-containing sintered ore decreases. The higher the porosity of the part derived from the carbonaceous material-containing particles in the carbonaceous material-containing sintered ore, is advantageous for the reduction reactivity in the blast furnace. Furthermore, if the mixing ratio of the cement powder is increased, the slag content in the blast furnace raw material increases, which is not preferable. Therefore, it is preferable that the mixing ratio of the cement powder is as low as possible. From these facts, the mixing ratio of the cement powder is preferably 10% by mass or less, and more preferably 6% by mass or less.

混合粉に対するセメント粉の混合割合を高めることで炭材内装粒子の圧潰強度を高めることができる。しかしながら、セメント粉の混合割合を高め過ぎると、炭材内装粒子のスラグ成分が増加する。さらに、セメント粉の混合割合を高め過ぎると、セメント粉と水との水和反応で生成する析出物が炭材内装粒子内の気孔を閉塞し、炭材内装粒子の気孔率が低下する。このスラグ成分の増加抑制と、一定以上の気孔率を確保するために、混合粉に対するセメント粉の混合割合は、4質量%以上10質量%以下であることが好ましく、4質量%以上6質量%以下であることがより好ましい。 The crushing strength of the carbonaceous material-containing particles can be increased by increasing the mixing ratio of the cement powder to the mixed powder. However, if the mixing ratio of the cement powder is too high, the slag component of the carbonaceous material-containing particles increases. Further, if the mixing ratio of the cement powder is too high, the precipitate generated by the hydration reaction of the cement powder and water will block the pores in the carbonaceous material-containing particles, and the porosity of the carbonaceous material-containing particles will decrease. In order to suppress the increase of this slag component and ensure a porosity above a certain level, the mixing ratio of the cement powder to the mixed powder is preferably 4% by mass or more and 10% by mass or less, and 4% by mass or more and 6% by mass or less. The following is more preferable.

以上説明したように、有機バインダーを用いることで早期に炭材内装粒子の強度を早期に向上できる。一方、セメント粉は安価であるが強度を高めるには所定期間の養生が必要になる。本実施形態における炭材内装粒子の製造方法では、混合粉に有機バインダーとセメント粉とを混合する。混合粉に有機バインダーを混合することで炭材内装粒子の落下強度を早期に高めることができ、且つ、セメント粉を混合することで所定期間経過後に炭材内装粒子の強度をさらに高めることができる。この結果、焼結原料が造粒されたのち焼結機に装入される工程において崩壊する炭材内装粒子が少なくなり、炭材内装焼結鉱を高い歩留で製造できる。 As described above, the strength of the carbonaceous material-containing particles can be improved early by using the organic binder. On the other hand, cement powder is inexpensive, but it requires curing for a predetermined period to increase its strength. In the method for manufacturing carbonaceous material-containing particles according to the present embodiment, an organic binder and cement powder are mixed with the mixed powder. By mixing the mixed powder with an organic binder, the falling strength of the carbonaceous material-containing particles can be enhanced at an early stage, and by mixing the cement powder, the strength of the carbonaceous material-containing particles can be further enhanced after a predetermined period of time. .. As a result, the carbonaceous material-containing particles that collapse in the step of charging the sintering raw material and then charging into the sintering machine are reduced, and the carbonaceous material-containing sintered ore can be produced with a high yield.

