[go: up one dir, main page]

JP2020070219A - Ceria-zirconia-based composite oxide oxygen absorption and release material, and exhaust gas purification catalyst - Google Patents

Ceria-zirconia-based composite oxide oxygen absorption and release material, and exhaust gas purification catalyst Download PDF

Info

Publication number
JP2020070219A
JP2020070219A JP2018206521A JP2018206521A JP2020070219A JP 2020070219 A JP2020070219 A JP 2020070219A JP 2018206521 A JP2018206521 A JP 2018206521A JP 2018206521 A JP2018206521 A JP 2018206521A JP 2020070219 A JP2020070219 A JP 2020070219A
Authority
JP
Japan
Prior art keywords
ceria
zirconia
composite oxide
based composite
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018206521A
Other languages
Japanese (ja)
Other versions
JP7262975B2 (en
Inventor
正格 山羽
Masanori Yamaha
正格 山羽
恭平 北川
Kyohei Kitagawa
恭平 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Nihon Denko Co Ltd
Original Assignee
Shin Nihon Denko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Nihon Denko Co Ltd filed Critical Shin Nihon Denko Co Ltd
Priority to JP2018206521A priority Critical patent/JP7262975B2/en
Publication of JP2020070219A publication Critical patent/JP2020070219A/en
Application granted granted Critical
Publication of JP7262975B2 publication Critical patent/JP7262975B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

To provide a ceria-zirconia-based composite oxide oxygen absorbing and releasing material and an exhaust gas purifying catalyst that exhibit great oxygen-absorbing and oxygen-releasing characteristics in a low temperature range (at 400°C or lower).SOLUTION: A ceria-zirconia-based composite oxide oxygen absorbing and releasing material, and an exhaust gas purifying catalyst using the same material, comprising ceria-zirconia composite oxide particles containing at least one rare earth element having an ionic radius of 80 to 120 pm, the surface of which is modified with an oxide of a rare earth or an alkaline earth metal having an electro-negativity of 0.89 to 1.22 that functions as an adsorption phase for reducing chemical species, the content of the oxide is at least 2 to 20 mass% of the total, the oxygen absorption and emission characteristics (volume of OSC) is 194 to 327 μmol-Ogat 200°C, the rate of utilization of CeOis 45 to 57%, the oxygen absorption and emission characteristics (OSC) is 248 to 361 μmol-Ogat 400°C, and the rate of utilization of CeOis 48 to 72%.SELECTED DRAWING: Figure 1

Description

本発明は低温域(200〜800℃)で大きい酸素吸放出特性が発現するセリア・ジルコニア系複合酸化物酸素吸収放出材料および排ガス浄化触媒に関する。   The present invention relates to a ceria-zirconia-based composite oxide oxygen absorption / release material and an exhaust gas purification catalyst that exhibit a large oxygen absorption / release property in a low temperature range (200 to 800 ° C.).

自動車等の内燃機関から排出される排ガス中には、炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NO)等の有害な成分が含まれるため、排ガス浄化触媒により浄化し、大気放出する必要がある。 Exhaust gas emitted from internal combustion engines such as automobiles contains harmful components such as hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NO x ), and therefore is purified by an exhaust gas purification catalyst. , Need to be released to the atmosphere.

このような排ガスの有害成分を浄化する為に三元触媒がある。前記触媒には酸化物等の担体に白金(Pt)、パラジウム(Pd)、ロジウム(Rh)等の貴金属を担持した触媒が広く用いられている。   There is a three-way catalyst for purifying such harmful components of exhaust gas. As the catalyst, a catalyst in which a precious metal such as platinum (Pt), palladium (Pd) or rhodium (Rh) is supported on a carrier such as an oxide is widely used.

三元触媒において、貴金属の働きを高めるためには、燃料と空気の比(空燃比)を一定に(理論空燃比に)保つのが好ましいが、様々な走行状態に変動するような運転状況に応じて空燃比は大きく変化する。このため、酸素センサーを用いたフィードバック制御によりエンジンの作動条件によって変動する空燃比(A/F)を一定に保つようにしているが、フィードバック時間に応じたA/Fの時間的な変動が発生するため、エンジン制御だけで排ガス雰囲気を理論空燃比あるいはその近傍に保持することは難しい。   In a three-way catalyst, it is preferable to keep the fuel-air ratio (air-fuel ratio) constant (theoretical air-fuel ratio) in order to enhance the function of the noble metal, but in operating conditions that fluctuate in various running conditions. Accordingly, the air-fuel ratio changes greatly. For this reason, the air-fuel ratio (A / F), which fluctuates depending on the engine operating conditions, is kept constant by feedback control using an oxygen sensor, but there is a temporal fluctuation in A / F depending on the feedback time. Therefore, it is difficult to maintain the exhaust gas atmosphere at or near the stoichiometric air-fuel ratio only by controlling the engine.

このため、触媒側で雰囲気を微調整する必要が有る。セリア(酸化セリウムCeO)は酸素吸放出特性(Oxygen Storage Capacity、以下に「OSC」と称する)を有するため、自動車排ガス浄化用触媒の酸素分圧調製用の助触媒として広く用いられている。これはCe3+/Ce4+のレドックス反応を利用したものである。前記セリアは、一般にその特性を高めるためジルコニア(酸化ジルコニウムZrO)と固溶させたセリア・ジルコニア系複合酸化物として使用されている。 Therefore, it is necessary to finely adjust the atmosphere on the catalyst side. Since ceria (cerium oxide CeO 2 ) has an oxygen storage / release property (Oxygen Storage Capacity, hereinafter referred to as “OSC”), it is widely used as a co-catalyst for adjusting the oxygen partial pressure of a vehicle exhaust gas purification catalyst. This utilizes the redox reaction of Ce 3+ / Ce 4+ . The ceria is generally used as a ceria-zirconia-based composite oxide that is solid-dissolved with zirconia (zirconium oxide ZrO 2 ) in order to enhance its properties.

前記セリア・ジルコニア系複合酸化物は、一般にPt、Pd、Rh等といった触媒金属が担持された状態でアルミナを数%ないし数十%の割合で混合され、金属ハニカムまたはセラミックスハニカムの内壁に十数μmないし数百μmの厚さにウォッシュコート(被覆)され、触媒コンバーター(ハニカム触媒構造体)として使用される。   The ceria-zirconia-based composite oxide is generally mixed with alumina at a ratio of several% to several tens of% in a state where a catalytic metal such as Pt, Pd, Rh, etc. is supported, and the ceria / zirconia-based composite oxide is mixed with the inner wall of a metal honeycomb or a ceramic honeycomb to a dozen or more It is used as a catalytic converter (honeycomb catalyst structure) after being wash-coated (coated) to a thickness of μm to several hundreds of μm.

近年の排ガス規制の強化に伴い、触媒の高活性や高寿命等の性能を向上すべく、触媒金属及びその担体酸化物についてそれぞれ検討されている。特に200〜400℃における低温域下でのより大きいOSCが得られ、還元化学種(たとえば一酸化炭素やプロピレン)を酸化する技術の要求が高い。   With the tightening of exhaust gas regulations in recent years, catalyst metals and their support oxides have been studied in order to improve performance such as high activity and long life of catalysts. In particular, a larger OSC can be obtained in a low temperature range of 200 to 400 ° C., and there is a high demand for a technique for oxidizing reducing chemical species (for example, carbon monoxide and propylene).

例えば、セリア・ジルコニア系複合酸化物酸素吸収放出材料、排ガス浄化触媒、及び排ガス浄化用ハニカム構造体の性能向上に関する従来技術には、以下のようなものがある。特許文献1では、低温で排ガス浄化性能を高めることを目的として、セリア・ジルコニア系複合酸化物相と少なくとも1種の希土類酸化物相が含まれる酸素吸収放出材料であって、前記希土類酸化物相がセリア・ジルコニア系複合酸化物相に直接結合した構造を有し、前記希土類含有量が、希土類酸化物相/(希土類酸化物+セリア・ジルコニア系複合酸化物相)モル比で0を超え0.3以下である酸素吸収放出材料が記載されている。このようにすることで、セリア・ジルコニア系複合酸化物に担持された貴金属触媒の活性を向上し、低温での排ガス浄化性能を向上することができると記されている。しかしながら、200℃近傍の具体的な低温域下でより大きなOSCが得られる粒子構造に特化した事例は報告されていない。   For example, there are the following conventional techniques related to the performance improvement of the ceria-zirconia-based composite oxide oxygen absorbing / releasing material, the exhaust gas purifying catalyst, and the exhaust gas purifying honeycomb structure. Patent Document 1 discloses an oxygen absorbing / releasing material containing a ceria-zirconia-based composite oxide phase and at least one rare earth oxide phase for the purpose of enhancing exhaust gas purification performance at a low temperature. Has a structure in which it is directly bonded to the ceria-zirconia-based composite oxide phase, and the rare earth content exceeds 0 in a rare earth oxide phase / (rare earth oxide + ceria-zirconia-based composite oxide phase) molar ratio. Oxygen absorption and release materials that are less than or equal to 0.3 are described. It is described that by doing so, the activity of the noble metal catalyst supported on the ceria-zirconia-based composite oxide can be improved and the exhaust gas purification performance at low temperatures can be improved. However, no case has been reported that is specialized in a particle structure that can obtain a larger OSC in a specific low temperature region near 200 ° C.

特許文献1では、200℃近傍の低温から大きなOSCを示すと記載はあるが、セリウムとジルコニウムの比率がモル比で0.7≦Zr/(Ce/Zr)≦0.85の範囲とCe含有量が低く、1000〜1300℃の温度範囲で還元処理された固溶粒子であることが記されている。本発明のような二相が共存しているような粒子構造を取らず、低温OSC発現という記述はない。   Patent Document 1 describes that a large OSC is exhibited from a low temperature of around 200 ° C., but the molar ratio of cerium to zirconium is 0.7 ≦ Zr / (Ce / Zr) ≦ 0.85 and Ce is contained. It is described that the amount is low and the solid-solution particles are reduced in the temperature range of 1000 to 1300 ° C. There is no description of low-temperature OSC expression because it does not have a particle structure as in the present invention in which two phases coexist.

