[go: up one dir, main page]

JP2020071164A - Distance measuring device - Google Patents

Distance measuring device Download PDF

Info

Publication number
JP2020071164A
JP2020071164A JP2018206357A JP2018206357A JP2020071164A JP 2020071164 A JP2020071164 A JP 2020071164A JP 2018206357 A JP2018206357 A JP 2018206357A JP 2018206357 A JP2018206357 A JP 2018206357A JP 2020071164 A JP2020071164 A JP 2020071164A
Authority
JP
Japan
Prior art keywords
light
pulsed light
pulsed
measuring device
distance measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018206357A
Other languages
Japanese (ja)
Other versions
JP7256631B2 (en
Inventor
松原 弘幸
Hiroyuki Matsubara
弘幸 松原
勇 高井
Isamu Takai
勇 高井
峰樹 曽我
Mineki Soga
峰樹 曽我
木村 禎祐
Sadasuke Kimura
禎祐 木村
尾崎 憲幸
Noriyuki Ozaki
憲幸 尾崎
武廣 秦
Takehiro Hata
武廣 秦
謙太 東
Kenta Azuma
謙太 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Central R&D Labs Inc
Original Assignee
Denso Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Central R&D Labs Inc filed Critical Denso Corp
Priority to JP2018206357A priority Critical patent/JP7256631B2/en
Priority to PCT/JP2019/042624 priority patent/WO2020090911A1/en
Publication of JP2020071164A publication Critical patent/JP2020071164A/en
Application granted granted Critical
Publication of JP7256631B2 publication Critical patent/JP7256631B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

【課題】物体からの反射信号を高い感度で検出することが可能な距離測定装置を提供する。【解決手段】パルス光を出力する光照射部10と、光を受光し、受光強度の時間変化を強度波形として取得する受光部12と、強度波形に含まれるパルス光の反射光に基づいて物体までの距離を算出する信号処理部14と、を備え、光照射部10は、第1パルス光と第1パルス光に対して波形及び出力タイミングの少なくとも一方を変更した第2パルス光とを出力し、信号処理部14は、第1パルス光の反射光を含む強度波形と第2パルス光の反射光を含む強度波形とを処理することによって測定対象物200までの距離を算出する距離測定装置100とする。【選択図】図1PROBLEM TO BE SOLVED: To provide a distance measuring device capable of detecting a reflected signal from an object with high sensitivity. SOLUTION: An object is based on a light irradiation unit 10 that outputs pulsed light, a light receiving unit 12 that receives light and acquires a time change of light receiving intensity as an intensity waveform, and reflected light of pulsed light included in the intensity waveform. A signal processing unit 14 for calculating the distance to the light is provided, and the light irradiation unit 10 outputs the first pulse light and the second pulse light in which at least one of the waveform and the output timing is changed with respect to the first pulse light. Then, the signal processing unit 14 is a distance measuring device that calculates the distance to the object to be measured 200 by processing the intensity waveform including the reflected light of the first pulse light and the intensity waveform including the reflected light of the second pulse light. Let it be 100. [Selection diagram] Fig. 1

Description

本発明は、距離測定装置に関する。   The present invention relates to a distance measuring device.

光源からパルス光を照射し、物体によって反射された反射光を受光することによって、物体までの距離を測定する距離測定装置が知られている。   There is known a distance measuring device that measures a distance to an object by emitting pulsed light from a light source and receiving reflected light reflected by the object.

レーザ光を測定対象物に向けて照射する送信光学系と、照射されたのち測定対象物により反射されたレーザ光の反射光を受信する受信光学系と、受信光学系による反射光の受信信号をサンプリングし、今回サンプリングの受信信号の信号強度が前回サンプリングの受信信号の信号強度より低ければ、今回サンプリングの受信信号の信号強度と受信時刻を用いて伝搬経路上の媒質を起因とするレーザ光のエネルギーの減衰係数を算出する減衰係数算出手段と、算出された減衰係数を用いて受信光学系による反射光の受信信号の信号強度を補償する信号強度補償手段と、信号強度が補償された受信信号の中から測定対象物に係る受信信号を抽出して受信信号に対応するレーザ光の送信時刻と受信信号の受信時刻との差から測定対象物までの距離を導出する距離導出手段とを備えたレーザレーダ装置が開示されている(特許文献1)。また、外乱による反射成分を関数でフィッティングして、そのフィッティングされた外乱成分を除去する方法が開示されている(非特許文献1)。   A transmission optical system that irradiates the laser light toward the measurement object, a reception optical system that receives the reflected light of the laser light that is irradiated and then reflected by the measurement object, and a reception signal of the reflection light by the reception optical system. If the signal strength of the received signal of this sampling is lower than the signal strength of the previously sampled received signal, the signal strength of the received signal of this sampling and the reception time are used to determine the laser light caused by the medium on the propagation path. Attenuation coefficient calculating means for calculating the attenuation coefficient of energy, signal strength compensating means for compensating the signal strength of the received signal of the reflected light by the receiving optical system using the calculated attenuation coefficient, and the received signal with the signal strength compensated The received signal related to the measurement object is extracted from the The laser radar apparatus and a distance deriving unit that output has been disclosed (Patent Document 1). Further, a method of fitting a reflection component due to a disturbance with a function and removing the fitted disturbance component is disclosed (Non-Patent Document 1).