また、混合粉に有機バインダーを0.1質量%以上混合し、セメント粉を4質量%以上混合することが好ましい。このように、混合粉に有機バインダーを0.1質量%以上混合することで落下強度が5回以上になり、炭材内装粒子をセメント養生ヤードまで高い歩留で搬送できる。さらに、混合粉にはセメント粉が4質量%以上混合されているので、セメント養生ヤードで養生された後は、重機やリクレーマーでハンドリングしたとしても崩壊せず、その後の複数の搬送コンベアの乗り継ぎと下方吸引式焼結機60のパレット装入時の衝撃に耐えられる強度になる。これにより、焼結機に装入される工程において崩壊する炭材内装粒子がさらに少なくなり、炭材内装焼結鉱をさらに高い歩留で製造できる。 Further, it is preferable to mix the mixed powder with 0.1% by mass or more of the organic binder and 4% by mass or more of the cement powder. Thus, by mixing the mixed powder with the organic binder in an amount of 0.1% by mass or more, the drop strength becomes 5 times or more, and the carbonaceous material-containing particles can be transported to the cement curing yard with a high yield. Furthermore, since 4% by mass or more of cement powder is mixed in the mixed powder, it does not collapse after being cured in a cement curing yard even if handled by heavy equipment or a reclaimer, and the transfer of multiple conveyer conveyors thereafter is performed. And, the strength is such that the lower suction type sintering machine 60 can withstand the impact when the pallet is loaded. As a result, the carbonaceous material-containing particles that collapse in the step of charging the sintering machine can be further reduced, and the carbonaceous material-containing sintered ore can be produced with a higher yield.

次に炭材内装粒子を含む焼結原料を焼結して製造された炭材内装焼結鉱の還元反応性を確認した結果を説明する。図9は、実施例および比較例の焼結鉱のRIを示すグラフである。RIは、焼結鉱の被還元性を示す指標であって、JIS M 8713に準拠して測定される値である。 Next, the result of confirming the reduction reactivity of the carbon material-containing sintered ore produced by sintering the sintering raw material containing the carbon material-containing particles will be described. FIG. 9 is a graph showing RI of the sintered ores of Examples and Comparative Examples. RI is an index showing the reducibility of sinter and is a value measured according to JIS M8713.

図9に示した比較例では、PVAおよびセメント粉が混合されず、焼結機へ搬送、装入される工程で炭材内装粒子が崩壊したことを模擬し、炭材内装粒子を含まない焼結原料を650t/hの投入速度で焼結機へ投入して焼結鉱を製造した。一方、実施例では、PVAおよびセメント粉が混合され、焼結機へ搬送、装入される工程で炭材内装粒子が崩壊しないとして、炭材内装粒子を内数で約7質量%(約50t/h相当)配合した焼結原料を650t/hの投入速度で焼結機へ投入して焼結鉱を製造した。 In the comparative example shown in FIG. 9, the PVA and the cement powder were not mixed, and it was simulated that the carbonaceous material-containing particles collapsed in the process of being conveyed and charged into the sintering machine, and the burning without the carbonaceous material-containing particles was simulated. The binder material was charged into a sintering machine at a charging rate of 650 t/h to produce a sintered ore. On the other hand, in the examples, it is assumed that the carbonaceous material-containing particles do not collapse in the process of mixing PVA and cement powder, and conveying and charging to the sintering machine. /Equivalent) (h) was added to the sintering machine at a charging rate of 650 t/h to produce a sintered ore.

図9に示すように、実施例の炭材内装焼結鉱のRIは、比較例の焼結鉱のRIより3%高くなることが確認された。この結果から、本実施形態に係る炭材内装粒子の製造方法を用いて圧潰強度の高い炭材内装粒子を製造し、焼結機へ搬送、装入される工程で崩壊する炭材内装粒子を少なくすることで、被還元性が向上された炭材内装焼結鉱を高い歩留で製造できることがわかる。 As shown in FIG. 9, it was confirmed that the RI of the carbon material-containing sintered ore of the example was 3% higher than the RI of the sintered ore of the comparative example. From this result, by using the method for producing carbonaceous material-containing particles according to the present embodiment to produce high crushing strength carbonaceous material-containing particles, conveyed to a sintering machine, carbonaceous material-containing particles that collapse in the process of charging, It can be seen that by reducing the amount, it is possible to manufacture a carbon material-containing sintered ore with improved reducibility at a high yield.

