JP2020069452A - Producing method of improved soil - Google Patents
Producing method of improved soil Download PDFInfo
- Publication number
- JP2020069452A JP2020069452A JP2018206657A JP2018206657A JP2020069452A JP 2020069452 A JP2020069452 A JP 2020069452A JP 2018206657 A JP2018206657 A JP 2018206657A JP 2018206657 A JP2018206657 A JP 2018206657A JP 2020069452 A JP2020069452 A JP 2020069452A
- Authority
- JP
- Japan
- Prior art keywords
- improved soil
- soil
- muddy water
- sieve
- added
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002689 soil Substances 0.000 title claims abstract description 65
- 238000000034 method Methods 0.000 title description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 30
- 238000004519 manufacturing process Methods 0.000 claims abstract description 24
- 239000000463 material Substances 0.000 claims abstract description 18
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000013067 intermediate product Substances 0.000 claims abstract description 10
- 239000000292 calcium oxide Substances 0.000 claims abstract description 6
- 235000012255 calcium oxide Nutrition 0.000 claims abstract description 6
- 239000002245 particle Substances 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 2
- 238000007873 sieving Methods 0.000 claims description 2
- 238000010276 construction Methods 0.000 description 13
- 239000004568 cement Substances 0.000 description 6
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000010802 sludge Substances 0.000 description 4
- 238000007711 solidification Methods 0.000 description 4
- 230000008023 solidification Effects 0.000 description 4
- 230000005484 gravity Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000011400 blast furnace cement Substances 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 239000002440 industrial waste Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 238000011417 postcuring Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Landscapes
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
- Treatment Of Sludge (AREA)
- Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
Abstract
Description
本発明は改良土の製造方法に関する。 The present invention relates to a method for producing improved soil.
土木建設工事において現場から排出される産業廃棄物である建設汚泥・建設泥水・建設発生土を原料として、流動化処理土を製造して使用現場に使用できるように供給するシステムが知られている。 A system is known for producing fluidized soil from raw materials such as construction sludge, construction mud, and construction soil, which are industrial wastes discharged from the site in civil engineering construction work, and supplying them so that they can be used at the site of use. ..
例えば、土木建設現場から排出される建設汚泥又は建設発生土の泥土を工場に集め、同工場に集められた泥土から大きい粒径の礫・石片を除去し、同泥土を水分を含んだ泥水の形態又は脱水して脱水物の形態で工場に保管し、使用現場の要求に応じて保管された泥水の比重を調整して又は脱水物に所要水量を混入して所定比重となるように調整して調整泥水を作製し、又使用現場の要求の軽量流動化処理土の比重・強度となるセメント及び気泡の配合割合を計算し、同調整泥水を所定量使用現場に運送するとともに、軽量流動化処理土のセメント・気泡を使用現場において又は運送前の工場においてあるいは工場と使用現場の運送途中において計算された配合割合で調整泥水に投入して混練し、使用現場において軽量流動化処理土が使用できるようにするシステムが知られている。 For example, construction sludge discharged from a civil engineering construction site or mud of construction generated soil is collected at a factory, large-sized gravel and stone fragments are removed from the mud collected at the factory, and the mud containing water is contained in the mud. Or dehydrated and stored in the factory in the form of dehydrated product, and adjusted the specific gravity of the stored mud water according to the requirements of the site of use or by mixing the dehydrated product with the required amount of water to achieve the specified specific gravity. To prepare the adjusted mud, calculate the blending ratio of cement and air bubbles, which is the specific gravity and strength of the lightweight fluidized soil required at the site of use, and transport the adjusted mud to the site of use at the same time. The cement / air bubbles of the treated soil are added to the adjusted mud at the use site or in the factory before transportation or during the transportation between the factory and the used site into the adjusted mud to knead, and the lightweight fluidized soil is used in the used site. Can be used There has been known a system that way.