特許文献2ではCeOとZrOを主成分とする複合酸化物を含む担体に貴金属を担持したものが100〜500℃の還元性雰囲気化において放出される酸素量が理論限界値の80%であるという特性が記述されているものの、低温領域200℃近傍の酸素放出量の記載はない。且つ、粒子形状による低温時のOSC量改善に関する記述はない。 In Patent Document 2, a carrier containing a noble metal supported on a carrier containing a complex oxide containing CeO 2 and ZrO 2 as main components has an oxygen amount released in a reducing atmosphere of 100 to 500 ° C. of 80% of a theoretical limit value. Although the characteristic of being present is described, there is no description of the oxygen release amount in the low temperature region near 200 ° C. Moreover, there is no description about the improvement of the OSC amount at low temperature due to the particle shape.

特許文献3で溶融法由来のセリウム-ジルコニウム複合酸化物と湿式法由来の二酸化セリウムを混在させたことを特徴とする酸化セリウム−酸化ジルコニウム系複合酸化物、並びにセリウム含有溶液に溶融法由来のセリウム−ジルコニウム複合酸化物を分散させ、中和した後、熱処理することを特徴とする酸化セリウム−酸化ジルコニウム系複合酸化物であるが、600℃で15μmol−O・g−1と非常にOSC量は小さい。 In Patent Document 3, a cerium-zirconium composite oxide derived from a melting method and a cerium dioxide derived from a wet method are mixed, and a cerium oxide-zirconium oxide-based composite oxide, and cerium derived from a melting method in a cerium-containing solution. -The cerium oxide-zirconium oxide-based composite oxide is characterized in that the zirconium composite oxide is dispersed, neutralized, and then heat-treated, but it has a very OSC amount of 15 µmol-O 2 · g -1 at 600 ° C. Is small.

特許文献4ではAl/(Ce+Zr)が1/20〜50/20の範囲であるCeO−ZrO−Al複合酸化物であり、酸素放出速度を高めて低温活性が向上させたものである。さらに担体の耐熱性を維持しつつPtの粒成長を抑制することで低温活性を高めている。しかし本発明の様な粒子構造を改良して高いOSC量が得たという記述はない。 In Patent Document 4, Al / (Ce + Zr) is a CeO 2 —ZrO 2 —Al 2 O 3 composite oxide having an Al / (Ce + Zr) range of 1/20 to 50/20, and has an improved oxygen release rate and improved low temperature activity. Is. Furthermore, the low temperature activity is enhanced by suppressing the Pt grain growth while maintaining the heat resistance of the carrier. However, there is no description that a high OSC amount was obtained by improving the grain structure as in the present invention.

特許文献5ではセリア・ジルコニア複合酸化物のOSC量が記載されているが、200℃における低温域のOSCから算出されたセリア利用率は10〜30%と低い。本発明が開発した前述セリア・ジルコニア粉末の低温域におけるセリア利用率は48%以上であり、それよりも高い。   Patent Document 5 describes the OSC amount of the ceria-zirconia composite oxide, but the ceria utilization rate calculated from the OSC in the low temperature region at 200 ° C. is as low as 10 to 30%. The utilization rate of ceria in the low temperature region of the ceria-zirconia powder developed by the present invention is 48% or more, which is higher than that.

特開2003−275580号公報JP, 2003-275580, A 特開2003−265958号公報JP, 2003-265958, A WO2011/108457号公報WO2011 / 108457 特開2005−104799号公報JP, 2005-104799, A 特開2004−339025号公報JP, 2004-339025, A

上記のように、近年、排ガス浄化触媒は、低温域でのOSC量が低く、低温域浄化率が低いことが課題であった。このため、より低温域(200〜800℃)での酸素放出能が要求されており、それに対応する開発が継続されている。しかしながら、従来の排ガス浄化触媒では400℃以下の低温使用環境下での酸素放出量は満足できるものとはなっておらず、更なる改良が望まれている。   As described above, in recent years, the exhaust gas purifying catalyst has a problem that the amount of OSC in the low temperature range is low and the purification rate in the low temperature range is low. Therefore, oxygen releasing ability in a lower temperature range (200 to 800 ° C.) is required, and development corresponding to it is being continued. However, the conventional exhaust gas purifying catalysts have not been satisfactory in the amount of oxygen released under a low temperature use environment of 400 ° C. or lower, and further improvement is desired.

そこで、本発明は上記実情に鑑み、400℃以下の低温域での比較的低温環境下における使用環境でもより多くの酸素が放出できるセリア・ジルコニア系複合酸化物酸素吸収放出材料を提供することを課題とする。   Therefore, in view of the above circumstances, the present invention provides a ceria-zirconia-based composite oxide oxygen absorption / release material capable of releasing a larger amount of oxygen even in a use environment under a relatively low temperature environment of a low temperature range of 400 ° C. or lower. It is an issue.

上記課題を解決するため、本発明者らは鋭意研究し、セリア・ジルコニア系複合酸化物粒子の表層に還元性化学種の吸着相を存在させると、直接還元分子がセリア・ジルコニア複合酸化物粒子表面に吸着することが防ぐことができ、表層の酸素欠陥相形成を防ぐことができる。その結果、400℃以下のOSC量が194〜361μmol−O・g−1の大きなOSC量が得られ、且つ、CeO利用率が45〜72%以上となることを見出して本発明を完成した。
すなわち、本発明の要旨は以下のとおりである。
In order to solve the above problems, the inventors of the present invention have diligently studied, and when an adsorbing phase of a reducing chemical species is present in the surface layer of the ceria-zirconia-based composite oxide particles, the direct reducing molecule causes the ceria-zirconia-based composite oxide particles. Adsorption on the surface can be prevented, and formation of oxygen defect phase in the surface layer can be prevented. As a result, it was found that a large OSC amount of 400 ° C. or lower at 194 to 361 μmol-O 2 · g −1 was obtained, and the CeO 2 utilization rate was 45 to 72% or more, thereby completing the present invention. did.
That is, the gist of the present invention is as follows.

(1) セリア・ジルコニア複合酸化物は80〜120pmイオン半径をもつ希土類元素の少なくとも1種を含有する粒子であって、該粒子表面が還元性化学種の吸着相となる電気陰性度が0.89〜1.22の酸化物で修飾されていることを特徴とするセリア・ジルコニア系複合酸化物酸素吸放出材料。   (1) The ceria-zirconia mixed oxide is a particle containing at least one kind of rare earth element having an ionic radius of 80 to 120 pm, and the particle surface has an electronegativity of 0. A ceria-zirconia-based composite oxide oxygen storage / release material characterized by being modified with an oxide of 89 to 1.22.

(2) 前記電気陰性度が0.89〜1.22の酸化物は、希土類又はアルカリ土類金属の酸化物であり、且つ酸化物の含有量は全体の2〜20質量%であることを特徴とする前記(1)に記載のセリア・ジルコニア系複合酸化物酸素吸放出材料。   (2) The oxide having an electronegativity of 0.89 to 1.22 is an oxide of a rare earth or alkaline earth metal, and the content of the oxide is 2 to 20% by mass of the whole. The ceria-zirconia-based composite oxide oxygen storage / release material according to (1) above.

(3) 前記セリア・ジルコニア系複合酸化物は、80〜120pmイオン半径をもつLa、Y、Ndの希土類元素の少なくとも1種を含有し、該希土類元素のイオンをセリア・ジルコニア系複合酸化物におけるカチオン総量に対してモル比で0.5mol%以上22mol%未満含有することを特徴とする前記(1)または(2)に記載のセリア・ジルコニア系複合酸化物酸素吸放出材料。   (3) The ceria-zirconia-based composite oxide contains at least one rare earth element of La, Y, and Nd having an ionic radius of 80 to 120 pm, and the rare-earth element ions are contained in the ceria-zirconia-based composite oxide. The ceria-zirconia-based composite oxide oxygen storage / release material according to (1) or (2) above, which is contained in a molar ratio of 0.5 mol% or more and less than 22 mol% with respect to the total amount of cations.

(3) 前記セリア・ジルコニア系複合酸化物は、80〜120pmイオン半径をもつLa、Y、Ndの希土類元素の少なくとも1種を含有し、該希土類元素のイオンをセリア・ジルコニア系複合酸化物におけるカチオン総量に対してモル比で0.5mol%以上22mol%未満含有することを特徴とする前記(1)または(2)に記載のセリア・ジルコニア系複合酸化物酸素吸放出材料。   (3) The ceria-zirconia-based composite oxide contains at least one rare earth element of La, Y, and Nd having an ionic radius of 80 to 120 pm, and the rare-earth element ions are contained in the ceria-zirconia-based composite oxide. The ceria-zirconia-based composite oxide oxygen storage / release material according to (1) or (2) above, which is contained in a molar ratio of 0.5 mol% or more and less than 22 mol% with respect to the total amount of cations.

(4) 400℃の低温領域における酸素吸放出特性(OSC量)が248〜361μmol−O・g−1、且つ、CeO利用率が48〜72%であることを特徴とする前記(1)〜(3)のいずれかに記載のセリア・ジルコニア系複合酸化物酸素吸放出材料。 (4) The oxygen absorption / desorption characteristics (OSC amount) in the low temperature region of 400 ° C. are 248 to 361 μmol-O 2 · g −1 , and the CeO 2 utilization rate is 48 to 72%. ) To (3), a ceria-zirconia-based composite oxide oxygen storage / release material.

