JP2020061240A - Measurement device and measurement method of front face of sample - Google Patents
Measurement device and measurement method of front face of sample Download PDFInfo
- Publication number
- JP2020061240A JP2020061240A JP2018190848A JP2018190848A JP2020061240A JP 2020061240 A JP2020061240 A JP 2020061240A JP 2018190848 A JP2018190848 A JP 2018190848A JP 2018190848 A JP2018190848 A JP 2018190848A JP 2020061240 A JP2020061240 A JP 2020061240A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- profile
- measuring
- charged particle
- particle beam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005259 measurement Methods 0.000 title description 10
- 238000000691 measurement method Methods 0.000 title description 2
- 238000000034 method Methods 0.000 claims abstract description 44
- 239000002245 particle Substances 0.000 claims abstract description 31
- 230000008569 process Effects 0.000 claims abstract description 24
- 230000001678 irradiating effect Effects 0.000 claims abstract description 18
- 238000012545 processing Methods 0.000 claims description 31
- 230000005856 abnormality Effects 0.000 claims description 16
- 238000001514 detection method Methods 0.000 claims description 5
- 230000002159 abnormal effect Effects 0.000 claims description 2
- 238000010586 diagram Methods 0.000 abstract description 26
- 238000010894 electron beam technology Methods 0.000 description 28
- 230000003287 optical effect Effects 0.000 description 9
- 230000006870 function Effects 0.000 description 7
- 238000001000 micrograph Methods 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 3
- 238000011165 process development Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B15/00—Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
- G01B15/04—Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring contours or curvatures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/04—Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
- H01J37/147—Arrangements for directing or deflecting the discharge along a desired path
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/20—Means for supporting or positioning the object or the material; Means for adjusting diaphragms or lenses associated with the support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/22—Optical, image processing or photographic arrangements associated with the tube
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
Abstract
【課題】効率的かつ高い精度で、試料の形状を計測する。【解決手段】荷電粒子線を照射して凹凸部を有する試料の形状を計測する計測装置であって、試料に対して任意の角度で荷電粒子線を照射することによって、照射位置及び放出電子の強度の関係を示すプロファイルを生成し、二つのプロファイルを用いて、試料の形状を解析するための解析処理を実行する。【選択図】図1PROBLEM TO BE SOLVED: To measure a sample shape efficiently and with high accuracy. SOLUTION: This is a measuring device that measures the shape of a sample having uneven portions by irradiating a charged particle beam, and by irradiating the sample with the charged particle beam at an arbitrary angle, the irradiation position and emitted electrons are measured. A profile showing the relationship between the intensities is generated, and an analysis process for analyzing the shape of the sample is executed using the two profiles. [Selection diagram] Fig. 1
Description
本発明は、荷電粒子線を用いて試料の形状を計測する装置及び方法に関する。 The present invention relates to an apparatus and method for measuring the shape of a sample using a charged particle beam.
半導体のプロセス開発では、エッチング処理が行われた試料のトレンチの深さ及びテーパ角、ノッチの有無を確認する必要がある。 In semiconductor process development, it is necessary to confirm the depth and taper angle of a trench and the presence or absence of a notch in an etched sample.
半導体等の試料の形状を計測する方法として、走査型電子顕微鏡を用いる方法が知られている。なお、以下の説明では、走査型電子顕微鏡をSEMとも記載する。 A method using a scanning electron microscope is known as a method of measuring the shape of a sample such as a semiconductor. In the following description, the scanning electron microscope is also referred to as SEM.
前述の計測方法では、SEMが、試料に対して一次電子線を走査し、試料から放出される放出電子(オージェ電子、二次電子、及び反射電子等)を検出器を用いて検出する。検出器を用いて検出された放出電子に対応する放出方向の検出信号は、一定の周期でサンプリングされる。放出電子の信号のサンプリングは、走査信号に同期するように行われ、二次元画像の画素に対応した抽出信号が得られる。SEMは、抽出された信号の強度を明るさに変換することによって画像を生成し、又は、一次電子線の走査位置の座標及び明るさの関係から画像を生成する。 In the above-described measurement method, the SEM scans the sample with a primary electron beam and detects emitted electrons (Auger electrons, secondary electrons, reflected electrons, and the like) emitted from the sample using a detector. The detection signal in the emission direction corresponding to the emission electron detected by the detector is sampled at a constant cycle. The sampling of the emitted electron signal is performed in synchronization with the scanning signal, and the extraction signal corresponding to the pixel of the two-dimensional image is obtained. The SEM generates an image by converting the intensity of the extracted signal into brightness, or generates an image from the relationship between the coordinates of the scanning position of the primary electron beam and the brightness.