固化材を工事現場で添加する場合、固化材を添加する際に粉塵が舞う、撹拌時に騒音がする等、周辺環境への負荷が大きい。
また、より強度の高い改良土が求められている。
1つの側面では、本発明は、高い強度の改良土を製造することを目的とする。
When the solidifying material is added at the construction site, the load on the surrounding environment is large, such as dust flying when adding the solidifying material and noise during stirring.
In addition, improved soil with higher strength is required.
In one aspect, the present invention is directed to producing high strength improved soil.
上記目的を達成するために、開示の改良土の製造方法が提供される。この改良土の製造方法は、受け入れた泥水を第1の篩目にて篩って異物を除去し、異物を除去した泥水に固化材を1m3あたり150〜170kg添加し、固化材を添加した泥水に生石灰を添加して撹拌して中間生成物を生成し、生成した中間生成物を第1の篩目よりも小さな第2の篩目にて篩って平均粒径を小さくした改良土を製造する。 In order to achieve the above object, a method for producing the improved soil disclosed is provided. Method for producing the improved soil, the accepted mud sieved in the first sieve to remove foreign matters, a solidifying material foreign matter mud removal was added 150~170kg per 1 m 3, was added solidifying material Quicklime was added to muddy water and stirred to produce an intermediate product, and the produced intermediate product was sieved through a second sieve smaller than the first sieve mesh to obtain an improved soil having a reduced average particle size. To manufacture.
1態様では、高い強度の改良土を製造することができる。 In one aspect, high strength improved soil can be produced.
以下、実施の形態の改良土および改良土の製造方法を、図面を参照して詳細に説明する。
<実施の形態>
Hereinafter, the improved soil of the embodiment and the method for producing the improved soil will be described in detail with reference to the drawings.
<Embodiment>
実施の形態の改良土は、汚泥を用いて作製される。この改良土は、例えば地耐力84.4〜116.2(t/m2)であり、ベタ基礎等の住宅基礎の地盤に用いることができる。また、地盤改良を行わず軟弱な残土をそのまま改良土に置き換えることができる。
また、クローラークレーン等の大型重機の作業地盤に用いることができる。
The improved soil of the embodiment is made using sludge. This improved soil has, for example, a proof stress of 84.4 to 116.2 (t / m 2 ), and can be used for the ground of a residential foundation such as a solid foundation. In addition, soft soil can be directly replaced with improved soil without soil improvement.
Further, it can be used as a work ground for large heavy equipment such as a crawler crane.
ところで最大粒径が40mm以下のものを第1種改良土、最大粒径が13mm以下のものを第2種改良土と言うが、これらの改良土のCBR(=荷重/標準荷重×100(%))の基準値は、出荷時から30日間さかのぼった品質管理データの試験値の個々の値が3%以上で、それらの平均値が20%以下とすると規定されている。
しかしながら、実施の形態の改良土は、この基準値には限定されない。また、実施の形態の改良土は、それ以外にも品質管理をして安定性を担保している。
以下、開示の改良土の製造方法を説明する。
図1は、実施の形態の改良土の製造方法を説明する図である。以下に示す製造方法は一例であり、各ステップの間に他のステップを含んでいてもよい。
[ステップS1] まず、泥水をピット(水槽)に受け入れる。この日が作製日0日となる。製造者は、受け入れた泥水を土質分類する。
図2は、三角座標を説明する図である。
三角座標は、礫分、砂分、細粒分の3つの指標を有している。
By the way, the maximum grain size of 40 mm or less is referred to as
However, the improved soil of the embodiment is not limited to this reference value. In addition, the improved soil of the embodiment is quality-controlled to ensure stability.
Hereinafter, a method for manufacturing the disclosed improved soil will be described.
FIG. 1 is a diagram illustrating a method for manufacturing improved soil according to an embodiment. The manufacturing method shown below is an example, and other steps may be included between each step.
[Step S1] First, muddy water is received in a pit (water tank). This day is the production day 0. The manufacturer classifies the received mud as soil.
FIG. 2 is a diagram illustrating triangular coordinates.