(5) 200℃の低温領域における酸素吸放出特性(OSC量)が194〜327μmol−O・g−1、且つ、CeO利用率が45〜57%であることを特徴とする前記(1)〜(3)のいずれかに記載のセリア・ジルコニア系複合酸化物酸素吸放出材料。 (5) The oxygen absorption / desorption characteristics (OSC amount) in a low temperature region of 200 ° C. are 194 to 327 μmol-O 2 · g −1 , and the CeO 2 utilization rate is 45 to 57%. ) To (3), a ceria-zirconia-based composite oxide oxygen storage / release material.

(6) 前記(1)〜(5)のいずれかに記載のセリア・ジルコニア系複合酸化物酸素吸放出材料に、貴金属を担持してなることを特徴とする排ガス浄化触媒。   (6) An exhaust gas purifying catalyst, comprising a ceria-zirconia-based composite oxide oxygen storage / release material according to any one of (1) to (5) above, carrying a noble metal.

本発明によれば、200〜800℃の低温領域、特に400℃以下の低温領域でOSC量が194〜361μmol−O・g−1の大きなOSC量を示すセリア・ジルコニア系複合酸化物酸素吸収放出材料とすることができる。すなわち、本発明のセリア・ジルコニア系複合酸化物酸素吸収放出材料では、理論OSC量の45〜72%が発現し、還元雰囲気時にセリア・ジルコニア表層に酸素欠損濃縮相発現が抑制され、セリア・ジルコニア粒子全体の酸素放出が可能となり、400℃低温領域下で酸素理論容量により近いOSC量発現が可能となった。
また、セリア・ジルコニア系複合酸化物からなる酸素吸放出材料を、自動車排ガス浄化触媒に使用すれば、400℃以下の低温領域でも排ガス浄化を良好に行うことができるという顕著な効果を奏する。
According to the present invention, a ceria-zirconia-based complex oxide oxygen absorption showing a large OSC amount of 194 to 361 μmol-O 2 · g −1 in a low temperature region of 200 to 800 ° C., particularly in a low temperature region of 400 ° C. or lower. It can be a release material. That is, in the ceria-zirconia-based composite oxide oxygen absorbing / releasing material of the present invention, 45 to 72% of the theoretical OSC amount is expressed, the oxygen-deficient concentrated phase expression is suppressed in the ceria-zirconia surface layer in the reducing atmosphere, and the ceria-zirconia It became possible to release oxygen from the entire particles, and it became possible to express the OSC amount closer to the theoretical oxygen capacity in the low temperature region of 400 ° C.
In addition, when the oxygen storage / release material composed of the ceria / zirconia-based composite oxide is used for the automobile exhaust gas purification catalyst, the exhaust gas can be satisfactorily purified even in a low temperature range of 400 ° C. or lower.

セリア・ジルコニア系複合酸化物を基材(母相)とし、その表層に吸着相が修飾された粒子イメージ図である。FIG. 3 is a particle image diagram in which a ceria-zirconia-based composite oxide is used as a base material (mother phase), and the surface layer thereof is modified with an adsorption phase. セリア・ジルコニア系複合酸化物に使用するカチオン種のイオン半径を示す図である。It is a figure which shows the ionic radius of the cation species used for a ceria-zirconia-based composite oxide. Pd担持有品と担持無品のOSC量の差の原因を示した概念図で、図3(a)はPd担持有品、図3(b)はPd担持無品の例を示した概念図である。FIG. 3A is a conceptual diagram showing the cause of the difference in the OSC amount between the Pd-supported product and the unsupported product, FIG. 3A is a conceptual diagram showing an example of the Pd-supported product, and FIG. Is. 吸着相を付けた粒子が低温OSC量を発現させる概念図で、図4(a)はセリア・ジルコニア系複合酸化物(CZ)の基材(母相)にNdを吸着相として修飾したセリア・ジルコニア系複合酸化物酸素吸放出材料の顕微鏡写真であり、図4(b)は吸着相(Nd)を付けた粒子がより大きな低温OSC量を発現できることを説明するための概念図である。4A is a conceptual diagram in which particles having an adsorbed phase develop a low-temperature OSC amount. FIG. 4A shows a base material (mother phase) of a ceria-zirconia-based composite oxide (CZ) modified with Nd 2 O 3 as an adsorbed phase. FIG. 4 (b) is a photomicrograph of the ceria-zirconia-based composite oxide oxygen storage / release material, and FIG. 4 (b) illustrates that the particles with the adsorbed phase (Nd 2 O 3 ) can express a larger low-temperature OSC amount. It is a conceptual diagram. OSC量の温度依存性。還元分子吸着相を修飾したセリア・ジルコニア粒子は200℃の低温領域で大きなOSC量を発現した結果・比較を示す図である。Temperature dependence of OSC amount. It is a figure which shows the result and comparison which showed the large OSC amount in the low temperature area | region of 200 degreeC with the ceria zirconia particle which modified the reducing molecule adsorption phase.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の酸素吸収放出材料は、セリア・ジルコニア系複合酸化物に少なくとも1種の希土類元素イオンを含むセリア・ジルコニア複合酸化物であり、希土類元素イオンが含まれることにより、セリア・ジルコニア系複合酸化物の酸素吸収放出特性、耐久性、耐熱性等を向上させることができる。そして、セリア・ジルコニア系複合酸化物を基材(母相)とし、その粒子表層に還元性化学種の吸着相が修飾された二相が共存しているような粒子構造とすることで、セリア・ジルコニア粒子全体の酸素放出が可能となり、酸素理論容量により近いOSC量発現が可能となった。   The oxygen absorbing / releasing material of the present invention is a ceria-zirconia composite oxide in which at least one rare earth element ion is contained in the ceria-zirconia composite oxide, and by containing the rare earth element ion, the ceria-zirconia composite oxide. It is possible to improve the oxygen absorption / release characteristics, durability, heat resistance, etc. of the product. Then, by using a ceria-zirconia-based composite oxide as a base material (matrix), and having a particle structure in which two phases modified with an adsorption phase of a reducing chemical species coexist on the surface layer of the particles, ceria is obtained.・ Oxygen can be released from the entire zirconia particles, and the OSC amount can be expressed closer to the theoretical oxygen capacity.

まず、OSC量発現の理由について図3を参酌して説明する。   First, the reason for the expression of the OSC amount will be described with reference to FIG.

図3はPd担持有品と担持無品のOSC発現の差の原因を示した概念図で、図3(a)はPd担持有品、図3(b)はPd担持無品の例を示した概念図である。
図3(a)に示すように、酸素吸収放出材料としてのセリア・ジルコニア系複合酸化物(CZ)に触媒貴金属(PGM)としてのPdが担持されていない場合には、CZ基材(母相)1の粒子表面に多くの還元分子、例えば、水素3(H)が流れてくると、CZ基材1の粒子ごく表層のCeOだけがCeO1.5(CeO⇒CeO1.5+O0.5)となり、酸素を取り出し、水4(HO)とすることができる。しかし、表層の酸素ばかりが選択的に取り出されることとなり、その結果、CZ基材(母相)1の粒子表面に酸素欠陥層5が発現してしまい、粒子中央部の酸素は、表層まで移動することが出来ない。このことにより酸化物内のO2−イオンが枯渇し、特に低温域ではそのイオン伝導度が低く乏しい為、粒子中央部から供給される酸素(O2−イオン)が少なく、比較的取り出せる酸素量が低くなり、O2−+H⇒HO+e-の還元反応が進まなくなる。その結果、粒子表層に多量の酸素欠陥層5が形成され、高いOSC量が得られない。
FIG. 3 is a conceptual diagram showing the cause of the difference in OSC expression between Pd-supported and non-supported products, FIG. 3 (a) showing an example of Pd-supported product, and FIG. 3 (b) showing an example of Pd-supported product. It is a conceptual diagram.
As shown in FIG. 3 (a), when Pd as the catalytic noble metal (PGM) is not supported on the ceria-zirconia-based composite oxide (CZ) as the oxygen absorbing / releasing material, the CZ base material (mother phase) When a large number of reducing molecules such as hydrogen 3 (H 2 ) flow on the surface of the particles 1), only CeO 2 at the very surface layer of the particles of the CZ substrate 1 is CeO 1.5 (CeO 2 ⇒CeO 1.5 + O 0). .5 ), oxygen can be taken out and used as water 4 (H 2 O). However, only oxygen in the surface layer is selectively taken out, and as a result, the oxygen defect layer 5 appears on the particle surface of the CZ base material (mother phase) 1, and oxygen in the central portion of the particle moves to the surface layer. I can't do it. As a result, the O 2− ion in the oxide is depleted, and its ionic conductivity is low and poor especially in the low temperature region, so the amount of oxygen (O 2− ion) supplied from the central part of the particle is small and the amount of oxygen that can be extracted relatively. Becomes low, and the reduction reaction of O 2 − + H + ⇒H 2 O + e − − does not proceed. As a result, a large amount of oxygen defect layer 5 is formed on the surface layer of the particle, and a high OSC amount cannot be obtained.

一方、図3(b)に示すように、酸素吸収放出材料に触媒貴金属(PGM)としてのPdが担持されている場合には、還元分子である水素3(H)が流れてくると、Pd触媒6上でCZ基材(母相)1中からの酸素(O)7により、O2−+H⇒HO+e反応がスムーズに進行し、CZ基材(母相)1の粒子表面に還元分子3のHが吸着せず、粒子表層に多量の酸素欠陥形成部位が発現しにくい。したがって、Pd触媒担持した助触媒ではPd触媒担持無の場合よりもOSC量がより大きく発現しやすい。 On the other hand, as shown in FIG. 3B, when Pd as a catalytic noble metal (PGM) is supported on the oxygen absorbing / releasing material, when hydrogen 3 (H 2 ) that is a reducing molecule flows, O 2 + H + ⇒H 2 O + e - reaction proceeds smoothly by oxygen (O) 7 from the CZ base material (matrix phase) 1 on the Pd catalyst 6, and particles of the CZ base material (matrix phase) 1 H 2 of the reducing molecule 3 is not adsorbed on the surface, and it is difficult for a large amount of oxygen defect forming sites to appear on the surface layer of the particle. Therefore, the cocatalyst carrying the Pd catalyst is more likely to exhibit a larger OSC amount than the case without the Pd catalyst being carried.