例えば、特許文献1には、「試料が載置される試料ステージ及び鏡筒の一方を任意の傾斜角に設定することのできる走査型電子顕微鏡の偏向器を制御して前記試料ステージ上に載置された試料の測定部に電子ビームを照射し、前記測定部からの2次電子信号を画像処理し、この画像処理された信号に基づいて前記測定部のパターン形状を測定するパターン形状測定方法において、傾斜角を零にし、測定部に電子ビームを照射した時の2次電子信号を画像処理して前記測定部のパターンの底部寸法を算出する第1のステップと、傾斜角を第1の所定角度に設定し、測定部に電子ビームを照射した時の2次電子信号を画像処理して前記測定部のパターンのテーパ部の画素数を求める第2のステップと、傾斜角を前記第1の所定角度と異なる第2の所定角度に設定し、測定部に電子ビームを照射した時の2次電子信号を画像処理して前記テーパ部の画素数を求める第3のステップと、前記第2及び第3のステップによって求められた前記テーパ部の画素数、及び第1並びに第2の所定角度に基づいて前記パターンのテーパ角度及び深さを算出する第4のステップと、前記テーパ部の2次電子信号の強度の変化に基づいて前記テーパ部のプロファイルを求める第5のステップと、前記第1及び第5のステップによって求められたパターンの底部寸法及びテーパ部のプロファイルに基づいて前記測定パターンの表面積を算出する第6のステップとを備える」パターン形状測定方法が開示されている。 For example, in Patent Document 1, "a sample stage on which a sample is mounted and one of a lens barrel are set on the sample stage by controlling a deflector of a scanning electron microscope capable of setting an arbitrary tilt angle. A pattern shape measuring method of irradiating an electron beam on a measuring section of a sample placed thereon, image-processing a secondary electron signal from the measuring section, and measuring a pattern shape of the measuring section based on the image-processed signal. In the first step, the inclination angle is set to zero, and the secondary electron signal when the measuring section is irradiated with the electron beam is image-processed to calculate the bottom dimension of the pattern of the measuring section. A second step of setting a predetermined angle and performing image processing of a secondary electron signal when the measuring section is irradiated with an electron beam to obtain the number of pixels in the taper section of the pattern of the measuring section; The second different from the predetermined angle of It is determined by the third step of setting the constant angle and subjecting the secondary electron signal when the measuring section is irradiated with the electron beam to the image processing to obtain the number of pixels of the taper section, and the second and third steps. A fourth step of calculating the taper angle and depth of the pattern based on the number of pixels of the taper portion and the first and second predetermined angles; and a change in the intensity of the secondary electron signal of the taper portion. A fifth step of obtaining the profile of the tapered portion based on the sixth step, and a sixth step of calculating the surface area of the measurement pattern based on the bottom dimension of the pattern and the profile of the tapered portion obtained in the first and fifth steps. And a pattern shape measuring method.
特許文献1では、試料の表面に対して傾斜した電子線を照射することによって得られるプロファイルの構造が考慮されていない。測定精度を向上させるためには、前述の構造を考慮する必要がある。また、特許文献1では、ノッチの有無を判定することができない。 Patent Document 1 does not consider the structure of the profile obtained by irradiating the surface of the sample with an inclined electron beam. In order to improve the measurement accuracy, it is necessary to consider the above structure. Further, in Patent Document 1, it is not possible to determine the presence or absence of a notch.
本発明は、効率的かつ高い精度で、試料の形状を計測することができる装置及び方法を提供する。 The present invention provides an apparatus and method capable of measuring the shape of a sample efficiently and with high accuracy.