The triangular coordinate has three indexes of gravel, sand, and fine particles.
実施の形態では、受け入れた泥水がこれらの3つの指標の丸印R1部分に該当する。これは、粗粒土の小分類および細粒土の細分類用三角座標(図示せず)では、FS(砂質細粒土)に該当する。このため、以下の説明では、受け入れた泥水が砂質細粒土である場合を例に説明する。改良土に使用できる泥水が砂質細粒土に限定されないのは言うまでもない。
再び図1に戻って説明する。
In the embodiment, the received muddy water corresponds to the circle R1 of these three indicators. This corresponds to FS (sandy fine-grained soil) in the triangulation coordinates (not shown) for the small classification of coarse-grained soil and the fine classification of fine-grained soil. Therefore, in the following description, the case where the received muddy water is sandy fine-grained soil will be described as an example. It goes without saying that the muddy water that can be used for the improved soil is not limited to sandy fine-grained soil.
It returns to FIG. 1 again and demonstrates.
[ステップS2] 次に、篩目40mm以下(本実施の形態では篩目40mm)のバケットにより泥水を篩い、泥水に含まれる異物を除去する。これにより40mmより大きい異物は除去される。異物除去の方法としては、例えば油圧ショベル(ユンボ)のアタッチメントにバケットを取り付けてピット内に投入することにより異物を除去する方法が挙げられる。 [Step S2] Next, the muddy water is sieved by a bucket having a mesh size of 40 mm or less (40 mm in the present embodiment) to remove foreign matters contained in the muddy water. This removes foreign matters larger than 40 mm. As a method of removing foreign matter, for example, a method of removing foreign matter by attaching a bucket to an attachment of a hydraulic excavator (yunbo) and throwing the bucket into a pit can be mentioned.
[ステップS3] 次に、異物が除去された泥水をホッパーからミキサーに投入して固化材を添加する。固化材としては、例えば予めサイロに入れておいた、六価クロム溶出の少ない高炉セメントを、1m3あたり150〜170kg(好ましくは、1m3あたり160kg)添加する。この添加量とすることにより、生成される改良土の強度と作製コストとのバランスを取ることができる。ミキサーにより、泥水と固化材とを混合する。
[ステップS4] 次に、ステップS3の中間生成物を所定期間(例えば1日間)置いて固化養生を行う。
[ステップS5] 次に、生石灰を添加することで含水を飛ばす。生石灰は、66%/m3以上加えるのが好ましい。
[Step S3] Next, the muddy water from which foreign matter has been removed is put into the mixer from the hopper to add the solidifying material. The solidified material, for example had been placed in advance silo, less blast furnace cement of hexavalent chromium eluted, 150~170Kg per 1 m 3 (preferably, 160 kg per 1 m 3) is added. By setting this addition amount, it is possible to balance the strength of the produced improved soil with the production cost. The muddy water and the solidifying material are mixed by a mixer.
[Step S4] Next, the intermediate product of step S3 is left for a predetermined period (for example, one day) to perform solidification curing.
[Step S5] Next, quick lime is added to remove the water content. It is preferable to add quick lime at 66% / m 3 or more.
[ステップS6] 次に、粒度を調整する。具体的にはステップS5の中間生成物を篩目13mmの篩機にかけることにより、13mmより大きな固形物を除去して改良土を生成する。この日が材齢0日となる。 [Step S6] Next, the grain size is adjusted. Specifically, the intermediate product of step S5 is passed through a sieving machine having a mesh size of 13 mm to remove solids larger than 13 mm to produce improved soil. This date is the 0th day.
[ステップS7] 次に、ステップS6にて生成した改良土の品質試験を行う。具体的には、改良土の最大感想密度や、最適含水比や、一軸圧縮強度を測定する。この品質試験は毎回行わなくてもよい。
[ステップS8] その後、出荷する。
図3は、実施の形態の土質試験結果の一例を示す図である。
含水比が、46.8%〜58.9%であるのが好ましく、51.9%であるのがより好ましい。
[Step S7] Next, a quality test of the improved soil generated in step S6 is performed. Specifically, the maximum impression density of the improved soil, the optimum water content ratio, and the uniaxial compressive strength are measured. This quality test need not be performed every time.
