[go: up one dir, main page]

JP2020064125A - Image forming apparatus - Google Patents

Image forming apparatus Download PDF

Info

Publication number
JP2020064125A
JP2020064125A JP2018194692A JP2018194692A JP2020064125A JP 2020064125 A JP2020064125 A JP 2020064125A JP 2018194692 A JP2018194692 A JP 2018194692A JP 2018194692 A JP2018194692 A JP 2018194692A JP 2020064125 A JP2020064125 A JP 2020064125A
Authority
JP
Japan
Prior art keywords
secondary transfer
current
transfer
voltage
recording material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018194692A
Other languages
Japanese (ja)
Other versions
JP7207934B2 (en
JP2020064125A5 (en
Inventor
豊 筧
Yutaka Kakehi
豊 筧
祐輔 湊
Yusuke Minato
祐輔 湊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018194692A priority Critical patent/JP7207934B2/en
Publication of JP2020064125A publication Critical patent/JP2020064125A/en
Publication of JP2020064125A5 publication Critical patent/JP2020064125A5/ja
Application granted granted Critical
Publication of JP7207934B2 publication Critical patent/JP7207934B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Control Or Security For Electrophotography (AREA)

Abstract

To provide an image forming apparatus that controls a transfer voltage based on a result of detection of a current when a recording material passes through a transfer unit, and can change a change width in changing the transfer voltage according to a variation in electric resistance of a transfer member.SOLUTION: An image forming apparatus 100 comprises: an image carrier 7; a transfer member 8; a power supply 20 that applies a voltage to the transfer member 8; a detection unit 21 that detects a current flowing in the transfer member 8; and a control unit 50 that performs constant voltage control of the voltage applied to the transfer member 8, wherein the control unit 50 can change a transfer voltage applied to the transfer member 8 such that the current flowing in the transfer member 8 during transfer falls within a predetermined range. When the control unit 50 changes the transfer voltage applied to the transfer member 8 such that the current flowing in the transfer member 8 during transfer falls within the predetermined range, the control unit changes the transfer voltage for every predetermined change width of the transfer voltage, and changes the change width based on a result of detection of the current detected by the detection unit 21 when the voltage is applied to the transfer member 8 when a recording material P is not in a transfer unit N2.SELECTED DRAWING: Figure 4

Description

本発明は、電子写真方式や静電記録方式を用いた複写機、プリンタ、ファクシミ装置などの画像形成装置に関するものである。   BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image forming apparatus such as a copying machine, a printer or a fax machine which uses an electrophotographic system or an electrostatic recording system.

従来、電子写真方式などを用いた画像形成装置では、感光体や中間転写体などの像担持体から紙などの記録材へトナー像を静電的に転写することが行われる。この転写は、像担持体と当接して転写部を形成する転写ローラなどの転写部材に転写電圧が印加されることで行われることが多い。転写電圧が低すぎると、転写が十分に行われずに所望の画像濃度が得られない「画像濃度薄」が発生することがあることがある。また、転写電圧が高すぎると、転写部で放電が発生し、その放電の影響でトナー像のトナーの電荷の極性が反転するなどして、トナー像が部分的に転写されない「白抜け」が発生することがある。そのため、高品質の画像を形成するためには、転写部材に適切な転写電圧を印加することが求められる。   Conventionally, in an image forming apparatus using an electrophotographic method or the like, a toner image is electrostatically transferred from an image carrier such as a photoconductor or an intermediate transfer member to a recording material such as paper. This transfer is often performed by applying a transfer voltage to a transfer member such as a transfer roller that contacts the image carrier to form a transfer portion. If the transfer voltage is too low, the transfer may not be performed sufficiently and a desired image density may not be obtained, which may result in “low image density”. Also, if the transfer voltage is too high, discharge occurs at the transfer section, and the polarity of the charge of the toner in the toner image is reversed due to the effect of the discharge, resulting in “white spots” in which the toner image is not partially transferred. May occur. Therefore, in order to form a high quality image, it is required to apply an appropriate transfer voltage to the transfer member.

転写に必要な電荷量は記録材のサイズやトナー像の面積率によって様々に変動する。そのため、転写電圧は、所定の電流密度に対応した一定の電圧を印加する定電圧制御で印加されることが多い。転写電圧が定電圧制御で印加される場合には、記録材の外側や記録材上のトナー像が無い部分を流れる電流とは無関係に、目的のトナー像を転写する部分に所定の電圧に応じた転写電流を確保しやすいからである。しかし、転写部を構成する転写部材の電気抵抗は、製品のばらつき、部材温度、累積使用時間などに応じて変化し、転写部を通過する記録材の電気抵抗も、記録材の種類、周囲環境(温度・湿度)に応じて変化する。そのため、転写電圧を定電圧制御する場合、転写部材や記録材の電気抵抗の変動に対応して転写電圧を調整することが必要になる。   The amount of charge required for transfer varies depending on the size of the recording material and the area ratio of the toner image. Therefore, the transfer voltage is often applied by constant voltage control in which a constant voltage corresponding to a predetermined current density is applied. When the transfer voltage is applied by constant voltage control, the predetermined voltage is applied to the portion to which the target toner image is transferred, regardless of the current flowing outside the recording material or on the portion without the toner image on the recording material. This is because it is easy to secure a high transfer current. However, the electric resistance of the transfer member that constitutes the transfer portion changes according to product variations, member temperature, cumulative use time, etc., and the electric resistance of the recording material passing through the transfer portion also depends on the type of recording material, the surrounding environment. It changes according to (temperature and humidity). Therefore, when the transfer voltage is controlled to a constant voltage, it is necessary to adjust the transfer voltage according to the fluctuation of the electric resistance of the transfer member or the recording material.

特許文献1では、転写部材に定電圧制御で転写電圧を印加して転写を行う構成における、次のような転写電圧の制御が開示されている。連続画像形成の開始直前に記録材が無い状態の転写部に所定の電圧を印加して電流値を検知し、所定の目標電流が得られる電圧値を求める。そして、この電圧値に記録材の種類に応じた記録材分担電圧を加算して、転写時に定電圧制御で印加する転写電圧値を設定する。   Patent Document 1 discloses the following control of the transfer voltage in the configuration in which the transfer voltage is applied to the transfer member by the constant voltage control to perform the transfer. Immediately before the start of continuous image formation, a predetermined voltage is applied to the transfer portion in the state where there is no recording material, the current value is detected, and the voltage value with which the predetermined target current is obtained is obtained. Then, a recording material sharing voltage according to the type of recording material is added to this voltage value to set a transfer voltage value to be applied by constant voltage control during transfer.

ここで、記録材の種類には、例えば、上質紙、コート紙のような記録材の表面の平滑性の違いによる種類や、薄紙、厚紙のような記録材の厚さの違いによる種類がある。記録材分担電圧は、例えばこのような記録材の種類に応じて予め求めておくことができる。しかし、流通している記録材の種類が非常に多いこと、あるいは記録材の電気抵抗は環境(温度・湿度)が同じでも環境に置かれた時間などによって変動することなどから、記録材分担電圧を予め精度よく求めることは困難であることが多い。記録材の電気抵抗の変動分も含めて転写電圧が適切な値でないと、上述のように画像濃度薄、白抜けといった画像不良が発生することがある。   Here, the types of recording materials include, for example, types due to differences in surface smoothness of recording materials such as high-quality paper and coated paper, and types due to differences in thickness of recording materials such as thin paper and thick paper. . The recording material sharing voltage can be obtained in advance, for example, according to the type of recording material. However, since there are many types of recording materials in circulation, or the electrical resistance of recording materials fluctuates depending on the time of being placed in the environment even if the environment (temperature and humidity) is the same, the recording material sharing voltage It is often difficult to accurately determine in advance. If the transfer voltage including the fluctuation of the electric resistance of the recording material is not an appropriate value, image defects such as low image density and blank areas may occur as described above.

このような課題に対し、特許文献2、特許文献3では、転写部を記録材が通過している際に転写電圧を定電圧制御で印加する構成において、転写部に供給される電流の上限値及び下限値を設けることが提案されている。このような制御により、転写部を記録材が通過している際に転写部に供給される電流を所定の範囲の値とすることができるため、転写電流の不足又は過剰による画像不良の発生を抑制することができる。特許文献2では、上限値を環境情報に基づいて求めている。特許文献3では、環境以外に記録材の表裏、記録材の種類、記録材のサイズによって上限値及び下限値を求めている。   In order to solve such a problem, in Patent Documents 2 and 3, in a configuration in which a transfer voltage is applied by constant voltage control while a recording material is passing through the transfer unit, an upper limit value of a current supplied to the transfer unit. And it is proposed to set a lower limit. By such control, the current supplied to the transfer portion when the recording material is passing through the transfer portion can be set to a value within a predetermined range, so that the occurrence of image defects due to insufficient or excessive transfer current is prevented. Can be suppressed. In Patent Document 2, the upper limit value is obtained based on environmental information. In Patent Document 3, the upper limit value and the lower limit value are obtained depending on the front and back of the recording material, the type of the recording material, and the size of the recording material in addition to the environment.

特開2004−117920号公報JP, 2004-117920, A 特許第4161005号公報Japanese Patent No. 4161005 特開2008−275946号公報JP, 2008-275946, A

上述のように、転写部を記録材が通過している際に転写部に流れる電流を検知して、この電流が所定の範囲内(上限値以下、下限値以上)になるように転写電圧を制御する方法がある。この方法で転写電圧を制御する場合、電流が所定の範囲から外れたことが検知されてから、その電流が所定の範囲内になるように転写電圧の変更が完了するまでにはタイムラグが生じる。そのため、転写電圧の変更が完了するまでの間に転写部を通過する記録材の領域においては、転写電流が適切な範囲から外れているため、図16に示すような転写電流の過不足による濃度低下などの画像不良が発生することがある。   As described above, when the recording material passes through the transfer portion, the current flowing through the transfer portion is detected, and the transfer voltage is set so that the current is within a predetermined range (upper limit value or lower limit value or higher). There is a way to control. When the transfer voltage is controlled by this method, there is a time lag from when it is detected that the current is out of the predetermined range until the transfer voltage is changed so that the current is within the predetermined range. Therefore, in the area of the recording material that passes through the transfer portion until the transfer voltage change is completed, the transfer current is out of the appropriate range, so that the density due to the excess or deficiency of the transfer current as shown in FIG. Image defects such as deterioration may occur.

この現象を抑制するためには、単位時間当たりの転写電圧の変動幅を大きくすることが考えられる。しかし、単位時間当たりの転写電圧の変動幅を大きくしてしまうと、転写部材の電気抵抗が小さい場合には単位時間当たりの電流の変化量が大きくなりすぎてしまう場合がある。単位時間当たりの電流の変化量が大きくなりすぎると電流が適切な範囲を超えて不足状態と過剰状態とを繰り返すことがある。そのため、濃度薄などの濃度段差や、放電現象による白抜けなどの局所的な画像不良が生じることがある。   In order to suppress this phenomenon, it is possible to increase the fluctuation range of the transfer voltage per unit time. However, if the fluctuation range of the transfer voltage per unit time is increased, the amount of change in the current per unit time may become too large when the electric resistance of the transfer member is small. If the amount of change in the current per unit time becomes too large, the current may exceed the appropriate range and the insufficient state and the excessive state may be repeated. Therefore, a local image defect such as a density difference such as low density or a white spot due to a discharge phenomenon may occur.

したがって、本発明の目的は、転写部を記録材が通過している際の電流の検知結果に基づいて転写電圧を制御する構成において、転写部材の電気抵抗の変動に応じて、転写電圧を変更する際の変更幅を変更可能な画像形成装置を提供することである。   Therefore, an object of the present invention is to change the transfer voltage according to the fluctuation of the electric resistance of the transfer member in the configuration that controls the transfer voltage based on the detection result of the current when the recording material is passing through the transfer portion. It is an object of the present invention to provide an image forming apparatus capable of changing the change width when performing.

上記目的は本発明に係る画像形成装置にて達成される。要約すれば、本発明は、トナー像を担持する像担持体と、前記像担持体と当接し前記像担持体から記録材にトナー像を転写する転写部を形成する転写部材と、前記転写部材に電圧を印加する電源と、前記転写部材に流れる電流を検知する検知部と、前記転写部を記録材が通過している際に前記転写部材に所定電圧が印加されるように前記転写部材に印加する電圧の定電圧制御を行う制御部と、を有し、前記制御部は、転写時に前記転写部材に流れる電流が前記所定範囲内となるように前記転写部材に印加する転写電圧を変更可能な画像形成装置において、前記制御部は、転写時に前記転写部材に流れる電流が前記所定範囲内となるように前記転写部材に印加する前記転写電圧を変更する場合において、前記転写電圧の変更を前記転写電圧の所定の変動幅ごとに行い、前記変動幅を、前記転写部に記録材が無い状態で前記転写部材に電圧を印加したときに前記検知部で検知される検知結果に基づいて変更することを特徴とする画像形成装置である。   The above object is achieved by the image forming apparatus according to the present invention. In summary, the present invention relates to an image carrier that carries a toner image, a transfer member that contacts the image carrier and forms a transfer unit that transfers the toner image from the image carrier to a recording material, and the transfer member. A power source for applying a voltage to the transfer member, a detection unit for detecting a current flowing through the transfer member, and a transfer member for applying a predetermined voltage to the transfer member while a recording material passes through the transfer unit. A control unit that performs constant voltage control of the applied voltage, and the control unit can change the transfer voltage applied to the transfer member so that the current flowing through the transfer member falls within the predetermined range during transfer. In the image forming apparatus, the controller changes the transfer voltage when changing the transfer voltage applied to the transfer member so that the current flowing through the transfer member during transfer is within the predetermined range. Place of transfer voltage And changing the variation range based on a detection result detected by the detection unit when a voltage is applied to the transfer member in a state where there is no recording material in the transfer unit. Image forming apparatus.

本発明によれば、転写部を記録材が通過している際の電流の検知結果に基づいて転写電圧を制御する構成において、転写部材の電気抵抗の変動に応じて、転写電圧を変更する際の変更幅を変更可能となる。   According to the present invention, when the transfer voltage is changed based on the change in the electric resistance of the transfer member in the configuration that controls the transfer voltage based on the detection result of the current when the recording material is passing through the transfer portion, The change width of can be changed.

画像形成装置の概略構成図である。1 is a schematic configuration diagram of an image forming apparatus. 2次転写に関する構成の模式図である。It is a schematic diagram of a configuration related to secondary transfer. 画像形成装置の要部の制御態様を示す概略ブロック図である。FIG. 3 is a schematic block diagram showing a control mode of main parts of the image forming apparatus. 実施例1の制御のフローチャート図である。FIG. 3 is a flowchart of the control of the first embodiment. 2次転写部の電圧と電流との関係の一例を示すグラフ図である。It is a graph figure which shows an example of the relationship of the voltage and current of a secondary transfer part. 記録材分担電圧のテーブルデータの一例を示す模式図である。It is a schematic diagram which shows an example of the table data of recording material sharing voltage. 通紙部電流範囲のテーブルデータの一例を示す模式図である。It is a schematic diagram which shows an example of the table data of a paper passing part electric current range. 非通紙部電流の補正係数のテーブルデータの一例を示す模式図である。It is a schematic diagram which shows an example of the table data of the correction coefficient of a non-sheet passing part current. 記録材の厚さによる2次転写電流範囲の変化を説明するためのグラフ図である。FIG. 6 is a graph for explaining a change in the secondary transfer current range depending on the thickness of the recording material. 実施例2の制御のフローチャート図である。FIG. 7 is a flowchart of the control of the second embodiment. 実施例3の制御のフローチャート図である。FIG. 8 is a flow chart diagram of control in Example 3; 2次転写電流範囲のテーブルデータの一例を示す模式図である。It is a schematic diagram which shows an example of table data of a secondary transfer current range. 通紙部電流と非通紙部電流を説明するための模式図である。It is a schematic diagram for explaining the paper passing portion current and the non-paper passing portion current. 転写部材の電気抵抗の変化による適切な電流の範囲の変化を説明するための表である。9 is a table for explaining changes in an appropriate current range due to changes in the electrical resistance of the transfer member. 記録材の厚さによる適切な電流の範囲の変化を説明するための模式図である。FIG. 6 is a schematic diagram for explaining a change in an appropriate current range depending on the thickness of a recording material. オーバーシュート現象による画像不良を説明するための模式図である。It is a schematic diagram for explaining an image defect due to an overshoot phenomenon. オーバーシュート現象を説明するためのグラフ図である。It is a graph figure for demonstrating an overshoot phenomenon.

以下、本発明に係る画像形成装置を図面に則して更に詳しく説明する。   Hereinafter, the image forming apparatus according to the present invention will be described in more detail with reference to the drawings.

[実施例1]
1.画像形成装置の全体的な構成及び動作
図1は、本実施例の画像形成装置100の概略構成図である。本実施例の画像形成装置100は、電子写真方式を用いてフルカラー画像を形成することが可能な、中間転写方式を採用したタンデム型の複合機(複写機、プリンタ、ファクシミリ装置の機能を有する。)である。
[Example 1]
1. Overall Configuration and Operation of Image Forming Apparatus FIG. 1 is a schematic configuration diagram of an image forming apparatus 100 of this embodiment. The image forming apparatus 100 of the present embodiment has a function of a tandem type multi-functional machine (copier, printer, facsimile machine) that can form a full-color image by using an electrophotographic method and adopts an intermediate transfer method. ).

画像形成装置100は、複数の画像形成部(ステーション)として、それぞれイエロー、マゼンタ、シアン、ブラックの各色の画像を形成する第1、第2、第3、第4の画像形成部SY、SM、SC、SKを有する。各画像形成部SY、SM、SC、SKにおける同一又は対応する機能あるいは構成を有する要素については、いずれかの色用の要素であることを示す符号の末尾のY、M、C、Kを省略して総括的に説明することがある。本実施例では、画像形成部Sは、後述する感光ドラム1、帯電ローラ2、露光装置3、現像装置4、1次転写ローラ5、ドラムクリーニング装置6を有して構成される。   The image forming apparatus 100 includes, as a plurality of image forming units (stations), first, second, third, and fourth image forming units SY, SM, which form images of respective colors of yellow, magenta, cyan, and black. It has SC and SK. Regarding the elements having the same or corresponding functions or configurations in each image forming unit SY, SM, SC, SK, Y, M, C, K at the end of the reference numerals indicating the elements for any color are omitted. There is a general explanation. In this embodiment, the image forming section S is configured to include a photosensitive drum 1, a charging roller 2, an exposure device 3, a developing device 4, a primary transfer roller 5, and a drum cleaning device 6 which will be described later.