本願において開示される発明の代表的な一例を示せば以下の通りである。すなわち、荷電粒子線を照射して凹凸部を有する試料の形状を計測する計測装置であって、前記荷電粒子線を出力する粒子源と、前記荷電粒子線を集束するレンズと、前記荷電粒子線を照射した前記試料から放出される放出電子の信号を検出する検出器と、前記荷電粒子線の出力及び前記放出電子の信号の検出を制御する制御装置と、を備え、前記制御装置は、前記試料に対して任意の角度で前記荷電粒子線を照射することによって、照射位置及び前記放出電子の強度の関係を示すプロファイルを生成し、二つの前記プロファイルを用いて、前記試料の形状を解析するための解析処理を実行し、前記解析処理の結果を出力する。 A typical example of the invention disclosed in the present application is as follows. That is, a measuring device for irradiating a charged particle beam to measure the shape of a sample having an uneven portion, the particle source outputting the charged particle beam, a lens for focusing the charged particle beam, and the charged particle beam. A detector for detecting a signal of an emission electron emitted from the sample irradiated with, and a control device for controlling the output of the charged particle beam and the detection of the signal of the emission electron, the control device comprising: By irradiating the sample with the charged particle beam at an arbitrary angle, a profile indicating the relationship between the irradiation position and the intensity of the emitted electrons is generated, and the shape of the sample is analyzed using the two profiles. Is executed and the result of the analysis process is output.
本発明によれば、効率的かつ高い精度で、試料の形状を計測できる。上記した以外の課題、構成及び効果は、以下の実施例の説明により明らかにされる。 According to the present invention, the shape of a sample can be measured efficiently and with high accuracy. Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
以下、本発明の実施例を、図面を用いて説明する。ただし、本発明は以下に示す実施例の記載内容に限定して解釈されるものではない。本発明の思想ないし趣旨から逸脱しない範囲で、その具体的構成を変更し得ることは当業者であれば容易に理解される。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention should not be construed as being limited to the description of the examples below. It is easily understood by those skilled in the art that the specific configuration can be changed without departing from the idea or the spirit of the present invention.
以下に説明する発明の構成において、同一又は類似する構成又は機能には同一の符号を付し、重複する説明は省略する。 In the configurations of the invention described below, the same or similar configurations or functions are designated by the same reference numerals, and overlapping description will be omitted.
本明細書等における「第1」、「第2」、「第3」等の表記は、構成要素を識別するために付するものであり、必ずしも、数又は順序を限定するものではない。 The notations such as “first”, “second”, and “third” in this specification and the like are given to identify components, and do not necessarily limit the number or order.
図面等において示す各構成の位置、大きさ、形状、及び範囲等は、発明の理解を容易にするため、実際の位置、大きさ、形状、及び範囲等を表していない場合がある。したがって、本発明では、図面等に開示された位置、大きさ、形状、及び範囲等に限定されない。 The position, size, shape, range, etc. of each component shown in the drawings and the like may not represent the actual position, size, shape, range, etc. for easy understanding of the invention. Therefore, the present invention is not limited to the position, size, shape, range, etc. disclosed in the drawings and the like.