また、複数の反射ピークを検出するマルチエコー検出型のレーザレーダにおいて霧などの外乱による反射ピークを除外する方法が開示されている(特許文献2〜4)。   Further, a method of excluding a reflection peak due to a disturbance such as fog in a laser echo of a multi-echo detection type that detects a plurality of reflection peaks is disclosed (Patent Documents 2 to 4).

特開2013−124882号公報JP, 2013-124882, A 特開2010−286307号公報JP, 2010-286307, A 特開2013−167479号公報JP, 2013-167479, A 特開2017−219383号公報JP, 2017-219383, A

G.Satat, et al., “Towards Photography Through Realistic Fog”, IEEE ICCP, 2018.G. Satat, et al. , "Towards Photography Through Realistic Fog", IEEE ICCP, 2018.

ところで、特許文献2〜4の技術では、外乱光のピークを除去するだけであり、物体光と重なっている成分は除去できない。そのため、物体光の信号ノイズ比(S/N)は向上させることができない。   By the way, in the techniques of Patent Documents 2 to 4, only the peak of the ambient light is removed, and the component overlapping with the object light cannot be removed. Therefore, the signal noise ratio (S / N) of the object light cannot be improved.

また、特許文献1及び非特許文献1の技術では、外乱散乱光の波形を均一な外乱と近似してフィッティングしている。そのため、外乱の原因となる物質の空間的な濃度分布にむらがある場合に対して効果的ではない。   Further, in the techniques of Patent Document 1 and Non-Patent Document 1, the waveform of the disturbance scattered light is approximated to a uniform disturbance for fitting. Therefore, it is not effective when the spatial concentration distribution of the substance causing the disturbance is uneven.

本発明の1つの態様は、パルス光を出力する光照射部と、光を受光し、受光強度の時間変化を強度波形として取得する受光部と、前記強度波形に含まれる前記パルス光の反射光に基づいて物体までの距離を算出する信号処理部と、を備え、前記光照射部は、第1パルス光と、前記第1パルス光に対して波形及び出力タイミングの少なくとも一方を変更した第2パルス光と、を出力し、前記信号処理部は、前記第1パルス光の反射光を含む前記強度波形と前記第2パルス光の反射光を含む前記強度波形とを処理することによって前記物体までの距離を算出することを特徴とする距離測定装置である。   One aspect of the present invention is a light irradiation unit that outputs pulsed light, a light receiving unit that receives light and acquires a temporal change in received light intensity as an intensity waveform, and reflected light of the pulsed light included in the intensity waveform. A signal processing unit that calculates a distance to an object based on the first pulsed light, and the light irradiation unit changes at least one of a waveform and an output timing with respect to the first pulsed light. Pulsed light is output, and the signal processing unit processes the intensity waveform including the reflected light of the first pulsed light and the intensity waveform including the reflected light of the second pulsed light to the object. The distance measuring device is characterized by calculating the distance.

ここで、前記信号処理部は、前記第1パルス光の反射光を含む前記強度波形と前記第2パルス光の反射光を含む前記強度波形との線形加算の波形から前記物体までの距離を算出することが好適である。   Here, the signal processing unit calculates the distance to the object from a linear addition waveform of the intensity waveform including the reflected light of the first pulsed light and the intensity waveform including the reflected light of the second pulsed light. Is preferred.

また、前記第1パルス光と前記第2パルス光とは出力エネルギーが等しく、前記信号処理部は、前記第1パルス光の反射光を含む前記強度波形と前記第2パルス光の反射光を含む前記強度波形との差分波形から前記物体までの距離を算出することが好適である。   The first pulsed light and the second pulsed light have the same output energy, and the signal processing unit includes the intensity waveform including the reflected light of the first pulsed light and the reflected light of the second pulsed light. It is preferable to calculate the distance to the object from the difference waveform with the intensity waveform.

また、前記第2パルス光は出力タイミングが異なる複数の信号の線形和からなることを特徴とすることが好適である。   Further, it is preferable that the second pulsed light includes a linear sum of a plurality of signals having different output timings.

また、前記第2パルス光は、前記第1パルス光よりパルス幅が広い波形を有し、前記光照射部は、所定の条件を満たすときのみ前記第2パルス光を出力することが好適である。   Further, it is preferable that the second pulsed light has a waveform having a pulse width wider than that of the first pulsed light, and the light irradiation unit outputs the second pulsed light only when a predetermined condition is satisfied. ..

また、前記第1パルス光と前記第2パルス光は異なる波長であり、前記受光部は、前記第1パルス光の反射光と前記第2パルス光の反射光に対してそれぞれ異なる受光素子を備えてもよい。   Further, the first pulsed light and the second pulsed light have different wavelengths, and the light receiving section includes different light receiving elements for the reflected light of the first pulsed light and the reflected light of the second pulsed light. May be.

本発明によれば、天候などによる後方散乱光の影響を除去し、物体からの反射信号を高い感度で検出することが可能な距離測定装置を提供することができる。   According to the present invention, it is possible to provide a distance measuring device capable of removing the influence of backscattered light due to weather or the like and detecting a reflection signal from an object with high sensitivity.