しかし、反応しなかった一部の還元分子は粒子表層に吸着し、局所的な酸素欠陥部位を形成してしまうという問題がある。この酸素欠陥部位の形成を抑制すれば低温域下でもさらにより大きいOSC量を発現させることができると推察できる。   However, there is a problem that some of the unreacted reducing molecules are adsorbed on the surface layer of the particles to form local oxygen defect sites. It can be inferred that if the formation of the oxygen deficiency site is suppressed, a larger OSC amount can be expressed even in a low temperature range.

そこで本発明では、局所的な酸素欠陥部位の形成を抑制し、低温域下でより大きいOSC量を得る為に、図1のセリア・ジルコニア系複合酸化物の粒子イメージ図に示すように、セリア・ジルコニア系複合酸化物の基材(母材)1に還元性化学種を捕集する吸着相2として希土類金属酸化物やアルカリ土類金属酸化物で修飾された二相共存の粒子構造を設計した。この二相共存の粒子構造とすることで、より低温域下、例えば200℃で大きなOSC量(CeO2利用率)が得られるセリア・ジルコニア系複合酸化物酸素吸放出材料を実現できた。 Therefore, in the present invention, in order to suppress the formation of local oxygen defect sites and obtain a larger OSC amount in a low temperature region, as shown in the particle image diagram of the ceria-zirconia-based composite oxide in FIG. We designed a two-phase coexisting particle structure modified with rare earth metal oxides or alkaline earth metal oxides as an adsorbing phase 2 for collecting reducing chemical species on a base material (base material) 1 of a zirconia-based composite oxide. .. By adopting this two-phase coexisting particle structure, it was possible to realize a ceria-zirconia-based composite oxide oxygen storage / release material that can obtain a large OSC amount (CeO 2 utilization rate) at a lower temperature range, for example, 200 ° C.

すなわち、より大きなOSC量が得られるようにするためには、母材の上に吸着相がある状態のセリア・ジルコニア酸化物で実現できる。この吸着相には低い電気陰性度の金属元素を利用した。金属元素は希土類あるいはアルカリ土類金属元素であり、電気陰性度が0.89〜1.22の範囲の金属元素を酸化物としてセリア・ジルコニア複合酸化物の粒子表面に修飾し、それを吸着相として機能させることで酸素吸放出材料とすることができる。さらにその粒子表面に触媒貴金属(PGM)を担持することで排ガス浄化触媒が実現できる。   That is, in order to obtain a larger amount of OSC, it can be realized with the ceria-zirconia oxide in a state where the adsorbed phase is present on the base material. A metal element having a low electronegativity was used for this adsorption phase. The metal element is a rare earth or alkaline earth metal element, and the metal element having an electronegativity in the range of 0.89 to 1.22 is modified as an oxide on the particle surface of the ceria-zirconia composite oxide, and the adsorbed phase is used. An oxygen storage / release material can be obtained by functioning as. Furthermore, an exhaust gas purifying catalyst can be realized by supporting a catalytic noble metal (PGM) on the surface of the particles.

担持される触媒貴金属(PGM)としては、Au、Ag、Pt、Pd、Rh、Ir、Ru、Os等の貴金属が挙げられるが、より好ましいのはAg、Pt、Pd、Rhである。貴金属は、セリア・ジルコニア系複合酸化物酸素吸収放出材料に担持されているものであり、セリア・ジルコニア系複合酸化物酸素吸収放出材料の表面に分散して存在する貴金属である。分散している貴金属は、金属又は酸化物で存在して10nm以下のサイズであるのが好ましい。貴金属の担持量(=貴金属/(貴金属+セリア・ジルコニア系複合酸化物酸素吸収放出材料))は、特に限定はしないが、触媒機能を十分に発揮させるためには0.01質量%以上10質量%以下が好ましく、より好ましくは0.1質量%以上10質量%以下である。   Examples of the supported catalytic noble metal (PGM) include noble metals such as Au, Ag, Pt, Pd, Rh, Ir, Ru and Os, and more preferred are Ag, Pt, Pd and Rh. The noble metal is supported on the ceria-zirconia-based composite oxide oxygen absorption / release material, and is a noble metal dispersed and present on the surface of the ceria-zirconia-based composite oxide oxygen absorption / release material. The dispersed noble metal is preferably present as a metal or an oxide and has a size of 10 nm or less. The amount of the noble metal supported (= noble metal / (noble metal + ceria-zirconia-based complex oxide oxygen absorption / release material)) is not particularly limited, but 0.01 mass% or more and 10 mass% or more in order to sufficiently exhibit the catalytic function. % Or less, and more preferably 0.1% by mass or more and 10% by mass or less.

そして、排ガス浄化用ハニカム構造体は、上記排ガス浄化触媒を常法通り、アルミナと数%ないし数十%の割合で混合して金属又はセラミックスハニカム内壁に十数μmないし、数百μmの厚さに被覆することで構成される。   In the exhaust gas purifying honeycomb structure, the exhaust gas purifying catalyst is mixed with alumina in a ratio of several% to several tens% according to a conventional method to form a metal or ceramic honeycomb inner wall with a thickness of ten dozen μm to several hundred μm. It is composed by coating.

CZ基材(母相)に還元性化学種を捕集する吸着相で修飾した二相共存の粒子構造とすることで、低温OSCが実現できることを図4の概念図を参酌して説明する。図4(a)はセリア・ジルコニア系複合酸化物(CZ)の基材(母相)にNdを吸着相として修飾したセリア・ジルコニア系複合酸化物酸素吸放出材料の顕微鏡写真であり、図4(b)は吸着相(Nd)を付けた粒子がより大きな低温OSCを発現できることを説明するための概念図である。 It will be described with reference to the conceptual diagram of FIG. 4 that low-temperature OSC can be realized by using a two-phase coexisting particle structure modified with an adsorption phase that collects a reducing chemical species on a CZ base material (mother phase). FIG. 4A is a micrograph of a ceria-zirconia-based composite oxide oxygen-absorbing / releasing material obtained by modifying a base material (mother phase) of a ceria-zirconia-based composite oxide (CZ) with Nd 2 O 3 as an adsorption phase. FIG. 4B is a conceptual diagram for explaining that particles having an adsorbed phase (Nd 2 O 3 ) can express a larger low temperature OSC.

図4(b)に示すように、還元性化学種(H2を例に説明する)であるH(還元分子)3が流れてくると、Hは担持されたPd(1)やPd(2)のPd6触媒上でO2−+H⇒HO+e反応がスムーズに進行し、水(HO)4が生成するので、粒子表層に多量の酸素欠陥形成部位は発現しない。しかし、Pd(1)やPd(2)で反応できなかった還元分子(H)3は局所的な酸素欠陥部位の原因となる。その還元分子3は吸着相であるNd相8で捕集して、CZ基材(母相)1に吸着することを防ぐことができる。したがって、吸着相としてNd相8を付けたCZ粒子では、粒子表面の局所的な酸素欠陥部位の発現を防止することができる。 As shown in FIG. 4 (b), when H 2 (reducing molecule) 3, which is a reducing chemical species (explaining H 2 as an example), flows, H 2 is loaded onto Pd (1) or Pd. On the Pd6 catalyst of (2), the O 2 − + H + ⇒H 2 O + e reaction proceeds smoothly and water (H 2 O) 4 is generated, so that a large amount of oxygen deficiency formation site does not appear in the particle surface layer. However, the reducing molecule (H 2 ) 3 that cannot react with Pd (1) or Pd (2) causes a local oxygen defect site. The reduced molecule 3 can be prevented from being captured by the Nd 2 O 3 phase 8 which is an adsorption phase and adsorbed on the CZ base material (mother phase) 1. Therefore, in the CZ particles having the Nd 2 O 3 phase 8 as the adsorption phase, it is possible to prevent the occurrence of local oxygen defect sites on the particle surface.

このように、セリア・ジルコニア複合酸化物の粒子表面を吸着相で修飾することより酸素欠陥相発現を抑制し、粒子全体からPd活性点に酸素を供給し、400℃以下の低温領域でもセリア利用率が高まり(セリア利用率45〜72%)、大きなOSC量を発現させることが可能となった。   Thus, by modifying the particle surface of the ceria-zirconia composite oxide with an adsorption phase, the oxygen deficiency phase development is suppressed, oxygen is supplied from the entire particle to Pd active points, and ceria is utilized even in a low temperature region of 400 ° C or lower. The rate was increased (ceria utilization rate 45 to 72%), and it became possible to express a large amount of OSC.

本発明のセリア・ジルコニア系複合酸化物(希土類元素の少なくとも1種を含有する)の基材(母相)に希土類又はアルカリ土類金属の酸化物(吸着相)を修飾した二相共存粒子構造において、基材(母相)は、80〜120pmイオン半径をもつ希土類元素の少なくとも1種を含有するセリア・ジルコニア系複合酸化物粒子であって、基材中の希土類元素の酸化物相はセリア・ジルコニア系複合酸化物相に直接結合した構造を有し、希土類含有量が、希土類酸化物相/(希土類酸化物+セリア・ジルコニア系複合酸化物相)モル比で0を超え0.3以下であることが好ましい。   Two-phase coexisting particle structure obtained by modifying the base material (mother phase) of the ceria-zirconia-based composite oxide (containing at least one kind of rare earth element) of the present invention with a rare earth or alkaline earth metal oxide (adsorption phase) In, the base material (mother phase) is ceria-zirconia-based composite oxide particles containing at least one kind of rare earth element having an ionic radius of 80 to 120 pm, and the oxide phase of the rare earth element in the base material is ceria. -Has a structure directly bonded to the zirconia-based composite oxide phase, and the rare earth content is more than 0 and 0.3 or less in the rare earth oxide phase / (rare earth oxide + ceria-zirconia-based composite oxide phase) molar ratio. Is preferred.