図1は、実施例1の走査電子顕微鏡10の構成の一例を示す図である。
FIG. 1 is a diagram illustrating an example of the configuration of the
なお、実施例1では試料の形状の計測に使用する計測装置(荷電粒子線装置)の一例として走査電子顕微鏡10を用いているが、断続的な電子線を用いた電子顕微鏡でもよい。
In the first embodiment, the
走査電子顕微鏡10は、電子光学系、ステージ機構系、SEM制御系、信号処理系、及びSEM操作系から構成される。より具体的には、走査電子顕微鏡10は、電子光学系及びステージ機構系を含む電子光学系鏡筒101、並びに、SEM制御系、信号処理系、及びSEM操作系を含む制御ユニット102から構成される。
The
電子光学系は、電子銃111、偏向器113、対物レンズ115、及び検出器119から構成される。電子銃111は、一次電子線112を出力する。
The electron optical system includes an
一次電子線112は、偏向器113及び対物レンズ115の通過時にフォーカス等が調整される。また、一次電子線112は、偏向器113の通過時に軌道が偏向され、試料116を二次元に走査する。一次電子線112が照射された試料116から放出された二次電子又は反射電子等の放出電子は、検出器119によって検出される。検出器119によって検出された放出電子の信号は、制御ユニット102によって処理される。一次電子線112の照射位置に対応した二次元画像は、例えば、出力装置125に表示される。
The focus of the
ステージ機構系は、試料116を設置するステージを備える試料ホルダ117から構成される。ステージは、傾斜制御及び三次元方向(XYZ軸)の移動制御が可能である。実施例1の試料116は、エッチング加工等が行われた半導体等を想定する。また、試料116は、エッチング加工によるトレンチ等の凹凸を有するものとする。
The stage mechanism system is composed of a
実施例1では、ステージを傾斜させることによって、試料116の表面の垂線に対して任意の角度で傾斜した一次電子線112の照射を実現する。なお、電子銃111の向きを調整又は偏向器113による偏向等によって、前述の一次電子線112の照射を実現してもよい。
In the first embodiment, the
制御ユニット102は、演算装置121、記憶装置122、走査信号制御装置123、入力装置124、及び出力装置125を有する。なお、制御ユニット102は、HDD(Hard Disk Drive)及びSSD(Solid State Drive)等の記憶媒体を含んでもよい。
The
演算装置121は、記憶装置122に格納されるプログラムにしたがって、所定の演算処理を実行する。演算装置121は、例えば、CPU(Central Processing Unit)及びGPU(Graphics Processing Unit)等が考えられる。
The
記憶装置122は、演算装置121が実行するプログラム及び当該プログラムが使用するデータを格納する。また、記憶装置122は、プログラムが使用するワークエリア等の一時記憶領域を含む。記憶装置122は、例えば、メモリ等が考えられる。記憶装置122に格納されるプログラム及びデータについては後述する。
The
走査信号制御装置123は、走査電子線の走査速度を制御する。例えば、走査信号制御装置123は、偏向器113と通信可能なように接続される。
The scanning
入力装置124は、データの入力を行う装置であり、キーボード、マウス、及びタッチパネル等を含む。また、出力装置125は、データの出力を行う装置であり、タッチパネル及びディスプレイ等を含む。
The
記憶装置122は、制御モジュール131を実現するプログラムを格納する。また、記憶装置122は、ラインプロファイル情報132を格納する。
The
なお、記憶装置122は、図示しないプログラム及び情報を格納してもよい。例えば、記憶装置122は、加速電圧、照射電流、走査幅(照射時間)、ピクセルスプリット数(照射周期)、及びタイミングディレイ等の計測条件を管理する計測条件情報を格納してもよい。また、記憶装置122は、検出された放出電子から生成された電位コントラスト像等の電子顕微鏡像を管理する画像管理情報を格納してもよい。
The
制御モジュール131は、電子光学系鏡筒101の各構成部品を制御する。また、制御モジュール131は、二次電子の信号から画像を生成する。なお、制御ユニット102は、制御モジュール131とは別に、画像を生成する画像生成モジュールを有してもよい。
The control module 131 controls each component of the electron optical
ラインプロファイル情報132は、ラインプロファイルを管理するための情報である。ラインプロファイルは、画素及び画素におけるコントラストの強度(放出電子の信号の強度)を対応づけた情報であり、また、試料116の形状を示す情報である。本実施例のラインプロファイルは、二次電子から生成される電子顕微鏡像の画像に基づいて生成される。
The
本実施例では、SEM制御系は制御モジュール131及び走査信号制御装置123から構成され、信号処理系は制御モジュール131から構成され、SEM操作系は入力装置124及び出力装置125から構成される。
In this embodiment, the SEM control system is composed of the control module 131 and the scanning
図2は、実施例1の走査電子顕微鏡10が実行する処理の一例を説明するフローチャートである。図3A、図3B、図3C、及び図3Dは、実施例1の試料116の形状及びラインプロファイルの関係性を示す図である。図4A、図4B、及び図4Cは、実施例1の特徴量A(θ)の特性を説明する図である。
FIG. 2 is a flowchart illustrating an example of processing executed by the
走査電子顕微鏡10は、ユーザから開始要求を受信した場合、又は、計測条件を満たした場合、以下で説明する処理を開始する。
The
走査電子顕微鏡10は、試料116が形成する平面に垂直な方向に対して、一次電子線112を入射する角度θを設定する(ステップS101)。
The