[Step S8] After that, the product is shipped.
FIG. 3 is a diagram showing an example of a soil test result of the embodiment.
The water content ratio is preferably 46.8% to 58.9%, and more preferably 51.9%.
ステップS5において含水比を少しずつ変えた場合、含水比が51.9%のときに乾燥密度が最大、すなわち、最も改良土が締め固まり易くなっている。現場において含水比が51.9%に近づくように調整することも可能である。
図4は、実施の形態の土質試験結果を説明する図である。
平均qu(設計一軸圧縮強さ)は、2つの試料の一軸圧縮強さqu1、qu2の平均値とした。
When the water content is changed little by little in step S5, the dry density is maximum when the water content is 51.9%, that is, the improved soil is most easily compacted. It is also possible to adjust the water content in the field so that it approaches 51.9%.
FIG. 4 is a diagram illustrating the soil test result of the embodiment.
The average q u (design uniaxial compressive strength) was the average value of the uniaxial compressive strengths q u1 and q u2 of the two samples.
図4に示すように、材齢0日、材齢7日、材齢14日と日が経つにつれて改良土の一軸圧縮強度は増加した。14日目以降は、日が経ってもそれほど一軸圧縮強度は概ね一定になる。これは、固化反応がほぼ収束したためと推測される。
図5は、実施の形態の土質試験結果を説明する図である。
As shown in FIG. 4, the uniaxial compressive strength of the improved soil increased with the lapse of days of age 0 days,
FIG. 5: is a figure explaining the soil test result of embodiment.
図5は、実施の形態の改良土の作製日から、材齢までの日にちを変えたときの、一軸圧縮強さの推移を示している(養生後作製)。作製日から材齢の間を空けると、一軸圧縮強度が増加するが、空けすぎると逆に一軸圧縮強度が減少した。これは、固化反応が、ほぼ終了しているため、その後に突固めて作製した供試体を養生しても強度増加はしないためと推測される。
また、図4に示す通常作製と比較すると全体的に一軸圧縮強度は低い。これは、突き固める前に固化反応が進行していたためと推測される。
FIG. 5 shows the transition of the uniaxial compressive strength when the days from the production date of the improved soil of the embodiment to the material age were changed (post-curing production). The uniaxial compressive strength increased with a gap between the production date and the material age, while the uniaxial compressive strength decreased with an excessive gap. It is presumed that this is because the solidification reaction is almost completed, and therefore the strength of the specimen that has been solidified and subsequently cured does not increase.
Further, the uniaxial compressive strength is generally low as compared with the normal production shown in FIG. It is presumed that this was because the solidification reaction had proceeded before the compaction.
以上述べたように、実施の形態の改良土の製造方法によれば、受け入れた泥水を篩目40mm以下のバケットにて篩って異物を除去し、異物を除去した泥水に固化材を添加し、固化材を1m3あたり150〜170kg添加した泥水に生石灰を添加して撹拌して中間生成物を生成し、生成した中間生成物を篩目13mmの篩機にて篩って平均粒径を小さくした改良土を製造する。これにより、地耐力の高い改良土を製造することができる。
また、固化材を工事現場で添加する場合、固化材を添加する際に粉塵が舞う、撹拌時に騒音がする等、周辺環境への負荷が大きい。
実施の形態の改良土の製造方法によれば、プラントで高強度改良土を製造することにより、現場での地盤改良をしなくても納入後そのまま打設できる。
また、現場で過剰にセメント系固化材を使用すると重金属類の六価クロムが溶出されやすい。
As described above, according to the method for producing improved soil of the embodiment, the received muddy water is sieved with a bucket having a mesh size of 40 mm or less to remove foreign matter, and the solidifying material is added to the muddy water from which foreign matter is removed. , Quick-lime was added to muddy water in which 150 to 170 kg of the solidifying material was added per 1 m 3, and the mixture was stirred to produce an intermediate product. The produced intermediate product was sieved with a sieve machine having a mesh size of 13 mm to obtain an average particle size. Produces improved soil that has been reduced in size. As a result, it is possible to manufacture improved soil having high bearing capacity.