また、還元性化学種を捕集する吸着相は、低い電気陰性度の元素の酸化物を利用した。すなわち、希土類あるいはアルカリ土類金属の酸化物を使用する。希土類あるいはアルカリ土類金属の酸化物はセリア・ジルコニア複合酸化物粒子表面を修飾し、且つ吸着相に用いる希土類金属イオンあるいはアルカリ土類金属イオンの金属元素については、電気陰性度が0.89〜1.22の範囲のものを使用し、希土類あるいはアルカリ土類金属の酸化物でセリア・ジルコニア系複合酸化物の表面を修飾してある。   In addition, an oxide of an element having a low electronegativity was used as the adsorption phase for collecting the reducing chemical species. That is, an oxide of rare earth or alkaline earth metal is used. The rare earth or alkaline earth metal oxide modifies the surface of the ceria / zirconia composite oxide particles, and the metal element of the rare earth metal ion or alkaline earth metal ion used in the adsorption phase has an electronegativity of 0.89 to The range of 1.22 is used, and the surface of the ceria-zirconia-based composite oxide is modified with an oxide of a rare earth or alkaline earth metal.

希土類酸化物としては、Y、Nd、CeO、La、Gd、Pr11やこれらの複合酸化物、例えばCe1−xNd2−0.5x等を用いることができる。アルカリ土類金属の酸化物としては、CaO、SrO、BaOを用いることができる。 Examples of the rare earth oxide include Y 2 O 3 , Nd 2 O 3 , CeO 2 , La 2 O 3 , Gd 2 O 3 , Pr 6 O 11 and complex oxides thereof such as Ce 1-x Nd x O 2-. 0.5x or the like can be used. As the oxide of an alkaline earth metal, CaO, SrO, or BaO can be used.

表1に希土類金属イオンおよびアルカリ土類金属イオンの電気陰性度および電気陰性度評価(○:優、△:良、×:不良)を示す。   Table 1 shows electronegativity and electronegativity evaluation of rare earth metal ions and alkaline earth metal ions (◯: excellent, Δ: good, ×: bad).

金属元素の電気陰性度が0.89未満の金属元素を使用した場合では、電気陰性度が大きくなり、PやSまで引き寄せ、酸化物が被毒され、劣化しやすい。その反面、電気陰性度が1.22を超える場合、電子をひきつける力が小さくなってしまい、効果が薄れる可能性が考えられる。   When a metal element having an electronegativity of less than 0.89 is used, the electronegativity becomes large and attracts P and S, and the oxide is poisoned and easily deteriorates. On the other hand, when the electronegativity exceeds 1.22, the force of attracting electrons becomes small and the effect may be diminished.

したがって、本発明では電気陰性度が0.89〜1.22の範囲の希土類又はアルカリ土類金属イオンを使用した。   Therefore, in the present invention, rare earth or alkaline earth metal ions having an electronegativity in the range of 0.89 to 1.22 were used.

前記吸着相に使用している金属酸化物に含まれる酸素原子の負電荷は、前記酸素原子と前記酸素原子に隣接する原子との電気陰性度の差が大きいほど大きくなる。この負電荷が大きくなると前記吸着相の酸化物に含まれる酸素原子と金属イオン間で働く静電気的相互作用が強くなるため、還元分子等の化学種を引き寄せ、吸着相として働く。   The negative charge of oxygen atoms contained in the metal oxide used in the adsorption phase increases as the difference in electronegativity between the oxygen atoms and atoms adjacent to the oxygen atoms increases. When this negative charge becomes large, the electrostatic interaction that acts between the oxygen atoms and the metal ions contained in the oxide of the adsorption phase becomes strong, so that chemical species such as reducing molecules are attracted to act as an adsorption phase.

吸着相がセリア・ジルコニア系複合酸化物相の表層に存在していた場合、直接還元分子がセリア・ジルコニア複合酸化物粒子表面に吸着することが防ぐことができ、表層の酸素欠陥相形成を防ぐことができる。   When the adsorbed phase is present on the surface layer of the ceria-zirconia-based composite oxide phase, it is possible to prevent direct reducing molecules from adsorbing on the surface of the ceria-zirconia-based composite oxide particle and prevent the formation of an oxygen defect phase in the surface layer. be able to.

なお、本発明は上記推察によって限定されるものではない。   The present invention is not limited to the above speculation.

よって、本発明のセリア・ジルコニア系複合酸化物酸素吸放出材料では、セリア・ジルコニア系複合酸化物に前述吸着相が修飾されていることが重要である。その吸着相には低電気陰性度の金属元素を用い、且つセリア・ジルコニア系複合酸化物に80〜120pmイオン半径をもつ希土類元素が含まれていることが重要である。単なるセリア・ジルコニア系複合酸化物では低温域において、大きなOSC量(200℃−OSC量が290μmol−O・g−1以上)は得ることが出来ない。 Therefore, in the ceria-zirconia-based composite oxide oxygen storage / release material of the present invention, it is important that the adsorption phase is modified in the ceria-zirconia-based composite oxide. It is important that the adsorption phase uses a metal element having a low electronegativity and that the ceria-zirconia-based composite oxide contains a rare earth element having an ionic radius of 80 to 120 pm. With a simple ceria-zirconia-based composite oxide, a large OSC amount (200 ° C.-OSC amount of 290 μmol-O 2 · g −1 or more) cannot be obtained in the low temperature range.

本発明のセリア・ジルコニア系複合酸化物酸素吸収放出材料とは、セリア・ジルコニア系複合酸化物であって、前記セリア・ジルコニア系複合酸化物において、80〜120pmイオン半径をもつLa、Y、Ndの希土類元素が少なくとも1種が含まれることを特徴とする酸素吸放出材料で、少なくとも1種の希土類元素イオンが前記セリア・ジルコニア複合酸化物中に含有されている。イオン半径が80pm未満の場合は結晶格子が小さくなり、セリアの酸化還元反応を阻害する恐れがある。一方、120pmを越えるイオン半径の金属イオンを使用した場合、セリア・ジルコニア複合酸化物と固溶しない恐れがある為、80〜120pmのイオン半径の希土類を使用することとした。図2にセリア・ジルコニア系複合酸化物に使用する希土類及びアルカリ土類金属カチオン種の各金属のイオン半径/pmを示した。使用するに適したイオンは、3価希土類金属イオンのY3+、Nd3+、La3+、4価希土類金属イオンのZr4+、Ce4+、及び3価セリウム金属イオンのCe3+である。 The ceria-zirconia-based composite oxide oxygen absorption / release material of the present invention is a ceria-zirconia-based composite oxide, wherein La, Y, Nd having an ionic radius of 80 to 120 pm is present in the ceria-zirconia-based composite oxide. The oxygen storage / release material is characterized in that at least one rare earth element is contained therein, and at least one rare earth element ion is contained in the ceria-zirconia composite oxide. When the ionic radius is less than 80 pm, the crystal lattice becomes small, which may hinder the redox reaction of ceria. On the other hand, when a metal ion having an ionic radius of more than 120 pm is used, there is a risk that it will not form a solid solution with the ceria-zirconia composite oxide, so it was decided to use a rare earth element having an ionic radius of 80 to 120 pm. FIG. 2 shows the ionic radius / pm of each metal of the rare earth and alkaline earth metal cation species used for the ceria-zirconia-based composite oxide. Suitable ions for use are the trivalent rare earth metal ions Y 3+ , Nd 3+ , La 3+ , the tetravalent rare earth metal ions Zr 4+ , Ce 4+ , and the trivalent cerium metal ion Ce 3+ .

セリア・ジルコニア系複合酸化物において、低電気陰性度酸化物は希土類、又は、アルカリ土類金属酸化物であり、且つ修飾されている酸化物の含有量は全体の2〜20質量%であることを特徴とするセリア・ジルコニア系複合酸化物である。   In the ceria-zirconia-based composite oxide, the low electronegativity oxide is a rare earth or alkaline earth metal oxide, and the content of the modified oxide is 2 to 20% by mass of the whole. Is a ceria-zirconia-based composite oxide.

修飾されている酸化物の含有量が全体の2質量%未満であれば吸着効果が薄れ、局部的酸素欠陥部位が発現して200〜400℃のような低温域で大きなOSC量(194〜361μmol−O・g−1且つCeO利用率が45〜72%)発現は期待できない。一方、20質量%を越えると、単位重量当たりの理論OSC量が減少し、OSC量の向上は確認しづらい。 If the content of the modified oxide is less than 2% by mass of the whole, the adsorption effect is weakened, and local oxygen vacancy sites are developed to generate a large OSC amount in a low temperature region such as 200 to 400 ° C. (194 to 361 μmol). -O 2 · g −1 and CeO 2 utilization rate is 45 to 72%) expression cannot be expected. On the other hand, if it exceeds 20% by mass, the theoretical OSC amount per unit weight decreases, and it is difficult to confirm the improvement of the OSC amount.

したがって、本発明では、修飾されている酸化物の含有量は全体の2〜20質量%とした。   Therefore, in the present invention, the content of the modified oxide is set to 2 to 20% by mass of the whole.

本発明では、セリア・ジルコニア系複合酸化物のOSC量の発現の効率を示す為、セリア利用率という指標を用いる。セリア・ジルコニア系複合酸化物に含有するセリア(CeO)がすべて3価のセリア(CeO1.5)に還元された場合、セリア利用率:100%と表現し、その時のOSC量は理論容量に達する(CeO→CeO1.5+0.25O)。 In the present invention, the index of ceria utilization is used in order to show the efficiency of expression of the OSC amount of the ceria-zirconia-based composite oxide. When all the ceria (CeO 2 ) contained in the ceria-zirconia-based composite oxide is reduced to trivalent ceria (CeO 1.5 ), the ceria utilization rate is expressed as 100%, and the OSC amount at that time reaches the theoretical capacity. (CeO 2 → CeO 1.5 + 0.25O 2 ).