第1の実施の形態の距離測定装置の構成を示す図である。It is a figure which shows the structure of the distance measuring device of 1st Embodiment. 第1の実施の形態の強度波形S1,S2及び補正信号Sの例を示す図である。It is a figure which shows the example of intensity | strength waveform S1, S2 and correction signal S of 1st Embodiment. 第2の実施の形態の強度波形S1,S2及び補正信号Sの例を示す図である。It is a figure which shows the example of intensity | strength waveform S1 and S2 of 2nd Embodiment, and the correction signal S. 第3の実施の形態の強度波形S1,S2及び補正信号Sの例を示す図である。It is a figure which shows the example of intensity | strength waveform S1, S2 and correction signal S of 3rd Embodiment. 第4の実施の形態の距離測定装置の構成を示す図である。It is a figure which shows the structure of the distance measuring device of 4th Embodiment. 第5の実施の形態の距離測定装置の構成を示す図である。It is a figure which shows the structure of the distance measuring device of 5th Embodiment.

[第1の実施の形態]
第1の実施の形態における距離測定装置100は、図1に示すように、光照射部10、受光部12及び信号処理部14を含んで構成される。光照射部10、受光部12及び信号処理部14は同一の筐体内に収めることができる。
[First Embodiment]
As shown in FIG. 1, the distance measuring device 100 according to the first embodiment is configured to include a light irradiation unit 10, a light receiving unit 12, and a signal processing unit 14. The light irradiation unit 10, the light receiving unit 12, and the signal processing unit 14 can be housed in the same housing.

距離測定装置100は、光照射部10から所定の波長λLDのパルス光を出力し、測定対象物200において反射された反射光を受光部12にて受光することにより測定対象物200までの距離を測定するために用いられる。 The distance measuring device 100 outputs pulsed light having a predetermined wavelength λ LD from the light irradiation unit 10 and receives the reflected light reflected by the measuring object 200 by the light receiving unit 12 to measure the distance to the measuring object 200. Used to measure.

光照射部10は、距離測定装置100において測距に利用される光を出射する。光照射部10は、レーザダイオード(LD)や液晶(LED)とすることができる。光照射部10は、例えば、中心発光波長λLDが(870nmといった)赤外線の帯域であるLDを使用してもよい。ただし、光照射部10から照射される光の波長は、これに限定されるものではなく、測定対象物200において反射され、受光部12において当該反射光が受光できる波長の電磁波であればよい。 The light irradiation unit 10 emits light used for distance measurement in the distance measuring device 100. The light irradiation unit 10 can be a laser diode (LD) or a liquid crystal (LED). The light irradiation unit 10 may use, for example, an LD having a central emission wavelength λ LD in the infrared band (such as 870 nm). However, the wavelength of the light emitted from the light irradiation unit 10 is not limited to this, and may be any electromagnetic wave having a wavelength that is reflected by the measurement object 200 and that the reflected light can be received by the light receiving unit 12.

本実施の形態では、光照射部10からパルス光が出力される。光照射部10からパルス光が出射されると、その出射時刻tが信号処理部14に入力される。 In the present embodiment, the light irradiation section 10 outputs pulsed light. When the pulsed light is emitted from the light irradiation unit 10, the emission time t 0 is input to the signal processing unit 14.

また、光照射部10から光を広範囲に照射するための手段を設けてもよい。例えば、ポリゴンミラーを回転させて、光照射部10から出力される光の照射角度を変更できる構成としてもよい。   Further, means for irradiating the light from the light irradiating section 10 over a wide range may be provided. For example, the polygon mirror may be rotated to change the irradiation angle of the light output from the light irradiation unit 10.

受光部12は、受光素子を含んで構成される。受光部12は、例えば、複数の受光素子を配列させた構成とされる。例えば、縦4個×横4個の合計16個の受光素子をアレイ状に並べた構成とすることができる。ただし、受光部12における受光素子の配置は、これに限定されるものではなく、単一の受光素子で構成してもよいし、複数の受光素子を1次元的又は2次元的に配置するような構成としてもよい。   The light receiving unit 12 includes a light receiving element. The light receiving unit 12 has, for example, a configuration in which a plurality of light receiving elements are arranged. For example, a total of 16 light receiving elements, 4 vertically by 4 horizontally, can be arranged in an array. However, the arrangement of the light receiving elements in the light receiving unit 12 is not limited to this, and may be configured by a single light receiving element, or a plurality of light receiving elements may be arranged one-dimensionally or two-dimensionally. It may have any configuration.

受光部12の各受光素子に光が入射すると、光の強度に応じた電気信号に変換されて信号処理部14へ強度信号が出力される。したがって、受光部12から出力される強度信号の時間的変化から強度波形を取得することができる。   When light is incident on each light receiving element of the light receiving unit 12, it is converted into an electric signal corresponding to the intensity of the light and the intensity signal is output to the signal processing unit 14. Therefore, the intensity waveform can be acquired from the temporal change of the intensity signal output from the light receiving unit 12.

