[go: up one dir, main page]

JP2020066784A - 3次元積層造形装置、3次元積層造形装置の制御方法および3次元積層造形装置の制御プログラム - Google Patents

3次元積層造形装置、3次元積層造形装置の制御方法および3次元積層造形装置の制御プログラム Download PDF

Info

Publication number
JP2020066784A
JP2020066784A JP2018201377A JP2018201377A JP2020066784A JP 2020066784 A JP2020066784 A JP 2020066784A JP 2018201377 A JP2018201377 A JP 2018201377A JP 2018201377 A JP2018201377 A JP 2018201377A JP 2020066784 A JP2020066784 A JP 2020066784A
Authority
JP
Japan
Prior art keywords
modeling
metal powder
stage
modeling stage
light irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018201377A
Other languages
English (en)
Inventor
英司 大嶋
Eiji Oshima
英司 大嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kantatsu Co Ltd
Original Assignee
Kantatsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kantatsu Co Ltd filed Critical Kantatsu Co Ltd
Priority to JP2018201377A priority Critical patent/JP2020066784A/ja
Priority to US16/664,591 priority patent/US20200246872A1/en
Priority to CN201921825893.8U priority patent/CN212168952U/zh
Priority to CN201911029595.2A priority patent/CN111468721A/zh
Publication of JP2020066784A publication Critical patent/JP2020066784A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/22Driving means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/46Radiation means with translatory movement
    • B22F12/48Radiation means with translatory movement in height, e.g. perpendicular to the deposition plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/53Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/60Planarisation devices; Compression devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/003Apparatus, e.g. furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/268Arrangements for irradiation using laser beams; using electron beams [EB]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/22Driving means
    • B22F12/222Driving means for motion along a direction orthogonal to the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/11Use of irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/05Light metals
    • B22F2301/052Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • B22F2301/205Titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Automation & Control Theory (AREA)
  • Powder Metallurgy (AREA)

Abstract

【課題】光造形により金属積層造形物を造形すること。【解決手段】3次元造形装置であって、金属積層造形物の造形を行う場所としての造形ステージと、造形ステージを移動させる移動部と、造形ステージの表面に層状に金属粉体を供給する供給部と、造形ステージの表面において層状に供給された粉体のうち、所定位置の粉体に対してレーザ光を照射する光照射部と、を備えた。光照射部は、レーザ光を照射するレーザダイオードと、レーザ光を反射させて、造形ステージの表面において層状に供給された金属粉体のうち、所定位置の金属粉体に対して照射するための電気機械式ミラーと、を含み、供給部は、粒径50μm以下の金属粉体を供給し、移動部は、1層分として、前記粒径に応じて、光照射部から離す方向にステージを移動させる。【選択図】 図1