本発明の200〜400℃の低温環境下で大きなOSCを発現するセリア・ジルコニア複合酸化物の酸素吸収放出材料の特徴としては、OSC量が200℃−OSC量が194μmol−O・g−1以上、好ましくは194〜327μmol−O・g−1、且つCeO利用率が45〜57%、好ましくは47〜55%であり、400℃−OSC量が248μmol−O・g−1以上、好ましくは248〜361μmol−O・g−1且つCeO利用率が48〜72%、好ましくは48〜61%の酸素吸収放出材料である。 A feature of the oxygen absorbing / releasing material of the ceria-zirconia composite oxide that exhibits a large OSC under a low temperature environment of 200 to 400 ° C. of the present invention is that the OSC amount is 200 ° C.-OSC amount is 194 μmol-O 2 · g −1. As described above, preferably 194 to 327 μmol-O 2 · g −1 , and CeO 2 utilization is 45 to 57%, preferably 47 to 55%, and 400 ° C.-OSC amount is 248 μmol-O 2 · g −1 or more. The oxygen absorbing / releasing material preferably has a 248 to 361 μmol-O 2 · g −1 and a CeO 2 utilization rate of 48 to 72%, preferably 48 to 61%.

セリア・ジルコニア複合酸化物において、200℃の低温域でCeO(セリア)利用率が45%以上となり、且つOSC量が194μmol−O・g−1以上であり、400℃の低温域でCeO利用率が48%以上となり、且つOSC量が248μmol−O・g−1以上となることが確認される現象については完全に解明されていないが、希土類元素イオンをセリア・ジルコニア系複合酸化物におけるカチオン総量に対してモル比で0.5mol%以上22mol%未満、好ましくは2.5mol%以上20mol%以下、且つ修飾されている酸化物の含有量(修飾量)は全体の2〜20質量%である。 In the ceria-zirconia composite oxide, the CeO 2 (ceria) utilization rate is 45% or more in the low temperature range of 200 ° C., the OSC amount is 194 μmol-O 2 · g −1 or more, and the CeO 2 (ceria) is low in the low temperature range of 400 ° C. 2 The phenomenon in which the utilization rate is 48% or more and the OSC amount is 248 μmol-O 2 · g −1 or more is not completely understood, but rare earth element ions are ceria-zirconia-based composite oxidation. 0.5 mol% or more and less than 22 mol%, preferably 2.5 mol% or more and 20 mol% or less with respect to the total amount of cations in the product, and the content (modification amount) of the modified oxide is 2 to 20% of the total. It is% by mass.

本発明のセリア・ジルコニア系複合酸化物酸素吸収材の製造方法は、通常知られているセリア・ジルコニア系複合酸化物を製造する方法を取ることが出来る。   As the method for producing the ceria / zirconia-based composite oxide oxygen absorber of the present invention, a generally known method for producing a ceria / zirconia-based composite oxide can be used.

本発明での低温域のOSC量は島津社製のASAP(型番:ASAP2020)を使用して測定した。前述のセリア・ジルコニア複合酸化物にPdを0.5質量%担持させ、600℃×1時間焼成し、Pd触媒を担持したサンプルをOSC量測定用サンプルとした。   The OSC amount in the low temperature range in the present invention was measured using ASAP (model number: ASAP2020) manufactured by Shimadzu. 0.5% by mass of Pd was supported on the above-described ceria-zirconia composite oxide and baked at 600 ° C. for 1 hour, and a sample supporting the Pd catalyst was used as a sample for measuring the OSC amount.

ASAP測定前に予め予備乾燥(減圧下200℃×40分以上保持)したOSC量測定用サンプルをASAPで測定した。   Prior to ASAP measurement, a sample for OSC amount measurement preliminarily dried (holding at 200 ° C. for 40 minutes or more under reduced pressure) was measured by ASAP.

ASAP専用ガラス管の底部にガラスウール:0.1gの束を2つ詰め、その上にPd担持した前述セリア・ジルコニア複合酸化物を0.15g詰め、さらにその上から0.1gのガラスウールを置いた。ガラスウールの役割は減圧時に前述セリア・ジルコニア粉末が吹き飛び、発散することを防止するためである。   Glass wool: Two bundles of 0.1 g were packed at the bottom of the glass tube for ASAP, 0.15 g of the above-mentioned ceria-zirconia composite oxide loaded with Pd was packed on top of the bundle, and 0.1 g of glass wool was further packed from above. placed. The role of glass wool is to prevent the above-mentioned ceria-zirconia powder from being blown off and released during depressurization.

このような設定を施したASAP専用ガラス管をASAPに取り付け、200℃×10分(減圧)した後、200℃×10分(純水素フロー)し、再度減圧状態で保持(10分間保持しリークチェック実施)した後、定量・定圧の純酸素を専用ガラス管に送り、その圧力変動により酸素吸収量を割り出し、OSC量(μmol−O・g−1)を算出した。 The glass tube for ASAP with such settings is attached to the ASAP, and after 200 ° C. × 10 minutes (decompression), 200 ° C. × 10 minutes (pure hydrogen flow), and then held in a decompressed state again (holding for 10 minutes to leak). After performing the check), pure oxygen having a constant amount and a constant pressure was sent to a dedicated glass tube, the oxygen absorption amount was calculated by the pressure fluctuation, and the OSC amount (μmol-O 2 · g −1 ) was calculated.

OSC理論容量(μmol−O・g−1)、Ce利用率(%)の算出方法について説明をする。 A method for calculating the OSC theoretical capacity (μmol-O 2 · g −1 ) and the Ce utilization rate (%) will be described.

理論OSC量(%)はセリアの価数変動によってもたらされる為、下記式(1)のように示される。 The theoretical OSC amount (%) is represented by the following formula (1) because it is brought about by the fluctuation of the valence of ceria.

4CeO ⇔ 2Ce + O ・・・(1) 4CeO 2 ⇔ 2Ce 2 O 3 + O 2 (1)

式(1)よりCe 4molに対して、酸素1mol放出される。CZ 1gから放出されるOSC理論容量(μmol−O・g−1)は下記式(2)のように示される。 From the formula (1), 1 mol of oxygen is released with respect to 4 mol of Ce. The OSC theoretical capacity (μmol-O 2 · g −1 ) released from 1 g of CZ is represented by the following formula (2).

Ce ÷ (MCe + 2M)÷ 4 ÷ 100 ・・・(2) C Ce ÷ (M Ce + 2M O ) ÷ 4 ÷ 100 (2)

ここで上記式(2)の記号説明をする。
Ce:試料内に含有するCe含有量(mass%)、MCe:Ce原子量(140.116g/mol)、M:O原子量(15.999g/mol)
Here, the symbols of the above formula (2) will be described.
C Ce : Ce content (mass%) contained in the sample, M Ce : Ce atomic weight (140.116 g / mol), M 2 O : O atomic weight (15.999 g / mol)

Ce利用率(%)は観測された実測OSC容量(μmol−O・g−1)を上記式(2)で算出したOSC量(μmol−O・g−1)で割り、パーセント表記にした値をCe利用率(%)とした。それらをまとめると下記式(3)のようになる。 The Ce utilization rate (%) is divided into the observed OSC capacity (μmol-O 2 · g −1 ) by the OSC amount (μmol-O 2 · g −1 ) calculated by the above formula (2), and expressed as a percentage. The value obtained was defined as the Ce utilization rate (%). These can be summarized as the following formula (3).

ここで上記式(3)についての記号について説明する。
A:試料のOSC量(μmol−O/%)、CCe:試料内のCe含有量(mass%)
Here, the symbols for the above formula (3) will be described.
A: OSC amount of sample (μmol-O 2 /%), C Ce : Ce content in sample (mass%)

以下に本発明の実施例および比較例に基づいて本発明の効果を詳細に説明する。但し、本発明はこれらの実施例に限定されるものではない。   The effects of the present invention will be described in detail below based on Examples and Comparative Examples of the present invention. However, the present invention is not limited to these examples.

[実施例1]
第一段階塩化セリウム溶液、オキシ塩化ジルコニウム溶液、塩化ランタン溶液と純水を混合し、カチオン比でCe:Zr:La=34.0:60.7:4.6mol/Lとなるような溶液1(リットル)を得た。得られた混合溶液にペルオキソ二硫酸アンモニウムを15g添加し、撹拌しながら95℃まで加熱し、セリウム・ジルコニウム複合硫酸塩を得た。得られた硫酸塩スラリーを60℃まで冷却後、アンモニア水を加えて中和し、水酸化物を含むスラリーを得た。得られたスラリーを濾過−洗浄操作を4回繰り返した後、120℃乾燥、700℃焼成、乳鉢粉砕を行い希土類元素イオンを含むセリア・ジルコニア系複合酸化物(Ce0.34Zr0.607La0.0461.977)を得た。
[Example 1]
Solution 1 in which the first stage cerium chloride solution, zirconium oxychloride solution, lanthanum chloride solution and pure water are mixed to obtain a cation ratio of Ce: Zr: La = 34.0: 60.7: 4.6 mol / L 1. (Liter) was obtained. 15 g of ammonium peroxodisulfate was added to the obtained mixed solution and heated to 95 ° C. with stirring to obtain a cerium / zirconium composite sulfate. After cooling the obtained sulfate slurry to 60 ° C., ammonia water was added for neutralization to obtain a slurry containing hydroxide. The obtained slurry was subjected to filtration-washing operation 4 times, dried at 120 ° C., calcined at 700 ° C., mortar crushed, and ceria / zirconia-based composite oxide containing rare earth element ions (Ce 0.34 Zr 0.607 La). 0.046 O 1.977 ) was obtained.