信号処理部14は、受光部12において取得された強度波形を処理して、距離測定装置100から測定対象物200までの距離を算出する。すなわち、信号処理部14は、受光部12において取得された信号の強度波形に含まれるパルス光の反射光に基づいて物体までの距離を算出する。具体的には、光照射部10から出力されたパルス光を測定対象物200が反射した反射光の成分を受光部12で取得した信号の強度波形から抽出し、当該パルス光の出射時刻tから当該パルス光の反射光の受光時刻tとの差分Δt(=t−t)に基づいて距離測定装置100から測定対象物200までの距離を演算する。すなわち、信号処理部14は、差分Δtに光速cを乗算し、それを2で割ることで測定対象物200までの距離Dを求める。 The signal processing unit 14 processes the intensity waveform acquired by the light receiving unit 12 to calculate the distance from the distance measuring device 100 to the measurement object 200. That is, the signal processing unit 14 calculates the distance to the object based on the reflected light of the pulsed light included in the intensity waveform of the signal acquired by the light receiving unit 12. Specifically, the pulsed light output from the light irradiation unit 10 is extracted from the intensity waveform of the signal obtained by the light receiving unit 12 of the reflected light component reflected by the measurement object 200, and the emission time t 0 of the pulsed light is extracted. Then, the distance from the distance measuring device 100 to the measurement object 200 is calculated based on the difference Δt (= t d −t 0 ) from the reception time t d of the reflected light of the pulsed light. That is, the signal processing unit 14 multiplies the difference Δt by the speed of light c and divides it by 2 to obtain the distance D to the measurement object 200.

本実施の形態における距離測定装置100では、光照射部10は、第1パルス光と、第1パルス光に対して波形及び出力タイミングの少なくとも一方を変更した第2パルス光とを出力する。そして、信号処理部14は、第1パルス光の反射光を含む強度波形と第2パルス光の反射光を含む強度波形とを処理することによって物体までの距離を算出する。   In distance measuring apparatus 100 in the present embodiment, light irradiation unit 10 outputs the first pulsed light and the second pulsed light in which at least one of the waveform and the output timing is changed with respect to the first pulsed light. Then, the signal processing unit 14 calculates the distance to the object by processing the intensity waveform including the reflected light of the first pulsed light and the intensity waveform including the reflected light of the second pulsed light.

図2(a)は、第1パルス光(エネルギーE1)を出力し、測定対象物200によって反射された第1パルス光の反射光を受光部12において受光したときの強度波形S1の例を示す。また、図2(b)は、第1パルス光よりもパルス幅が広い第2パルス光(エネルギーE2)を出力し、測定対象物200によって反射された第2パルス光の反射光を受光部12において受光したときの強度波形S2の例を示す。   FIG. 2A illustrates an example of the intensity waveform S1 when the first pulsed light (energy E1) is output and the reflected light of the first pulsed light reflected by the measurement object 200 is received by the light receiving unit 12. .. 2B, the second pulsed light (energy E2) having a pulse width wider than that of the first pulsed light is output, and the reflected light of the second pulsed light reflected by the measuring object 200 is received by the light receiving unit 12. An example of the intensity waveform S2 when light is received at is shown.

このとき、霧、煙、粉塵等の外乱散乱体はパルス光の照射の奥行方向に拡がっているため、外乱散乱対による反射光の信号は強度波形S1,S2において時間的に拡がったバックグラウンド信号として検出される。このように拡がったバックグラウンド信号を時間的に積算するとパルスエネルギーに比例した大きさとなる。一方、測定対象物200からの反射光は、測定対象物200の表面からの反射だけであり、光照射部10から出力した第1パルス光又は第2パルス光と略同じ波形となる。   At this time, since the disturbance scatterers such as fog, smoke, and dust spread in the depth direction of the irradiation of the pulsed light, the signal of the reflected light by the disturbance scatter pair is a background signal that spreads temporally in the intensity waveforms S1 and S2. Is detected as. When the background signals thus spread are integrated in terms of time, the magnitude is proportional to the pulse energy. On the other hand, the reflected light from the measurement target 200 is only the reflection from the surface of the measurement target 200, and has substantially the same waveform as the first pulsed light or the second pulsed light output from the light irradiation unit 10.

信号処理部14は、第1パルス光の反射光を含む強度波形S1と第2パルス光の反射光を含む強度波形S2をもとに、数式(1)を用いて線形加算した補正信号Sを算出する。これによって、散乱外乱信号を除去した補正信号Sを得ることができる。ただし、補正信号Sには、近距離部分に補償しきれない外乱成分が残る。これについては、強度波形S1との比較(ピーク高さや位置など)によって、外乱ピークであることを推定して除外することが可能である。
(数1)
S=S1×E2−S2×E1・・・(1)
The signal processing unit 14 linearly adds the correction signal S using Equation (1) based on the intensity waveform S1 including the reflected light of the first pulsed light and the intensity waveform S2 including the reflected light of the second pulsed light. calculate. Thereby, the correction signal S from which the scattered disturbance signal is removed can be obtained. However, in the correction signal S, a disturbance component that cannot be completely compensated remains in the short distance portion. With respect to this, it is possible to estimate and exclude the disturbance peak by comparison with the intensity waveform S1 (peak height, position, etc.).
(Equation 1)
S = S1 × E2-S2 × E1 (1)

このように、第1パルス光の反射光を含む強度波形S1と第2パルス光の反射光を含む強度波形S2に基づいて外乱散乱体からの反射の影響を除去した補正信号Sを求めることで強度信号の信号ノイズ比(S/N)を向上させることができる。そして、補正信号Sに基づいてパルス光の反射光の受光時刻tを求めることによって、距離測定装置100から測定対象物200までの距離Dをより高い精度及び確度で求めることができる。 In this way, the correction signal S from which the influence of the reflection from the disturbance scatterer is removed is obtained based on the intensity waveform S1 including the reflected light of the first pulsed light and the intensity waveform S2 including the reflected light of the second pulsed light. The signal noise ratio (S / N) of the intensity signal can be improved. Then, by obtaining the reception time t d of the reflected light of the pulsed light based on the correction signal S, the distance D from the distance measuring device 100 to the measurement object 200 can be obtained with higher accuracy and accuracy.