Description

本発明は、3次元積層造形装置、3次元積層造形装置の制御方法および3次元積層造形装置の制御プログラムに関する。
上記技術分野において、特許文献1には、金属粉末に荷電粒子ビームを照射する3次元積層造形装置が開示されている。
特開2015−193866号公報
しかしながら、上記文献に記載の技術では、光造形により金属積層造形物を造形することができなかった。
本発明の目的は、上述の課題を解決する技術を提供することにある。
上記目的を達成するため、本発明に係る3次元積層造形装置は、
金属積層造形物の造形を行う場所としての造形ステージと、
前記造形ステージを移動させる移動部と、
前記造形ステージの表面に層状に金属粉体を供給する供給部と、
前記造形ステージの表面において層状に供給された金属粉体のうち、所定位置の粉体に対してレーザ光を照射する光照射部と、
を備えた3次元積層造形装置であって、
光照射部は、
前記レーザ光を照射するレーザダイオードと、
前記レーザ光を反射させて、前記造形ステージの表面において層状に供給された金属粉体のうち、所定位置の金属粉体に対して照射するための電気機械式ミラーと、
を含み、
前記供給部は、粒径50μm以下の金属粉体を供給し、
前記移動部は、1層分として、前記粒径に応じて、前記光照射部から離す方向に前記造形ステージを移動させる。
上記目的を達成するため、本発明に係る3次元積層造形装置の制御方法は、
金属積層造形物の造形を行う場所としての造形ステージと、
前記造形ステージを移動させる移動部と、
前記造形ステージの表面に層状に金属粉体を供給する供給部と、
前記造形ステージの表面において層状に供給された金属粉体のうち、所定位置の粉体に対してレーザ光を照射する光照射部と、
を備えた3次元積層造形装置であって、
光照射部は、
前記レーザ光を照射するレーザダイオードと、
前記レーザ光を反射させて、前記造形ステージの表面において層状に供給された金属粉体のうち、所定位置の金属粉体に対して照射するための電気機械式ミラーと、
を含み、
前記供給部が、粒径50μm以下の金属粉体を供給するステップと、
前記移動部により、1層分として、前記粒径に応じて、前記光照射部から離す方向に前記造形ステージを移動させるステップと、
を含む。
上記目的を達成するため、本発明に係る3次元積層造形装置の制御プログラムは、
金属積層造形物の造形を行う場所としての造形ステージと、
前記造形ステージを移動させる移動部と、
前記造形ステージの表面に層状に金属粉体を供給する供給部と、
前記造形ステージの表面において層状に供給された金属粉体のうち、所定位置の粉体に対してレーザ光を照射する光照射部と、
を備えた3次元積層造形装置であって、
光照射部は、
前記レーザ光を照射するレーザダイオードと、
前記レーザ光を反射させて、前記造形ステージの表面において層状に供給された金属粉体のうち、所定位置の金属粉体に対して照射するための電気機械式ミラーと、
を含み、
前記供給部が、粒径50μm以下の金属粉体を供給するステップと、
前記移動部により、1層分として、前記粒径に応じて、前記光照射部から離す方向に前記造形ステージを移動させるステップと、
をコンピュータに実行させる。
本発明によれば、光造形により金属積層造形物を造形することができる。
本発明の第1実施形態に係る3次元積層造形装置の構成を説明するための図である。 本発明の第2実施形態に係る3次元積層造形装置の構成を説明するための図である。 本発明の第2実施形態に係る3次元積層造形装置の光照射部の構成の一例を説明する図である。 本発明の第2実施形態に係る3次元積層造形装置の備える造形テーブルの一例を説明する図である。 本発明の第2実施形態に係る3次元積層造形装置のハードウェア構成を示すブロック図である。 本発明の第2実施形態に係る3次元積層造形装置の動作手順を説明するフローチャートである。 本発明の第3実施形態に係る3次元積層造形装置を説明する概略正面図である。 本発明の第3実施形態に係る3次元積層造形装置を説明する概略正面図である。
以下に、本発明を実施するための形態について、図面を参照して、例示的に詳しく説明記載する。ただし、以下の実施の形態に記載されている、構成、数値、処理の流れ、機能要素などは一例に過ぎず、その変形や変更は自由であって、本発明の技術範囲を以下の記載に限定する趣旨のものではない。
[第1実施形態]
本発明の第1実施形態としての3次元積層造形装置100について、図1を用いて説明する。図1は、本実施形態に係る3次元積層造形装置の構成を説明するための図である。3次元積層造形装置100は、光造形により金属積層造形物を造形する装置である。図1に示すように、3次元積層造形装置100は、造形ステージ101、移動部102、供給部103および光照射部104を含む。
造形ステージ101は、金属積層造形物の造形を行う場所である。移動部102は、造形ステージ101を移動させる。供給部103は、造形ステージ101の表面に層状に金属粉体を供給する。光照射部104は、造形ステージ101の表面において層状に供給された粉体のうち、所定位置の粉体に対して照射する。光照射部104は、レーザ光を照射するレーザダイオードと、レーザ光を反射させて、造形ステージ101の表面において層状に供給された金属粉体のうち、所定位置の金属粉体に対して照射するための電気機械式ミラーと、を含む。供給部103は、粒径50μm以下の金属粉体を供給する。移動部102は、1層分として、粒径に応じて、光照射部104から離す方向に造形ステージ101を移動させる。
本実施形態によれば、光造形により金属積層造形物を造形することができる。
[第2実施形態]
次に本発明の第2実施形態に係る3次元積層造形装置について、図2乃至図6を用いて説明する。図2は、本実施形態に係る3次元積層造形装置の構成を説明するための図である。3次元積層造形装置200は、供給部201、光照射部202、造形タンク203、造形ステージ205、駆動部206、載置台207および制御部208を有する。なお、金属積層造形物210は、金属粉体214から造形される3次元造形物である。