第二段階として、第一段階で得られた粉末を解砕後、セリア・ジルコニア系酸化物で水系スラリーを作製後、焼成後の表面修飾物が2質量%となるように調整したNd塩溶液を添加し、溶液のpHを変化させて酸化物表面に水酸化物を沈殿させ、夾雑イオンを取り除いたのち加熱焼成し、粒子表面上に酸化ネオジム(Nd)を析出させた。 As a second step, after crushing the powder obtained in the first step, an aqueous slurry was prepared with a ceria-zirconia-based oxide, and the Nd salt solution was prepared so that the surface modification product after firing was adjusted to 2% by mass. Was added to the solution to change the pH of the solution to precipitate hydroxide on the oxide surface, to remove contaminating ions, and then heated and baked to deposit neodymium oxide (Nd 2 O 3 ) on the particle surface.

セリア・ジルコニア複合酸化物表面に酸化ネオジム(Nd)を析出させた粒子において、Pdを担持した。ASAPにてOSC量を測定したところ低温域の200℃で278μmol−O・g−1が実測値として観測された。これは200℃のCeO利用率が47%であり、低温域(200℃)で比較的大きなOSC量が確認できた。また、低温域の400℃で312μmol−O・g−1が実測値として観測された。これは400℃のCeO利用率が52%であり、低温域(200〜400℃)で比較的大きなOSC量が確認できた。 Pd was supported on the particles in which neodymium oxide (Nd 2 O 3 ) was deposited on the surface of the ceria-zirconia composite oxide. When the OSC amount was measured by ASAP, 278 μmol-O 2 · g -1 was observed as an actually measured value at 200 ° C in the low temperature range. The CeO 2 utilization rate at 200 ° C. was 47%, and a relatively large amount of OSC could be confirmed in the low temperature range (200 ° C.). In addition, 312 μmol-O 2 · g −1 was observed as an actually measured value at 400 ° C. in the low temperature range. This had a CeO 2 utilization rate of 52% at 400 ° C., and a relatively large amount of OSC could be confirmed in the low temperature range (200 to 400 ° C.).

[実施例2〜4]
実施例1の第一段階で示したセリア・ジルコニア複合酸化物に表面修飾物が2質量%の吸着相となる希土類酸化物種類を変えたものである。いずれも低温域の200℃でセリア利用率が45〜48%、低温域の400℃でセリア利用率が48〜54%の大きなOSC量が確認された。
[Examples 2 to 4]
This is a modification of the ceria-zirconia composite oxide shown in the first step of Example 1 except that the type of rare earth oxide that forms the adsorbed phase of 2% by mass of the surface modification product. In each case, a large OSC amount was confirmed such that the ceria utilization ratio was 45 to 48% at 200 ° C in the low temperature region, and the ceria utilization ratio was 48 to 54% at 400 ° C in the low temperature region.

[実施例5、6]
実施例1に示した基材(母相)の組成を変えたものである。いずれも低温域の200℃および400℃でセリア利用率が50%前後の大きなOSC量が確認された。
[Examples 5 and 6]
The composition of the base material (mother phase) shown in Example 1 was changed. In each case, a large amount of OSC with a ceria utilization ratio of around 50% was confirmed at low temperatures of 200 ° C and 400 ° C.

[実施例7〜16]
実施例1の第一段階で示したセリア・ジルコニア複合酸化物に表面修飾物を5質量%に増加した吸着相となる希土類酸化物またはアルカリ土類金属酸化物の種類を変えたものである。いずれも低温域の200℃でセリア利用率が51〜57%、低温域の400℃でセリア利用率が57〜63%の大きなOSC量が確認された。
[Examples 7 to 16]
The type of the rare earth oxide or the alkaline earth metal oxide which is the adsorbed phase in which the surface modification product is increased to 5 mass% is changed from the ceria-zirconia composite oxide shown in the first step of Example 1. In each case, a large amount of OSC having a ceria utilization rate of 51 to 57% at 200 ° C. in the low temperature range and a ceria utilization rate of 57 to 63% at 400 ° C. in the low temperature range was confirmed.

[実施例17、18]
実施例17、18はそれぞれ実施例5、6の組成の複合酸化物に表面修飾物である吸着相の希土類酸化物(Nd)の修飾量を2%から5%に増加させた実施例である。いずれも低温域の200℃および400℃でセリア利用率が50%以上の大きなOSC量が確認された。
[Examples 17 and 18]
In Examples 17 and 18, the composite oxides having the compositions of Examples 5 and 6, respectively, were prepared by increasing the modification amount of the rare earth oxide (Nd 2 O 3 ) in the adsorption phase, which is a surface modification product, from 2% to 5%. Here is an example. In each case, a large amount of OSC having a ceria utilization rate of 50% or more was confirmed at 200 ° C. and 400 ° C. in the low temperature range.

[実施例19〜24]
実施例19〜24は、それぞれ実施例1〜6の組成のセリア・ジルコニア複合酸化物に表面修飾物である吸着相の希土類酸化物の修飾量を10%に増加させた実施例である。いずれも低温域の200℃および400℃でセリア利用率が47%以上の大きなOSC量が確認された。
[Examples 19 to 24]
Examples 19 to 24 are examples in which the modification amount of the rare-earth oxide in the adsorption phase, which is a surface modifier, was increased to 10% in the ceria-zirconia composite oxides having the compositions of Examples 1 to 6, respectively. In each case, a large amount of OSC having a ceria utilization rate of 47% or more was confirmed at 200 ° C. and 400 ° C. in the low temperature range.

[実施例25〜30]
実施例25〜30は、それぞれ実施例19〜24の組成の複合酸化物に表面修飾物である吸着相の希土類酸化物の修飾量を20%に増加させた実施例である。いずれも低温域の200℃および400℃でセリア利用率が46%以上の大きなOSC量が確認された。
[Examples 25 to 30]
Examples 25 to 30 are examples in which the modified amount of the rare earth oxide in the adsorption phase, which is the surface modifier, was increased to 20% in the composite oxides having the compositions of Examples 19 to 24, respectively. In each case, a large amount of OSC having a ceria utilization rate of 46% or more was confirmed at 200 ° C. and 400 ° C. in the low temperature range.

なお、これらの実施例において、表面修飾物である吸着相として、Nd、Y、Ce、La、Gd、Prの各希土類酸化物およびCeとNdとの複合酸化物、または、Ca、Sr、Baの各アルカリ土類金属酸化物を用いる例を示した。これらの吸着相の形成方法は、実施例1のNaを形成した第二段階の工程と同様に各希土類またはアルカリ土類金属の塩溶液を用いることによって形成できる。例えば、実施例14の吸着相にアルカリ土類金属のCaを使用する場合は、第二段階として、第一段階で得られた粉末を解砕後、セリア・ジルコニア系酸化物で水系スラリーを作製後、焼成後の表面修飾物が5質量%となるように調整したCa塩溶液を添加し、溶液のpHを炭酸アンモニウムで酸化物表面に炭酸塩を沈殿させ、粒子表面上を修飾する。この後の焼成工程後、CaOが修飾されたセリア・ジルコニア粒子表面が出来る。 In these examples, as the adsorbed phase which is a surface modification product, each rare earth oxide of Nd, Y, Ce, La, Gd, and Pr and a complex oxide of Ce and Nd, or Ca, Sr, and Ba are used. The example using each of the alkaline earth metal oxides of was shown. The adsorption phase can be formed by using a salt solution of each rare earth or alkaline earth metal as in the case of the second step of forming Na 2 O 3 of Example 1. For example, when Ca of alkaline earth metal is used for the adsorption phase of Example 14, as a second step, after crushing the powder obtained in the first step, an aqueous slurry is prepared with ceria-zirconia-based oxide. After that, a Ca salt solution adjusted so that the surface modification product after calcination is 5% by mass is added, and the pH of the solution is modified by precipitating a carbonate salt on the oxide surface with ammonium carbonate to modify the particle surface. After the subsequent firing step, a CaO-modified ceria-zirconia particle surface is formed.

[比較例1〜5]
比較例1〜5では実施例1に示した第一段階のセリア・ジルコニア複合酸化物酸素吸収放出材料において、含有する希土類元素イオンの種類および含有量が異なり、且つ、表面に酸化物修飾をしなかった場合のOSC量の例である。すなわち、比較例1は、実施例1〜4、7〜16、19〜22、25〜28に相当する組成のセリア・ジルコニア系酸化物表面に酸化物修飾をしなかった場合の例であり、比較例2は、実施例5、17、23、29に相当する組成のセリア・ジルコニア系酸化物表面に酸化物修飾をしなかった場合の例であり、比較例4は、実施例6、24、30に相当する組成のセリア・ジルコニア系酸化物に表面に酸化物修飾をしなかった場合の例である。
比較例は、低温域(200℃および400℃)では、いずれも実施例で確認されたような大きなOSC量が見受けられなかった。
[Comparative Examples 1 to 5]
In Comparative Examples 1 to 5, in the first stage ceria-zirconia composite oxide oxygen absorption / release material shown in Example 1, the types and contents of rare earth element ions contained were different, and the surface was oxide modified. It is an example of the amount of OSC when there is not. That is, Comparative Example 1 is an example in which no oxide modification was performed on the ceria-zirconia-based oxide surface having a composition corresponding to Examples 1 to 4, 7 to 16, 19 to 22, and 25 to 28, Comparative Example 2 is an example in which no oxide modification was performed on the surface of the ceria-zirconia-based oxide having a composition corresponding to Examples 5, 17, 23 and 29, and Comparative Example 4 is Examples 6 and 24. , 30 is a case where no oxide modification was performed on the surface of the ceria-zirconia-based oxide having a composition corresponding to 30.
In the comparative examples, in the low temperature range (200 ° C. and 400 ° C.), no large OSC amount as found in the examples was found.