なお、第1パルス光のエネルギーE1と第2パルス光のエネルギーE2が等しい場合(E=E)、数式(2)を用いて差分波形を算出することで補正信号Sを求めることができる。
(数2)
S=S1−S2・・・(2)
When the energy E1 of the first pulsed light and the energy E2 of the second pulsed light are equal (E 1 = E 2 ), the correction signal S can be obtained by calculating the differential waveform using the mathematical expression (2). ..
(Equation 2)
S = S1-S2 (2)

また、強度波形S1,S2を求める際に、1回の測定結果ではなく、複数回の合計又は平均を算出することによって、背景光ノイズやショットノイズといったランダムノイズを低減することができる。   Further, when obtaining the intensity waveforms S1 and S2, random noise such as background light noise and shot noise can be reduced by calculating not a single measurement result but a plurality of sums or averages.

なお、2つの強度波形S1,S2を用いることは散乱外乱光を除去するのに有効であるが、散乱外乱光が無い場合には信号ノイズ比(S/N)の観点から不利になる場合がある。したがって、強度波形S1から特開2013−167479等に記載された方法で散乱外乱光がある程度強いと判定できた場合にのみ2つの強度波形S1,S2を用いた散乱外乱除去処理を適用することが好適である。例えば、通常は第1パルス光のみを出力するようにしておき、強度波形S1において散乱外乱光がある程度強いと判定できた場合にのみ第2パルス光を照射して強度波形S2を取得するようにしてもよい。   The use of the two intensity waveforms S1 and S2 is effective for removing the scattered disturbance light, but may be disadvantageous from the viewpoint of the signal noise ratio (S / N) when there is no scattered disturbance light. is there. Therefore, the scattering disturbance removal processing using the two intensity waveforms S1 and S2 can be applied only when it is possible to determine from the intensity waveform S1 that the scattered disturbance light is strong to some extent by the method described in JP2013-167479A or the like. It is suitable. For example, normally, only the first pulsed light is output, and the second pulsed light is emitted to acquire the intensity waveform S2 only when it can be determined that the scattered disturbance light is strong to some extent in the intensity waveform S1. May be.

[第2の実施の形態]
第1の実施の形態における距離測定装置100では、光照射部10から出力される第1パルス光と第2パルス光とはパルス幅の中心が一致するように設定した。これに対して、第1パルス光と第2パルス光との出力タイミングを異なるようにしてもよい。
[Second Embodiment]
In the distance measuring device 100 according to the first embodiment, the first pulsed light and the second pulsed light output from the light irradiation unit 10 are set so that the centers of the pulse widths thereof coincide with each other. On the other hand, the output timings of the first pulsed light and the second pulsed light may be different.

図3(a)は、第1パルス光を出力し、測定対象物200によって反射された第1パルス光の反射光を受光部12において受光したときの強度波形S1の例を示す。また、図3(b)は、第1パルス光よりもパルス幅が広く、パルスの立ち上がりの位置を第1パルス光に揃えた第2パルス光を出力し、測定対象物200によって反射された第2パルス光の反射光を受光部12において受光したときの強度波形S2の例を示す。   FIG. 3A shows an example of the intensity waveform S <b> 1 when the first pulsed light is output and the reflected light of the first pulsed light reflected by the measurement object 200 is received by the light receiving unit 12. Further, FIG. 3B shows a second pulsed light which has a pulse width wider than that of the first pulsed light and whose rising position of the pulse is aligned with the first pulsed light and which is reflected by the measurement object 200. An example of the intensity waveform S2 when the reflected light of the 2-pulse light is received by the light receiving unit 12 is shown.

このような強度波形S1,S2について上記数式(1)を用いて補正信号Sを求めた場合、第1パルス光と第2パルス光の中心位置が揃っている場合に比べて信号のピーク位置で引かれる量が小さくなり、より大きいピークを得ることができる。ただし、外乱散乱成分の影響がより大きくなる可能性がある。   When the correction signal S is obtained for the intensity waveforms S1 and S2 by using the above mathematical expression (1), the peak position of the signal is higher than that when the center positions of the first pulse light and the second pulse light are aligned. A smaller amount can be drawn, and a larger peak can be obtained. However, the influence of the disturbance scattering component may become larger.

[第3の実施の形態]
また、光照射部10から出力される第1パルス光の数と第2パルス光の数とを異ならせるようにしてもよい。
[Third Embodiment]
Further, the number of first pulsed lights and the number of second pulsed lights output from the light irradiation unit 10 may be different.