画像形成部Sは、トナー像を担持する第1の像担持体としての、回転可能なドラム型(円筒形)の感光体(電子写真感光体)である感光ドラム1を有する。感光ドラム1は、図中矢印R1方向(反時計回り)に回転駆動される。回転する感光ドラム1の表面は、帯電手段としてのローラ型の帯電部材である帯電ローラ2によって、所定の極性(本実施例では負極性)の所定の電位に一様に帯電処理される。帯電処理された感光ドラム1の表面は、画像情報に基づいて露光手段としての露光装置(レーザースキャナー装置)3によって走査露光され、感光ドラム1上に静電像(静電潜像)が形成される。   The image forming unit S includes a photosensitive drum 1 that is a rotatable drum-type (cylindrical) photoconductor (electrophotographic photoconductor) as a first image carrier that carries a toner image. The photosensitive drum 1 is rotationally driven in the direction of arrow R1 (counterclockwise) in the figure. The surface of the rotating photosensitive drum 1 is uniformly charged to a predetermined potential of a predetermined polarity (negative polarity in this embodiment) by a charging roller 2 which is a roller type charging member as a charging means. The surface of the charged photosensitive drum 1 is scanned and exposed by an exposure device (laser scanner device) 3 as an exposure unit based on image information, and an electrostatic image (electrostatic latent image) is formed on the photosensitive drum 1. It

感光ドラム1上に形成された静電像は、現像手段としての現像装置4によって現像剤としてのトナーが供給されて現像(可視化)され、感光ドラム1上にトナー像が形成される。本実施例では、一様に帯電処理された後に露光されることで電位の絶対値が低下した感光ドラム1上の露光部(イメージ部)に、感光ドラム1の帯電極性と同極性に帯電したトナーが付着する(反転現像方式)。本実施例では、現像時のトナーの帯電極性であるトナーの正規の帯電極性は負極性である。露光装置3によって形成される静電像は、小さいドット画像の集合体となっており、ドット画像の密度を変化させることで感光ドラム1上に形成するトナー像の濃度を変化させることができる。本実施例では、各色のトナー像は、それぞれ最大濃度が1.5〜1.7程度となっており、最大濃度の時のトナーの載り量は0.4〜0.6mg/cm程度となっている。 The electrostatic image formed on the photosensitive drum 1 is developed (visualized) by supplying toner as a developer by a developing device 4 as a developing unit, and a toner image is formed on the photosensitive drum 1. In this embodiment, the exposed portion (image portion) on the photosensitive drum 1 where the absolute value of the potential has been lowered by being uniformly charged and then exposed is charged to the same polarity as the photosensitive drum 1. Toner adheres (reverse development method). In this embodiment, the regular charging polarity of the toner, which is the charging polarity of the toner during development, is negative. The electrostatic image formed by the exposure device 3 is an aggregate of small dot images, and the density of the toner image formed on the photosensitive drum 1 can be changed by changing the density of the dot image. In this embodiment, the maximum density of the toner image of each color is about 1.5 to 1.7, and the applied amount of toner at the maximum density is about 0.4 to 0.6 mg / cm 2. Has become.

4個の感光ドラム1の表面に当接可能なように、トナー像を担持する第2の像担持体としての、無端状のベルトで構成された中間転写体である中間転写ベルト7が配置されている。中間転写ベルト7は、複数の張架ローラとしての駆動ローラ71、テンションローラ72、及び2次転写対向ローラ73に張架されている。駆動ローラ71は、中間転写ベルト7に駆動力を伝達する。テンションローラ72は、中間転写ベルト7の張力を一定に制御する。2次転写対向ローラ73は、後述する2次転写ローラ8の対向部材(対向電極)として機能する。中間転写ベルト7は、駆動ローラ71が回転駆動されることで、図中矢印R2方向(時計回り)に300〜500mm/sec程度の搬送速度(周速度)で回転(周回移動)する。テンションローラ72は、付勢手段としてのばねの力によって、中間転写ベルト7を内周面側から外周面側へ押し出すような力が加えられており、この力によって中間転写ベルト7の搬送方向へは2〜5kg程度のテンションがかけられている。中間転写ベルト7の内周面側には、各感光ドラム1に対応して、1次転写手段としてのローラ型の1次転写部材である1次転写ローラ5が配置されている。1次転写ローラ5は、中間転写ベルト7を介して感光ドラム1に向けて押圧されて、感光ドラム1と中間転写ベルト7とが接触する1次転写部(1次転写ニップ)N1を形成する。感光ドラム1上に形成されたトナー像は、1次転写部N1において、1次転写ローラ5の作用によって、回転している中間転写ベルト7上に静電的に転写(一次転写)される。1次転写工程時に、1次転写ローラ5には、1次転写電源(図示せず)から、トナーの正規の帯電極性とは逆極性の直流電圧である1次転写電圧(1次転写バイアス)が印加される。例えばフルカラー画像の形成時には、各感光ドラム1上に形成されたイエロー、マゼンタ、シアン、ブラックの各色のトナー像が、中間転写ベルト7上に重ね合わされるようにして順次転写される。   An intermediate transfer belt 7, which is an intermediate transfer member composed of an endless belt, is arranged as a second image carrier for carrying a toner image so as to be able to contact the surfaces of the four photosensitive drums 1. ing. The intermediate transfer belt 7 is stretched around a driving roller 71, a tension roller 72, and a secondary transfer counter roller 73, which are a plurality of stretching rollers. The driving roller 71 transmits a driving force to the intermediate transfer belt 7. The tension roller 72 controls the tension of the intermediate transfer belt 7 to be constant. The secondary transfer counter roller 73 functions as a counter member (counter electrode) of the secondary transfer roller 8 described later. The driving roller 71 is driven to rotate, so that the intermediate transfer belt 7 rotates (rotates) in the direction of arrow R2 (clockwise) at a conveyance speed (peripheral speed) of about 300 to 500 mm / sec. The tension roller 72 is applied with a force that pushes the intermediate transfer belt 7 from the inner peripheral surface side to the outer peripheral surface side by the force of a spring as an urging unit, and this force causes the intermediate transfer belt 7 to move in the conveying direction. Has a tension of about 2 to 5 kg. On the inner peripheral surface side of the intermediate transfer belt 7, a primary transfer roller 5 which is a roller-type primary transfer member as a primary transfer means is arranged corresponding to each photosensitive drum 1. The primary transfer roller 5 is pressed toward the photosensitive drum 1 via the intermediate transfer belt 7 to form a primary transfer portion (primary transfer nip) N1 where the photosensitive drum 1 and the intermediate transfer belt 7 come into contact with each other. . The toner image formed on the photosensitive drum 1 is electrostatically transferred (primary transfer) onto the rotating intermediate transfer belt 7 by the action of the primary transfer roller 5 at the primary transfer portion N1. During the primary transfer process, the primary transfer roller 5 is supplied with a primary transfer voltage (primary transfer bias) from a primary transfer power source (not shown), which is a DC voltage having a polarity opposite to the regular charging polarity of the toner. Is applied. For example, when forming a full-color image, the toner images of yellow, magenta, cyan, and black formed on the photosensitive drums 1 are sequentially transferred so as to be superimposed on the intermediate transfer belt 7.

中間転写ベルト7の外周面側において、2次転写対向ローラ73に対向する位置には、2次転写手段としてのローラ型の2次転写部材である2次転写ローラ8が配置されている。2次転写ローラ8は、中間転写ベルト7を介して2次転写対向ローラ73に向けて押圧されて、中間転写ベルト7と2次転写ローラ8とが接触する2次転写部(2次転写ニップ)N2を形成する。中間転写ベルト7上に形成されたトナー像は、2次転写部N2において、2次転写ローラ8の作用によって、中間転写ベルト7と2次転写ローラ8とに挟持されて搬送されている紙(用紙)などの記録材(シート、転写材)Pに静電的に転写(2次転写)される。2次転写工程時に、2次転写ローラ8には、2次転写電源(高圧電源回路)20から、トナーの正規の帯電極性とは逆極性の直流電圧である2次転写電圧(2次転写バイアス)が印加される。記録材Pは、記録材カセット(図示せず)などに収容されており、給送ローラ(図示せず)などによって記録材カセットから1枚ずつ給送され、レジストローラ9へと送られる。この記録材Pは、レジストローラ9によって一旦停止させられた後、中間転写ベルト7上のトナー像とタイミングが合わされて2次転写部N2へと供給される。   On the outer peripheral surface side of the intermediate transfer belt 7, a secondary transfer roller 8 which is a roller type secondary transfer member as a secondary transfer unit is arranged at a position facing the secondary transfer counter roller 73. The secondary transfer roller 8 is pressed against the secondary transfer counter roller 73 via the intermediate transfer belt 7, and the intermediate transfer belt 7 and the secondary transfer roller 8 come into contact with each other. ) Form N2. The toner image formed on the intermediate transfer belt 7 is conveyed by being sandwiched between the intermediate transfer belt 7 and the secondary transfer roller 8 by the action of the secondary transfer roller 8 at the secondary transfer portion N2 ( It is electrostatically transferred (secondary transfer) to a recording material (sheet, transfer material) P such as paper. During the secondary transfer process, the secondary transfer roller 8 receives a secondary transfer voltage (secondary transfer bias) which is a DC voltage having a polarity opposite to the normal charging polarity of the toner from the secondary transfer power supply (high voltage power supply circuit) 20. ) Is applied. The recording material P is contained in a recording material cassette (not shown) or the like, and is fed one by one from the recording material cassette by a feeding roller (not shown) or the like, and sent to the registration roller 9. The recording material P is temporarily stopped by the registration roller 9, and then is supplied to the secondary transfer portion N2 in time with the toner image on the intermediate transfer belt 7.

トナー像が転写された記録材Pは、搬送部材などによって定着手段としての定着装置10へと搬送される。定着装置10は、未定着のトナー像を担持した記録材Pを加熱及び加圧することで、記録材Pにトナー像を定着(溶融、固着)させる。その後、記録材Pは、画像形成装置100の装置本体の外部に排出(出力)される。   The recording material P on which the toner image is transferred is conveyed to a fixing device 10 as a fixing unit by a conveying member or the like. The fixing device 10 fixes (melts and fixes) the toner image on the recording material P by heating and pressing the recording material P carrying the unfixed toner image. After that, the recording material P is discharged (output) to the outside of the main body of the image forming apparatus 100.

また、1次転写工程後に感光ドラム1の表面に残留したトナー(1次転写残トナー)は、感光体クリーニング手段としてのドラムクリーニング装置6によって感光ドラム1の表面から除去されて回収される。また、2次転写工程後に中間転写ベルト7の表面に残留したトナー(2次転写残トナー)や紙粉などの付着物は、中間転写体クリーニング手段としてのベルトクリーニング装置74によって中間転写ベルト7の表面から除去されて回収される。   Further, the toner (primary transfer residual toner) remaining on the surface of the photosensitive drum 1 after the primary transfer step is removed from the surface of the photosensitive drum 1 by a drum cleaning device 6 as a photosensitive member cleaning unit and collected. Further, the toner (secondary transfer residual toner) remaining on the surface of the intermediate transfer belt 7 after the secondary transfer step, and the adhered substances such as paper powder are removed from the intermediate transfer belt 7 by a belt cleaning device 74 as an intermediate transfer member cleaning unit. It is removed from the surface and collected.

ここで、本実施例では、中間転写ベルト7は、内周面側から外周面側に樹脂層、弾性層、表層の3層構造を有する無端状のベルトである。樹脂層を構成する樹脂材料としては、ポリイミド、ポリカーボネートなどを用いることができる。樹脂層の厚さは、70〜100μmが好適である。また、弾性層を構成する弾性材料としては、ウレタンゴム、クロロプレンゴムなどを用いることができる。弾性層の厚さは、200〜250μmが好適である。また、表層の材料としては、中間転写ベルト7の表面へのトナーの付着力を小さくして、2次転写部N2においてトナーを記録材Pへ転写しやすくする材料が望ましい。例えば、ポリウレタン、ポリエステル、エポキシ樹脂などのうちの1種類又は2種類以上の樹脂材料を使用することができる。あるいは、弾性材料(弾性材ゴム、エラストマー)、ブチルゴムなどの弾性材料のうちの1種類又は2種類以上を使用することができる。また、これらの材料に、表面エネルギーを小さくし潤滑性を高める材料、例えばフッ素樹脂などの粉体、粒子を1種類又は2種類以上、あるいはこれらの粉体、粒子のうち1種類又は2種類以上の粒径を異ならせたものを分散させて使用することができる。なお、表層の厚さは、5〜10μmが好適である。中間転写ベルト7は、カーボンブラックなどの電気抵抗調整用の導電剤が添加されて電気抵抗が調整され、好ましくは体積抵抗率が1×10〜1×1014Ω・cmとされている。 Here, in this embodiment, the intermediate transfer belt 7 is an endless belt having a three-layer structure of a resin layer, an elastic layer, and a surface layer from the inner peripheral surface side to the outer peripheral surface side. As the resin material forming the resin layer, polyimide, polycarbonate, or the like can be used. The thickness of the resin layer is preferably 70 to 100 μm. Further, as the elastic material forming the elastic layer, urethane rubber, chloroprene rubber or the like can be used. The thickness of the elastic layer is preferably 200 to 250 μm. Further, as the material of the surface layer, a material that reduces the adhesive force of the toner to the surface of the intermediate transfer belt 7 and facilitates the transfer of the toner to the recording material P at the secondary transfer portion N2 is desirable. For example, one kind or two or more kinds of resin materials such as polyurethane, polyester, and epoxy resin can be used. Alternatively, one kind or two or more kinds of elastic materials (elastic material rubber, elastomer), butyl rubber and the like can be used. Further, in addition to these materials, one or more kinds of materials such as powders and particles of fluororesin, etc., which reduce surface energy and improve lubricity, or one or more kinds of these powders and particles are used. The particles having different particle sizes can be dispersed and used. The thickness of the surface layer is preferably 5 to 10 μm. The electrical resistance of the intermediate transfer belt 7 is adjusted by adding a conductive agent for electrical resistance adjustment such as carbon black, and the volume resistivity is preferably 1 × 10 9 to 1 × 10 14 Ω · cm.

また、本実施例では、2次転写ローラ8は、芯金(基材)と、芯金の周囲にイオン導電系発泡ゴム(NBRゴム)で形成された弾性層と、を有して構成される。本実施例では、2次転写ローラ8の外径は24mm、2次転写ローラ8の表面粗さRzは6.0〜12.0(μm)である。また、本実施例では、2次転写ローラ8の電気抵抗値はN/N(23℃、50%RH)において2kVを印加して測定した場合1×10〜1×10Ω、弾性層の硬度はAsker−C硬度で30〜40°程度である。また、本実施例では、2次転写ローラ8の長手方向(回転軸線方向)の幅(記録材Pの搬送方向と略直交する方向の長さ)は310〜340mm程度である。本実施例では、2次転写ローラ8の長手方向の幅は、画像形成装置100が搬送を保証する記録材Pの幅(搬送方向と略直交する方向の長さ)のうちの最大の幅(最大幅)より長い。本実施例では、記録材Pは2次転写ローラ8の長手方向の中央を基準として搬送されるため、画像形成装置100が搬送を保証する記録材Pは全て2次転写ローラ8の長手方向の長さ範囲内を通過する。これにより、様々なサイズの記録材Pを安定して搬送し、また様々なサイズの記録材Pにトナー像を安定して転写することが可能とされている。 In addition, in this embodiment, the secondary transfer roller 8 is configured to include a core metal (base material) and an elastic layer formed of ion conductive foam rubber (NBR rubber) around the core metal. It In this embodiment, the outer diameter of the secondary transfer roller 8 is 24 mm, and the surface roughness Rz of the secondary transfer roller 8 is 6.0 to 12.0 (μm). Further, in this embodiment, the electric resistance value of the secondary transfer roller 8 is 1 × 10 5 to 1 × 10 7 Ω when measured by applying 2 kV at N / N (23 ° C., 50% RH), the elastic layer. The hardness is about 30 to 40 ° in Asker-C hardness. Further, in this embodiment, the width of the secondary transfer roller 8 in the longitudinal direction (rotational axis direction) (the length in the direction substantially orthogonal to the conveying direction of the recording material P) is about 310 to 340 mm. In this embodiment, the width of the secondary transfer roller 8 in the longitudinal direction is the maximum width (the length in the direction substantially orthogonal to the carrying direction) of the recording material P that the image forming apparatus 100 guarantees the carrying ( Maximum width) longer. In this embodiment, since the recording material P is conveyed with the center of the secondary transfer roller 8 in the longitudinal direction as a reference, all the recording materials P guaranteed by the image forming apparatus 100 to be conveyed in the longitudinal direction of the secondary transfer roller 8. Pass within the length range. Thereby, it is possible to stably convey the recording materials P of various sizes and to stably transfer the toner image to the recording materials P of various sizes.

図2は、2次転写に関する構成の模式図である。2次転写ローラ8は中間転写ベルト7を介して2次転写対向ローラ73と当接することで2次転写部N2を形成している。2次転写ローラ8には、出力電圧値が可変の2次転写電源20が接続されている。2次転写対向ローラ73は、電気的に接地(グランドに接続)されている。2次転写部N2を記録材Pが通過している際に、2次転写ローラ8にトナーの正規の帯電極性とは逆極性の直流電圧である2次転写電圧が印加され、2次転写部N2に2次転写電流が供給されることで、中間転写ベルト7上のトナー像が記録材P上へ転写される。本実施例では、2次転写時に2次転写部N2には、例えば+20〜+80μAの2次転写電流が流される。   FIG. 2 is a schematic diagram of a configuration related to secondary transfer. The secondary transfer roller 8 forms a secondary transfer portion N2 by contacting the secondary transfer counter roller 73 via the intermediate transfer belt 7. A secondary transfer power source 20 whose output voltage value is variable is connected to the secondary transfer roller 8. The secondary transfer counter roller 73 is electrically grounded (connected to the ground). When the recording material P is passing through the secondary transfer portion N2, a secondary transfer voltage, which is a DC voltage having a polarity opposite to the regular charging polarity of the toner, is applied to the secondary transfer roller 8, and the secondary transfer portion is applied. By supplying the secondary transfer current to N2, the toner image on the intermediate transfer belt 7 is transferred onto the recording material P. In this embodiment, a secondary transfer current of, for example, +20 to +80 μA is applied to the secondary transfer portion N2 during secondary transfer.

本実施例では、各種の情報に基づいて、2次転写部N2を記録材Pが通過している際の2次転写電流の上限値及び下限値(「2次転写電流範囲」)が決められる。詳しくは後述するように、この各種の情報は、次の各情報を含む。まず、画像形成装置100の装置本体に設けられた操作部31(図3)や画像形成装置100と通信可能に接続されたパーソナルコンピュータなどの外部装置200(図3)で指定された条件に関する情報である。また、環境センサ32(図3)の検知結果に関する情報である。また、2次転写部N2に記録材Pが到達する前に検知される2次転写部N2の電気抵抗に関する情報である。そして、2次転写部N2を記録材Pが通過している際に、2次転写部N2に流れる2次転写電流を検知しながら、該2次転写電流が上記2次転写電流範囲の値となるように、2次転写電源20から定電圧制御で出力される2次転写電圧が制御される。ここで、特に、本実施例では、2次転写電流範囲は、2次転写部N2を通過する記録材Pの厚さ、記録材Pの幅に関する情報に基づいて変化させられる。なお、本実施例では、操作部31や外部装置200から入力される情報に基づいて記録材Pの厚さ及び記録材Pの幅に関する情報が取得される。ただし、画像形成装置100内に記録材Pの厚さや幅を検知する検知手段を設けて、この検知手段によって取得される情報に基づいて制御を行うことも可能である。   In the present embodiment, the upper limit value and the lower limit value (“secondary transfer current range”) of the secondary transfer current when the recording material P is passing through the secondary transfer portion N2 are determined based on various information. . As will be described later in detail, the various types of information include the following types of information. First, information regarding conditions specified by the operation unit 31 (FIG. 3) provided in the apparatus body of the image forming apparatus 100 and the external device 200 (FIG. 3) such as a personal computer communicably connected to the image forming apparatus 100. Is. In addition, it is information regarding the detection result of the environment sensor 32 (FIG. 3). In addition, it is information regarding the electric resistance of the secondary transfer portion N2 that is detected before the recording material P reaches the secondary transfer portion N2. Then, while the recording material P is passing through the secondary transfer portion N2, while the secondary transfer current flowing through the secondary transfer portion N2 is being detected, the secondary transfer current becomes a value within the above-mentioned secondary transfer current range. As a result, the secondary transfer voltage output from the secondary transfer power supply 20 by the constant voltage control is controlled. Here, particularly in the present embodiment, the secondary transfer current range is changed based on the information regarding the thickness of the recording material P passing through the secondary transfer portion N2 and the width of the recording material P. In this embodiment, the information about the thickness of the recording material P and the width of the recording material P is acquired based on the information input from the operation unit 31 or the external device 200. However, it is also possible to provide detection means for detecting the thickness and width of the recording material P in the image forming apparatus 100 and perform control based on the information acquired by this detection means.