これらの実施例、比較例の結果を表2に纏めて示し、また、図5に代表例を示した。   The results of these Examples and Comparative Examples are summarized in Table 2, and a representative example is shown in FIG.

表3、4に示すように、実施例1〜4、7〜16、19〜22、25〜28および実施例5、17、23、29ならびに実施例5、17、23、29は基材(母材)の組成は統一し、吸着相に用いる酸化物種を変え、その効果を検証した例を示した。この目的は吸着相の効果を検証する為であるが、実施例では吸着相に用いる酸化物種および修飾量を変えたが、いずれも低温域(200〜400℃)でセリア利用率が45%以上の大きなOSC量が確認された。
なお、比較例では吸着相は付与せず、基材(母材)を変えた場合の結果を示しているが、大きなOSC量が見受けられなかった。
As shown in Tables 3 and 4, Examples 1 to 4, 7 to 16, 19 to 22, 25 to 28 and Examples 5, 17, 23 and 29 and Examples 5, 17, 23 and 29 are base materials ( An example was shown in which the composition of the base material) was unified, the oxide species used in the adsorption phase was changed, and the effect was verified. The purpose of this is to verify the effect of the adsorbed phase. In the examples, the oxide species and modification amount used in the adsorbed phase were changed, but in all cases, the ceria utilization rate was 45% or more in the low temperature range (200 to 400 ° C.). A large amount of OSC was confirmed.
In the comparative example, the adsorbed phase was not applied and the results were obtained when the base material (base material) was changed, but a large OSC amount was not found.

1 CZ基材(母相)
2 吸着相(希土類金属酸化物、アルカリ土類金属酸化物)
3 H2
4 H2O
5 酸素欠陥層
6 Pd
7 O
8 Nd2O3

1 CZ base material (mother phase)
2 Adsorption phase (rare earth metal oxide, alkaline earth metal oxide)
3 H 2
4 H 2 O
5 Oxygen defect layer
6 Pd
7 O
8 Nd 2 O 3

Claims (6)

セリア・ジルコニア複合酸化物は80〜120pmイオン半径をもつ希土類元素の少なくとも1種を含有する粒子であって、該粒子表面が還元性化学種の吸着相となる電気陰性度が0.89〜1.22の酸化物で修飾されていることを特徴とするセリア・ジルコニア系複合酸化物酸素吸放出材料。   The ceria-zirconia composite oxide is a particle containing at least one kind of rare earth element having an ionic radius of 80 to 120 pm, and the surface of the particle has an electronegativity of 0.89 to 1 as an adsorption phase of a reducing chemical species. A ceria-zirconia-based composite oxide oxygen storage / release material characterized by being modified with an oxide of 0.22. 前記電気陰性度が0.89〜1.22の酸化物は、希土類又はアルカリ土類金属の酸化物であり、且つ酸化物の含有量は全体の2〜20質量%であることを特徴とする請求項1に記載のセリア・ジルコニア系複合酸化物酸素吸放出材料。   The oxide having an electronegativity of 0.89 to 1.22 is an oxide of a rare earth or alkaline earth metal, and the content of the oxide is 2 to 20% by mass of the whole. The ceria-zirconia-based composite oxide oxygen storage / release material according to claim 1. 前記セリア・ジルコニア系複合酸化物は、80〜120pmイオン半径をもつLa、Y、Ndの希土類元素の少なくとも1種を含有し、該希土類元素のイオンをセリア・ジルコニア系複合酸化物におけるカチオン総量に対してモル比で0.5mol%以上22mol%未満含有することを特徴とする請求項1または2に記載のセリア・ジルコニア系複合酸化物酸素吸放出材料。   The ceria-zirconia-based composite oxide contains at least one kind of rare earth elements of La, Y, and Nd having an ionic radius of 80 to 120 pm, and the ions of the rare-earth elements are added to the total amount of cations in the ceria-zirconia-based composite oxide. On the other hand, the ceria-zirconia-based composite oxide oxygen storage / release material according to claim 1 or 2, characterized by containing 0.5 mol% or more and less than 22 mol% in a molar ratio. 400℃の低温領域における酸素吸放出特性(OSC量)が248〜361μmol−O・g−1、且つ、CeO利用率が48〜72%であることを特徴とする請求項1〜3のいずれかに記載のセリア・ジルコニア系複合酸化物酸素吸放出材料。 The oxygen storage / release characteristics (OSC amount) in a low temperature region of 400 ° C. is 248 to 361 μmol-O 2 · g −1 , and the CeO 2 utilization rate is 48 to 72%. The ceria-zirconia-based composite oxide oxygen storage / release material according to any one of the above. 200℃の低温領域における酸素吸放出特性(OSC量)が194〜327μmol−O・g−1、且つ、CeO利用率が45〜57%であることを特徴とする請求項1〜3のいずれかに記載のセリア・ジルコニア系複合酸化物酸素吸放出材料。 The oxygen storage / release property (OSC amount) in a low temperature region of 200 ° C. is 194 to 327 μmol-O 2 · g −1 , and the CeO 2 utilization rate is 45 to 57%. The ceria-zirconia-based composite oxide oxygen storage / release material according to any one of the above. 請求項1〜5のいずれかに記載のセリア・ジルコニア系複合酸化物酸素吸放出材料に、貴金属を担持してなることを特徴とする排ガス浄化触媒。

An exhaust gas purifying catalyst, comprising a ceria-zirconia-based composite oxide oxygen storage / release material according to any one of claims 1 to 5, which carries a noble metal.

JP2018206521A 2018-11-01 2018-11-01 Ceria-Zirconia Composite Oxygen Absorption-Desorption Material and Exhaust Gas Purification Catalyst Active JP7262975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018206521A JP7262975B2 (en) 2018-11-01 2018-11-01 Ceria-Zirconia Composite Oxygen Absorption-Desorption Material and Exhaust Gas Purification Catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018206521A JP7262975B2 (en) 2018-11-01 2018-11-01 Ceria-Zirconia Composite Oxygen Absorption-Desorption Material and Exhaust Gas Purification Catalyst

Publications (2)

Publication Number Publication Date
JP2020070219A true JP2020070219A (en) 2020-05-07
JP7262975B2 JP7262975B2 (en) 2023-04-24

Family

ID=70547011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018206521A Active JP7262975B2 (en) 2018-11-01 2018-11-01 Ceria-Zirconia Composite Oxygen Absorption-Desorption Material and Exhaust Gas Purification Catalyst

Country Status (1)

Country Link
JP (1) JP7262975B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112354093A (en) * 2020-11-02 2021-02-12 中国人民解放军陆军防化学院 Multifunctional filtering tank for gas mask
JPWO2022172584A1 (en) * 2021-02-09 2022-08-18

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006256912A (en) * 2005-03-17 2006-09-28 Tosoh Corp Surface-modified ceria / zirconia hydrated oxide, oxide thereof, production method thereof, and use
JP2017042752A (en) * 2015-08-29 2017-03-02 新日本電工株式会社 Ceria/zirconia-based oxide oxygen absorption/emission material in which rare earth oxide phase is hybridized

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006256912A (en) * 2005-03-17 2006-09-28 Tosoh Corp Surface-modified ceria / zirconia hydrated oxide, oxide thereof, production method thereof, and use
JP2017042752A (en) * 2015-08-29 2017-03-02 新日本電工株式会社 Ceria/zirconia-based oxide oxygen absorption/emission material in which rare earth oxide phase is hybridized

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112354093A (en) * 2020-11-02 2021-02-12 中国人民解放军陆军防化学院 Multifunctional filtering tank for gas mask
JPWO2022172584A1 (en) * 2021-02-09 2022-08-18

Also Published As

Publication number Publication date
JP7262975B2 (en) 2023-04-24

Similar Documents

Publication Publication Date Title
EP2104567B2 (en) Method of making a NOx storage material
US11559788B2 (en) Oxygen storage and release material, catalyst, exhaust gas purification system, and exhaust gas treatment method
WO2002066155A1 (en) Exhaust gas clarification catalyst
WO2003097232A1 (en) Particulate oxidizing material and oxidation catalyst
JP5327048B2 (en) Exhaust gas purification catalyst carrier manufacturing method and exhaust gas purification catalyst carrier
JPWO2017051459A1 (en) Exhaust purification filter
CN101198404B (en) Exhaust gas purifying catalyst
CN103459017A (en) Catalyst for exhaust gas purification, method for producing same, and exhaust gas purification method using same
JP6499683B2 (en) Core-shell type oxide material, manufacturing method thereof, exhaust gas purification catalyst using the same, and exhaust gas purification method
JP4730709B2 (en) NOx storage reduction catalyst
JP2003277059A (en) Ceria-zirconia composite oxide
JPH10286462A (en) Catalyst of purifying exhaust gas
JP2007289920A (en) Exhaust gas purification catalyst, regeneration method thereof, exhaust gas purification apparatus and exhaust gas purification method using the same
JP5754691B2 (en) Exhaust gas purification three-way catalyst
JP2020070219A (en) Ceria-zirconia-based composite oxide oxygen absorption and release material, and exhaust gas purification catalyst
EP2493594B1 (en) Oxygen adsorbent based on lanthanoide oxysulfate, method for producing it, and exhaust gas purifying catalyst containing it
JP3766568B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2017189761A (en) Method for producing exhaust gas purification catalyst
JP2009263150A (en) Compound oxide powder, method and apparatus for producing the same and catalyst for cleaning exhaust gas
JP2007301471A (en) Exhaust gas purification catalyst
JP5019019B2 (en) Exhaust gas purification catalyst carrier, exhaust gas purification catalyst and exhaust gas purification method using the same
JP2023039982A (en) Nitrogen oxide storage material and exhaust gas cleaning catalyst
JP4807620B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP5692595B2 (en) Exhaust gas purification catalyst
JP4737149B2 (en) Catalyst carrier and catalyst

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211021

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20211021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230412

R150 Certificate of patent or registration of utility model

Ref document number: 7262975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150