図4(a)は、第1パルス光として1つのパルス光を出力し、測定対象物200によって反射された第1パルス光の反射光を受光部12において受光したときの強度波形S1の例を示す。また、図4(b)は、第2パルス光として2つのパルス光を出力し、測定対象物200によって反射された第2パルス光の反射光を受光部12において受光したときの強度波形S2の例を示す。   FIG. 4A shows an example of the intensity waveform S1 when one pulsed light is output as the first pulsed light and the reflected light of the first pulsed light reflected by the measurement object 200 is received by the light receiving unit 12. Show. In addition, FIG. 4B shows an intensity waveform S2 when two pulsed lights are output as the second pulsed light and the reflected light of the second pulsed light reflected by the measurement object 200 is received by the light receiving unit 12. Here is an example:

すなわち、第1パルス光よりパルス幅が広い第2パルス光とする代わりに、第1パルス光とパルス幅が同程度又は狭い2つのパルスを含む第2パルス光を用いる。このとき、第2パルス光に含まれるパルスのピーク位置が第1パルス光のピーク位置を避けるようにすることが好適である。   That is, instead of using the second pulsed light having a pulse width wider than that of the first pulsed light, the second pulsed light including two pulses having the same or narrower pulse width as the first pulsed light is used. At this time, it is preferable that the peak position of the pulse included in the second pulsed light avoids the peak position of the first pulsed light.

なお、第1パルス光と第2パルス光のパルス波形は相似形である必要はない。また、2つの連続したパルスの代わりに、それぞれ個別に発光して得られた信号の線形和を第2パルス光としてもよい。   The pulse waveforms of the first pulsed light and the second pulsed light do not have to have similar shapes. Further, instead of two continuous pulses, a linear sum of signals obtained by individually emitting light may be used as the second pulse light.

このような強度波形S1,S2について上記数式(1)を用いて補正信号Sを求めた場合、信号のピークの強度の減少を抑制しつつ、外乱散乱成分を除去することができる。   When the correction signal S is obtained for the intensity waveforms S1 and S2 using the above mathematical expression (1), the disturbance scattering component can be removed while suppressing the decrease in the intensity of the signal peak.

[第4の実施の形態]
図5は、第4の実施の形態における距離測定装置102の構成を示す。距離測定装置102では、光源として2つの光照射部10a及び光照射部10bが設けられている。光照射部10aは、第1パルス光を照射するための光源として機能し、光照射部10bは、第2パルス光を照射するための光源として機能する。このとき、受光部12の受光開口部から遠い位置に第1パルス光を出力する光照射部10aを配置し、近い位置に第1パルス光よりパルス幅が広い第2パルス光を出力する光照射部10bを配置することが好適である。
[Fourth Embodiment]
FIG. 5 shows the configuration of the distance measuring device 102 according to the fourth embodiment. In the distance measuring device 102, two light irradiation units 10a and 10b are provided as light sources. The light irradiation unit 10a functions as a light source for irradiating the first pulsed light, and the light irradiation unit 10b functions as a light source for irradiating the second pulsed light. At this time, the light irradiation unit 10a for outputting the first pulsed light is arranged at a position far from the light receiving opening of the light receiving unit 12, and the light irradiation for outputting the second pulsed light having a wider pulse width than the first pulsed light is arranged at a position near the light receiving unit. It is preferable to arrange the portion 10b.

このように、2つの光照射部10a及び光照射部10bを配置することによって、強度波形の近距離範囲に残ってしまう外乱信号を低減することができる。なお、光照射部10を1つのみにした場合、第1パルス光及び第2パルス光を同じ照度分布で照射できるので、補償精度がよくなるという利点がある。   In this way, by disposing the two light irradiation units 10a and 10b, it is possible to reduce the disturbance signal that remains in the short range of the intensity waveform. When only one light irradiation unit 10 is provided, it is possible to irradiate the first pulsed light and the second pulsed light with the same illuminance distribution, which is advantageous in improving the compensation accuracy.

[第5の実施の形態]
図6は、第5の実施の形態における距離測定装置104の構成を示す。距離測定装置104は、光源として2つの光照射部10a及び光照射部10b並びに2つの受光素子として受光部12a及び受光部12bを備える。
[Fifth Embodiment]
FIG. 6 shows the configuration of the distance measuring device 104 according to the fifth embodiment. The distance measuring device 104 includes two light emitting units 10a and 10b as light sources and two light receiving units 12a and 12b as two light receiving elements.

光照射部10aは、第1パルス光を照射するための光源として機能し、光照射部10bは、第2パルス光を照射するための光源として機能する。本実施の形態では、光照射部10aと光照射部10bは互いに異なる波長の光を出力する。例えば、光照射部10aは波長λ1の第1パルス光を出力し、光照射部10bは波長λ2の第2パルス光を出力する。光照射部10a及び光照射部10bからそれぞれ出力された第1パルス光及び第2パルス光は、2色合成用のハーフミラー16によって合成されて外部へ照射される。   The light irradiation unit 10a functions as a light source for irradiating the first pulsed light, and the light irradiation unit 10b functions as a light source for irradiating the second pulsed light. In the present embodiment, the light irradiation unit 10a and the light irradiation unit 10b output lights having different wavelengths. For example, the light irradiation unit 10a outputs the first pulsed light of the wavelength λ1, and the light irradiation unit 10b outputs the second pulsed light of the wavelength λ2. The first pulsed light and the second pulsed light output from the light irradiator 10a and the light irradiator 10b are combined by the half mirror 16 for two-color combination and are radiated to the outside.