10 炭材内装粒子の製造工程
12 鉄含有原料
14 貯蔵槽
16 石灰含有原料
18 貯蔵槽
20 有機バインダー
21 ベントナイト
22 貯蔵槽
23 セメント粉
24 貯蔵槽
25 搬送機
26 水
28 混練機
30 混合粉
32 コークス粒子
34 貯蔵槽
36 搬送機
38 造粒機
40 炭材内装粒子
50 原料
52 造粒機
60 下方吸引式焼結機
70 高炉
100 炭材内装焼結鉱の製造工程
10 Carbon Material Interior Particles Manufacturing Process 12 Iron-Containing Raw Material 14 Storage Tank 16 Lime-Containing Raw Material 18 Storage Tank 20 Organic Binder 21 Bentonite 22 Storage Tank 23 Cement Powder 24 Storage Tank 25 Transport Machine 26 Water 28 Kneader 30 Mixed Powder 32 Coke Particles 34 Storage Tank 36 Conveyor 38 Granulator 40 Carbon Material Interior Particles 50 Raw Material 52 Granulator 60 Lower Suction Sintering Machine 70 Blast Furnace 100 Carbon Material Interior Sinter Ore Manufacturing Process

Claims (3)

粉状の鉄含有原料と、石灰含有原料と、有機バインダーおよびベントナイトのうち少なくとも1種と、セメント粉と、を混合して混合粉とし、前記混合粉と、炭材とを造粒して、炭材核の周囲に前記混合粉からなる外層が形成された炭材内装粒子を製造する、炭材内装粒子の製造方法。 Powdery iron-containing raw material, lime-containing raw material, at least one of an organic binder and bentonite, and cement powder are mixed to form a mixed powder, and the mixed powder and carbonaceous material are granulated, A method for producing carbonaceous material-containing particles, comprising producing carbonaceous material-containing particles in which an outer layer made of the mixed powder is formed around a carbonaceous material core. 前記混合粉に対する有機バインダーおよびベントナイトのうち少なくとも1種の混合割合が0.1質量%以上3質量%以下であり、前記混合粉に対するセメント粉の混合割合が4質量%以上10質量%以下になるように、前記有機バインダーおよびベントナイトの少なくとも1種と、前記セメント粉とを混合する、請求項1に記載の炭材内装粒子の製造方法。 The mixing ratio of at least one of the organic binder and the bentonite to the mixed powder is 0.1% by mass or more and 3% by mass or less, and the mixing ratio of the cement powder to the mixed powder is 4% by mass or more and 10% by mass or less. Thus, the method for producing carbonaceous material-containing particles according to claim 1, wherein at least one of the organic binder and bentonite is mixed with the cement powder. 請求項1または請求項2に記載の炭材内装粒子の製造方法で製造された炭材内装粒子を、鉄含有原料と、副原料と、凝結材と、を混合、造粒した造粒粒子に配合して焼結原料とし、前記焼結原料を焼結機のパレットに装入して焼結する、炭材内装焼結鉱の製造方法。 The carbon material-containing particles produced by the method for producing carbon material-containing particles according to claim 1 or 2, are mixed with an iron-containing raw material, an auxiliary raw material, and a coagulating material to form granulated particles. A method for producing a carbonaceous material-containing sintered ore, which is prepared by mixing as a sintering raw material, charging the sintering raw material into a pallet of a sintering machine, and sintering.
JP2018219089A 2018-11-22 2018-11-22 Method for manufacturing charcoal interior particles and method for manufacturing charcoal interior sintered ore Active JP6992734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018219089A JP6992734B2 (en) 2018-11-22 2018-11-22 Method for manufacturing charcoal interior particles and method for manufacturing charcoal interior sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018219089A JP6992734B2 (en) 2018-11-22 2018-11-22 Method for manufacturing charcoal interior particles and method for manufacturing charcoal interior sintered ore

Publications (2)