本実施例では、このような制御を行うために、2次転写電源20には、2次転写部N2(2次転写電源20)に流れる電流(2次転写電流)を検知する電流検知手段(検知部)としての電流検知回路21が接続されている。また、2次転写電源20には、2次転写電源20が出力する電圧(転写電圧)を検知する電圧検知手段(検知部)としての電圧検知回路22が接続されている。本実施例では、2次転写電源20と、電流検知回路21と、電圧検知回路22とは、同一の高圧基板内に設けられている。   In the present embodiment, in order to perform such control, the secondary transfer power source 20 has a current detection unit (secondary transfer current) that detects a current (secondary transfer current) flowing through the secondary transfer portion N2 (secondary transfer power source 20). A current detection circuit 21 as a detection unit) is connected. Further, the secondary transfer power supply 20 is connected to a voltage detection circuit 22 as a voltage detection unit (detection unit) that detects a voltage (transfer voltage) output from the secondary transfer power supply 20. In this embodiment, the secondary transfer power source 20, the current detection circuit 21, and the voltage detection circuit 22 are provided in the same high voltage substrate.

2.制御態様
図3は、本実施例の画像形成装置100の要部の制御態様を示す概略ブロック図である。制御部(制御回路)50は、演算処理を行う中心的素子である制御手段としてのCPU51、記憶手段としてのRAM52、ROM53などのメモリ(記憶媒体)などを有して構成される。書き換え可能なメモリであるRAM52には、制御部50に入力された情報、検知された情報、演算結果などが格納され、ROM53には制御プログラム、予め求められたデータテーブルなどが格納されている。CPU51とRAM52、ROM53などのメモリとは互いにデータの転送や読込みが可能となっている。
2. Control Mode FIG. 3 is a schematic block diagram showing a control mode of a main part of the image forming apparatus 100 of this embodiment. The control unit (control circuit) 50 includes a CPU 51 as a control unit, which is a central element for performing arithmetic processing, a RAM 52 as a storage unit, a memory (storage medium) such as a ROM 53, and the like. The RAM 52, which is a rewritable memory, stores information input to the control unit 50, detected information, calculation results, and the like, and the ROM 53 stores a control program, a data table obtained in advance, and the like. The CPU 51 and memories such as the RAM 52 and the ROM 53 can mutually transfer and read data.

制御部50には、画像形成装置100に設けられた画像読取り装置(図示せず)やパーソナルコンピュータなどの外部装置200が接続されている。また、制御部50には、画像形成装置100に設けられた操作部(操作パネル)31が接続されている。操作部31は、制御部50の制御によりユーザーやサービス担当者などの操作者に各種情報を表示する表示部と、操作者が画像形成に関する各種設定などを制御部50に入力するための入力部と、を有して構成される。また、制御部50には、2次転写電源20と、電流検知回路21と、電圧検知回路22と、が接続されている。本実施例では、2次転写電源20は、2次転写ローラ8に定電圧制御された直流電圧である2次転写電圧を印加する。また、制御部50には、環境センサ32が接続されている。本実施例では、環境センサ32は、画像形成装置100の筐体内の温度及び湿度を検知する。環境センサ32により検知された温度及び湿度の情報は、制御部50に入力される。環境センサ32は、画像形成装置100の内部又は外部の少なくとも一方の温度又は湿度の少なくとも一方を検知する環境検知手段の一例である。制御部50は、画像読み取り装置や外部装置200からの画像情報、操作部31や外部装置200からの制御指令に基づき、画像形成装置100の各部を統括的に制御して、画像形成動作を実行させる。   An external device 200 such as an image reading device (not shown) provided in the image forming apparatus 100 or a personal computer is connected to the control unit 50. An operation unit (operation panel) 31 provided in the image forming apparatus 100 is connected to the control unit 50. The operation unit 31 includes a display unit that displays various information to an operator such as a user or a service person under the control of the control unit 50, and an input unit that allows the operator to input various settings related to image formation to the control unit 50. And are configured. In addition, the control unit 50 is connected to the secondary transfer power supply 20, a current detection circuit 21, and a voltage detection circuit 22. In the present embodiment, the secondary transfer power supply 20 applies a secondary transfer voltage, which is a constant voltage-controlled DC voltage, to the secondary transfer roller 8. Further, the environment sensor 32 is connected to the control unit 50. In this embodiment, the environment sensor 32 detects the temperature and humidity inside the housing of the image forming apparatus 100. Information on the temperature and humidity detected by the environment sensor 32 is input to the control unit 50. The environment sensor 32 is an example of an environment detecting unit that detects at least one of temperature and humidity inside or outside the image forming apparatus 100. The control unit 50 comprehensively controls each unit of the image forming apparatus 100 based on the image information from the image reading device or the external device 200 and the control command from the operation unit 31 or the external device 200 to execute the image forming operation. Let

ここで、画像形成装置100は、一の開始指示(プリント指示)により開始される、単一又は複数の記録材Pに画像を形成して出力する一連の動作であるジョブ(プリント動作)を実行する。ジョブは、一般に、画像形成工程、前回転工程、複数の記録材Pに画像を形成する場合の紙間工程、及び後回転工程を有する。画像形成工程は、実際に記録材Pに形成して出力する画像の静電像の形成、トナー像の形成、トナー像の1次転写、2次転写を行う期間であり、画像形成時(画像形成期間)とはこの期間のことをいう。より詳細には、これら静電像の形成、トナー像の形成、トナー像の1次転写、2次転写の各工程を行う位置で、画像形成時のタイミングは異なる。前回転工程は、開始指示が入力されてから実際に画像を形成し始めるまでの、画像形成工程の前の準備動作を行う期間である。紙間工程は、複数の記録材Pに対する画像形成を連続して行う際(連続画像形成)の記録材Pと記録材Pとの間に対応する期間である。後回転工程は、画像形成工程の後の整理動作(準備動作)を行う期間である。非画像形成時(非画像形成期間)とは、画像形成時以外の期間であって、上記前回転工程、紙間工程、後回転工程、更には画像形成装置100の電源投入時又はスリープ状態からの復帰時の準備動作である前多回転工程などが含まれる。本実施例では、非画像形成時に、2次転写電流の上限値及び下限値(「2次転写電流範囲」)を決定する制御が実行される。   Here, the image forming apparatus 100 executes a job (print operation) which is a series of operations for forming and outputting an image on a single or a plurality of recording materials P, which is started by one start instruction (print instruction). To do. The job generally includes an image forming step, a pre-rotating step, a sheet interval step when forming images on a plurality of recording materials P, and a post-rotating step. The image forming step is a period in which an electrostatic image of an image actually formed on the recording material P and output is formed, a toner image is formed, a primary transfer of the toner image is performed, and a secondary transfer of the toner image is performed. The formation period) means this period. More specifically, the timing of image formation is different at the positions where the steps of forming the electrostatic image, forming the toner image, primary transfer of the toner image, and secondary transfer are performed. The pre-rotation step is a period during which a preparatory operation before the image forming step is performed from the input of the start instruction to the actual start of image formation. The sheet interval process is a period corresponding to the recording material P between the recording materials P when images are continuously formed on a plurality of recording materials P (continuous image formation). The post-rotation step is a period during which the rearrangement operation (preparation operation) is performed after the image forming step. The non-image forming period (non-image forming period) is a period other than the image forming period, and includes the above-described pre-rotation step, sheet-to-sheet step, post-rotation step, and even when the image forming apparatus 100 is powered on or in a sleep state. The pre-multi-rotation step, which is a preparatory operation at the time of restoration, is included. In this embodiment, control is performed to determine the upper limit value and the lower limit value (“secondary transfer current range”) of the secondary transfer current during non-image formation.

3.オーバーシュートの影響
紙などの記録材の電気抵抗の変化の要因として、記録材中に含まれる水分量の変化がある。記録材が製造工程でパック詰めされたときの環境と、ユーザーが画像形成装置を使用する際の画像形成装置が置かれている環境と、の差分が大きい程、記録材の水分量の変化は大きくなる。例えば、記録材の製造時の水分量が5.0〜6.0%であったのに対して、記録材の使用時の環境が低湿環境(例えば、温度23℃、5%RH)の場合、記録材の水分量は3.0%以下になることがある。また、記録材の水分量の変化が同じである場合、記録材の厚さが大きいほど記録材の電気抵抗の変化が大きく、転写電流を適切な範囲に調整するための転写電圧の変化量が大きくなる。例えば、坪量が300g/m以上の厚紙が、上述のように水分量が5.0〜6.0%の状態から3.0%以下の状態に変化すると、転写電流を適切な範囲に調整するために必要な転写電圧の変化量が1000V以上にもなることがある。このとき、転写中に転写電圧を一挙に変えようとすると、転写電圧が一度大きく狙いを超えた値まで上昇し、その後狙いの値まで落ちていくオーバーシュート現象が顕著に表れる(図17参照)。この転写電圧のオーバーシュート現象が発生すると、転写電圧を印加することで流れる電流にもオーバーシュート現象が発生する。ここで、電流に発生するオーバーシュート現象の程度を示すオーバーシュート電流の大きさを、次のように定義する。つまり、図17に示すように、転写電圧の変更(切り替え)が終了してから所定の時間が経過し、電流が定常状態に収束した際の電流の値(絶対値)と、転写電圧の変更動作中に一時的に大きくなる電流のピーク値(絶対値の最大値)と、の差分として定義する。
3. Effect of overshoot A factor that changes the electrical resistance of recording materials such as paper is the change in the amount of water contained in the recording material. The greater the difference between the environment when the recording material is packed in the manufacturing process and the environment in which the image forming apparatus is placed when the user uses the image forming apparatus, the more the amount of water in the recording material changes. growing. For example, when the recording material has a water content of 5.0 to 6.0% while the recording material is used in a low humidity environment (eg, temperature 23 ° C., 5% RH). The water content of the recording material may be 3.0% or less. Further, when the change in the water content of the recording material is the same, the change in the electric resistance of the recording material is larger as the thickness of the recording material is larger, and the change amount of the transfer voltage for adjusting the transfer current to an appropriate range is smaller. growing. For example, when the weight of the thick paper having a basis weight of 300 g / m 2 or more changes from the state of the water content of 5.0 to 6.0% to the state of 3.0% or less as described above, the transfer current is set to an appropriate range. The amount of change in the transfer voltage required for adjustment may be 1000 V or more. At this time, if it is attempted to change the transfer voltage all at once during transfer, an overshoot phenomenon in which the transfer voltage once greatly increases to a value that exceeds the target and then drops to the target value appears (see FIG. 17). . When this overshoot phenomenon of the transfer voltage occurs, the overshoot phenomenon also occurs in the current flowing by applying the transfer voltage. Here, the magnitude of the overshoot current indicating the degree of the overshoot phenomenon occurring in the current is defined as follows. That is, as shown in FIG. 17, when the transfer voltage is changed (switched) for a predetermined time, the current value (absolute value) when the current converges to a steady state, and the transfer voltage change It is defined as the difference between the peak value (maximum absolute value) of the current that temporarily increases during operation.

例えば、試験を行った一例の構成では、転写電圧が1000V変動した場合のオーバーシュート電流は、数10μAにもなることがあった。一方、その同じ構成において、適切な転写電流の範囲は、記録材の幅がA4サイズ相当の場合、15〜20μAであった。つまり、この構成の場合、上述のように低湿環境に置かれた記録材を使用とすると、転写電流を適切な範囲に収めるためには、転写電圧が1000Vも不足することがあった。そして、上記不足分だけ転写電圧を一挙に上げる動作を行ったところ、上述のように数10μAものオーバーシュート電流が発生した。   For example, in the configuration of the example that was tested, the overshoot current when the transfer voltage fluctuates by 1000 V may be several tens of μA. On the other hand, in the same configuration, the range of the appropriate transfer current is 15 to 20 μA when the width of the recording material corresponds to A4 size. That is, in the case of this configuration, when the recording material placed in a low humidity environment as described above is used, the transfer voltage may be as low as 1000 V in order to keep the transfer current within an appropriate range. Then, when the operation for raising the transfer voltage by the shortage was performed all at once, an overshoot current of several 10 μA was generated as described above.

記録材が転写部を通過している際の電流が検知されて、転写電圧が制御される場合、典型的には、図17に示すようにして電流の検知と転写電圧の変更とが行われる。つまり、転写部に流れる電流の検知を行う検知時間(第1期間)と、検知時間における電流の検知結果に基づいて転写電圧を変更する信号が出力されてからその応答を待つ応答時間(第2期間)と、が繰り返される。上述のように数10μAものオーバーシュート電流が発生すると、応答時間内でオーバーシュート電流が定常状態に収束せず、次の検知時間で上限値より高い電流が流れていると判断されてしまうことがある。この場合、次の応答時間で転写電圧を下げるような動作が行われてしまう。そのため、定常状態では適切な電流になるはずであったのに転写電圧を下げるような動作が行われたた結果、かえって電流が不足して濃度薄(濃度段差)などの画像不良が発生してしまう。また、転写電圧のオーバーシュート現象は、転写電圧を上げるときだけでなく、下げるときにも発生する。そのため、次の検知時間で上記とは逆に下限値より低い電流が流れていると判断されてしまうことがある。この場合、次の応答時間で転写電圧を上げるような動作が行われてしまう。そのため、定常状態では適切な電流になるはずであったのに転写電圧を上げるような動作が行われた結果、かえって電流が過剰となって、放電現象による白抜けなどの局所的な画像不良が発生してしまう。そして、次の検知時間で再度上限値より高い電流が流れていると判断されてしまい、その後上記同様の電流が不足した状態と過剰な状態とが繰り返されてしまい、転写電圧の制御動作が収束しないことが起きることがある。このように転写電流の過不足が繰り返されると、濃度薄などの濃度段差や放電現象による局所的な画像不良の発生が繰り返されることになり、画質の低下につながる。   When the transfer voltage is controlled by detecting the current when the recording material is passing through the transfer portion, typically, the detection of the current and the change of the transfer voltage are performed as shown in FIG. . That is, the detection time (first period) for detecting the current flowing in the transfer portion and the response time (second time) for waiting for the response after the signal for changing the transfer voltage based on the detection result of the current in the detection time is output. Period) and are repeated. When an overshoot current of several tens of μA is generated as described above, the overshoot current does not converge to a steady state within the response time, and it may be determined that a current higher than the upper limit value is flowing in the next detection time. is there. In this case, the operation of lowering the transfer voltage is performed in the next response time. Therefore, in the steady state, the current should have been an appropriate value, but the operation to lower the transfer voltage was performed.As a result, the current was insufficient and image defects such as low density (density step) occurred. I will end up. Further, the transfer voltage overshoot phenomenon occurs not only when the transfer voltage is raised but also when the transfer voltage is lowered. Therefore, in the next detection time, it may be determined that a current lower than the lower limit value is flowing contrary to the above. In this case, the operation of raising the transfer voltage at the next response time is performed. Therefore, as a result of the operation to increase the transfer voltage, which should have been an appropriate current in the steady state, the current becomes rather excessive and local image defects such as white spots due to the discharge phenomenon occur. Will occur. Then, at the next detection time, it is again determined that a current higher than the upper limit value is flowing, and thereafter, the same current shortage state and excess state are repeated, and the transfer voltage control operation converges. Things that don't happen can happen. When the transfer current is excessively and deficiently repeated in this manner, a density difference such as a low density and a local image defect due to a discharge phenomenon are repeatedly generated, which leads to deterioration in image quality.

4.非通紙部電流の変動による適切な2次転写電流範囲の変化
ところで、転写部を記録材が通過している際に転写部に流れる電流としては、「通紙部電流(通過部電流)」と、「非通紙部電流(非通過部電流)」と、がある。通紙部電流は、記録材の搬送方向と略直交する方向における転写部の記録材が通過する領域(「通紙部分(通過領域)」)に流れる電流である。また、非通紙部電流は、記録材の搬送方向と略直交する方向における転写部の記録材が通過しない領域(「非通紙部分(非通過領域)」)に流れる電流である。非通紙部分が生じるのは、転写ローラなどの転写部材は、様々なサイズの記録材に対して安定して搬送及びトナー像の転写を行うために、その長手方向の長さが画像形成装置で保証している記録材の最大幅より大きくされるからである。
4. Appropriate change in secondary transfer current range due to fluctuations in non-sheet passing current By the way, when the recording material is passing through the transfer portion, the current flowing through the transfer portion is "paper passing current (passing portion current)". And "non-sheet passing portion current (non-passing portion current)". The sheet passing portion current is a current flowing in a region (“sheet passing portion (passing region)”) of the transfer portion where the recording material passes in a direction substantially orthogonal to the recording material transport direction. Further, the non-sheet passing portion current is a current flowing in an area ("non-sheet passing portion (non-passing area)") of the transfer portion where the recording material does not pass in a direction substantially orthogonal to the conveying direction of the recording material. The non-sheet passing portion occurs because a transfer member such as a transfer roller has a length in the longitudinal direction in order to stably convey and transfer a toner image to recording materials of various sizes. This is because the width is made larger than the maximum width of the recording material guaranteed by.

図13を参照して更に説明する。2次転写部N2を記録材Pが通過している際に2次転写部N2に流れる電流としては、通紙部電流(I_通紙部)と、非通紙部電流(I_非通紙部)と、がある。2次転写部N2を記録材Pが通過している際に検知できる電流は通紙部電流と非通紙部電流との和である。前述の画像濃度薄、白抜けといった画像不良を抑制するためには、通紙部電流が適切な範囲の値になっていることが重要であるが、通紙部電流だけを検知することはできない。そこで、記録材Pのサイズごとに適切な2次転写電流の上限値及び下限値(「2次転写電流範囲」)を予め求めておき、記録材Pのサイズに応じて2次転写部N2を記録材Pが通過中の2次転写電流をその2次転写電流範囲の値に制御することが考えられる。しかし、予め適切な2次転写電流範囲を決めても、非通紙部分を形成する2次転写ローラ8の電気抵抗は様々な条件で変動する。この様々な条件としては、製品のばらつき、環境(温度・湿度)、部材の温度・吸湿度、累積使用時間(画像形成装置の稼働状況や繰り返し使用量状況)などが挙げられる。そのため、2次転写ローラ8の電気抵抗の変動によって適切な2次転写電流範囲が変化してしまう。   Further description will be given with reference to FIG. The current flowing through the secondary transfer portion N2 when the recording material P is passing through the secondary transfer portion N2 includes a paper passing portion current (I_paper passing portion) and a non-paper passing portion current (I_non-paper passing portion). ), And there is. The current that can be detected when the recording material P is passing through the secondary transfer portion N2 is the sum of the paper passing portion current and the non-paper passing portion current. In order to suppress the above-described image defects such as low image density and white spots, it is important that the paper passing portion current is in an appropriate range, but it is not possible to detect only the paper passing portion current. . Therefore, appropriate upper and lower limit values (“secondary transfer current range”) of the secondary transfer current are determined in advance for each size of the recording material P, and the secondary transfer portion N2 is set in accordance with the size of the recording material P. It is conceivable to control the secondary transfer current while the recording material P is passing to a value within the range of the secondary transfer current. However, even if an appropriate secondary transfer current range is determined in advance, the electric resistance of the secondary transfer roller 8 forming the non-sheet passing portion varies under various conditions. These various conditions include product variations, environment (temperature / humidity), member temperature / humidity, cumulative use time (operation status of the image forming apparatus and repeated usage). Therefore, the appropriate secondary transfer current range changes due to the change in the electrical resistance of the secondary transfer roller 8.