供給部201は、金属積層造形物210を造形するための金属粉体214を落下させて造形タンク203に供給するものであり、ディスペンサとも呼ばれる。供給部201は、粉体貯蔵部211とノズル212とを含む。粉体貯蔵部211は、金属積層造形物210を造形するための金属粉体214を一時的に貯蔵するものであり、ホッパとも呼ばれる。粉体貯蔵部211に貯蔵される金属粉体214は、銅、ニッケル、コバルト、モリブデン、チタン、アルミニウムおよびステンレスの少なくとも1つを含むが、これらには限定されない。また、金属粉体214の粒径は、50μm以下であるが、好ましくは、2.0μm以下である。
そして、粉体貯蔵部211に貯蔵された金属粉体214は、供給部201の先端のノズル212から供給される。ノズル212から放出された金属粉体214は、自由落下(重力)により造形タンク203に到達する。すなわち、供給部201は、金属粉体214を落下させることにより、造形タンク203内に供給する。なお、供給部201から供給される金属粉体214に対して、空気圧などで勢いを付けて金属粉体214を放出してもよい。このようにして、供給部201は、金属粉体214をリコートする。
そして、供給量センサ213は、造形タンク203内に供給された金属粉体214の量を検知する。供給量センサ213は、例えば、超音波センサや赤外線センサなどである。例えば、造形タンク203内に供給された金属粉体214が、供給量センサ213が取り付けられた位置(高さ)まで到達すると、供給量センサ213金属粉体214を検知するので、金属粉体214が所定の量に達したことを検知できる。供給量センサ213は、供給部201のノズル212の先端の近くに配置されている。
光照射部202は、台222に載置されており、造形タンク203に収容された金属粉体214に対して、造形タンク203の外側からレーザ光221を照射する。
造形タンク203は、金属積層造形物210がその内部において造形される直方体形状(箱形)のタンクである。また、造形タンク203は、供給部201側の面に開口部を有している。造形タンク203は、供給部201の下部(下方)の位置に配置されている。供給部201から供給された金属粉体214は、造形タンク203の開口部を通過して造形タンク203内に到達する。なお、造形タンク203の形状は、直方体形状には限定されず、立方体形状であっても、その他の形状であってもよい。
造形タンク203は、タンクカバー231およびタンクケース232を有する。タンクカバー231は、造形タンク203の側面部分(壁部分)である。タンクカバー231は、例えば、ガラスやプラスチック、樹脂などのレーザ光221を透過する部材(レーザ光透過部)であるが、レーザ光221を透過可能な部材であればこれらには限定されない。
造形ステージ205は、金属積層造形物210が造形されるプラットフォームであり、造形タンク203に収容される。造形ステージ205は、金属積層造形物210の土台となる表面251を有する。つまり、金属積層造形物210は、造形ステージ205の表面251の上に造形される。造形ステージ205は、表面251が、金属粉体214の落下方向215または鉛直方向と平行となるように設けられている。すなわち、表面251は、鉛直方向に対して、平行な面である。つまり、造形ステージ205は、タンクケース232の底面に対して垂直に立った状態となっている。
そのため、表面251の上に造形される金属積層造形物210は、鉛直方向に対して垂直な方向(横方向)に積層される。なお、表面251は、鉛直方向に平行な面には限定されず、例えば、鉛直方向に対して45度以下の角度をなす面が好ましいが、45度以上の角度であってもよい。金属積層造形物210を造形するための金属粉体214は、造形ステージ205と造形タンク203の光照射部202が設置されている側のタンクカバー231との間の隙間に供給される。
すなわち、供給部201は、造形タンク203の内壁面と表面251との間隙に金属粉体214を供給する。つまり、供給部201は、造形タンク203の光照射部202側の内壁面(タンクカバー231の内壁面)と造形ステージ205の表面251との間の隙間に金属粉体214を供給する。例えば、供給部201から供給される金属粉体214の量は、タンクカバー231と造形ステージ205との間の距離に応じて調整される。また、金属積層造形物210の1層分の厚みは、タンクカバー231と造形ステージ205との間の距離により決定される。金属積層造形物210の1層分の厚み(積層間隔、積層ピッチ)は、金属粉体214の粒径に応じた厚みとする。すなわち、金属積層造形物210の1層分の厚みは、金属粉体214の粒径(大きさ)よりも大きくなる。例えば、供給される金属粉体214の粒径が2.0μmであれば、金属積層造形物210の1層分の厚みは、2.0μmより厚くなる。
このように、金属粉体214を供給すると、供給された金属粉体214は厚さが均一な層を形成することになり、従来のように供給された金属粉体214を平らに均すための作業(いわゆる、スキージ)は不要となる。すなわち、金属粉体214の粒径が2.0μm以下の金属粉体214を従来のように水平に積層する場合には、平らに均す作業により金属粉体214が潰れるなどして、3次元積層造形物の造形材料としての質が低下していた。これに対して、3次元積層造形装置200においては、供給した金属粉体214を平らに均す必要がないので、金属粉体214の質が低下するような問題は発生しない。さらに、供給された金属粉体214を平らに均す作業をしなくても、金属粉体214を供給するだけで等厚な金属粉体214の層を形成できる。
そして、タンクカバー231(造形タンク203の内壁面)と表面251との間に供給され、収容された1層分の金属粉体214に対して、光照射部202は、レーザ光221を照射する。レーザ光221が照射された金属粉体214は、溶融され、固化する。レーザ光221が照射されなかった金属粉体214は、固化しない。3次元積層造形装置200は、1層分の金属粉体214の供給および固化が終わると、次の1層分の金属粉体214の供給および固化を行う。3次元積層造形装置200は、これを繰り返すことにより、金属積層造形物210の造形を行う。
リニア駆動ユニットは、駆動部206から延設され、造形ステージ205に連結されている。そして、駆動部206は、アクチュエータやモータなどを含む駆動機構であり、駆動部206を駆動させると、リニア駆動ユニット261が移動する。そして、リニア駆動ユニット261の移動に連動して、造形ステージ205も、表面251に垂直な方向(矢印方向)に移動する。タンクカバー231と造形ステージ205との間の距離は、駆動部206の駆動により調整される。