Publication Number Publication Date
JP2020084258A true JP2020084258A (en) 2020-06-04
JP6992734B2 JP6992734B2 (en) 2022-01-13

Family

ID=70906624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018219089A Active JP6992734B2 (en) 2018-11-22 2018-11-22 Method for manufacturing charcoal interior particles and method for manufacturing charcoal interior sintered ore

Country Status (1)

Country Link
JP (1) JP6992734B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02228428A (en) * 1989-03-02 1990-09-11 Sumitomo Metal Ind Ltd Charging material for blast furnace and its production
JPH02294418A (en) * 1989-05-01 1990-12-05 Sumitomo Metal Ind Ltd Method for manufacturing blast furnace charge
JPH0860257A (en) * 1994-08-12 1996-03-05 Kobe Steel Ltd Method for operating iron ore sintering machine
US20020152839A1 (en) * 1999-11-01 2002-10-24 Jay Aota Cold bonded iron particulate pellets

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02228428A (en) * 1989-03-02 1990-09-11 Sumitomo Metal Ind Ltd Charging material for blast furnace and its production
JPH02294418A (en) * 1989-05-01 1990-12-05 Sumitomo Metal Ind Ltd Method for manufacturing blast furnace charge
JPH0860257A (en) * 1994-08-12 1996-03-05 Kobe Steel Ltd Method for operating iron ore sintering machine
US20020152839A1 (en) * 1999-11-01 2002-10-24 Jay Aota Cold bonded iron particulate pellets

Also Published As

Publication number Publication date
JP6992734B2 (en) 2022-01-13

Similar Documents

Publication Publication Date Title
JP2012117082A (en) Method for production of sintered ore
JP6686974B2 (en) Sintered ore manufacturing method
AU2017388174B2 (en) Sintered ore manufacturing method
CA2719899C (en) Method of production of cement bonded agglomerated ore
JP6734370B2 (en) Raw material processing apparatus and raw material processing method
JP5729256B2 (en) Non-calcined hot metal dephosphorization method and hot metal dephosphorization method using non-fired hot metal dephosphorization material
JP6992734B2 (en) Method for manufacturing charcoal interior particles and method for manufacturing charcoal interior sintered ore
JP2020158848A (en) Method for using steel slag in sintering
JP6885386B2 (en) Manufacturing method of carbon material interior particles and manufacturing method of carbon material interior sintered ore
JP4781807B2 (en) Manufacturing method of dephosphorizing agent for steel making using sintering machine
JP6809446B2 (en) Manufacturing method of carbon material interior particles and manufacturing method of carbon material interior sintered ore
JP6996485B2 (en) Method for manufacturing charcoal interior particles and method for manufacturing charcoal interior sintered ore
JP4918754B2 (en) Semi-reduced sintered ore and method for producing the same
JP6988844B2 (en) Sintered ore manufacturing method
CN107674971B (en) Raw material treatment method
JP6805672B2 (en) Manufacturing method of carbonaceous interior granulated particles and manufacturing method of carbonaceous interior agglomerate
JP6887717B2 (en) Charcoal interior granulated particles for sinter production and sinter production method using them
JP5126580B2 (en) Method for producing sintered ore
KR101486869B1 (en) Briquettes for manufacturing sintered ore, manufacturing method of it and method for manufacturing using it
WO2005111248A1 (en) Semi-reduced sintered ore and method for production thereof
JPH05339653A (en) Pretreatment of sintered ore raw material and sintered ore raw material for iron making
JP7227053B2 (en) Method for producing sintered ore
JP2003277838A (en) High crystal water ore used as sintering raw material for blast furnace, sintering raw material for blast furnace, and method for producing the same
JP6988778B2 (en) Manufacturing method of charcoal interior sinter and equipment for manufacturing charcoal interior sinter
JP2011006722A (en) Method for producing sintered ore

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211122

R150 Certificate of patent or registration of utility model

Ref document number: 6992734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250