図14(a)は、予め実験などによって決めた記録材Pのサイズごとの2次転写電流範囲を示している。画像不良を十分に抑制するために、2次転写部N2を記録材Pが通過している際に通紙部分に流してよい電流の範囲は、A4サイズ相当の幅(297mm)の記録材P(紙)であれば15〜20μAであった。また、A5Rサイズ相当の幅(148.5mm)の記録材P(紙)であれば、A4サイズよりも幅が短くなった分小さくなり7.5〜10μAであった。この通紙部電流の範囲を決めた装置の2次転写ローラ8の長手方向の幅は338mmであった。そして、2次転写部N2を記録材Pが通過している際に非通紙部分に流れた電流の範囲は、A4サイズであれば3.6〜4.4μA、A5Rサイズであれば16.6〜20.3μAであった。したがって、2次転写部N2を記録材Pが通過している際に2次転写部N2に流してよい電流の範囲(「2次転写電流範囲」)は、A4サイズであれば18.6〜24.4μA、A5Rサイズであれば24.1〜30.3μAと設定した。   FIG. 14A shows a secondary transfer current range for each size of the recording material P, which is determined in advance by an experiment or the like. In order to sufficiently suppress image defects, the range of the current that may be applied to the paper passing portion when the recording material P is passing through the secondary transfer portion N2 is the recording material P having a width (297 mm) corresponding to A4 size. In the case of (paper), it was 15 to 20 μA. In the case of the recording material P (paper) having a width corresponding to the A5R size (148.5 mm), the width was smaller than that of the A4 size by the amount of 7.5 to 10 μA. The width in the longitudinal direction of the secondary transfer roller 8 of the device in which the range of the paper passing portion current was determined was 338 mm. When the recording material P is passing through the secondary transfer portion N2, the range of the current flowing to the non-sheet passing portion is 3.6 to 4.4 μA for the A4 size, and 16 for the A5R size. It was 6 to 20.3 μA. Therefore, when the recording material P is passing through the secondary transfer portion N2, the range of the current that can be passed through the secondary transfer portion N2 (“secondary transfer current range”) is 18.6 to A4 size. 24.4 μA and A5R size were set to 24.1 to 30.3 μA.

しかし、例えば2次転写部N2(本実施例では主に2次転写ローラ8)の電気抵抗が低くなった場合には、非通紙部分に流れる電流は増える。図14(b)は、図14(a)に示す2次転写電流範囲を決めた際の状態よりも2次転写部N2の電気抵抗が低くなった場合の適切な2次転写電流範囲の一例を示す。2次転写部N2の電気抵抗が低くなっても、通紙部分に流してよい電流の範囲は変わらない。しかし、2次転写部N2の電気抵抗が低くなると、通紙部電流と非通紙部電流との和である2次転写電流は、非通紙部電流が増えたことにより、その上限値及び下限値のいずれもが高めにシフトする。例えば、A5Rサイズの記録材Pが2次転写部N2を通過している際の2次転写電流が24.5μAである場合を考える。この場合、2次転写ローラ8の電気抵抗が図14(a)に示す2次転写電流範囲を決めた際の状態と同じであれば、2次転写電流は適切な2次転写電流範囲の値であるため、通紙部分に適切な電流が流れる。しかし、2次転写ローラ8の電気抵抗が、図14(b)に示す2次転写電流範囲が適切である状態と同程度に低くなっている場合は、2次転写電流が24.5μAのままでは、2次転写電流が適切な2次転写電流範囲の下限値(26.9μA)よりも小さい。そのため、通紙部分に流れる電流が不足して、画像不良が発生してしまうことがある。   However, for example, when the electrical resistance of the secondary transfer portion N2 (mainly the secondary transfer roller 8 in this embodiment) becomes low, the current flowing in the non-sheet passing portion increases. FIG. 14B is an example of an appropriate secondary transfer current range when the electric resistance of the secondary transfer portion N2 is lower than that in the state when the secondary transfer current range shown in FIG. 14A is determined. Indicates. Even if the electric resistance of the secondary transfer portion N2 becomes low, the range of the current that can be passed through the paper passing portion does not change. However, when the electric resistance of the secondary transfer portion N2 becomes low, the secondary transfer current, which is the sum of the paper passing portion current and the non-paper passing portion current, has an upper limit value and Any of the lower limits will shift higher. For example, consider a case where the secondary transfer current when the recording material P of A5R size passes through the secondary transfer portion N2 is 24.5 μA. In this case, if the electric resistance of the secondary transfer roller 8 is the same as the state when the secondary transfer current range shown in FIG. 14A is determined, the secondary transfer current is a value in an appropriate secondary transfer current range. Therefore, an appropriate current flows through the paper passing portion. However, when the electric resistance of the secondary transfer roller 8 is as low as the state in which the secondary transfer current range shown in FIG. 14B is appropriate, the secondary transfer current remains 24.5 μA. Then, the secondary transfer current is smaller than the lower limit value (26.9 μA) of the appropriate secondary transfer current range. Therefore, the current flowing through the sheet passing portion may be insufficient, and an image defect may occur.

つまり、非通紙部分の電気抵抗がある値の場合の下限値付近の2次転写電流値の場合、その非通紙部分の電気抵抗の状態であれば問題なくても、非通紙部分の電気抵抗が低くなった状態では通紙部分の電流が画像不良を抑制できる下限値から外れてしまう。逆に、2次転写部N2の電気抵抗が高くなった場合には、非通紙部分に流れる電流は減る。この場合、2次転写電流の上限値及び下限値のいずれもが低めにシフトする。そのため、非通紙部分の電気抵抗がある値の場合の上限値付近の2次転写電流値の場合、その非通紙部分の電気抵抗の状態であれば問題なくても、非通紙部分の電気抵抗が高くなった状態では通紙部分の電流が画像不良を抑制できる上限値から外れてしまう。   That is, in the case of the secondary transfer current value near the lower limit value when the electric resistance of the non-paper passing portion is a certain value, even if there is no problem as long as the electric resistance state of the non-paper passing portion is satisfied, When the electric resistance is low, the current in the sheet passing portion is out of the lower limit value that can suppress image defects. On the contrary, when the electric resistance of the secondary transfer portion N2 becomes high, the current flowing through the non-sheet passing portion decreases. In this case, both the upper limit value and the lower limit value of the secondary transfer current shift to a lower level. Therefore, in the case of a secondary transfer current value near the upper limit value when the electric resistance of the non-paper passing portion is a certain value, even if there is no problem as long as the electric resistance of the non-paper passing portion is sufficient, In the state where the electric resistance is high, the current of the sheet passing portion deviates from the upper limit value capable of suppressing image defects.

また、画像形成に使用する記録材が厚紙などの比較的厚さが大きい記録材である場合などには、記録材の厚みによって非通紙部分の圧力が下がるため、実際の非通紙部電流が、記録材が転写部に到達する前に予測した値に対してずれることがある。   In addition, when the recording material used for image formation is a relatively thick recording material such as thick paper, the pressure of the non-sheet passing portion decreases due to the thickness of the recording material. However, the recording material may deviate from the value predicted before reaching the transfer portion.

図15は、この記録材Pが通過することで生じる、記録材Pの搬送方向と略直交する方向における2次転写部N2の圧力分布の変化を示すグラフ図である。図15に示す例では、記録材Pの幅は300mmである。図15中に破線で示すプロットが、記録材Pが2次転写部N2に存在しないときの2次転写部N2の圧力分布を測定した結果である。一方、図15中の実線で示すプロットが、その2次転写部N2の記録材Pの搬送方向と略直交する方向の中央付近を、坪量300g/m、幅105mmの記録材Pが通過しているときの2次転写部N2の圧力分布を測定した結果である。2次転写部N2に記録材Pが存在しないときの2次転写部N2の圧力分布(図15中の破線)は、記録材Pの搬送方向と略直交する方向にほぼ均一である。しかし、2次転写部N2に記録材Pが存在するときは、通紙部分の圧力(図15中の実線の中央付近)は、記録材Pが存在しないときに比べて高くなっている。これに対して、非通紙部分の圧力(図15中の実線の中央以外の領域)は、記録材Pが存在しないときに比べて低くなっている。2次転写部N2の圧力が低いほど、記録材Pの搬送方向における中間転写ベルト7と2次転写ローラ8との接触領域が小さくなるため、同じ2次転写電圧を印加しても流れる電流が小さくなってしまう。この現象を考慮せずに、記録材Pが2次転写部N2に到達する前に検知した2次転写部N2の電気抵抗から予測した非通紙部電流に基づいて転写電流範囲を決定すると、転写電流範囲が必要以上に高めになることがある。その結果、転写電流が大きくなりすぎた場合には、放電現象による画像不良が発生しやすくなる。 FIG. 15 is a graph showing changes in the pressure distribution of the secondary transfer portion N2 in the direction substantially orthogonal to the conveying direction of the recording material P, which occurs when the recording material P passes. In the example shown in FIG. 15, the width of the recording material P is 300 mm. A plot shown by a broken line in FIG. 15 is a result of measuring the pressure distribution of the secondary transfer portion N2 when the recording material P does not exist in the secondary transfer portion N2. On the other hand, the plot shown by the solid line in FIG. 15 shows that the recording material P having a basis weight of 300 g / m 2 and a width of 105 mm passes near the center of the secondary transfer portion N2 in the direction substantially orthogonal to the conveying direction of the recording material P. It is the result of measuring the pressure distribution of the secondary transfer portion N2 during the operation. The pressure distribution (broken line in FIG. 15) of the secondary transfer portion N2 when the recording material P does not exist in the secondary transfer portion N2 is substantially uniform in the direction substantially orthogonal to the conveying direction of the recording material P. However, when the recording material P is present in the secondary transfer portion N2, the pressure in the sheet passing portion (around the center of the solid line in FIG. 15) is higher than when the recording material P is not present. On the other hand, the pressure of the non-sheet passing portion (the area other than the center of the solid line in FIG. 15) is lower than that when the recording material P is not present. The lower the pressure of the secondary transfer portion N2, the smaller the contact area between the intermediate transfer belt 7 and the secondary transfer roller 8 in the conveyance direction of the recording material P, so that the current that flows even if the same secondary transfer voltage is applied. It gets smaller. Without considering this phenomenon, if the transfer current range is determined based on the non-sheet passing portion current predicted from the electric resistance of the secondary transfer portion N2 detected before the recording material P reaches the secondary transfer portion N2, The transfer current range may be unnecessarily high. As a result, when the transfer current becomes too large, an image defect due to a discharge phenomenon is likely to occur.

5.2次転写電圧制御
次に、本実施例における2次転写電圧の制御について説明する。図4は、本実施例における2次転写電圧の制御の手順の概略を示すフローチャート図である。図4には、ジョブを実行する際に制御部50が実行する制御のうち2次転写電圧の制御に関する手順を簡略化して示しており、ジョブを実行する際の他の多くの制御の図示は省略されている。
5. Secondary Transfer Voltage Control Next, the control of the secondary transfer voltage in this embodiment will be described. FIG. 4 is a flow chart showing the outline of the procedure for controlling the secondary transfer voltage in this embodiment. FIG. 4 shows a simplified procedure relating to the control of the secondary transfer voltage among the controls executed by the control unit 50 when executing a job, and many other controls when executing a job are not shown. Omitted.

図4(a)を参照して、まず、制御部50は、操作部31又は外部装置200からのジョブの情報を取得すると、ジョブの動作を開始させる(S101)。本実施例では、このジョブの情報には、操作者が指定する画像情報、画像を形成する記録材Pのサイズ(幅、長さ)、記録材Pの厚さと関連のある情報(厚さ又は坪量)、記録材Pがコート紙であるか否かといった記録材Pの表面性に関連のある情報が含まれる。つまり、紙サイズ(幅、長さ)と紙種カテゴリー(普通紙、厚紙など(厚さと関連のある情報を含む))の情報が含まれる。制御部50は、このジョブの情報をRAM52に書き込む(S102)。   Referring to FIG. 4A, first, when the control unit 50 acquires job information from the operation unit 31 or the external device 200, it starts the job operation (S101). In this embodiment, the job information includes image information designated by the operator, size (width, length) of the recording material P on which an image is formed, and information (thickness or thickness) related to the thickness of the recording material P. It includes information related to the surface property of the recording material P, such as basis weight) and whether or not the recording material P is coated paper. That is, the information includes the paper size (width, length) and the paper type category (plain paper, cardboard, etc. (including information related to the thickness)). The control unit 50 writes the information of this job in the RAM 52 (S102).

次に、制御部50は、環境センサ32により検知される環境情報を取得する(S103)。また、ROM53には、環境情報と、中間転写ベルト7上のトナー像を記録材P上へ転写させるための目標電流Itargetと、の相関関係を示す情報が格納されている。制御部50は、S103で読み取った環境情報に基づいて、上記環境情報と目標電流Itargetとの関係を示す情報から、環境に対応した目標電流Itargetを求め、これをRAM52に書き込む(S104)。   Next, the control unit 50 acquires the environment information detected by the environment sensor 32 (S103). The ROM 53 also stores information indicating the correlation between the environmental information and the target current Itarget for transferring the toner image on the intermediate transfer belt 7 onto the recording material P. Based on the environment information read in S103, the control unit 50 obtains the target current Ittarget corresponding to the environment from the information indicating the relationship between the environment information and the target current Itage and writes it in the RAM 52 (S104).

なお、環境情報に応じて目標電流Itargetを変えるのは、環境によってトナーの電荷量が変化するからである。上記環境情報と目標電流Itargetとの関係を示す情報は、予め実験などによって求めたものである。ここで、トナーの電荷量は、環境以外にも、現像装置4にトナーを補給するタイミング、現像装置4から出ていくトナー量といった使用履歴によっても影響を受けることがある。画像形成装置100は、これらの影響を抑制するために、現像装置4内のトナーの電荷量がある一定範囲内の値となるように構成されている。しかし、環境情報以外にも、中間転写ベルト7上のトナーの電荷量を左右する要因が分かっていれば、その情報によっても目標電流Itargetを変えてよい。また、画像形成装置100にトナーの電荷量を測定する測定手段を設け、この測定手段によって得られたトナーの電荷量の情報に基づいて目標電流Itargetを変えてもよい。   The target current Ittarget is changed according to the environmental information because the charge amount of the toner changes depending on the environment. The information indicating the relationship between the environmental information and the target current Ittarget is obtained in advance by experiments or the like. Here, the charge amount of the toner may be affected not only by the environment but also by the history of use such as the timing of replenishing the toner to the developing device 4 and the amount of toner coming out of the developing device 4. In order to suppress these influences, the image forming apparatus 100 is configured so that the charge amount of the toner in the developing device 4 becomes a value within a certain range. However, if the factors that influence the charge amount of the toner on the intermediate transfer belt 7 are known in addition to the environmental information, the target current Ittarget may be changed depending on the information. Further, the image forming apparatus 100 may be provided with a measuring unit for measuring the toner charge amount, and the target current Ittarget may be changed based on the information on the toner charge amount obtained by the measuring unit.

次に、制御部50は、中間転写ベルト7上のトナー像、及びトナー像が転写される記録材Pが2次転写部N2に到達する前に、2次転写部N2の電気抵抗に関する情報を取得する(S105)。本実施例では、ATVC制御(Active Transfer Voltage Control)により2次転写部N2(本実施例では主に2次転写ローラ8)の電気抵抗に関する情報を取得する。つまり、2次転写ローラ8と中間転写ベルト7とが接触させられた状態で、2次転写電源20から2次転写ローラ8に所定の電圧又は電流を供給する。そして、所定の電圧を供給している際の電流値、又は所定の電流を供給している際の電圧値を検知して、電圧と電流との関係(電圧・電流特性)を取得する。この電圧と電流との関係は、2次転写部N2(本実施例では主に2次転写ローラ8)の電気抵抗に応じて変化する。本実施例の構成では、上記電圧と電流との関係は、電流が電圧に対して線形に変化(比例)するものではなく、図5に示すように電流が電圧の2次以上の多項式で表されるように変化するものである。そのため、本実施例では、上記電圧と電流との関係を多項式で表すことができるように、2次転写部N2の電気抵抗に関する情報を取得する際に供給する所定の電圧又は電流は、3点以上の多段階とした。   Next, the control unit 50 provides information about the electric resistance of the secondary transfer portion N2 before the toner image on the intermediate transfer belt 7 and the recording material P to which the toner image is transferred reach the secondary transfer portion N2. It is acquired (S105). In this embodiment, the information about the electric resistance of the secondary transfer portion N2 (mainly the secondary transfer roller 8 in this embodiment) is acquired by ATVC control (Active Transfer Voltage Control). That is, in a state where the secondary transfer roller 8 and the intermediate transfer belt 7 are in contact with each other, the secondary transfer power source 20 supplies a predetermined voltage or current to the secondary transfer roller 8. Then, the current value when the predetermined voltage is being supplied or the voltage value when the predetermined current is being supplied is detected, and the relationship between the voltage and the current (voltage-current characteristic) is acquired. The relationship between the voltage and the current changes according to the electric resistance of the secondary transfer portion N2 (mainly the secondary transfer roller 8 in this embodiment). In the configuration of the present embodiment, the relationship between the voltage and the current is not such that the current changes linearly (proportional) with respect to the voltage, but the current is expressed by a polynomial of the second or higher order as shown in FIG. It changes as it is done. Therefore, in this embodiment, the predetermined voltage or current supplied when acquiring the information about the electrical resistance of the secondary transfer portion N2 is three points so that the relationship between the voltage and the current can be expressed by a polynomial. The above is the multi-step.

次に、制御部50は、2次転写電源20から2次転写ローラ8に印加すべき電圧値を求める(S106)。つまり、制御部50は、S104でRAM52に書き込まれた目標電流Itargetと、S105で求めた電圧と電流との関係と、に基づいて、2次転写部N2に記録材Pが無い状態で目標電流Itargetを流すために必要な電圧値Vbを求める。この電圧値Vbは、2次転写部分担電圧に相当する。また、ROM53には、図6に示すような、記録材分担電圧Vpを求めるための情報が格納されている。本実施例では、この情報は、記録材Pの坪量の区分ごとの、雰囲気の水分量と記録材分担電圧Vpとの関係を示す、テーブルデータとして設定されている。なお、制御部50は、環境センサ32により検知される環境情報(温度・湿度)に基づいて雰囲気の水分量を求めることができる。制御部50は、S102で取得したジョブの情報の中に含まれる記録材Pの坪量の情報と、S103で取得した環境情報と、に基づいて、上記テーブルデータから記録材分担電圧Vpを求める。そして、制御部50は、2次転写部N2を記録材Pが通過している際に2次転写電源20から2次転写ローラ8に印加する2次転写電圧Vtrの初期値として、上記VbとVpとを足し合わせたVb+Vpを求め、これをRAM52に書き込む。本実施例では、記録材Pが2次転写部N2に到達するまでに、2次転写電圧Vtrの初期値を求め、記録材Pが2次転写部N2に到達するタイミングに備える。   Next, the control unit 50 obtains the voltage value to be applied to the secondary transfer roller 8 from the secondary transfer power source 20 (S106). That is, the control unit 50, based on the target current Itarget written in the RAM 52 in S104 and the relationship between the voltage and the current obtained in S105, detects the target current in the state where the recording material P is not present in the secondary transfer unit N2. A voltage value Vb required to flow Ittarget is obtained. This voltage value Vb corresponds to the secondary transfer portion voltage bearing. Further, the ROM 53 stores information for obtaining the recording material sharing voltage Vp as shown in FIG. In the present embodiment, this information is set as table data showing the relationship between the moisture content of the atmosphere and the recording material sharing voltage Vp for each classification of the basis weight of the recording material P. The control unit 50 can obtain the amount of water in the atmosphere based on the environmental information (temperature / humidity) detected by the environmental sensor 32. The control unit 50 obtains the recording material sharing voltage Vp from the table data based on the basis weight information of the recording material P included in the job information acquired in S102 and the environmental information acquired in S103. . Then, the control unit 50 sets the above-mentioned Vb as the initial value of the secondary transfer voltage Vtr applied to the secondary transfer roller 8 from the secondary transfer power source 20 when the recording material P passes through the secondary transfer unit N2. The sum of Vp and Vb + Vp is obtained, and this is written in the RAM 52. In this embodiment, the initial value of the secondary transfer voltage Vtr is obtained before the recording material P reaches the secondary transfer portion N2, and the recording material P is ready for the timing of reaching the secondary transfer portion N2.