In addition, when the solidifying material is added at the construction site, dust is blown when adding the solidifying material, noise is generated during stirring, and the like, and the load on the surrounding environment is large.
According to the method for manufacturing improved soil of the embodiment, high strength improved soil is manufactured in a plant, and therefore, it can be placed as it is after delivery without performing ground improvement on site.
Further, if excessive cement-based solidifying material is used on site, hexavalent chromium, which is a heavy metal, is likely to be eluted.
実施の形態の改良土の製造方法によれば、プラントで六価クロムが溶出しにくいセメント高炉セメントB種を使用した。また、プラントで管理することにより、1kg単位でセメントを添加することができる。 According to the method for producing improved soil of the embodiment, cement blast furnace cement type B in which hexavalent chromium is hard to elute in a plant is used. In addition, cement can be added in units of 1 kg by controlling in the plant.
現場において改良する、水分を多量に含むベントナイト等の建設残土を用いて改良土を作る技術などがあった。しかしこのやり方で現場攪拌をして改良土を作ると粒度調整が出来なく、改良土の粒径が不均等になってしまい、締固めを行った際に強度にムラが出来てしまう。今回はセメントで六価クロムを低減させたあと石灰を添加して安定処理をし、その後13mmアンダーの篩にかけて粒度調整をした。従って、締固めをした際に均一な強度を出すことができる。 There was a technique for making improved soil using construction residual soil such as bentonite containing a large amount of water, which was improved at the site. However, if on-site stirring is performed in this way to produce improved soil, the grain size cannot be adjusted, and the grain size of the improved soil becomes uneven, resulting in uneven strength when compacted. This time, hexavalent chromium was reduced with cement, lime was added for stabilization treatment, and then a 13 mm under sieve was used to adjust the particle size. Therefore, it is possible to obtain uniform strength when compacted.
さらに、実施の形態の改良土の製造方法によれば、建設汚泥を再利用できるため、建設現場からでた産業廃棄物を再資源化し、再び建設現場に戻すという資源循環型社会を目指すことができる。 Furthermore, according to the method for producing improved soil of the embodiment, since construction sludge can be reused, it is possible to aim at a resource recycling society in which industrial waste generated from a construction site is recycled and returned to the construction site again. it can.
以上、本発明の改良土の製造方法を、図示の実施の形態に基づいて説明したが、本発明はこれに限定されるものではなく、各部の構成は、同様の機能を有する任意の構成のものに置換することができる。また、本発明に、他の任意の構成物や工程が付加されていてもよい。
また、本発明は、前述した各実施の形態のうちの、任意の2以上の構成(特徴)を組み合わせたものであってもよい。
As above, the method for producing improved soil of the present invention has been described based on the illustrated embodiment, but the present invention is not limited to this, and the configuration of each part may be any configuration having the same function. Can be replaced with one. Further, other arbitrary constituents and steps may be added to the present invention.
Further, the present invention may be a combination of any two or more configurations (features) of the above-described respective embodiments.