なお、駆動部206は、金属粉体214が供給された後、タンクカバー231側(図中矢印と逆方向)に造形プレート205を押圧してもよい。この場合、駆動部206は、供給部201が造形タンク203の内壁面と造形ステージ205の表面251との間隙に金属粉体214を供給した後、光照射部202がレーザ光221を照射する前に、造形ステージ205を内壁面側に移動させる。これにより、供給された金属粉体214を平らに均す作業をしなくても、供給された金属粉体214を等厚な層とすることができ、さらに、金属粉体214のかさ密度を高めることができる。
載置台207には、光照射部202および造形タンク203が載置されている。なお、供給部201は、設置板216を介して載置台207に取り付けられる。光照射部202は、載置台207の上面に設置された台222に取り付けられている。光照射部202は、造形タンク203に対してレーザ光を照射する。
このように造形タンク203は、光照射部202の横方向(載置台207の載置面に水平な方向)に配置されているので、3次元積層造形装置200では、横方向積層により金属積層造形物210を製造できる。
制御部208は、供給量センサ213が検知した検知結果を受信する。そして、制御部208は、供給量センサ213による検知結果に応じて、供給部201、光照射部202および駆動部206を制御する。制御部208は、供給部201による金属粉体214の供給量や供給タイミングを制御する。また、制御部208は、光照射部202によるレーザ光221の照射強度や照射時間を制御する。さらに、制御部208は、駆動部206による造形ステージ205の移動量や移動タイミングを制御する。
図3は、本実施形態に係る3次元積層造形装置の光照射部の構成の一例を説明する図である。光照射部202は、光源301、レーザ光源302および二次元MEMS(Micro Electro Mechanical System)ミラー304を有する。二次元MEMSミラーは、電気機械式ミラーである。
光源301は、固体レーザやガスレーザ、高出力半導体レーザの発振器である。そして、光源301から照射されたレーザ光はレーザ光を誘導する光ファイバ311を経由して集光部312へと導かれる。集光部312は、集光レンズやコリメータレンズなどを含む。集光部312に入射したレーザ光は、例えば、集光レンズにより集光され、また、コリメータレンズにより平行光とされ、その後出射する。
レーザ光源302は、レーザ光の光源である。そして、レーザ光源302から照射されたレーザ光は、集光部322へと導かれる。集光部322は、集光レンズやコリメータレンズなどを含む。また、レーザ光源302は、半導体LD(Laser Diode;レーザダイオード)であり、可視光のレーザ光などを照射(発振)するレーザ光発振素子である。そして、集光部322に入射した可視レーザ光は、例えば、集光レンズにより集光され、また、コリメータレンズにより平行光とされ、その後出射する。なお、レーザ光源302から照射されるレーザ光を用いて光源301から照射されるレーザ光の位置合わせを行ってもよい。
また、光源301およびレーザ光源302から照射されるレーザ光の出力は、例えば、100Wであるが、これには限定されず、100W未満であっても、100Wより大きくてもよい。
二次元MEMSミラー304は、外部から入力された制御信号に基づいて駆動される駆動ミラーであり、水平方向(X方向)および垂直方向(Y方向)に角度を変えてレーザ光を反射するように振動する。二次元MEMSミラー304で反射されたレーザ光は、画角補正素子(不図示)により画角の補正がなされる。そして、画角の補正がなされたレーザ光が、金属積層造形物210上や加工面上を走査され、所望の加工や造形が行われる。なお、画角補正素子は、必要に応じて設置される。なお、二次元MEMSミラー304を用いる代わりに、一次元MEMSミラーを2つ用いてもよい。
ここで、光源301から照射されたレーザ光は、ミラー320およびミラー340で反射して二次元MEMSミラー304へと到達する。同様に、レーザ光源302から照射されたレーザ光は、ミラー310およびミラー340で反射して二次元MEMSミラー304へと到達する。ミラー340は、光照射部202の底部(底面)に配置されている。そして、ミラー310は、レーザ光源302からのレーザ光の反射光を底面に配置されたミラー340へ向けて、下方向へ反射させる。ミラー320は、レーザ光源301からのレーザ光の反射光を底面に配置されたミラー340へ向けて下方向へ反射させる。そして、ミラー340は、ミラー340の上方に配置されている二次元MEMSミラー304に向けて、上方向へミラー310,320からの各レーザ光を反射させる。二次元MEMSミラー304は、ミラー340からの反射光を二次元方向に走査させて照射する。
光源301およびレーザ光源302から照射された各レーザ光は、各ミラー310,320で反射した後は、二次元MEMSミラー304を通過して、金属積層造形物210へと到達する。つまり、光源301から照射されたレーザ光とレーザ光源302から照射されたレーザ光とは、同じ光路を通過する。したがって、レーザ光源302からのレーザ光を用いて位置合わせをしておけば、レーザ光源302からのレーザ光が照射された位置に光源301からのレーザ光が照射されるので、光源301からのレーザ光の位置合わせを容易に行える。
図4は、本実施形態に係る3次元積層造形装置の備える造形テーブルの一例を説明する図である。造形テーブル401は、造形ID(Identifier)411に関連付けて、金属粉体412、積層間隔413および照射条件414を記憶する。造形ID411は、3次元積層造形装置200による金属積層造形物210の造形を識別するための識別子である。金属粉体412は、造形に使用する金属の粉体のデータであり、金属の種類や、粉体の粒径などのデータを含む。積層間隔413は、金属積層造形物210を積層造形する際の、金属積層造形物210の1層分の層の厚みであり、造形ステージ205をスライド移動させる量、つまり、積層ピッチを表す。照射条件414は、レーザ光の照射条件であり、レーザ光の周波数や出力、照射時間、走査ピッチ(走査間隔)、走査幅などを含む。3次元積層造形装置200は、例えば、造形テーブル401を参照して、金属積層造形物210を造形する。