なお、図6に示すような記録材分担電圧Vpを求めるためのテーブルデータは、予め実験などによって求められたものである。ここで、記録材分担電圧(記録材Pの電気抵抗分の転写電圧)Vpは、記録材Pの厚さと関連のある情報(坪量)以外にも、記録材Pの表面性によっても変化することがある。そのため、上記テーブルデータは、記録材Pの表面性と関連のある情報によっても記録材分担電圧Vpが変わるように設定されていてよい。また、本実施例では、記録材Pの厚さと関連のある情報(更には記録材Pの表面性と関連のある情報)は、S101で取得されるジョブの情報の中に含まれている。しかし、画像形成装置100に記録材Pの厚さや記録材Pの表面性を検知する測定手段を設け、この測定手段によって得られた情報に基づいて記録材分担電圧Vpを求めるようにしてもよい。   The table data for obtaining the recording material sharing voltage Vp as shown in FIG. 6 is obtained in advance by experiments or the like. Here, the recording material sharing voltage (transfer voltage of the electric resistance of the recording material P) Vp changes not only with the information (grammage) related to the thickness of the recording material P but also with the surface property of the recording material P. Sometimes. Therefore, the table data may be set such that the recording material sharing voltage Vp also changes depending on the information related to the surface property of the recording material P. Further, in this embodiment, the information related to the thickness of the recording material P (further, the information related to the surface property of the recording material P) is included in the job information acquired in S101. However, the image forming apparatus 100 may be provided with a measuring means for detecting the thickness of the recording material P and the surface property of the recording material P, and the recording material sharing voltage Vp may be obtained based on the information obtained by this measuring means. .

次に、制御部50は、2次転写部N2を記録材Pが通過している際の2次転写電流の上限値及び下限値(「2次転写電流範囲」)を決定する処理を行う(S107)。図4(b)は、図4(a)のS107における2次転写電流範囲を決定する処理の手順を示している。ROM53には、図7に示すような、画像不良を抑制する観点から2次転写部N2を記録材Pが通過している際に通紙部分に流してよい電流の範囲(「通紙部電流範囲(通過部電流範囲)」)を求めるための情報が格納されている。本実施例では、この情報は、雰囲気の水分量と、通紙部分に流してよい電流の上限値及び下限値と、の関係を示すテーブルデータとして設定されている。なお、このテーブルデータは、予め実験などによって求められたものである。図4(b)を参照して、制御部50は、S103で取得した環境情報に基づいて、上記テーブルデータから通紙部分に流してよい電流の範囲を求める(S201)。   Next, the control unit 50 performs a process of determining the upper limit value and the lower limit value (“secondary transfer current range”) of the secondary transfer current when the recording material P is passing through the secondary transfer unit N2 ( S107). FIG. 4B shows a procedure of processing for determining the secondary transfer current range in S107 of FIG. 4A. As shown in FIG. 7, the ROM 53 has a range of current that can be passed through the paper passing portion while the recording material P is passing through the secondary transfer portion N2 from the viewpoint of suppressing image defects (“paper passing portion current”). Information for determining the range (passage current range) ”is stored. In the present embodiment, this information is set as table data indicating the relationship between the moisture content of the atmosphere and the upper limit value and the lower limit value of the current that may be passed through the paper passing portion. It should be noted that this table data is obtained in advance by experiments or the like. Referring to FIG. 4B, the control unit 50 obtains the range of the current that may be passed through the sheet passing portion from the table data based on the environment information acquired in S103 (S201).

なお、通紙部分に流してよい電流の範囲は、記録材Pの幅によって変化する。本実施例では、上記テーブルデータは、A4サイズ相当の幅(297mm)の記録材Pを想定して設定されている。ここで、画像不良を抑制する観点から通紙部分に流してよい電流の範囲は、環境情報以外にも、記録材Pの厚さ、表面性によっても変化することがある。そのため、上記テーブルデータは、記録材Pの厚さと関連のある情報(坪量)、記録材Pの表面性と関連のある情報によっても電流の範囲が変化するように設定されていてよい。通紙部分に流してよい電流の範囲は、計算式として設定されていてもよい。また、通紙部分に流してよい電流の範囲は、記録材Pのサイズごとに複数のテーブルデータや計算式として設定されていてもよい。   It should be noted that the range of the current that can be passed through the paper passing portion changes depending on the width of the recording material P. In the present embodiment, the table data is set assuming a recording material P having a width (297 mm) corresponding to A4 size. Here, from the viewpoint of suppressing image defects, the range of the current that may be passed through the paper passing portion may change depending on the thickness and surface property of the recording material P as well as the environmental information. Therefore, the table data may be set such that the range of the current changes depending on the information (grammage) related to the thickness of the recording material P and the information related to the surface property of the recording material P. The range of the current that may be passed through the paper passing portion may be set as a calculation formula. Further, the range of the current that may be passed through the paper passing portion may be set as a plurality of table data or calculation formulas for each size of the recording material P.

次に、制御部50は、S102で取得したジョブの情報の中に含まれる記録材Pの幅の情報に基づいて、S201で取得した通紙部分に流してよい電流の範囲を補正する(S202)。S201で求めた電流の範囲はA4サイズ相当の幅(297mm)に対応したものである。例えば実際に画像形成に使用する記録材Pの幅がA5縦送り相当の幅(148.5mm)、つまりA4サイズ相当の幅の半分の幅である場合は、S201で取得した上限値及び下限値がそれぞれ半分になるように、記録材Pの幅に比例した電流の範囲に補正する。すなわち、図7のテーブルデータから求まる補正前の通紙部電流の上限値をIp_max、下限値をIp_min、図7のテーブルデータを決めた際の記録材Pの幅をLp_basとする。また、実際に搬送される記録材Pの幅をLp、補正後の通紙部電流の上限値をIp_max_aft、下限値をIp_min_aftとする。このとき、補正後の通紙部電流の上限値、下限値は、それぞれ下記式1、式2により求めることができる。
Ip_max_aft=Lp/Lp_bas*Ip_max ・・・(式1)
Ip_min_aft=Lp/Lp_bas*Ip_min ・・・(式2)
Next, the control unit 50 corrects the range of the current that may be passed through the sheet passing portion acquired in S201 based on the width information of the recording material P included in the job information acquired in S102 (S202). ). The current range obtained in S201 corresponds to the width (297 mm) corresponding to the A4 size. For example, when the width of the recording material P actually used for image formation is a width corresponding to A5 vertical feeding (148.5 mm), that is, a half width of a width corresponding to A4 size, the upper limit value and the lower limit value acquired in S201. Are halved, and the current is proportional to the width of the recording material P. That is, the upper limit value of the sheet passing portion current before correction obtained from the table data of FIG. 7 is Ip_max, the lower limit value is Ip_min, and the width of the recording material P when the table data of FIG. 7 is determined is Lp_bas. Further, it is assumed that the width of the recording material P actually conveyed is Lp, the upper limit value of the corrected sheet passing portion current is Ip_max_aft, and the lower limit value is Ip_min_aft. At this time, the upper limit value and the lower limit value of the corrected sheet passing portion current can be calculated by the following equations 1 and 2, respectively.
Ip_max_aft = Lp / Lp_bas * Ip_max (Equation 1)
Ip_min_aft = Lp / Lp_bas * Ip_min (Equation 2)

次に、制御部50は、次の各情報に基づいて、非通紙部分に流れる電流を求める(S203)。S102で取得したジョブの情報の中に含まれる記録材Pの幅の情報、S105で求めた2次転写部N2に記録材Pが無い状態での2次転写部N2の電圧と電流との関係の情報、及びS106で求めた2次転写電圧Vtrの情報である。例えば、2次転写ローラ8の幅が338mmであり、S102で取得した記録材Pの幅がA5縦送り相当の幅(148.5mm)である場合、非通紙部分の幅は2次転写ローラ8の幅から記録材Pの幅を差し引いた189.5mmとなる。そして、S106で求めた2次転写電圧Vtrが例えば1000Vであり、S105で求めた電圧と電流との関係から、該2次転写電圧Vtrに対応する電流が40μAであるものとする。この場合、上記2次転写電圧Vtrに対応して非通紙部分に流れる電流は、次の比例計算、
40μA×189.5mm/338mm=22.4μA
から求めることができる。つまり、上記2次転写電圧Vtrに対応する電流40μAを、2次転写ローラ8の幅338mmに対する非通紙部分の幅189.5mmの割合分だけ小さくする比例計算によって、非通紙部分に流れる電流を求めることができる。
Next, the control unit 50 obtains the current flowing through the non-sheet passing portion based on the following information (S203). Information on the width of the recording material P included in the job information acquired in S102, the relationship between the voltage and current of the secondary transfer portion N2 obtained in S105 when the recording material P is not present in the secondary transfer portion N2. Of the secondary transfer voltage Vtr obtained in S106. For example, when the width of the secondary transfer roller 8 is 338 mm and the width of the recording material P acquired in S102 is the width corresponding to A5 vertical feed (148.5 mm), the width of the non-sheet passing portion is the secondary transfer roller. It is 189.5 mm obtained by subtracting the width of the recording material P from the width of 8. Then, it is assumed that the secondary transfer voltage Vtr obtained in S106 is, for example, 1000 V, and the current corresponding to the secondary transfer voltage Vtr is 40 μA from the relationship between the voltage obtained in S105 and the current. In this case, the current flowing in the non-sheet passing portion corresponding to the secondary transfer voltage Vtr is calculated by the following proportional calculation,
40 μA × 189.5 mm / 338 mm = 22.4 μA
Can be obtained from That is, the current flowing through the non-sheet passing portion is calculated by proportionally reducing the current 40 μA corresponding to the secondary transfer voltage Vtr by the ratio of the width 189.5 mm of the non-sheet passing portion to the width 338 mm of the secondary transfer roller 8. Can be asked.

記録材Pの厚さが比較的小さい場合は、S203で求めた値を非通紙部電流として用いることが可能である。しかし、記録材Pの厚さが大きくなるほど、2次転写部N2に記録材Pが存在する時の非通紙部分の圧力が減少し、これによって非通紙部電流が小さくなる。そこで、本実施例では、制御部50は、記録材Pの厚さに応じて非通紙部電流を補正する制御を行う(S204)。S203で求めた補正前の非通部電流をInp_bef、補正後の非通紙部電流をInp_aft、補正係数をe(%)とする。このとき、補正後の非通紙部電流は、下記式3により求めることができる。
Inp_aft=e*Inp_bef ・・・(式3)
When the thickness of the recording material P is relatively small, the value obtained in S203 can be used as the non-sheet passing portion current. However, as the thickness of the recording material P increases, the pressure in the non-sheet passing portion when the recording material P exists in the secondary transfer portion N2 decreases, and the non-sheet passing current decreases accordingly. Therefore, in the present embodiment, the control unit 50 performs control for correcting the non-sheet passing portion current according to the thickness of the recording material P (S204). The non-passing portion current before correction obtained in S203 is Inp_bef, the non-passing portion current after correction is Inp_aft, and the correction coefficient is e (%). At this time, the corrected non-sheet passing portion current can be obtained by the following Expression 3.
Inp_aft = e * Inp_bef (Equation 3)

ここで、本実施例では、上記式3中の補正係数eは、予め実験などにより求められてROM53に記憶された、図8に示すような、記録材Pの坪量の区分ごとの、記録材Pの幅と補正係数eとの関係を示すテーブルデータに基づいて決定される。制御部50は、S102で取得したジョブの情報の中に含まれる記録材Pの幅と記録材Pの坪量の情報に基づき、図8に示すテーブルデータを参照して、補正係数eを決定する。記録材Pの厚さが大きいほど、非通紙部分の圧力が低くなる。このことを考慮して、記録材Pの厚さが大きいほど、補正後の非通紙部電流が小さくなるように補正係数eが設定されている。また、記録材Pの幅が大きいほど、非通紙部分の中間転写ベルト7と2次転写ローラ8とが接触しにくく、非通紙部分の圧力が低くなる。このことを考慮して、記録材Pの幅が大きいほど、補正後の非通紙部電流が小さくなるように補正係数eが設定されている。例えば、記録材Pの幅がA5縦送り相当(148.5mm)で、記録材Pの坪量が350g/mの場合には、補正前の非通紙部電流Inp_befを85%にしたものが補正後の非通紙部電流Inp_aftになる。これに対して、例えば、記録材Pの幅が上記と同様のA5縦送り相当(148.5mm)で、記録材Pの坪量が52g/mの場合には、補正前の非通紙部電流Inp_befを100%のまま維持したものが補正後の非通紙部電流Inp_aftとなる。 Here, in the present embodiment, the correction coefficient e in the above expression 3 is recorded for each classification of the basis weight of the recording material P as shown in FIG. It is determined based on table data showing the relationship between the width of the material P and the correction coefficient e. The control unit 50 determines the correction coefficient e by referring to the table data shown in FIG. 8 based on the information of the width of the recording material P and the basis weight of the recording material P included in the job information acquired in S102. To do. The thicker the recording material P, the lower the pressure in the non-sheet passing portion. In consideration of this, the correction coefficient e is set such that the larger the thickness of the recording material P, the smaller the corrected non-sheet passing portion current. Further, as the width of the recording material P is larger, the intermediate transfer belt 7 and the secondary transfer roller 8 in the non-sheet passing portion are less likely to come into contact with each other, and the pressure in the non-sheet passing portion becomes lower. In consideration of this, the correction coefficient e is set so that the larger the width of the recording material P, the smaller the corrected non-sheet passing portion current. For example, when the width of the recording material P is equivalent to A5 vertical feed (148.5 mm) and the basis weight of the recording material P is 350 g / m 2 , the non-sheet passing portion current Inp_bef before correction is set to 85%. Becomes the corrected non-sheet passing portion current Inp_aft. On the other hand, for example, in the case where the width of the recording material P is equivalent to the A5 vertical feed (148.5 mm) similar to the above, and the basis weight of the recording material P is 52 g / m 2 , non-sheet passing before correction is performed. The sheet current Inp_bef maintained at 100% is the corrected non-sheet passing portion current Inp_aft.

次に、制御部50は、次のようにして、2次転写部N2を記録材Pが通過している際の2次転写電流の上限値及び下限値(「2次転写電流範囲」)を求め、求めた2次転写電流範囲をRAM52に記憶させる(S205)。つまり、制御部50は、S202で求めた通紙部電流の上限値及び下限値のそれぞれにS204で求めた補正後の非通紙部電流を足し合わせ、2次転写部N2を記録材Pが通過している際の2次転写電流の上限値及び下限値(「2次転写電流範囲」)を求める。すなわち、2次転写部N2を記録材Pが通過している際の2次転写電流の上限値をI_max、下限値をI_minとする。このとき、2次転写電流の上限値、下限値は、それぞれ下記式4、式5により求めることができる。
I_max=Ip_max_aft+Inp_aft ・・・(式4)
I_min=Ip_min_aft+Inp_aft ・・・(式5)
Next, the control unit 50 determines the upper limit value and the lower limit value (“secondary transfer current range”) of the secondary transfer current when the recording material P is passing through the secondary transfer unit N2 as follows. The obtained secondary transfer current range is stored in the RAM 52 (S205). That is, the control unit 50 adds the corrected non-sheet passing portion current obtained in S204 to each of the upper limit value and the lower limit value of the sheet passing portion current obtained in S202, and the recording material P is set to the secondary transfer portion N2. An upper limit value and a lower limit value (“secondary transfer current range”) of the secondary transfer current when passing is determined. That is, the upper limit value of the secondary transfer current when the recording material P is passing through the secondary transfer portion N2 is I_max, and the lower limit value is I_min. At this time, the upper limit value and the lower limit value of the secondary transfer current can be calculated by the following equations 4 and 5, respectively.
I_max = Ip_max_aft + Inp_aft (Equation 4)
I_min = Ip_min_aft + Inp_aft (Equation 5)

例えば、S201で取得したA4サイズ相当の幅に対応する通紙部分に流してよい電流の範囲の上限値が20μA、下限値が15μAの場合について考える。この場合、実際に画像形成に使用する記録材Pの幅がA5縦送り相当の幅であるときは、通紙部分に流してよい電流の範囲の上限値は10μA、下限値は7.5μAとなる。そして、S203で求めた非通紙部分に流れる電流が上記例のように22.4μAであるときに、記録材Pが坪量350g/m相当の厚紙である場合には、上記22.4μAを85%に補正した19μAが補正後の非通紙部電流となる。この場合は、2次転写電流範囲の上限値は29μA、下限値は26.5μAとなる。一方、S203で求めた非通紙部分に流れる電流が上記同様22.4μAであるときに、記録材Pが坪量52g/mの紙の場合には、補正後の非通紙部電流は補正前の非通紙部電流である22.4μAに維持される。そのため、この場合は、2次転写電流範囲の上限値は32.4μA、下限値は29.9μAとなる。 For example, consider a case where the upper limit of the range of the current that may be passed through the sheet passing portion corresponding to the width corresponding to the A4 size acquired in S201 is 20 μA and the lower limit is 15 μA. In this case, when the width of the recording material P actually used for image formation is a width corresponding to the A5 vertical feed, the upper limit value of the range of the current that may be passed through the paper passing portion is 10 μA and the lower limit value is 7.5 μA. Become. Then, when the current flowing in the non-sheet passing portion obtained in S203 is 22.4 μA as in the above example, when the recording material P is a thick paper having a basis weight of 350 g / m 2 , the above-mentioned 22.4 μA Is corrected to 85%, and the corrected non-sheet passing portion current becomes 19 μA. In this case, the upper limit value of the secondary transfer current range is 29 μA and the lower limit value is 26.5 μA. On the other hand, when the current flowing in the non-sheet passing portion obtained in S203 is 22.4 μA as described above and the recording material P is a paper having a basis weight of 52 g / m 2 , the non-sheet passing portion current after correction is The current is maintained at 22.4 μA, which is the non-sheet passing portion current before correction. Therefore, in this case, the upper limit value of the secondary transfer current range is 32.4 μA and the lower limit value is 29.9 μA.

図4(a)を参照して、次に、制御部50は、2次転写中の2次転写電圧の変動幅ΔVを決定する処理を行う(S108)。本実施例では、2次転写部N2を記録材Pが通過している際に、電流検知回路21により検知された電流が2次転写電流範囲から外れている場合は、その検知される電流が2次転写電流範囲の値になるように2次転写電圧を変更していく。この動作は、図17に示すように、所定の検知時間(第1期間)において電流を検知し、この検知期間に続く所定の応答時間(第2期間)においてその検知結果に基づいて2次転写電圧を変更する動作を繰り返すことで行う。この動作は、制御部50が、検知期間に電流検知回路21から入力された電流の検知結果を示す信号に基づいて、2次転写電源20に対して電圧出力を変更する信号を出力することで行われる。検知時間、応答時間は、できる限り短い方が、2次転写電流が2次転写電流範囲から外れて画像不良が発生する可能性のある時間(領域)を低減できるため好ましい。高圧基板の性能によるが、検知時間、応答時間は、それぞれ10msec以下程度にするのが好ましい。本実施例では、検知時間、応答時間は、それぞれ8msecとした。しかし、前述のように、応答時間において2次転写電圧を変更した際のオーバーシュート電流が大きいと、その応答時間の次の検知時間で定常状態より大きく外れた電流が検知されてしまい、2次転写電圧の制御が正常に収束しない場合がある。   Referring to FIG. 4A, next, the control unit 50 performs a process of determining the fluctuation width ΔV of the secondary transfer voltage during the secondary transfer (S108). In this embodiment, when the recording material P is passing through the secondary transfer portion N2 and the current detected by the current detection circuit 21 is out of the secondary transfer current range, the detected current is The secondary transfer voltage is changed so that the value falls within the range of the secondary transfer current. In this operation, as shown in FIG. 17, the current is detected during a predetermined detection time (first period), and the secondary transfer is performed based on the detection result during a predetermined response time (second period) following the detection period. This is done by repeating the operation of changing the voltage. In this operation, the control unit 50 outputs a signal for changing the voltage output to the secondary transfer power supply 20 based on the signal indicating the current detection result input from the current detection circuit 21 during the detection period. Done. It is preferable that the detection time and the response time are as short as possible because it is possible to reduce the time (area) in which the secondary transfer current may deviate from the secondary transfer current range and an image defect may occur. The detection time and the response time are preferably about 10 msec or less, depending on the performance of the high-voltage substrate. In this embodiment, the detection time and the response time are each set to 8 msec. However, as described above, if the overshoot current when the secondary transfer voltage is changed during the response time is large, a current deviating from the steady state is detected in the detection time subsequent to the response time, and the secondary current is detected. The transfer voltage control may not converge normally.