R1 丸印 R1 circle
Claims (2)
異物を除去した泥水に固化材を添加し、
固化材を1m3あたり150〜170kg添加した泥水に生石灰を添加して撹拌して中間生成物を生成し、
生成した中間生成物を第1の篩目よりも小さな第2の篩目にて篩って平均粒径を小さくした改良土を製造することを特徴とする改良土の製造方法。 The received muddy water is sieved through the first sieve to remove foreign matter,
Add a solidifying material to the muddy water from which foreign matter has been removed,
Quick lime is added to muddy water in which 150 to 170 kg of the solidifying material is added per 1 m 3, and the mixture is stirred to generate an intermediate product,
A method for producing improved soil, which comprises sieving the produced intermediate product through a second sieve that is smaller than the first sieve to produce an improved soil having a reduced average particle size.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018206657A JP2020069452A (en) | 2018-11-01 | 2018-11-01 | Producing method of improved soil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018206657A JP2020069452A (en) | 2018-11-01 | 2018-11-01 | Producing method of improved soil |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2020069452A true JP2020069452A (en) | 2020-05-07 |
Family
ID=70548837
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018206657A Pending JP2020069452A (en) | 2018-11-01 | 2018-11-01 | Producing method of improved soil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2020069452A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7499093B2 (en) | 2020-07-01 | 2024-06-13 | 清水建設株式会社 | Liquefaction resistance evaluation method |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07138982A (en) * | 1993-11-19 | 1995-05-30 | Tokyo Kankyo Service Kk | Construction soil improvement method |
JPH08326097A (en) * | 1995-06-01 | 1996-12-10 | Hitachi Constr Mach Co Ltd | Vibrating screener |
JP2000136525A (en) * | 1998-11-02 | 2000-05-16 | Mitsubishi Heavy Ind Ltd | Method and device to improve surplus soil resulted from construction |
JP2001019956A (en) * | 1999-07-12 | 2001-01-23 | Okutama Kogyo Co Ltd | Lime-improved soil mortar, its production and fluidization treating method of construction using the same |
JP2001121193A (en) * | 1999-10-29 | 2001-05-08 | Terunaito:Kk | Sludge regeneration method |
JP2003013061A (en) * | 2001-06-28 | 2003-01-15 | Natoo Kenkyusho:Kk | Modifying treatment material for water-bearing mud soil |
JP2004202331A (en) * | 2002-12-25 | 2004-07-22 | Terunaito:Kk | Method for concentrating and granulating inorganic sludge |
JP2004339801A (en) * | 2003-05-15 | 2004-12-02 | Taiheiyo Cement Corp | Fluid filler manufacturing method and plant |
JP2005016230A (en) * | 2003-06-27 | 2005-01-20 | Masami Kawana | Bucket for hydraulic excavator |
JP2005103429A (en) * | 2003-09-30 | 2005-04-21 | Hitachi Constr Mach Co Ltd | Arsenic-containing sludge treatment system and arsenic-containing sludge treatment method |
JP2006104817A (en) * | 2004-10-06 | 2006-04-20 | Sumitomo Osaka Cement Co Ltd | Ground improvement method |
JP2006181523A (en) * | 2004-12-28 | 2006-07-13 | Hitachi Constr Mach Co Ltd | Apparatus and method for treating sludge |
JP2009028639A (en) * | 2007-07-26 | 2009-02-12 | Sumitomo Osaka Cement Co Ltd | Sludge treatment method |
US20140249346A1 (en) * | 2012-10-30 | 2014-09-04 | Remedial Construction Svc., L.P. | Process for stabilizing waste |
JP2015077579A (en) * | 2013-10-18 | 2015-04-23 | 鈴木 孝行 | Manufacturing method and manufacturing system of recycled sand |
-
2018
- 2018-11-01 JP JP2018206657A patent/JP2020069452A/en active Pending
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07138982A (en) * | 1993-11-19 | 1995-05-30 | Tokyo Kankyo Service Kk | Construction soil improvement method |
JPH08326097A (en) * | 1995-06-01 | 1996-12-10 | Hitachi Constr Mach Co Ltd | Vibrating screener |
JP2000136525A (en) * | 1998-11-02 | 2000-05-16 | Mitsubishi Heavy Ind Ltd | Method and device to improve surplus soil resulted from construction |
JP2001019956A (en) * | 1999-07-12 | 2001-01-23 | Okutama Kogyo Co Ltd | Lime-improved soil mortar, its production and fluidization treating method of construction using the same |
JP2001121193A (en) * | 1999-10-29 | 2001-05-08 | Terunaito:Kk | Sludge regeneration method |