具体的には、制御モジュール131が角度θを設定する。角度θは、計測条件情報に基づいて設定してもよいし、また、ユーザからの入力に基づいて設定してもよい。このとき、走査信号制御装置123は、角度θに基づいてステージを制御する。
Specifically, the control module 131 sets the angle θ. The angle θ may be set based on the measurement condition information or may be set based on the input from the user. At this time, the scanning
次に、走査電子顕微鏡10は、一次電子線112を試料116に対して照射する(ステップS102)。このとき、検出器119は、試料116から放出された放出電子を検出し、制御ユニット102に放出電子の信号を出力する。制御ユニット102の制御モジュール131は、角度θと放出電子の信号とを対応づけた検出データを記憶装置122に格納する。
Next, the
次に、走査電子顕微鏡10は、放出電子の信号を用いた画像処理を実行する(ステップS103)。
Next, the
例えば、制御モジュール131が、一定の時間範囲に検出された放出電子の信号を用いて電子顕微鏡像を生成する。すなわち、試料116の一部分の形状を示す電子顕微鏡像が生成される。このとき、制御モジュール131は、複数の電子顕微鏡像を結合することによって一つの画像を生成する。
For example, the control module 131 generates an electron microscope image using the signals of the emitted electrons detected in a certain time range. That is, an electron microscope image showing the shape of a part of the
次に、走査電子顕微鏡10は、画像が適切であるか否かを判定する(ステップS104)。
Next, the
例えば、制御モジュール131は、結合された電子顕微鏡像の向きが一致しているか否かを判定する。結合された電子顕微鏡像の向きが一致している場合、制御モジュール131は、画像が適切であると判定する。 For example, the control module 131 determines whether the orientations of the combined electron microscope images match. If the orientations of the combined electron microscope images match, the control module 131 determines that the images are suitable.
画像が適切でないと判定された場合、走査電子顕微鏡10は、ステップS102に戻り、同様の処理を実行する。なお、走査電子顕微鏡10は、ステップS103に戻ってもよい。
When it is determined that the image is not appropriate, the
画像が適切であると判定された場合、走査電子顕微鏡10は、画像を用いてラインプロファイルを生成する(ステップS105)。
When it is determined that the image is appropriate, the
具体的には、制御モジュール131が、画像を用いてラインプロファイルを生成する。また、制御モジュール131は、角度θ及びラインプロファイルを対応づけた情報を、ラインプロファイル情報132として記憶装置122に格納する。
Specifically, the control module 131 uses the image to generate a line profile. The control module 131 also stores information in which the angle θ and the line profile are associated with each other in the
例えば、図3Aに示すような表面の形状の場合、図3Bに示すようなラインプロファイルが生成される。また、図3Cに示すような表面の形状の場合、図3Dに示すようなラインプロファイルが生成される。なお、図3Aは、角度θが0度で一次電子線112を照射した状態を示し、図3Cは、0度より大きい角度θで一次電子線112を照射した状態を示す。
For example, in the case of the surface shape shown in FIG. 3A, the line profile shown in FIG. 3B is generated. Further, in the case of the surface shape as shown in FIG. 3C, a line profile as shown in FIG. 3D is generated. Note that FIG. 3A shows a state where the
また、制御モジュール131は、ラインプロファイルにおいて、信号強度の増加率が第1の閾値より大きくなる点から信号強度の最大値を経由して、信号強度が最小値となる点までの範囲を、テーパ幅として算出する。第1の閾値は予め設定されているものとする。前述の定義を満たす範囲が複数存在する場合、最も大きい範囲がテーパ幅として算出される。 Further, the control module 131 tapers the range from the point where the increase rate of the signal strength becomes larger than the first threshold value to the point where the signal strength reaches the minimum value in the line profile. Calculate as width. The first threshold value is set in advance. When there are a plurality of ranges that satisfy the above definition, the largest range is calculated as the taper width.