そこで、本実施例では、2次転写部N2に記録材Pが到達する前に検知される2次転写部N2の電気抵抗に関する情報に基づいて、2次転写中の応答時間における2次転写電圧の変動幅ΔVを変更する。概略、その2次転写部N2の電気抵抗が相対的に大きい場合に、相対的に小さい場合と比較して、2次転写電圧の変動幅ΔVが大きくなるようにする。これにより、2次転写部N2の電気抵抗に応じてオーバーシュート電流を適正な範囲に抑えることができる。更に、本実施例では、2次転写中に2次転写部N2に供給する電流の範囲(上限値と下限値との差分)に基づいて、2次転写中の応答時間における2次転写電圧の変動幅ΔVを変更する。概略、その電流の範囲が相対的に大きい場合に、相対的に小さい場合と比較して、2次転写電圧の変動幅ΔVが大きくなるようにする。これにより、オーバーシュート電流が過度に大きくなることを抑えながら、2次転写電圧の変動幅ΔVを十分に大きくして、2次転写電圧の変更により2次転写電流を適正な範囲の値とするのにかかる時間を低減することができる。具体的には、本実施例では、制御部50は、S105で求めた2次転写部N2に記録材Pが無い状態での2次転写部N2の電圧と電流との関係の情報と、S201で求めた電流の範囲と、に基づき、応答時間での2次転写電圧の変動幅ΔVを決める(S108)。つまり、本実施例では、2次転写電圧の変動幅ΔVは、下記式6によりで求める。
ΔV=A*(Ip_max−Ip_min)*Vb/Itarget ・・・(式6)
Therefore, in this embodiment, the secondary transfer voltage at the response time during the secondary transfer is based on the information about the electric resistance of the secondary transfer portion N2 detected before the recording material P reaches the secondary transfer portion N2. The variation width ΔV of is changed. In general, when the electric resistance of the secondary transfer portion N2 is relatively large, the fluctuation width ΔV of the secondary transfer voltage is set to be larger than when it is relatively small. As a result, the overshoot current can be suppressed within an appropriate range according to the electric resistance of the secondary transfer portion N2. Further, in the present embodiment, based on the range (difference between the upper limit value and the lower limit value) of the current supplied to the secondary transfer portion N2 during the secondary transfer, the secondary transfer voltage of the response time during the secondary transfer is determined. Change the fluctuation width ΔV. In general, when the current range is relatively large, the fluctuation width ΔV of the secondary transfer voltage is set to be larger than that when the current range is relatively small. As a result, the fluctuation width ΔV of the secondary transfer voltage is sufficiently increased while suppressing the overshoot current from becoming excessively large, and the secondary transfer current is set to a value within an appropriate range by changing the secondary transfer voltage. It is possible to reduce the time required for Specifically, in this embodiment, the control unit 50 obtains information on the relationship between the voltage and current of the secondary transfer portion N2 in the state where the recording material P is not present in the secondary transfer portion N2, which is obtained in S105, and S201. The fluctuation range ΔV of the secondary transfer voltage during the response time is determined based on the range of the current obtained in (S108). That is, in this embodiment, the fluctuation width ΔV of the secondary transfer voltage is calculated by the following equation 6.
ΔV = A * (Ip_max-Ip_min) * Vb / Itarget ... (Equation 6)

上記式6において、VbはS105で求められた2次転写部分担電圧、ItargetはS104で求められた目標電流であり、Vb/Itargetは2次転写部N2に記録材Pが無い状態での2次転写部N2の電気抵抗に相当する。また、上記式6において、Ip_max、Ip_minは、それぞれS201で求められたA4サイズ相当の幅(297mm)での通紙部電流範囲の上限値、下限値である。また、上記式6において、Aは、図17に示すような2次転写電圧の変更時に発生するオーバーシュート電流を、2次転写中に2次転写部N2に供給する電流の上限値と下限値との差分以下に抑えるための補正係数である。この補正係数Aは、予め実験などによって求められている。本実施例では、応答時間が8msecであるのに対して、補正係数Aは1〜2程度に設定している。これにより、本実施例では、2次転写電圧の変更時に、電流が下限値を下回っている状態から上限値を上回る状態になる、逆に上限値を上回っている状態から下限値を下回る状態になるといったことを抑制することができる。本実施例では、目標電流Itargetは15〜20μA程度であるのに対して、2次転写電圧の変動幅ΔVは、上記式6によって2次転写部N2の電気抵抗によって変わるが、凡そ20〜100V程度の値になる。また、2次転写中に2次転写部N2に供給する電流の範囲(上限値と下限値との差分)は、記録材Pの種類が同じである場合は、記録材Pの幅が狭いほど大きい。このため、2次転写電圧の変動幅ΔVを記録材の幅で変更してもよい。   In the above equation 6, Vb is the secondary transfer portion voltage bearing obtained in S105, Ittarget is the target current obtained in S104, and Vb / Itarget is 2 when the recording material P is not present in the secondary transfer portion N2. It corresponds to the electric resistance of the next transfer portion N2. Further, in the above expression 6, Ip_max and Ip_min are the upper limit value and the lower limit value of the sheet passing portion current range in the width (297 mm) corresponding to the A4 size obtained in S201, respectively. Further, in the above equation 6, A is the upper limit value and the lower limit value of the current that supplies the overshoot current generated when the secondary transfer voltage is changed as shown in FIG. 17 to the secondary transfer portion N2 during the secondary transfer. This is a correction coefficient for suppressing the difference to or below. The correction coefficient A has been previously obtained by experiments or the like. In this embodiment, the response time is 8 msec, but the correction coefficient A is set to about 1 to 2. As a result, in the present embodiment, when the secondary transfer voltage is changed, the state in which the current is below the lower limit value exceeds the upper limit value, and conversely, the state is above the upper limit value and below the lower limit value. It can be suppressed. In the present embodiment, the target current Ittarget is about 15 to 20 μA, while the fluctuation width ΔV of the secondary transfer voltage varies depending on the electric resistance of the secondary transfer portion N2 according to the above equation 6, but is about 20 to 100 V. It becomes a value of the degree. Further, the range of the current supplied to the secondary transfer portion N2 during the secondary transfer (difference between the upper limit value and the lower limit value) is the narrower the width of the recording material P when the type of the recording material P is the same. large. Therefore, the fluctuation width ΔV of the secondary transfer voltage may be changed depending on the width of the recording material.

次に、制御部50は、2次転写部N2に記録材Pが到達してから2次転写部N2に記録材Pが存在する間、2次転写電圧Vtrを印加した際の2次転写電流を電流検知回路21により検知する(S109)。また、制御部50は、検知した2次転写電流値と、S107で求めた2次転写電流範囲とを比較し、2次転写電源20が出力する2次転写電圧Vtrを必要に応じて補正する(S110、S111、S112)。前述のように、本実施例では、この2次転写電圧の変更動作は、検知時間を8msec、応答時間を8msecとして、2次転写中にこれら検知時間と応答時間とを交互に繰り返すことで行う。つまり、制御部50は、検知時間に検知した2次転写電流値がS107で求めた2次転写電流範囲の値(下限値以上かつ上限値以下)の場合は、2次転写電源20が出力している2次転写電圧Vtrを変えずにそのまま維持する(S111)。一方、制御部50は、検知時間に検知した2次転写電流値がS107で求めた2次転写電流範囲から外れている(下限値未満又は上限値を超える)場合は、応答時間に2次転写電圧Vtrを変更する(S112)。本実施例では、検知した2次転写電流値が下限値を下回っている場合は、2次転写電圧Vtrを変動幅ΔVだけ増加させ、逆に上限値を上回っている場合は、2次転写電圧Vtrを変動幅ΔVだけ減少させる。このとき、2次転写電圧の変動幅ΔVとして、S108で求めた変動幅ΔVを使用する。そして、制御部50は、応答時間が経過し、2次転写部N2を記録材Pが通過中である場合には(S113)、処理をS109に戻し、2次転写電流の検知(検知時間)と、必要に応じた2次転写電圧の変更(応答時間)と、を行う(S109〜S112)。この検知時間と応答時間とを2次転写部N2に記録材Pがある間(より詳細には記録材Pの画像形成領域が2次転写部N2を通過している間)繰り返し行う。これにより、2次転写部N2を記録材Pが通過している際に検知される2次転写電流がS107で求めた2次転写電流範囲に収まるように、2次転写電圧Vtrが補正されていく。   Next, the controller 50 controls the secondary transfer current when the secondary transfer voltage Vtr is applied while the recording material P is present at the secondary transfer portion N2 after the recording material P reaches the secondary transfer portion N2. Is detected by the current detection circuit 21 (S109). Further, the control unit 50 compares the detected secondary transfer current value with the secondary transfer current range obtained in S107, and corrects the secondary transfer voltage Vtr output from the secondary transfer power supply 20 as necessary. (S110, S111, S112). As described above, in the present embodiment, the operation of changing the secondary transfer voltage is performed by alternately setting the detection time and the response time during the secondary transfer with the detection time of 8 msec and the response time of 8 msec. . That is, the control unit 50 outputs the secondary transfer power source 20 when the secondary transfer current value detected during the detection time is the value of the secondary transfer current range obtained in S107 (lower limit value or more and upper limit value or less). The secondary transfer voltage Vtr that has been changed is maintained as it is (S111). On the other hand, when the secondary transfer current value detected during the detection time is out of the secondary transfer current range obtained in S107 (below the lower limit value or above the upper limit value), the control unit 50 performs the secondary transfer during the response time. The voltage Vtr is changed (S112). In this embodiment, when the detected secondary transfer current value is lower than the lower limit value, the secondary transfer voltage Vtr is increased by the fluctuation width ΔV, and conversely, when it is higher than the upper limit value, the secondary transfer voltage is increased. Vtr is reduced by the fluctuation width ΔV. At this time, the fluctuation width ΔV obtained in S108 is used as the fluctuation width ΔV of the secondary transfer voltage. Then, when the response time has elapsed and the recording material P is passing through the secondary transfer portion N2 (S113), the control unit 50 returns the process to S109 and detects the secondary transfer current (detection time). Then, the secondary transfer voltage is changed (response time) as necessary (S109 to S112). The detection time and the response time are repeated while the recording material P is present in the secondary transfer portion N2 (more specifically, while the image forming area of the recording material P passes through the secondary transfer portion N2). As a result, the secondary transfer voltage Vtr is corrected so that the secondary transfer current detected when the recording material P passes through the secondary transfer portion N2 falls within the secondary transfer current range obtained in S107. Go.

また、制御部50は、ジョブの全ての画像を記録材Pに転写して出力し終えるまで、S109〜S113の処理を繰り返す(S114)。   Further, the control unit 50 repeats the processing of S109 to S113 until all the images of the job are transferred to the recording material P and output is completed (S114).

本実施例の制御を行うことによる2次転写電流範囲の変化について更に説明する。記録材Pが2次転写部N2に到達する前に2次転写部N2の電気抵抗を検知した結果が同程度であり、2次転写時に必要な2転電圧が同程度である場合について考える。このとき、最大幅の記録材Pを使用する場合の2次転写電流範囲に対して、最大幅よりも幅の小さい記録材Pを使用する場合の2次転写電流範囲は高めに(電流の絶対値が大きくなるように)シフトする。しかし、このシフト量は、記録材Pの厚さが大きくなるほど小さくなる。   The change in the secondary transfer current range due to the control of this embodiment will be further described. Let us consider a case where the results of detecting the electric resistance of the secondary transfer portion N2 before the recording material P reaches the secondary transfer portion N2 are about the same, and the secondary transfer voltages required for the secondary transfer are about the same. At this time, the secondary transfer current range when the recording material P having a width smaller than the maximum width is used is higher than the secondary transfer current range when the recording material P having the maximum width is used (absolute current Shift (to increase the value). However, this shift amount decreases as the thickness of the recording material P increases.

例えば、記録材Pとして坪量52g/mの紙(薄紙)と、坪量350g/mの紙(厚紙)と、をそれぞれ使用する場合について考える。また、記録材Pが2次転写部N2に到達する前に2次転写部N2の電気抵抗を検知した結果はいずれの場合も同程度であり、1000V印加で30μAの電流が流れたものとする。このとき、坪量52g/mの紙では、A4サイズ(幅297mm)の場合の2次転写電流範囲は24.9〜19.9μAであるが、A5縦送りサイズ(幅148.5mm)の場合の2次転写電流範囲は32.3〜29.8μAとなる。つまり、坪量52g/mの紙では、記録材Pの幅が小さくなると、2次転写電流範囲が全体的に高めにシフトし、下限値で約10μA高くなる。一方、坪量350g/mの紙では、A4サイズ(幅297mm)の場合の2次転写電流範囲は24.1〜19.1μAであるが、A5縦送りサイズ(幅148.5mm)の場合は29〜26.5μAとなる。つまり、坪量350g/mの紙では、記録材Pの幅が小さくなると、2次転写電流範囲が全体的に高めにシフトするが、下限値で約6.5μAしか高くならず、坪量52g/mの紙の場合に比べてシフト量は小さくなる。 For example, consider a case where paper having a basis weight of 52 g / m 2 (thin paper) and paper having a basis weight of 350 g / m 2 (thick paper) are used as the recording material P, respectively. Further, the result of detecting the electric resistance of the secondary transfer portion N2 before the recording material P reaches the secondary transfer portion N2 is almost the same in any case, and it is assumed that a current of 30 μA flows when 1000 V is applied. . At this time, in the case of the paper having the basis weight of 52 g / m 2 , the secondary transfer current range in the case of the A4 size (width 297 mm) is 24.9 to 19.9 μA, but the secondary transfer current range of the A5 vertical feed size (width 148.5 mm) In this case, the secondary transfer current range is 32.3 to 29.8 μA. That is, in the case of a paper having a basis weight of 52 g / m 2 , when the width of the recording material P becomes smaller, the secondary transfer current range shifts to a higher level as a whole, and the lower limit value becomes about 10 μA higher. On the other hand, for a paper having a basis weight of 350 g / m 2 , the secondary transfer current range for A4 size (width 297 mm) is 24.1 to 19.1 μA, but for A5 vertical feed size (width 148.5 mm) Is 29 to 26.5 μA. That is, in the case of a paper having a basis weight of 350 g / m 2 , when the width of the recording material P becomes smaller, the secondary transfer current range shifts to a higher level as a whole, but only the lower limit value is increased to about 6.5 μA. The shift amount is smaller than that in the case of 52 g / m 2 paper.

実際には、図6に示すように、厚さが大きい記録材Pほど、電気抵抗が高くなりやすく、2次転写時に必要な2次転写電圧Vtrは高くなりやすい。そのため、厚紙を使用する場合と薄紙を使用する場合とでは、厚紙を使用する場合の方が2次転写時に必要な2次転写電圧Vtrは大きくなる。2次転写電圧Vtrが大きいと、2次転写部N2に記録材Pが無い時の2次転写電流も大きく、記録材Pのサイズが変化した場合の2次転写電流範囲の変化量も大きくなる。図9は、本実施例の構成において、図4(a)のS106で決定される初期の2次転写電圧Vtrが変化した場合の、A5縦送りサイズの場合の2次転写電流範囲の下限値と、A4サイズの場合の2次転写電流範囲の下限値との差をプロットしたグラフ図である。図9中の破線は坪量52g/mの紙の場合のプロット、実線は坪量350g/mの紙の場合のプロットである。記録材Pの厚さが違うと初期の2次転写電圧Vtrは変化する。しかし、2次転写電圧Vtrを何水準か変化させて、記録材Pの幅の違いによる2次転写電流範囲の下限値の差をプロットしていくと、次のようになっている。つまり、ある2次転写電圧Vtrの場合の記録材Pの幅の違いによる2次転写電流範囲の下限値の差は、図9に示すように厚さが大きい記録材Pの方が小さくなっている。 In practice, as shown in FIG. 6, the recording material P having a larger thickness tends to have a higher electric resistance, and the secondary transfer voltage Vtr required at the time of the secondary transfer tends to become higher. Therefore, when thick paper is used and when thin paper is used, the secondary transfer voltage Vtr required at the time of secondary transfer is larger when thick paper is used. When the secondary transfer voltage Vtr is large, the secondary transfer current when the recording material P is not present in the secondary transfer portion N2 is also large, and the amount of change in the secondary transfer current range when the size of the recording material P is changed is also large. . FIG. 9 is a lower limit value of the secondary transfer current range in the case of the A5 vertical feed size when the initial secondary transfer voltage Vtr determined in S106 of FIG. 4A is changed in the configuration of this embodiment. FIG. 5 is a graph diagram in which the difference between the lower limit of the secondary transfer current range and the lower limit of the A4 size is plotted. The broken line in FIG. 9 is a plot for paper having a basis weight of 52 g / m 2 , and the solid line is a plot for paper having a basis weight of 350 g / m 2 . If the thickness of the recording material P is different, the initial secondary transfer voltage Vtr changes. However, when the secondary transfer voltage Vtr is changed by several levels and the difference in the lower limit value of the secondary transfer current range due to the difference in the width of the recording material P is plotted, the result is as follows. That is, the difference in the lower limit value of the secondary transfer current range due to the difference in the width of the recording material P at a certain secondary transfer voltage Vtr is smaller in the recording material P having a larger thickness as shown in FIG. There is.

なお、本実施例では、2次転写部N2に記録材Pが無い状態での2次転写部N2の電気抵抗に関する情報を、実際に2次転写部に電圧を印加した際に流れる電流を検知することで取得した。しかし、本発明はこれに限定されるものではなく、例えば、予め環境センサ32の出力値と2次転写部N2の電気抵抗との関係など、環境情報から2次転写部N2の電気抵抗を求めるための情報をテーブルデータなどとして作成しておくことができる。そして、環境センサ32の出力値に基づいて、上記テーブルデータなどを参照して、2次転写部N2の電気抵抗を求めることができる。   In this embodiment, information about the electric resistance of the secondary transfer portion N2 in the state where the recording material P is not present in the secondary transfer portion N2 is detected, and the current flowing when the voltage is actually applied to the secondary transfer portion is detected. Obtained by doing. However, the present invention is not limited to this. For example, the electrical resistance of the secondary transfer portion N2 is obtained from the environmental information in advance, such as the relationship between the output value of the environment sensor 32 and the electrical resistance of the secondary transfer portion N2. The information for this can be created as table data. Then, based on the output value of the environment sensor 32, the electric resistance of the secondary transfer portion N2 can be obtained by referring to the table data and the like.