図5は、本実施形態に係る3次元積層造形装置のハードウェア構成を示すブロック図である。CPU(Central Processing Unit)510は、演算制御用のプロセッサであり、プログラムを実行することで図2の3次元積層造形装置200の機能構成部を実現する。CPU510は複数のプロセッサを有し、異なるプログラムやモジュール、タスク、スレッドなどを並行して実行してもよい。ROM(Read Only Memory)520は、初期データおよびプログラムなどの固定データおよびその他のプログラムを記憶する。また、ネットワークインタフェース530は、ネットワークを介して他の装置などと通信する。なお、CPU510は1つに限定されず、複数のCPUであっても、あるいは画像処理用のGPU(Graphics Processing Unit)を含んでもよい。また、ネットワークインタフェース530は、CPU510とは独立したCPUを有して、RAM(Random Access Memory)540の領域に送受信データを書き込みあるいは読み出しするのが望ましい。また、RAM540とストレージ550との間でデータを転送するDMAC(Direct Memory Access Controller)を設けるのが望ましい(図示なし)。さらに、CPU510は、RAM540にデータが受信あるいは転送されたことを認識してデータを処理する。また、CPU510は、処理結果をRAM540に準備し、後の送信あるいは転送はネットワークインタフェース530やDMACに任せる。
RAM540は、CPU510が一時記憶のワークエリアとして使用するランダムアクセスメモリである。RAM540には、本実施形態の実現に必要なデータを記憶する領域が確保されている。金属粉体データ541は、金属積層造形物210の造形に使用される金属の粉体についてのデータである。積層間隔542は、金属積層造形物210の造形における金属積層造形物210の1層分の層の厚み(積層ピッチ)である。照射条件543は、金属積層造形物210の造形に用いるレーザ光の出力や照射時間などを示すデータである。造形モデル544は、金属積層造形物210の造形のために用いられる、CAD(Computer Aided Design)データであり、3次元積層造形装置200は、このデータに基づいて、金属積層造形物を造形する。これらのデータは、例えば、造形テーブル401などから展開される。
送受信データ545は、ネットワークインタフェース530を介して送受信されるデータである。また、RAM540は、各種アプリケーションモジュールを実行するためのアプリケーション実行領域546を有する。
ストレージ550には、データベースや各種のパラメータ、あるいは本実施形態の実現に必要な以下のデータまたはプログラムが記憶されている。ストレージ550は、造形テーブル401を格納する。造形テーブル401は、図4に示した、造形ID411と照射条件414などとの関係を管理するテーブルである。
ストレージ550は、さらに、移動モジュール551、供給モジュール552および光照射モジュール553を格納する。移動モジュール551は、造形ステージ205を積層方向に移動させるモジュールである。供給モジュール552は、造形ステージ205の表面251に層状に金属粉体214を供給するモジュールである。光照射モジュール553は、造形ステージ205の表面251において層状に供給された金属粉体のうち、所定位置の金属粉体に対してレーザ光221を照射するモジュールである。これらのモジュール551〜553は、CPU510によりRAM540のアプリケーション実行領域546に読み出され、実行される。制御プログラム554は、3次元積層造形装置200の全体を制御するためのプログラムである。
入出力インタフェース560は、入出力機器との入出力データをインタフェースする。入出力インタフェース560には、表示部561、操作部562、が接続される。また、入出力インタフェース560には、さらに、記憶媒体564が接続されてもよい。さらに、音声出力部であるスピーカ563や、音声入力部であるマイク(図示せず)、あるいは、GPS位置判定部が接続されてもよい。なお、図5に示したRAM540やストレージ550には、3次元積層造形装置200が有する汎用の機能や他の実現可能な機能に関するプログラムやデータは図示されていない。
図6は、本実施形態に係る3次元積層造形装置の動作手順を説明するフローチャートである。このフローチャートは、図5のCPU510がRAM540を使用して実行し、図2の3次元積層造形装置200の機能構成部を実現する。ステップS601において、3次元積層造形装置200は、造形プログラムを受信する。ステップS603において、3次元積層造形装置200は、金属積層造形物210の造形に使用する金属粉体の種類や粒径を取得する。また、3次元積層造形装置200は、積層間隔やレーザ光の照射条件などを取得する。
ステップS605において、3次元積層造形装置200は、金属粉体214を供給する。ステップS607において、3次元積層造形装置200は、供給された金属粉体214にレーザ光221を照射する。ステップS609において、3次元積層造形装置200は、造形ステージ205を積層間隔に応じてスライドさせて移動させるように制御する。ステップS61において、3次元積層造形装置200は、金属積層造形物210の造形が終了したか否かを判断する。金属積層造形物210の造形が終了していない場合(ステップS611のNO)、3次元積層造形装置200は、ステップS605へ戻り、以降のステップを繰り返す。金属積層造形物210の造形が終了した場合(ステップS611のYES)、3次元積層造形装置200は、造形処理を終了する。