受光部12aは、第1パルス光の波長の光を受光する手段として機能し、受光部12bは、第2パルス光の波長の光を受光する手段として機能する。例えば、光照射部10aは波長λ1の光を受光し、光照射部10bは波長λ2の光を受光する。本実施の形態では、外部から入射された光は、2色分離用のハーフミラー18によって第1パルス光の波長の光と第2パルス光の波長の光に分離されてそれぞれ受光部12a及び受光部12bへ導入される。   The light receiving unit 12a functions as a unit that receives light having the wavelength of the first pulsed light, and the light receiving unit 12b functions as a unit that receives light having the wavelength of the second pulsed light. For example, the light irradiation unit 10a receives light of wavelength λ1, and the light irradiation unit 10b receives light of wavelength λ2. In the present embodiment, the light incident from the outside is separated into the light of the wavelength of the first pulsed light and the light of the wavelength of the second pulsed light by the half-mirror 18 for two-color separation, and the light is received at the light receiving portion 12a and the light receiving portion 12a. It is introduced into section 12b.

このように、第1パルス光と第2パルス光との波長を異ならせることによって、第1パルス光と第2パルス光とを同時に照射し、それぞれの波長の光を分離して受光することによって強度波形S1と強度波形S2とを同時に取得することができる。これにより、強度波形S1と強度波形S2との計測時刻の差による環境変化等の影響を低減することができる。したがって、補正信号Sにおける環境変化等の影響も低減することができ、距離測定の精度及び確度を向上することができる。   As described above, by making the wavelengths of the first pulsed light and the second pulsed light different from each other, the first pulsed light and the second pulsed light are simultaneously irradiated, and the light of each wavelength is separated and received. The intensity waveform S1 and the intensity waveform S2 can be acquired at the same time. As a result, it is possible to reduce the influence of environmental changes and the like due to the difference in measurement time between the intensity waveform S1 and the intensity waveform S2. Therefore, it is possible to reduce the influence of environmental changes on the correction signal S, and improve the accuracy and accuracy of distance measurement.

10(10a,10b) 光照射部、12(12a,12b) 受光部、14 信号処理部、16 ハーフミラー、18 ハーフミラー、100,102,104 距離測定装置、200 測定対象物。
10 (10a, 10b) light irradiation part, 12 (12a, 12b) light receiving part, 14 signal processing part, 16 half mirror, 18 half mirror, 100, 102, 104 distance measuring device, 200 measurement object.

Claims (6)

パルス光を出力する光照射部と、
光を受光し、受光強度の時間変化を強度波形として取得する受光部と、
前記強度波形に含まれる前記パルス光の反射光に基づいて物体までの距離を算出する信号処理部と、
を備え、
前記光照射部は、第1パルス光と、前記第1パルス光に対して波形及び出力タイミングの少なくとも一方を変更した第2パルス光と、を出力し、
前記信号処理部は、前記第1パルス光の反射光を含む前記強度波形と前記第2パルス光の反射光を含む前記強度波形とを処理することによって前記物体までの距離を算出することを特徴とする距離測定装置。
A light irradiation unit that outputs pulsed light,
A light receiving unit that receives light and acquires the time change of the received light intensity as an intensity waveform,
A signal processing unit that calculates a distance to an object based on reflected light of the pulsed light included in the intensity waveform,
Equipped with
The light irradiation unit outputs a first pulsed light and a second pulsed light in which at least one of a waveform and an output timing is changed with respect to the first pulsed light,
The signal processing unit calculates a distance to the object by processing the intensity waveform including the reflected light of the first pulsed light and the intensity waveform including the reflected light of the second pulsed light. And distance measuring device.
請求項1に記載の距離測定装置であって、
前記信号処理部は、前記第1パルス光の反射光を含む前記強度波形と前記第2パルス光の反射光を含む前記強度波形との線形加算の波形から前記物体までの距離を算出することを特徴とする距離測定装置。
The distance measuring device according to claim 1,
The signal processing unit may calculate a distance to the object from a linear addition waveform of the intensity waveform including the reflected light of the first pulsed light and the intensity waveform including the reflected light of the second pulsed light. Characteristic distance measuring device.
請求項2に記載の距離測定装置であって、
前記第1パルス光と前記第2パルス光とは出力エネルギーが等しく、前記信号処理部は、前記第1パルス光の反射光を含む前記強度波形と前記第2パルス光の反射光を含む前記強度波形との差分波形から前記物体までの距離を算出することを特徴とする距離測定装置。
The distance measuring device according to claim 2,
The first pulsed light and the second pulsed light have the same output energy, and the signal processing unit includes the intensity waveform including the reflected light of the first pulsed light and the intensity including the reflected light of the second pulsed light. A distance measuring device, wherein a distance to the object is calculated from a difference waveform from the waveform.
請求項1に記載の距離測定装置であって、
前記第2パルス光は出力タイミングが異なる複数の信号の線形和からなることを特徴とする距離測定装置。
The distance measuring device according to claim 1,
The distance measuring device, wherein the second pulsed light is a linear sum of a plurality of signals having different output timings.
請求項1に記載の距離測定装置であって、
前記第2パルス光は、前記第1パルス光よりパルス幅が広い波形を有し、
前記光照射部は、所定の条件を満たすときのみ前記第2パルス光を出力することを特徴とする距離測定装置。
The distance measuring device according to claim 1,
The second pulsed light has a waveform having a pulse width wider than that of the first pulsed light,
The distance measuring device, wherein the light irradiation section outputs the second pulsed light only when a predetermined condition is satisfied.
請求項1〜5のいずれか1項に記載の距離測定装置であって、
前記第1パルス光と前記第2パルス光は異なる波長であり、
前記受光部は、前記第1パルス光の反射光と前記第2パルス光の反射光に対してそれぞれ異なる受光素子を備えることを特徴する距離測定装置。
The distance measuring device according to any one of claims 1 to 5,
The first pulsed light and the second pulsed light have different wavelengths,
The distance measuring device, wherein the light receiving section includes different light receiving elements for the reflected light of the first pulsed light and the reflected light of the second pulsed light.
JP2018206357A 2018-11-01 2018-11-01 distance measuring device Active JP7256631B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018206357A JP7256631B2 (en) 2018-11-01 2018-11-01 distance measuring device
PCT/JP2019/042624 WO2020090911A1 (en) 2018-11-01 2019-10-30 Distance measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018206357A JP7256631B2 (en) 2018-11-01 2018-11-01 distance measuring device