なお、信号強度が最小値より大きくなる点から信号強度の最大値を経由し、信号強度の最大値からの信号強度の減少率が変化する点までの範囲は、上記定義のテーパ幅と等価な範囲である。 The range from the point where the signal strength is greater than the minimum value to the point where the decrease rate of the signal strength changes from the maximum value of the signal strength via the maximum value of the signal strength is equivalent to the taper width defined above. It is a range.
特許文献1等の従来技術では、最小値及から最大値までの範囲をテーパ幅として設定している。しかし、試料116の表面の垂線に対して傾斜させた一次電子線112を照射した場合、図3Dに示すラインプロファイルが生成される。当該ラインプロファイルでは右側の最大値を定めることが可能だが、最大値近くに極大値もある。走査電子顕微鏡10及び試料116の条件によっては試料表面における帯電等の影響で最大値と極大値の関係が反転することがあり、従来技術ではテーパ幅を見誤るおそれがある。そこで、実施例1では、当該構造を考慮し、前述の範囲をテーパ幅として設定することで、計測精度を向上させることができる。
In the related art such as Patent Document 1, the range from the minimum value to the maximum value is set as the taper width. However, when the
実施例1では、図3Aに示すように、トレンチの開口部から底部に向けて細くなるテーパを順テーパと定義し、トレンチの開口部から底部に向けて太くなるテーパを逆テーパと定義する。また、図3Aに示すように、底面と側壁とがなす角をテーパ角と定義する。順テーパの場合、テーパ角は90度より小さく、逆テーパの場合、テーパ角は90度より大きい。 In Example 1, as shown in FIG. 3A, a taper that becomes thinner from the opening of the trench to the bottom is defined as a forward taper, and a taper that becomes thicker from the opening of the trench to the bottom is defined as an inverse taper. Further, as shown in FIG. 3A, the angle formed by the bottom surface and the side wall is defined as a taper angle. In the case of the forward taper, the taper angle is smaller than 90 degrees, and in the case of the reverse taper, the taper angle is larger than 90 degrees.
次に、走査電子顕微鏡10は、特徴量A(θ)を算出できるか否かを判定する(ステップS106)。
Next, the
具体的には、制御モジュール131は、角度θが異なるラインプロファイル情報132が二つ存在するか否かを判定する。角度θが異なるラインプロファイル情報132が二つ存在しないと判定された場合、制御モジュール131は、特徴量A(θ)を算出できないと判定する。
Specifically, the control module 131 determines whether or not there are two pieces of
特徴量A(θ)を算出できないと判定された場合、走査電子顕微鏡10は、ステップS101に戻り、同様の処理を実行する。
When it is determined that the characteristic amount A (θ) cannot be calculated, the
特徴量A(θ)を算出できると判定された場合、走査電子顕微鏡10は、特徴量A(θ)を算出する(ステップS107)。
When it is determined that the characteristic amount A (θ) can be calculated, the
具体的には、走査電子顕微鏡10は、二つのラインプロファイルのテーパ幅Ta_1、Ta_2を式(1)に代入することによって特徴量A(θ)を算出する。なお、特徴量A(θ)は角度を変数とする関数である。
Specifically, the
Ta_1は角度θがθ1であるラインプロファイルのテーパ幅を表し、Ta_2は角度θがθ2であるラインプロファイルのテーパ幅を表す。なお、θ1はθ2より大きい。 Ta_1 represents the taper width of the line profile whose angle θ is θ1, and Ta_2 represents the taper width of the line profile whose angle θ is θ2. Note that θ1 is larger than θ2.
ここで、図4A、図4B、及び図4Cを用いて特徴量A(θ)と試料116の形状との関係性について説明する。
Here, the relationship between the feature amount A (θ) and the shape of the
特徴量A(θ)が0以上となる角度の絶対値はトレンチのテーパ角に対応する。また、特徴量A(θ)の傾きはトレンチの深さを表す。 The absolute value of the angle at which the characteristic amount A (θ) becomes 0 or more corresponds to the taper angle of the trench. Further, the slope of the characteristic amount A (θ) represents the depth of the trench.