本実施形態によれば、光造形により金属積層造形物を造形できる。また、光照射部にMEMSミラーを用いたので、簡易な構成で高出力のレーザ光が照射できる。そして、高出力のレーザ光を照射できるので、簡易な構成の装置で、金属積層造形物を造形できる。また、金属積層造形物の1層分の積層間隔を小さくしたので、レーザ光であっても金属積層造形物を造形できる。さらに、横方向積層により金属積層造形物を造形するので、粒径が小さい金属粉体であっても、縦方向(垂直方向)積層のように供給された金属粉体を均す必要かないので、粒径の小さい金属粉体であっても、確実に金属積層造形物を造形できる。また、同様に、積層間隔を小さくして、金属積層造形物の1層分の厚みを薄くしたので、レーザ光であっても金属積層造形物を造形できる。
[第3実施形態]
次に本発明の第3実施形態に係る3次元積層造形装置について、図7Aおよび図7Bを用いて説明する。図7Aは、本実施形態に係る3次元積層造形装置の構成を説明するための概略正面図である。図7Bは、本実施形態に係る3次元積層造形装置を傾けた状態を説明するための概略側面図である。本実施形態に係る3次元積層造形装置は、上記第2実施形態と比べると、傾斜駆動部を有する点で異なる。その他の構成および動作は、第2実施形態と同様であるため、同じ構成および動作については同じ符号を付してその詳しい説明を省略する。
3次元積層造形装置700は、傾斜駆動部701をさらに備える。傾斜駆動部701は、載置台207を傾斜させる。傾斜駆動部701は、例えば、載置台207の左端にある図4Aの紙面に垂直な方向の軸を中心にして、載置台207を回動させることにより、載置台207を傾斜させる。
例えば、傾斜駆動部701は、載置台207(3次元積層造形装置700)を下から持ち上げて傾斜させる装置であり、機械式ジャッキ、液体作動式ジャッキ、空気作動ジャッキなどであるが、これらには限定されない。そして、このような傾斜駆動部を、載置台207の右端の底面部分に設けることにより、載置台207の右端側を持ち上げることができ、載置台207を傾斜させることができる。なお、3次元積層造形装置700を傾斜させる方法は、ジャッキなどで下から持ち上げる方法には限定されず、例えば、クレーンなどで上から引っ張り上げる方法であってもよい。また、傾斜は固定したものであってもよい。なお、傾斜させる角度は、45度以下の角度が好ましい。
また、本実施形態においては、タンクカバー741(造形タンクの側壁)は、タンクケース742に開閉可能に設けられている。また、タンクカバー741は、レーザ光221が到来する到来方向側に設けられている。そして、図4Bに示したように、3次元積層造形装置700を傾けさせて、さらに、タンクカバー741を上方に跳ね上げるようにして、開扉すると、レーザ光221を金属粉体214に直接照射することが可能となる。つまり、レーザ光221を金属粉体214に照射する際に、タンクカバー741が開放される。
3次元積層造形装置700を、水平状態で稼働させる場合は、タンクカバー741と造形ステージ205との間に供給した金属粉体214がこぼれ落ちないように、タンクカバー741は閉じておかなければならない。つまり、供給された金属粉体214が崩れないように、タンクカバー741と造形ステージ205とで金属粉体214を挟んで、押さえておかなければならない。このように、タンクカバー741を閉じていると、光照射部202からのレーザ光221は、タンクカバー741を透過してから金属粉体214に照射されることとなる。このように、レーザ光221がタンクカバー741を透過する間に、照射されるレーザ光221が減衰するので、金属粉体214に対して、所望の熱(エネルギー)を与えることができなくなる。なお、この場合、レーザ光221の照射時間を増やせば、金属粉体214に所望の熱を与えることができるが、造形時間が増えてしまう。
金属粉体214にレーザ光221を直接照射するために、3次元積層造形装置700全体を傾けさせて、タンクカバー741を開く。つまり、光照射部202と造形タンク203とを傾けさせることにより、供給された金属粉体214の崩れ落ちを防止しつつ、タンクカバー741を開いてレーザ光221が金属粉体214に直接照射されるようにする。このようにすれば、光照射部202と金属粉体214との間に障害物がなくなるので、金属粉体214に対して、レーザ光221を直接照射することが可能となる。
3次元積層造形装置700を傾けるので、造形ステージ205とタンクカバー741との間に供給された金属粉体214が、高い側から低い側(傾きの上部から傾きの下部)へ向かって動くので、金属粉体214のかさ密度を均一にすることができる。なお、金属粉体214の供給は、3次元積層造形装置700を傾けた状態で行っても、傾けない状態で行ってもよい。
また、制御部208は、さらに、供給量センサ213による検知結果に応じて、傾斜駆動部701による3次元積層造形装置700の傾斜角度やレーザ光221の照射時間などを調整してもよい。
本実施形態によれば、装置を傾け、タンクカバー(側壁)を開くことにより、金属粉体にレーザ光を直接照射すると共に、金属粉体を横方向に積層させながら金属積層造形物210を製造することができる。また、装置を傾けさせるので、タンクカバーを開いても供給した金属粉体がこぼれ落ちることがない。また、装置を傾けることにより、傾いた装置の傾きの上部から傾きの下部へ向かって金属粉体が動くので、供給された金属粉体のかさ密度を均一にすることができる。
[他の実施形態]
以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。また、それぞれの実施形態に含まれる別々の特徴を如何様に組み合わせたシステムまたは装置も、本発明の範疇に含まれる。
また、本発明は、複数の機器から構成されるシステムに適用されてもよいし、単体の装置に適用されてもよい。さらに、本発明は、実施形態の機能を実現する情報処理プログラムが、システムあるいは装置に直接あるいは遠隔から供給される場合にも適用可能である。したがって、本発明の機能をコンピュータで実現するために、コンピュータにインストールされるプログラム、あるいはそのプログラムを格納した媒体、そのプログラムをダウンロードさせるWWW(World Wide Web)サーバも、本発明の範疇に含まれる。特に、少なくとも、上述した実施形態に含まれる処理ステップをコンピュータに実行させるプログラムを格納した非一時的コンピュータ可読媒体(non-transitory computer readable medium)は本発明の範疇に含まれる。