Publications (2)

Publication Number Publication Date
JP2020071164A true JP2020071164A (en) 2020-05-07
JP7256631B2 JP7256631B2 (en) 2023-04-12

Family

ID=70463734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018206357A Active JP7256631B2 (en) 2018-11-01 2018-11-01 distance measuring device

Country Status (2)

Country Link
JP (1) JP7256631B2 (en)
WO (1) WO2020090911A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115710233A (en) 2015-12-24 2023-02-24 加利福尼亚大学董事会 Modulators of CFTR and methods of use thereof
JP2023106904A (en) * 2022-01-21 2023-08-02 パナソニックIpマネジメント株式会社 Measurement device and measurement method
JP2025040732A (en) * 2023-09-12 2025-03-25 株式会社東芝 Distance Measuring Device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07234282A (en) * 1993-12-29 1995-09-05 Nissan Motor Co Ltd Radar equipment for vehicle
JPH09304532A (en) * 1996-05-13 1997-11-28 Toshiba Corp Laser distance-measuring apparatus
JP2000137076A (en) * 1998-11-02 2000-05-16 Denso Corp Distance measuring device
JP2000266537A (en) * 1999-03-15 2000-09-29 Showa Optronics Kk Electro-optical distance measuring apparatus
JP2017173207A (en) * 2016-03-25 2017-09-28 パイオニア株式会社 Device and method for measuring distance

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62288512A (en) * 1986-06-09 1987-12-15 Mitsubishi Electric Corp Displacement measuring apparatus
US5034810A (en) * 1989-12-07 1991-07-23 Kaman Aerospace Corporation Two wavelength in-situ imaging of solitary internal waves
JP6867769B2 (en) 2016-09-15 2021-05-12 健 坪井 Deposit account information disclosure system for virtual currency addresses

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07234282A (en) * 1993-12-29 1995-09-05 Nissan Motor Co Ltd Radar equipment for vehicle
JPH09304532A (en) * 1996-05-13 1997-11-28 Toshiba Corp Laser distance-measuring apparatus
JP2000137076A (en) * 1998-11-02 2000-05-16 Denso Corp Distance measuring device
JP2000266537A (en) * 1999-03-15 2000-09-29 Showa Optronics Kk Electro-optical distance measuring apparatus
JP2017173207A (en) * 2016-03-25 2017-09-28 パイオニア株式会社 Device and method for measuring distance

Also Published As

Publication number Publication date
WO2020090911A1 (en) 2020-05-07
JP7256631B2 (en) 2023-04-12

Similar Documents

Publication Publication Date Title
JP6846506B2 (en) Laser ranging system by time domain waveform matching and its method
TWI652495B (en) A method of operating a laser detection and ranging (LADAR) system comprising non-transitory machine readable media objects storing executable instructions, and laser detection and ranging devices
JP6598682B2 (en) Lidar measurement system and lidar measurement method
US5822047A (en) Modulator LIDAR system
JP6177338B2 (en) Wind measurement lidar device
JP2780935B2 (en) Method and apparatus for measuring concentration of absorption component of scattering absorber
US11243307B2 (en) Method for processing a signal from a coherent lidar in order to reduce noise and related lidar system
US8643843B2 (en) Method of estimating a degree of contamination of a front screen of an optical detection apparatus and optical detection apparatus
JP2020071164A (en) Distance measuring device
US9726546B2 (en) Distributed optical sensing with two-step evaluation
CN103983340A (en) Micro vibration measuring system and measuring method based on long-distance pulse laser speckles
JPH0961359A (en) Concentration measuring device
Li et al. Co-path full-waveform LiDAR for detection of multiple along-path objects
JP4018799B2 (en) Method and apparatus for measuring concentration of absorption component of scattering medium
TW201944055A (en) Carrier lifespan measurement method and carrier lifespan measurement device
CN103815929B (en) Subject information acquisition device
US20190234872A1 (en) Inspection apparatus, inspection method, computer program and recording medium
JP6737621B2 (en) Fluid measuring device
US9025138B2 (en) Method for suppressing an echo signal
JP2003202287A (en) Scattering absorption member measuring method and device
JP2010528309A (en) Optical remote detection method for compounds in media
JP6546128B2 (en) Fluid measurement device and method
KR102652916B1 (en) Fiber-Optic Distributed Acoustic Sensor and measuring method thereof
JP2007085775A (en) Sample analyzer
Ishikawa et al. Non-intrusive sound pressure measurement using light scattering

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220815

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230117

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230117

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230126

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230331

R150 Certificate of patent or registration of utility model

Ref document number: 7256631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150