このように、本実施例の画像形成装置100は、転写部材8に流れる電流を検知する検知部21と、転写部N2を記録材Pが通過している際に転写部材8に所定電圧が印加されるように転写部材8に印加する電圧の定電圧制御を行う制御部50と、を有する。この制御部50は、転写時に転写部材8に流れる電流が上記所定範囲内となるように転写部材8に印加する転写電圧を変更可能である。そして、この制御部50は、転写時に転写部材8に流れる電流が上記所定範囲内となるように転写部材8に印加する転写電圧を変更する場合において、転写電圧の変更を転写電圧の所定の変動幅ごとに行うようになっている。また、この制御部50は、上記変動幅を、転写部N2に記録材Pが無い状態で転写部材8に電圧を印加したときに検知部21で検知される検知結果に基づいて変更する。本実施例では、制御部50は、転写部N2に記録材Pが無い状態で転写部材8に所定電圧を印加したときに転写部材8に流れる電流値が第1電流値である場合は、上記変動幅を第1変動幅に設定し、転写部材8に流れる電流値が第1電流値よりも小さい第2電流値である場合は、上記変動幅を第1変動幅よりも大きい第2変動幅に変更する。上記電流の変化量の所定値は、予め設定された一定値であってもよい。本実施例では、制御部50は、一の転写電圧の変更の後かつ次の転写電圧の変更の前の転写部材8に流れる電流の絶対値の最大値と、上記一の転写電圧の変更の後かつ次の転写電圧の変更の前に定常状態になった転写部材8に流れる電流の絶対値と、の差分が、上記所定範囲の上限値と下限値との差分より小さくなるように、上記変動幅を変更する。また、制御部50は、上記変動幅を、上記所定範囲の上限値と下限値の差分に基づいて変更することができる。また、制御部50は、上記変動幅を、記録材Pの幅に基づいて変更することができる。   As described above, the image forming apparatus 100 according to the present exemplary embodiment applies the predetermined voltage to the transfer member 8 when the recording material P passes through the detection unit 21 that detects the current flowing in the transfer member 8 and the transfer unit N2. As described above, the control unit 50 performs constant voltage control of the voltage applied to the transfer member 8. The control unit 50 can change the transfer voltage applied to the transfer member 8 so that the current flowing through the transfer member 8 during transfer is within the predetermined range. Then, when changing the transfer voltage applied to the transfer member 8 so that the current flowing through the transfer member 8 falls within the predetermined range during transfer, the control unit 50 changes the transfer voltage by a predetermined change in the transfer voltage. It is designed to be performed for each width. Further, the control unit 50 changes the fluctuation range based on the detection result detected by the detection unit 21 when a voltage is applied to the transfer member 8 in the state where the recording material P is not present in the transfer unit N2. In the present embodiment, the control unit 50, when the current value flowing through the transfer member 8 when the predetermined voltage is applied to the transfer member 8 in the state where the recording material P is not present in the transfer unit N2 is the first current value, When the fluctuation range is set to the first fluctuation range and the current value flowing through the transfer member 8 is the second current value smaller than the first current value, the fluctuation range is larger than the first fluctuation range. Change to. The predetermined value of the amount of change in current may be a preset constant value. In this embodiment, the control unit 50 controls the maximum absolute value of the current flowing through the transfer member 8 after the change of one transfer voltage and before the change of the next transfer voltage, and the change of the one transfer voltage. The difference between the absolute value of the current flowing through the transfer member 8 which is in a steady state after the transfer voltage and before the next change of the transfer voltage is smaller than the difference between the upper limit value and the lower limit value of the predetermined range. Change the fluctuation range. Further, the control unit 50 can change the fluctuation range based on the difference between the upper limit value and the lower limit value of the predetermined range. Further, the control unit 50 can change the fluctuation range based on the width of the recording material P.

以上説明したように、本実施例では、2次転写中に2次転写電圧を変更する際の変動幅ΔVを、2次転写部N2に記録材Pが無い状態で検知した2次転写部N2の電気抵抗に関する情報に基づいて変更することで、変動幅ΔVを適切な値に調整する。なお、目標電流Itargetや、それに応じた適切な2次転写電流範囲は、記録材Pの種類、画像形成条件(搬送速度、画像濃度)によって変更した方が望ましい場合がある。その場合は、目標電流Itargetや適切な2次転写電流範囲に対応して2次転写電圧の変動幅ΔVを変更することが望ましい。このように2次転写電圧の変動幅ΔVを変更することで、2次転写電圧の変更による2次転写部N2に流れる電流の変化量を所定値以下に抑えるようにすることができる。これにより、2次転写中に2次転写部N2に流れる電流が適切な範囲を超えて過剰に変化することを抑制して、濃度薄などの濃度段差や放電現象による白抜けなどの局所的な画像不良の発生を抑制することが可能になる。   As described above, in the present embodiment, the fluctuation width ΔV when the secondary transfer voltage is changed during the secondary transfer is detected in the state where the recording material P is not present in the secondary transfer portion N2. The variation width ΔV is adjusted to an appropriate value by changing the variation width ΔV on the basis of the information about the electric resistance. In some cases, it may be desirable to change the target current Ittarget and the appropriate secondary transfer current range corresponding to it according to the type of the recording material P and the image forming conditions (conveyance speed, image density). In that case, it is desirable to change the fluctuation width ΔV of the secondary transfer voltage in accordance with the target current Ittarget and an appropriate secondary transfer current range. By changing the variation width ΔV of the secondary transfer voltage in this way, the amount of change in the current flowing through the secondary transfer portion N2 due to the change of the secondary transfer voltage can be suppressed to a predetermined value or less. As a result, it is possible to prevent the current flowing through the secondary transfer portion N2 from changing excessively beyond the appropriate range during the secondary transfer, and to locally change the density difference such as low density or the white spot due to the discharge phenomenon. It is possible to suppress the occurrence of image defects.

また、本実施例では、2次転写部N2を記録材Pが通過している際に非通紙部分に流れる電流を、記録材Pが2次転写部N2に到達する前に2次転写部N2の電気抵抗に関する情報を取得することで予測する。このとき、上記非通紙部分に流れる電流の予測値を、記録材Pの幅に関する情報に基づいて変化させると共に、その予測値を記録材Pの厚さに関する情報に基づいて補正する。より詳細には、記録材Pの厚さが大きくなるほど上記非通紙部分に流れる電流が小さくなるように補正を行う。これにより、上記非通紙部分に流れる電流を、より正確に予測することが可能となる。そして、予測した非通紙部分に流れる電流と、画像不良を抑制する観点から通紙部分に流してよい電流の範囲と、を足し合わせることで、2次転写部N2を記録材Pが通過している際の2次転写電流範囲を決める。また、その2次転写電流範囲の値となるように、2次転写部N2を記録材Pが通過している際の2次転写電圧を制御する。これにより、厚紙などの比較的厚さが大きい記録材Pを用いる場合であっても、様々な状況で変動する2次転写部N2(本実施例では主に2次転写ローラ8)及び記録材Pの電気抵抗にかかわらず、適切な画像を出力することが可能になる。   Further, in the present embodiment, when the recording material P passes through the secondary transfer portion N2, the current flowing through the non-sheet passing portion is changed to the secondary transfer portion before the recording material P reaches the secondary transfer portion N2. Predict by obtaining information about the electrical resistance of N2. At this time, the predicted value of the current flowing through the non-sheet passing portion is changed based on the information regarding the width of the recording material P, and the predicted value is corrected based on the information regarding the thickness of the recording material P. More specifically, the correction is performed such that the larger the thickness of the recording material P, the smaller the current flowing through the non-sheet passing portion. This makes it possible to more accurately predict the current flowing through the non-sheet passing portion. Then, the recording material P passes through the secondary transfer portion N2 by adding the predicted current flowing through the non-paper passing portion and the range of current that may be passed through the paper passing portion from the viewpoint of suppressing image defects. The range of the secondary transfer current is determined. In addition, the secondary transfer voltage when the recording material P passes through the secondary transfer portion N2 is controlled so that the value is within the range of the secondary transfer current. As a result, even when the recording material P having a relatively large thickness such as thick paper is used, the secondary transfer portion N2 (mainly the secondary transfer roller 8 in the present embodiment) and the recording material that fluctuate in various situations are used. An appropriate image can be output regardless of the electric resistance of P.

[実施例2]
次に、本発明の他の実施例について説明する。本実施例の画像形成装置の基本的な構成及び動作は、実施例1の画像形成装置のものと同じである。したがって、本実施例の画像形成装置において、実施例1の画像形成装置のものと同一又は対応する機能あるいは構成を有する要素については、実施例1と同一の符号を付して、詳しい説明は省略する。
[Example 2]
Next, another embodiment of the present invention will be described. The basic configuration and operation of the image forming apparatus according to the present exemplary embodiment are the same as those of the image forming apparatus according to the first exemplary embodiment. Therefore, in the image forming apparatus according to the present exemplary embodiment, elements having the same or corresponding functions or configurations as those of the image forming apparatus according to the first exemplary embodiment will be denoted by the same reference numerals as those in the first exemplary embodiment, and detailed description thereof will be omitted. To do.

実施例1では、2次転写部N2を記録材Pが通過している際に通紙部分に流してよい電流の範囲(「通紙部電流範囲」)と、非通紙部電流の予測値(記録材Pの厚さによる補正後)と、を足し合わせた2次転写電流範囲を求めた。そして、2次転写時に測定した2次転写電流がその2次転写電流範囲の値となるように、2次転写電圧を制御した。これに対して、2次転写時に測定した2次転写電流から、非通紙部電流の予測値(記録材Pの厚さによる補正後)を差し引くことで通紙部電流を求め、求めた通紙部電流が所定の通紙部電流範囲の値になるように2次転写電圧を制御してもよい。   In the first embodiment, the range of the current that can be passed through the paper passing portion when the recording material P is passing through the secondary transfer portion N2 (“paper passing portion current range”) and the predicted value of the non-paper passing portion current. The value of (after correction by the thickness of the recording material P) was added to obtain the secondary transfer current range. Then, the secondary transfer voltage was controlled so that the secondary transfer current measured during the secondary transfer was within the range of the secondary transfer current range. On the other hand, the paper passing portion current is obtained by subtracting the predicted value of the non-paper passing portion current (after correction by the thickness of the recording material P) from the secondary transfer current measured at the time of the secondary transfer. The secondary transfer voltage may be controlled so that the paper portion current becomes a value within a predetermined paper passage portion current range.

図10は、本実施例における2次転写電圧の制御の手順の概略を示すフローチャート図である。図10のS301〜S306の処理は、それぞれ実施例1における図4(a)のS101〜S106の処理と同様である。また、図10のS307の処理は、実施例1における図4(b)のS201の処理と同様である。さらに、図10のS308の処理は、実施例1における図4(a)のS108の処理と同様である。以下、特に実施例1と異なる点について説明し、実施例1と同様の処理についての説明は省略する。   FIG. 10 is a flow chart showing the outline of the procedure for controlling the secondary transfer voltage in this embodiment. The processes of S301 to S306 of FIG. 10 are the same as the processes of S101 to S106 of FIG. The process of S307 of FIG. 10 is the same as the process of S201 of FIG. 4B in the first embodiment. Furthermore, the process of S308 of FIG. 10 is the same as the process of S108 of FIG. Hereinafter, differences from the first embodiment will be described in particular, and description of the same processing as that of the first embodiment will be omitted.

制御部50は、S308で2次転写電圧の変動幅ΔVを求めた後、2次転写部N2に記録材Pが到達してから2次転写部N2に記録材Pが存在する間、2次転写電圧Vtrを印加した際の2次転写電流を電流検知回路21により検知する(S309)。   The controller 50 obtains the fluctuation width ΔV of the secondary transfer voltage in S308, and then, while the recording material P is present in the secondary transfer portion N2 after the recording material P reaches the secondary transfer portion N2, the secondary transfer The secondary transfer current when the transfer voltage Vtr is applied is detected by the current detection circuit 21 (S309).

そして、制御部50は、次の各情報に基づいて、非通紙部分に流れる電流を求める(S310)。S302で取得したジョブの情報の中に含まれる記録材Pの幅の情報、S305で求めた2次転写部N2に記録材Pが無い状態での2次転写部N2の電圧と電流との関係の情報、及び現在印加している2次転写電圧Vtrの情報である。S310における非通紙部電流を求める処理は、実施例1における図4(b)のS203の処理と同様である。ただし、S310では、2次転写電圧Vtrとして、現在印加している2次転写電圧(初期値はS306で求めたもの。)を用いる。つまり、S310で非通紙部に流れる電流を求めるために用いる2次転写電圧Vtrは、ジョブの最初の記録材Pが2次転写部N2に突入したタイミングでは、S306で求めた初期値である。その後、下記のフローで2次転写電圧Vtrを変更した場合は、変更した2次転写電圧Vtrを用いて非通紙部に流れる電流を求めるようにする。   Then, the control unit 50 determines the current flowing through the non-sheet passing portion based on the following information (S310). Information about the width of the recording material P included in the job information acquired in S302, and the relationship between the voltage and current of the secondary transfer portion N2 obtained in S305 when the recording material P is not present in the secondary transfer portion N2. Of the secondary transfer voltage Vtr currently applied. The process of obtaining the non-sheet passing portion current in S310 is the same as the process of S203 of FIG. 4B in the first embodiment. However, in S310, the secondary transfer voltage currently applied (the initial value is obtained in S306) is used as the secondary transfer voltage Vtr. That is, the secondary transfer voltage Vtr used to obtain the current flowing through the non-sheet passing portion in S310 is the initial value obtained in S306 at the timing when the first recording material P of the job rushes into the secondary transfer portion N2. . After that, when the secondary transfer voltage Vtr is changed in the following flow, the changed secondary transfer voltage Vtr is used to determine the current flowing through the non-sheet passing portion.

次に、制御部50は、実施例1における図4(b)のS204の処理と同様にして、記録材Pの厚さに応じて非通紙部電流を補正する制御を行う(S311)。S310で求めた補正前の非通紙部電流をInp_bef、補正後の非通紙部電流をInp_aft、補正係数をe(%)とする。このとき、補正後の非通紙部電流は、実施例1と同様の下記式3により求めることができる。
Inp_aft=e*Inp_bef ・・・(式3)
Next, the control unit 50 performs the control for correcting the non-sheet passing portion current according to the thickness of the recording material P, similarly to the processing of S204 of FIG. 4B in the first embodiment (S311). It is assumed that the non-sheet passing current before correction obtained in S310 is Inp_bef, the non-sheet passing current after correction is Inp_aft, and the correction coefficient is e (%). At this time, the corrected non-sheet passing portion current can be obtained by the following Equation 3 similar to the first embodiment.
Inp_aft = e * Inp_bef (Equation 3)

ここで、本実施例では、上記式3中の補正係数eは、実施例1と同様の図8に示すようなテーブルデータに基づいて決定される。   Here, in the present embodiment, the correction coefficient e in the above equation 3 is determined based on the table data as shown in FIG. 8 similar to the first embodiment.

次に、制御部50は、S309で検知した2次転写電流からS311で求めた補正後の非通紙部電流を差し引いた電流を通紙部電流として算出する(S312)。すなわち、2次転写電流をItr、通紙部電流をIpとすると、通紙部電流は、下記式8により求めることができる。
Ip=Itr−Inp_aft ・・・(式7)
Next, the control unit 50 subtracts the corrected non-sheet passing portion current obtained in S311 from the secondary transfer current detected in S309 to calculate a current as a sheet passing portion current (S312). That is, assuming that the secondary transfer current is Itr and the sheet passing portion current is Ip, the sheet passing portion current can be obtained by the following equation 8.
Ip = Itr-Inp_aft (Equation 7)

上記式7で求めた通紙部電流Ipは、実際に搬送される記録材Pの幅に対応する電流値であるのに対して、S307で求めた通紙部電流範囲は、基準となる記録材Pのサイズ(本実施例ではA4サイズ)相当の幅に対応するものとなっている。そのため、本実施例では、制御部50は、上記式7で求めた通紙部電流Ipを基準となる記録材Pのサイズ相当の幅に対応する電流値に換算する処理を行う(S313)。図7のテーブルデータを決めた際の記録材Pの幅をLp_bas、実際に搬送される記録材Pの幅をLp、換算後の通紙部電流をIp_aftとする。このとき、換算後の通紙部電流は、下記式8により求めることができる。
Ip_aft=Lp_bas/Lp*Ip ・・・(式8)
The paper passing portion current Ip obtained by the above equation 7 is a current value corresponding to the width of the recording material P that is actually conveyed, whereas the paper passing portion current range obtained at S307 is the reference recording. The width corresponds to the size of the material P (A4 size in this embodiment). Therefore, in the present embodiment, the control unit 50 performs a process of converting the sheet passing portion current Ip obtained by the above Expression 7 into a current value corresponding to a width corresponding to the size of the recording material P serving as a reference (S313). The width of the recording material P when the table data of FIG. 7 is determined is Lp_bas, the width of the recording material P actually conveyed is Lp, and the converted sheet passing portion current is Ip_aft. At this time, the converted sheet passing portion current can be obtained by the following equation 8.
Ip_aft = Lp_bas / Lp * Ip (Equation 8)

次に、制御部50は、S512で求めた換算後の通紙部電流Ip_aftをS307で求めた通紙部電流範囲と比較する(S314)。そして、制御部50は、2次転写電源20が出力する2次転写電圧Vtrを必要に応じて補正する(S315、S316)。前述のように、本実施例では、この2次転写電圧の変更動作は、検知時間を8msec、応答時間を8msecとして、2次転写中にこれら検知時間と応答時間とを交互に繰り返すことで行う。つまり、制御部50は、換算後の通紙部電流Ip_aftがS307で求めた通紙部電流範囲の値(下限値以上かつ上限値以下)の場合は、2次転写電源20が出力している2次転写電圧Vtrを変えずにそのまま維持する(S315)。一方、制御部50は、換算後の通紙部電流Ip_aftがS307で求めた通紙部電流範囲から外れている(下限値未満又は上限値を超える)場合は、該通紙部電流範囲の値となるように2次転写電源20が出力する2次転写電圧Vtrを補正する(S316)。本実施例では、換算後の通紙部電流Ip_aftが通紙部電流範囲の下限値を下回っている場合は、2次転写電圧Vtrを変動幅ΔVだけ増加させ、逆に上限値を上回っている場合は、2次転写電圧Vtrを変動幅ΔVだけ減少させる。このとき、2次転写電圧の変動幅ΔVとして、S308で求めた変動幅ΔVを使用する。そして、制御部50は、応答時間が経過し、2次転写部N2を記録材Pが通過中である場合には(S317)、処理をS309に戻し、2次転写電流の検知(検知時間)と、必要に応じた2次転写電圧の変更(応答時間)と、を行う(S309〜S316)。なお、2次転写電圧Vtrを変更した場合は、変化させた2次転写電圧Vtrに対して換算後の通紙部電流Ip_aftを求めるフロー(S309〜S513)を行う。この検知時間と応答時間とを2次転写部N2に記録材Pがある間(より詳細には記録材Pの画像形成領域が2次転写部N2を通過している間)繰り返し行う。これにより、2次転写部N2を記録材Pが通過している際に検知される2次転写電流に基づく通紙部電流がS307で求めた通紙部電流範囲に収まるように、2次転写電圧Vtrが補正されてく。   Next, the control unit 50 compares the converted sheet passing portion current Ip_aft obtained in S512 with the sheet passing portion current range obtained in S307 (S314). Then, the controller 50 corrects the secondary transfer voltage Vtr output from the secondary transfer power supply 20 as necessary (S315, S316). As described above, in the present embodiment, the operation of changing the secondary transfer voltage is performed by alternately setting the detection time and the response time during the secondary transfer with the detection time of 8 msec and the response time of 8 msec. . That is, the control unit 50 outputs the secondary transfer power source 20 when the converted sheet passing portion current Ip_aft is the value of the sheet passing portion current range obtained in S307 (lower limit value or more and upper limit value or less). The secondary transfer voltage Vtr is maintained as it is (S315). On the other hand, when the converted sheet passing portion current Ip_aft is out of the sheet passing portion current range obtained in S307 (below the lower limit value or above the upper limit value), the control unit 50 determines the value of the sheet passing portion current range. The secondary transfer voltage Vtr output from the secondary transfer power supply 20 is corrected so as to be (S316). In the present embodiment, when the converted sheet passing portion current Ip_aft is lower than the lower limit value of the sheet passing portion current range, the secondary transfer voltage Vtr is increased by the fluctuation width ΔV, and conversely exceeds the upper limit value. In this case, the secondary transfer voltage Vtr is reduced by the fluctuation width ΔV. At this time, the fluctuation width ΔV obtained in S308 is used as the fluctuation width ΔV of the secondary transfer voltage. Then, when the response time has elapsed and the recording material P is passing through the secondary transfer portion N2 (S317), the control unit 50 returns the process to S309 and detects the secondary transfer current (detection time). Then, the secondary transfer voltage is changed (response time) as necessary (S309 to S316). When the secondary transfer voltage Vtr is changed, the flow for obtaining the converted sheet passing portion current Ip_aft for the changed secondary transfer voltage Vtr is performed (S309 to S513). The detection time and the response time are repeated while the recording material P is present in the secondary transfer portion N2 (more specifically, while the image forming area of the recording material P passes through the secondary transfer portion N2). As a result, the secondary transfer is performed so that the paper passing portion current based on the secondary transfer current detected when the recording material P is passing through the secondary transfer portion N2 falls within the paper passing portion current range obtained in S307. The voltage Vtr is corrected.