Claims (8)

  1. 金属積層造形物の造形を行う場所としての造形ステージと、
    前記造形ステージを移動させる移動部と、
    前記造形ステージの表面に層状に金属粉体を供給する供給部と、
    前記造形ステージの表面において層状に供給された金属粉体のうち、所定位置の粉体に対してレーザ光を照射する光照射部と、
    を備えた3次元積層造形装置であって、
    光照射部は、
    前記レーザ光を照射するレーザダイオードと、
    前記レーザ光を反射させて、前記造形ステージの表面において層状に供給された金属粉体のうち、所定位置の金属粉体に対して照射するための電気機械式ミラーと、
    を含み、
    前記供給部は、粒径50μm以下の金属粉体を供給し、
    前記移動部は、1層分として、前記粒径に応じて、前記光照射部から離す方向に前記造形ステージを移動させる3次元積層造形装置。
  2. 前記造形ステージを収容する造形タンクをさらに備え、
    前記造形ステージの前記表面は、鉛直方向または鉛直方向に対して所定の角度をなし、
    前記供給部は、前記造形タンクの内壁面と前記表面との間隙に前記金属粉体を供給する請求項1に記載の3次元積層造形装置。
  3. 前記供給部が、前記造形タンクの内壁面と前記表面との間隙に前記金属粉体を供給した後、前記光照射部がレーザ光を照射する前に、前記移動部が、前記造形ステージを前記内壁面側に移動させる請求項2に記載の3次元積層造形装置。
  4. 前記金属粉体は、銅、ニッケル、コバルト、モリブデン、チタン、アルミニウムおよびステンレスの少なくとも1つを含む請求項1乃至3のいずれか1項に記載の3次元造形装置。
  5. 前記供給部は、前記粒径として、2.0μm以下の金属粉体を供給し、
    前記移動部は、1層分として、2.0μm以上で、前記光照射部から離す方向に前記造形ステージを移動させる請求項1乃至4のいずれか1項に記載の3次元積層造形装置。
  6. 前記造形タンクを傾斜させる傾斜駆動部をさらに備えた請求項2乃至5のいずれか1項に記載の3次元積層造形装置。
  7. 金属積層造形物の造形を行う場所としての造形ステージと、
    前記造形ステージを移動させる移動部と、
    前記造形ステージの表面に層状に金属粉体を供給する供給部と、
    前記造形ステージの表面において層状に供給された金属粉体のうち、所定位置の粉体に対してレーザ光を照射する光照射部と、
    を備えた3次元積層造形装置であって、
    光照射部は、
    前記レーザ光を照射するレーザダイオードと、
    前記レーザ光を反射させて、前記造形ステージの表面において層状に供給された金属粉体のうち、所定位置の金属粉体に対して照射するための電気機械式ミラーと、
    を含み、
    前記供給部が、粒径50μm以下の金属粉体を供給するステップと、
    前記移動部により、1層分として、前記粒径に応じて、前記光照射部から離す方向に前記造形ステージを移動させるステップと、
    を含む3次元積層造形装置の制御方法。
  8. 金属積層造形物の造形を行う場所としての造形ステージと、
    前記造形ステージを移動させる移動部と、
    前記造形ステージの表面に層状に金属粉体を供給する供給部と、
    前記造形ステージの表面において層状に供給された金属粉体のうち、所定位置の粉体に対してレーザ光を照射する光照射部と、
    を備えた3次元積層造形装置であって、
    光照射部は、
    前記レーザ光を照射するレーザダイオードと、
    前記レーザ光を反射させて、前記造形ステージの表面において層状に供給された金属粉体のうち、所定位置の金属粉体に対して照射するための電気機械式ミラーと、
    を含み、
    前記供給部が、粒径50μm以下の金属粉体を供給するステップと、
    前記移動部により、1層分として、前記粒径に応じて、前記光照射部から離す方向に前記造形ステージを移動させるステップと、
    をコンピュータに実行させる3次元積層造形装置の制御プログラム。
JP2018201377A 2018-10-26 2018-10-26 3次元積層造形装置、3次元積層造形装置の制御方法および3次元積層造形装置の制御プログラム Pending JP2020066784A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018201377A JP2020066784A (ja) 2018-10-26 2018-10-26 3次元積層造形装置、3次元積層造形装置の制御方法および3次元積層造形装置の制御プログラム
US16/664,591 US20200246872A1 (en) 2018-10-26 2019-10-25 Three-dimensional laminating and shaping apparatus, control method of three-dimensional laminating and shaping apparatus, and control program of three-dimensional laminating and shaping apparatus
CN201921825893.8U CN212168952U (zh) 2018-10-26 2019-10-28 三维层叠造型装置
CN201911029595.2A CN111468721A (zh) 2018-10-26 2019-10-28 三维层叠造型装置、该装置的控制方法及控制程序