JP2003013061A (en) * | 2001-06-28 | 2003-01-15 | Natoo Kenkyusho:Kk | Modifying treatment material for water-bearing mud soil |
JP2004202331A (en) * | 2002-12-25 | 2004-07-22 | Terunaito:Kk | Method for concentrating and granulating inorganic sludge |
JP2004339801A (en) * | 2003-05-15 | 2004-12-02 | Taiheiyo Cement Corp | Fluid filler manufacturing method and plant |
JP2005016230A (en) * | 2003-06-27 | 2005-01-20 | Masami Kawana | Bucket for hydraulic excavator |
JP2005103429A (en) * | 2003-09-30 | 2005-04-21 | Hitachi Constr Mach Co Ltd | Arsenic-containing sludge treatment system and arsenic-containing sludge treatment method |
JP2006104817A (en) * | 2004-10-06 | 2006-04-20 | Sumitomo Osaka Cement Co Ltd | Ground improvement method |
JP2006181523A (en) * | 2004-12-28 | 2006-07-13 | Hitachi Constr Mach Co Ltd | Apparatus and method for treating sludge |
JP2009028639A (en) * | 2007-07-26 | 2009-02-12 | Sumitomo Osaka Cement Co Ltd | Sludge treatment method |
US20140249346A1 (en) * | 2012-10-30 | 2014-09-04 | Remedial Construction Svc., L.P. | Process for stabilizing waste |
JP2015077579A (en) * | 2013-10-18 | 2015-04-23 | 鈴木 孝行 | Manufacturing method and manufacturing system of recycled sand |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7499093B2 (en) | 2020-07-01 | 2024-06-13 | 清水建設株式会社 | Liquefaction resistance evaluation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014024828A1 (en) | Construction filler | |
JP5907246B2 (en) | Manufacturing method of solidified body | |
JP2020069452A (en) | Producing method of improved soil | |
JP4999967B2 (en) | Backfill recycled fluidized material and method for producing the same | |
KR101379095B1 (en) | Method of manufacturing artificial stone | |
Li et al. | Utilization of phosphogypsum for backfilling, way to relieve its environmental impact | |
JP4375645B2 (en) | Method of manufacturing soil for direct supporting ground of structures | |
WO2001004426A1 (en) | Lime-improved soil mortar and method for production thereof and fluidization treatment method using the same | |
JP2005169379A (en) | Granulator, method for producing ground material using the same, ground material obtained thereby, and method for reusing the same | |
JP6642506B2 (en) | Manufacturing method of solidified body | |
JP2014091662A (en) | Low strength concrete for pump pressure feed, and method for producing low strength concrete for pump pressure feed | |
JP6485835B2 (en) | Backfill material manufacturing method and backfill material manufacturing system | |
JP6260038B2 (en) | Granulation and solidification method of liquid mud | |
JP2020015850A (en) | Manufacturing method of calcia-modified soil | |
JP3839642B2 (en) | Method for producing fluidized soil | |
JP4979186B2 (en) | Method for producing granulated material | |
JP4359436B2 (en) | Method for producing soil mortar | |
CN105347709A (en) | Steel slag treatment process for preparing cement blending agent by using waste steel slag | |
JP2005179428A (en) | Fluidization treatment method of construction emission | |
JP3930895B1 (en) | High-strength resin mortar, high-strength resin consolidated body, and structures using the same, high-strength resin solidified secondary products | |
JP2016093784A (en) | Backfill material manufacturing method, backfill material and backfill material manufacturing system | |
JP5835120B2 (en) | Method for producing modified soil | |
JP2002227237A (en) | Method for improving soil generated by construction | |
JP2004339801A (en) | Fluid filler manufacturing method and plant | |
JP2025087265A (en) | Fluid backfilling material and method for producing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181101 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20181116 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181122 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20181207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190307 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190405 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190704 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190823 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191029 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20200212 |