また、制御部50は、ジョブの全ての画像を記録材Pに転写して出力し終えるまで、S309〜S317の処理を繰り返す(S318)。   Further, the control unit 50 repeats the processing of S309 to S317 until all the images of the job are transferred onto the recording material P and output is completed (S318).

以上説明したように、本実施例では、予測した非通紙部分に流れる電流を、測定した2次転写電流から差し引くことで、制御すべき通紙部電流を正確に求めることができる。また、この通紙部電流の値を所定の通紙部電流範囲の値になるように、2次転写部N2を記録材Pが通過している際の2次転写電圧を制御する。このような方法によっても、実施例1と同様の効果が得られる。   As described above, in the present embodiment, by subtracting the predicted current flowing in the non-sheet passing portion from the measured secondary transfer current, the sheet passing portion current to be controlled can be accurately obtained. Further, the secondary transfer voltage when the recording material P is passing through the secondary transfer portion N2 is controlled so that the value of the paper passing portion current becomes a value within a predetermined paper passing portion current range. With such a method, the same effect as that of the first embodiment can be obtained.

[実施例3]
次に、本発明の他の実施例について説明する。本実施例の画像形成装置の基本的な構成及び動作は、実施例1の画像形成装置のものと同じである。したがって、本実施例の画像形成装置において、実施例1の画像形成装置のものと同一又は対応する機能あるいは構成を有する要素については、実施例1と同一の符号を付して、詳しい説明は省略する。
[Example 3]
Next, another embodiment of the present invention will be described. The basic configuration and operation of the image forming apparatus according to the present exemplary embodiment are the same as those of the image forming apparatus according to the first exemplary embodiment. Therefore, in the image forming apparatus according to the present exemplary embodiment, elements having the same or corresponding functions or configurations as those of the image forming apparatus according to the first exemplary embodiment will be denoted by the same reference numerals as those in the first exemplary embodiment, and detailed description thereof will be omitted. To do.

実施例1及び実施例2では、2次転写電流のうち通紙部電流がどの程度の大きさになるかを考慮して2次転写電圧を制御した。一方、本実施例では、非通紙部分に流れる電流が2次転写電流に占める割合が十分に小さいものとして扱い、2次転写電流を所定の範囲内となるように制御している。   In Example 1 and Example 2, the secondary transfer voltage was controlled in consideration of the magnitude of the sheet passing portion current in the secondary transfer current. On the other hand, in this embodiment, the current flowing in the non-sheet passing portion is treated as a sufficiently small proportion of the secondary transfer current, and the secondary transfer current is controlled to fall within a predetermined range.

図11は、本実施例における2次転写電圧の制御の手順の概略を示すフローチャート図である。図11のS401〜S406の処理は、それぞれ実施例1における図4(a)のS101〜S106の処理と同様である。また、図11のS409〜S414の処理は、実施例1における図4(a)のS109〜S114の処理と同様である。以下、特に実施例1と異なる点について説明し、実施例1と同様の処理についての説明は省略する。   FIG. 11 is a flow chart showing the outline of the procedure for controlling the secondary transfer voltage in this embodiment. The processing of S401 to S406 of FIG. 11 is the same as the processing of S101 to S106 of FIG. Further, the processing of S409 to S414 of FIG. 11 is the same as the processing of S109 to S114 of FIG. Hereinafter, differences from the first embodiment will be described in particular, and description of the same processing as that of the first embodiment will be omitted.

制御部50は、S406で2次転写電圧Vtrを求めた後、2次転写部N2を記録材Pが通過している際の2次転写電流の上限値及び下限値(「2次転写電流範囲」)を決定する処理を行う(S407)。本実施例では、ROM53には、図12に示すような、画像不良を抑制する観点から2次転写部N2を記録材Pが通過している際に2次転写部N2に流してよい電流の範囲(「2次転写部電流範囲」)を求めるための情報が格納されている。本実施例では、この情報は、雰囲気の水分量と、2次転写部N2に流してよい電流の上限値及び下限値と、の関係を示すテーブルデータとして設定されている。なお、このテーブルデータは、予め実験などによって求められたものである。制御部50は、S403で取得した環境情報に基づいて、上記テーブルデータから2次転写部N2に流してよい電流の範囲を求める。   After obtaining the secondary transfer voltage Vtr in S406, the control unit 50 determines the upper limit value and the lower limit value (“secondary transfer current range”) of the secondary transfer current when the recording material P passes through the secondary transfer portion N2. ]) Is determined (S407). In this embodiment, in the ROM 53, from the viewpoint of suppressing the image defect as shown in FIG. 12, the current that may be supplied to the secondary transfer portion N2 when the recording material P passes through the secondary transfer portion N2. Information for determining the range (“secondary transfer portion current range”) is stored. In the present embodiment, this information is set as table data indicating the relationship between the moisture content of the atmosphere and the upper limit value and the lower limit value of the current that may flow in the secondary transfer portion N2. It should be noted that this table data is obtained in advance by experiments or the like. The control unit 50 obtains the range of the current that may flow to the secondary transfer unit N2 from the table data based on the environment information acquired in S403.

なお、2次転写電流のうち、制御することが望まれるのは通紙部電流である。本実施例では、非通紙部分に流れる電流が2次転写電流に占める割合が十分に小さいものとして扱い、2次転写電流を所定の範囲に制御すれば通紙部電流を適切な範囲に制御できるものとしている。ここで、画像不良を抑制する観点から2次転写部N2に流してよい電流の範囲は、環境情報以外にも、記録材Pの厚さ、表面性によっても変化することがある。そのため、上記テーブルデータは、記録材Pの厚さと関連のある情報(坪量)、記録材Pの表面性と関連のある情報によっても電流の範囲が変化するように設定されていてよい。2次転写部N2に流してよい電流の範囲は、計算式として設定されていてもよい。また、2次転写部N2に流してよい電流の範囲は、記録材Pのサイズごとに複数のテーブルデータや計算式として設定されていてもよい。   Of the secondary transfer current, it is the paper passing portion current that is desired to be controlled. In this embodiment, the current flowing in the non-sheet passing portion is treated as a sufficiently small proportion of the secondary transfer current, and if the secondary transfer current is controlled within a predetermined range, the sheet passing portion current is controlled within an appropriate range. It is supposed to be possible. Here, the range of the current that may be applied to the secondary transfer portion N2 from the viewpoint of suppressing image defects may change depending on the thickness and surface property of the recording material P as well as the environmental information. Therefore, the table data may be set such that the range of the current changes depending on the information (grammage) related to the thickness of the recording material P and the information related to the surface property of the recording material P. The range of the current that may flow in the secondary transfer portion N2 may be set as a calculation formula. Further, the range of the current that may be passed through the secondary transfer portion N2 may be set as a plurality of table data or calculation formulas for each size of the recording material P.

次に、制御部50は、2次転写中の2次転写電圧の変動幅ΔVを決定する処理を行う(S408)。S408の処理は、実施例1における図4(a)のS108と同様である。ただし、本実施例では、実施例1で用いた式6に代えて下記式9を用いる。
ΔV=A*(Ip_max’−Ip_min’)*Vb/Itarget ・・(式9)
Next, the control unit 50 performs a process of determining the fluctuation width ΔV of the secondary transfer voltage during the secondary transfer (S408). The process of S408 is the same as S108 of FIG. 4A in the first embodiment. However, in this embodiment, the following expression 9 is used instead of the expression 6 used in the first embodiment.
ΔV = A * (Ip_max'-Ip_min ') * Vb / Itarget ... (Equation 9)

上記式9において、VbはS405で求められた2次転写部分担電圧、ItargetはS404で求められた目標電流であり、Vb/Itargetは2次転写部N2に記録材Pが無い状態での2次転写部N2の電気抵抗に相当する。また、上記式9において、Ip_max’、Ip_min’は、それぞれS407で求められた2次転写電流範囲の上限値、下限値である。また、上記式9において、Aは、実施例1における式6の場合と同様、図17に示すような2次転写電圧の変更時に発生するオーバーシュート電流を、2次転写中に2次転写部N2に供給する電流の上限値と下限値との差分以下に抑えるための補正係数である。この補正係数Aは、予め実験などによって求められており、本実施例では、実施例1と同様に、応答時間が8msecであるのに対して、補正係数Aは1〜2程度に設定している。これにより、本実施例では、2次転写電圧の変更時に、電流が下限値を下回っている状態から上限値を上回る状態になる、逆に上限値を上回っている状態から下限値を下回る状態になるといったことを抑制することができる。本実施例では、目標電流Itargetは15〜20μA程度であるのに対して、2次転写電圧の変動幅ΔVは、上記式6によって2次転写部N2の電気抵抗によって変わるが、凡そ20〜100V程度の値になる。   In the above formula 9, Vb is the secondary transfer portion charge voltage obtained in S405, Itarget is the target current obtained in S404, and Vb / Itarget is 2 when the recording material P is not present in the secondary transfer portion N2. It corresponds to the electric resistance of the next transfer portion N2. Further, in the above Expression 9, Ip_max 'and Ip_min' are the upper limit value and the lower limit value of the secondary transfer current range obtained in S407, respectively. Further, in the above Expression 9, as in the case of Expression 6 in the first embodiment, A represents the overshoot current generated when the secondary transfer voltage is changed as shown in FIG. It is a correction coefficient for suppressing the difference between the upper limit value and the lower limit value of the current supplied to N2 to be equal to or less than the difference. The correction coefficient A is previously obtained through experiments and the like, and in the present embodiment, the response time is 8 msec as in the first embodiment, while the correction coefficient A is set to about 1 to 2. There is. As a result, in the present embodiment, when the secondary transfer voltage is changed, the state in which the current is below the lower limit value exceeds the upper limit value, and conversely, the state is above the upper limit value and below the lower limit value. It can be suppressed. In the present embodiment, the target current Ittarget is about 15 to 20 μA, while the fluctuation width ΔV of the secondary transfer voltage varies depending on the electric resistance of the secondary transfer portion N2 according to the above equation 6, but is about 20 to 100 V. It becomes a value of the degree.

その後、制御部50は、S408で求めた2次転写電圧の変動幅ΔVを用いて、実施例1における実施例1における図4(a)のS109〜S114と同様の処理を行う(S409〜S414)。   After that, the control unit 50 uses the fluctuation width ΔV of the secondary transfer voltage obtained in S408 to perform the same processing as S109 to S114 of FIG. 4A in the first embodiment (S409 to S414). ).

以上説明したように、本実施例によれば、実施例1と同様の効果が得られると共に、制御の簡易化を図ることができる。   As described above, according to the present embodiment, the same effect as that of the first embodiment can be obtained, and the control can be simplified.

[その他]
以上、本発明を具体的な実施例に即して説明したが、本発明は上述の実施例に限定されるものではない。
[Other]
Although the present invention has been described above with reference to specific embodiments, the present invention is not limited to the above embodiments.

上述の実施例では、記録材は、搬送方向と略直交する方向における転写部材の中央を基準として搬送されたが、これに限定されるものではなく、例えば一方の端部側を基準として搬送される構成とされていてもよく、本発明を等しく適用することができる。   In the above-described embodiment, the recording material is conveyed with reference to the center of the transfer member in the direction substantially orthogonal to the conveying direction, but the present invention is not limited to this, and the recording material is conveyed with reference to one end side, for example. The present invention may be equally applied to the present invention.

また、本発明は、画像形成部を一つだけ有するモノクロ画像形成装置にも等しく適用することができる。この場合、本発明は、感光ドラムなどとされる像担持体から記録材にトナー像が転写される転写部に関して適用されることになる。   Further, the present invention is equally applicable to a monochrome image forming apparatus having only one image forming section. In this case, the present invention is applied to the transfer section where the toner image is transferred from the image carrier such as the photosensitive drum to the recording material.

7 中間転写ベルト
8 2次転写ローラ
20 2次転写電源
21 電流検知回路
22 電圧検知回路
50 制御部
7 Intermediate Transfer Belt 8 Secondary Transfer Roller 20 Secondary Transfer Power Supply 21 Current Detection Circuit 22 Voltage Detection Circuit 50 Control Section

Claims (5)

トナー像を担持する像担持体と、
前記像担持体と当接し前記像担持体から記録材にトナー像を転写する転写部を形成する転写部材と、
前記転写部材に電圧を印加する電源と、
前記転写部材に流れる電流を検知する検知部と、
前記転写部を記録材が通過している際に前記転写部材に所定電圧が印加されるように前記転写部材に印加する電圧の定電圧制御を行う制御部と、
を有し、
前記制御部は、転写時に前記転写部材に流れる電流が前記所定範囲内となるように前記転写部材に印加する転写電圧を変更可能な画像形成装置において、
前記制御部は、転写時に前記転写部材に流れる電流が前記所定範囲内となるように前記転写部材に印加する前記転写電圧を変更する場合において、前記転写電圧の変更を前記転写電圧の所定の変動幅ごとに行い、前記変動幅を、前記転写部に記録材が無い状態で前記転写部材に電圧を印加したときに前記検知部で検知される検知結果に基づいて変更することを特徴とする画像形成装置。
An image carrier that carries a toner image,
A transfer member that is in contact with the image carrier and forms a transfer unit that transfers a toner image from the image carrier to a recording material;
A power supply for applying a voltage to the transfer member,
A detection unit for detecting a current flowing through the transfer member,
A control unit for performing constant voltage control of a voltage applied to the transfer member so that a predetermined voltage is applied to the transfer member when a recording material passes through the transfer unit;
Have
In the image forming apparatus capable of changing the transfer voltage applied to the transfer member such that the current flowing through the transfer member during transfer is within the predetermined range,
When changing the transfer voltage applied to the transfer member so that the current flowing through the transfer member falls within the predetermined range during transfer, the controller changes the transfer voltage by a predetermined change in the transfer voltage. An image characterized by being performed for each width and changing the variation width based on a detection result detected by the detection unit when a voltage is applied to the transfer member in a state where there is no recording material in the transfer unit. Forming equipment.
前記制御部は、前記転写部に記録材が無い状態で前記転写部材に所定電圧を印加したときに前記転写部材に流れる電流値が第1電流値である場合は、前記変動幅を第1変動幅に設定し、前記転写部材に流れる電流値が前記第1電流値よりも小さい第2電流値である場合は、前記変動幅を前記第1変動幅よりも大きい第2変動幅に変更することを特徴とする請求項1に記載の画像形成装置。   If the current value flowing through the transfer member is the first current value when a predetermined voltage is applied to the transfer member in the state where there is no recording material in the transfer unit, the controller changes the fluctuation range by the first fluctuation. When the current value flowing in the transfer member is a second current value smaller than the first current value, the fluctuation width is changed to a second fluctuation width larger than the first fluctuation width. The image forming apparatus according to claim 1, wherein: 前記制御部は、一の前記転写電圧の変更の後かつ次の前記転写電圧の変更の前の前記転写部材に流れる電流の絶対値の最大値と、前記一の前記転写電圧の変更の後かつ次の前記転写電圧の変更の前に定常状態になった前記転写部材に流れる電流の絶対値と、の差分が、前記所定範囲の上限値と下限値との差分より小さくなるように、前記変動幅を変更することを特徴とする請求項1又は2に記載の画像形成装置。   The control unit, after one of the change of the transfer voltage and the next maximum of the absolute value of the current flowing in the transfer member before the change of the transfer voltage, and after the change of the one of the transfer voltage and The variation so that the difference between the absolute value of the current flowing through the transfer member that is in a steady state before the next change of the transfer voltage and the difference between the upper limit value and the lower limit value of the predetermined range is smaller than the difference. The image forming apparatus according to claim 1, wherein the width is changed. 前記制御部は、前記変動幅を、前記所定範囲の上限値と下限値の差分に基づいて変更することを特徴とする請求項1乃至3いずれか一項に記載の画像形成装置。   The image forming apparatus according to claim 1, wherein the control unit changes the fluctuation range based on a difference between an upper limit value and a lower limit value of the predetermined range. 前記制御部は、前記変動幅を、記録材の幅に基づいて変更することを特徴とする請求項1乃至4いずれか一項に記載の画像形成装置。   The image forming apparatus according to claim 1, wherein the control unit changes the variation width based on a width of a recording material.
JP2018194692A 2018-10-15 2018-10-15 image forming device Active JP7207934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018194692A JP7207934B2 (en) 2018-10-15 2018-10-15 image forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018194692A JP7207934B2 (en) 2018-10-15 2018-10-15 image forming device

Publications (3)

Publication Number Publication Date
JP2020064125A true JP2020064125A (en) 2020-04-23
JP2020064125A5 JP2020064125A5 (en) 2022-01-20
JP7207934B2 JP7207934B2 (en) 2023-01-18

Family

ID=70387163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018194692A Active JP7207934B2 (en) 2018-10-15 2018-10-15 image forming device

Country Status (1)

Country Link
JP (1) JP7207934B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001282012A (en) * 2000-03-31 2001-10-12 Canon Inc Image forming device
JP2017116591A (en) * 2015-12-21 2017-06-29 コニカミノルタ株式会社 Image formation apparatus, control method and control program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001282012A (en) * 2000-03-31 2001-10-12 Canon Inc Image forming device
JP2017116591A (en) * 2015-12-21 2017-06-29 コニカミノルタ株式会社 Image formation apparatus, control method and control program

Also Published As

Publication number Publication date
JP7207934B2 (en) 2023-01-18

Similar Documents

Publication Publication Date Title
JP7383458B2 (en) image forming device
US11709443B2 (en) Image forming apparatus
JP7350538B2 (en) Image forming device
KR102571422B1 (en) Image forming apparatus
JP7237580B2 (en) image forming device
US11747760B2 (en) Image forming apparatus
US11099504B2 (en) Image forming apparatus
JP7353856B2 (en) Image forming device
JP2020027144A (en) Image forming apparatus
JP7207934B2 (en) image forming device
JP7350537B2 (en) Image forming device
JP7250469B2 (en) image forming device
JP7224867B2 (en) image forming device
US20250076782A1 (en) Image forming apparatus
US20220317600A1 (en) Image forming apparatus
JP2010164748A (en) Image forming apparatus and image forming method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230105

R151 Written notification of patent or utility model registration

Ref document number: 7207934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151