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018201377A JP2020066784A (ja) 2018-10-26 2018-10-26 3次元積層造形装置、3次元積層造形装置の制御方法および3次元積層造形装置の制御プログラム

Publications (1)

Publication Number Publication Date
JP2020066784A true JP2020066784A (ja) 2020-04-30

Family

ID=70389704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018201377A Pending JP2020066784A (ja) 2018-10-26 2018-10-26 3次元積層造形装置、3次元積層造形装置の制御方法および3次元積層造形装置の制御プログラム

Country Status (3)

Country Link
US (1) US20200246872A1 (ja)
JP (1) JP2020066784A (ja)
CN (2) CN111468721A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020066784A (ja) * 2018-10-26 2020-04-30 カンタツ株式会社 3次元積層造形装置、3次元積層造形装置の制御方法および3次元積層造形装置の制御プログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016511713A (ja) * 2013-04-30 2016-04-21 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. 3次元物体の作製
JP2018003087A (ja) * 2016-06-30 2018-01-11 キヤノン株式会社 3次元造形装置、および3次元造形物の製造方法
WO2018183003A1 (en) * 2017-03-31 2018-10-04 Konica Minolta Laboratory U.S.A., Inc. 3d imaging by multiple sensors during 3d printing

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070077323A1 (en) * 2005-09-30 2007-04-05 3D Systems, Inc. Rapid prototyping and manufacturing system and method
US9989495B2 (en) * 2015-11-19 2018-06-05 General Electric Company Acoustic monitoring method for additive manufacturing processes
JP6774020B2 (ja) * 2016-09-29 2020-10-21 セイコーエプソン株式会社 三次元造形物の製造装置及び三次元造形物の製造方法
JP6177412B1 (ja) * 2016-11-22 2017-08-09 株式会社ソディック 積層造形装置
JP2020066784A (ja) * 2018-10-26 2020-04-30 カンタツ株式会社 3次元積層造形装置、3次元積層造形装置の制御方法および3次元積層造形装置の制御プログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016511713A (ja) * 2013-04-30 2016-04-21 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. 3次元物体の作製
JP2018003087A (ja) * 2016-06-30 2018-01-11 キヤノン株式会社 3次元造形装置、および3次元造形物の製造方法
WO2018183003A1 (en) * 2017-03-31 2018-10-04 Konica Minolta Laboratory U.S.A., Inc. 3d imaging by multiple sensors during 3d printing

Also Published As

Publication number Publication date
US20200246872A1 (en) 2020-08-06
CN111468721A (zh) 2020-07-31
CN212168952U (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
JP5018076B2 (ja) 光造形装置及び光造形方法
JP5951668B2 (ja) 積層造形装置の材料供給装置及び積層造形装置
JP4957242B2 (ja) 光造形装置
JP5023975B2 (ja) 光造形装置及び光造形方法
EP3672783B1 (en) System and methods for fabricating a component using a consolidating device
US10500640B2 (en) Systems and methods of volumetric 3D printing
WO2015151313A1 (ja) 積層造形物の製造方法および混合材料
CN105856573A (zh) 一种高精度高速度连续3d打印机及其打印方法
JP2009113294A (ja) 光造形装置及び光造形方法
JP2006506249A (ja) プログラマブルな材料圧密化システムと共に使用される取り扱いシステム及び関連する方法
JP6304109B2 (ja) 積層造形装置
JP7150121B1 (ja) 造形プログラムの作成方法、積層造形方法および積層造形装置
JP6411785B2 (ja) 三次元造形装置
KR20180048717A (ko) 3d 인쇄 동안 모델 상에 힘 보상 포인트를 제공하는 시스템 및 방법
CN108081600A (zh) 利用线性激光光源的3d打印机
CN212168952U (zh) 三维层叠造型装置
JP2009083240A (ja) 光造形装置
US10350825B2 (en) Method and apparatus for forming an image onto an object using selective laser sintering
KR20170107647A (ko) 3차원 프린터에 의한 조형 장치 및 방법
TWI584941B (zh) 快速成型系統及其方法
JP6464996B2 (ja) 3dプリンタ装置の制御装置
RU2299787C2 (ru) Установка порошковой лазерной стереолитографии
JP2008162189A (ja) 光造形装置
JP2018051970A (ja) 三次元造形装置、三次元物体製造方法および三次元造形プログラム
CN212264873U (zh) 激光加工装置

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20190829

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210316

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230411