試料116のトレンチの形状が順テーパである場合、特徴量A(θ)は図4Aに示すようになる。試料116のトレンチの形状がテーパを形成しない場合、特徴量A(θ)は図4Bに示すようになる。試料116のトレンチの形状が逆テーパである場合、特徴量A(θ)は図4Cに示すようになる。このように、トレンチの形状が逆テーパの場合、傾斜角は正の値となり、トレンチの形状が順テーパの場合、傾斜角は負の値となる。
When the shape of the trench of the
図2の説明に戻る。 Returning to the description of FIG.
次に、走査電子顕微鏡10は、特徴量A(θ)が閾値(第2の閾値)より大きいか否かを判定する(ステップS108)。ステップS108の処理は、特徴量A(θ)が有意な値であるか否かを判定するための処理である。なお、第2の閾値は予め設定されているものとする。
Next, the
特徴量A(θ)が第2の閾値以下であると判定された場合、走査電子顕微鏡10は、ステップS101に戻り、同様の処理を実行する。このとき、制御モジュール131は、記憶装置122に格納される二つのラインプロファイル情報132を削除してもよいし、いずれか一つのラインプロファイル情報132を削除してもよい。
When it is determined that the characteristic amount A (θ) is less than or equal to the second threshold value, the
特徴量A(θ)が第2の閾値より大きいと判定された場合、走査電子顕微鏡10は解析処理を実行する(ステップS109)。解析処理の詳細は図5を用いて説明する。
When it is determined that the characteristic amount A (θ) is larger than the second threshold value, the
次に、走査電子顕微鏡10は、解析結果を出力し(ステップS110)、処理を終了する。
Next, the
具体的には、制御モジュール131は、解析結果を表示するための表示情報を生成し、出力装置125に表示情報を出力する。
Specifically, the control module 131 generates display information for displaying the analysis result, and outputs the display information to the
図5は、実施例1の走査電子顕微鏡10が実行する解析処理の一例を説明するフローチャートである。
FIG. 5 is a flowchart illustrating an example of analysis processing executed by the
制御モジュール131は、式(2)に特徴量A(θ)及びθ1を代入することによって、トレンチの深さwを算出する(ステップS201)。 The control module 131 calculates the depth w of the trench by substituting the feature quantities A (θ) and θ1 into the equation (2) (step S201).
次に、制御モジュール131は、特徴量A(θ)、θ1、及びトレンチの深さwを用いてテーパ角を算出する(ステップS202)。ここで、テーパ角の算出方法について説明する。 Next, the control module 131 calculates the taper angle using the feature values A (θ), θ1, and the trench depth w (step S202). Here, a method of calculating the taper angle will be described.
図4A、図4B、及び図4Cに示すように、テーパ角は、式(3)に示すように傾きwの直線と角度の軸との交点の絶対値として求めることができる。 As shown in FIGS. 4A, 4B, and 4C, the taper angle can be obtained as the absolute value of the intersection of the straight line with the inclination w and the axis of the angle as shown in Expression (3).
そこで、制御モジュール131は、式(3)に特徴量A(θ)、θ1、及びトレンチの深さwを代入して、定数bを算出する。さらに、制御モジュール131は、式(3)に基づいてA(θ)が0となるθ(傾斜角)を算出し、当該絶対値をテーパ角として算出する。 Therefore, the control module 131 calculates the constant b by substituting the feature quantities A (θ), θ1 and the trench depth w into the equation (3). Further, the control module 131 calculates θ (tilt angle) at which A (θ) becomes 0 based on the equation (3), and calculates the absolute value as the taper angle.
前述のように、実施例1では、テーパの種類の違いにかかわらず、テーパ角を算出できる。以上が、テーパ角の算出方法の説明である。 As described above, in the first embodiment, the taper angle can be calculated regardless of the difference in taper type. The above is the description of the calculation method of the taper angle.
次に、制御モジュール131は、傾斜角に基づいて、トレンチの形状が順テーパであるか否かを判定する(ステップS203)。 Next, the control module 131 determines whether the shape of the trench is a forward taper based on the inclination angle (step S203).
具体的には、制御モジュール131は傾斜角が0度より小さいか否かを判定する。テーパ角が0度より小さい場合、制御モジュール131は、トレンチの形状が順テーパであると判定する。 Specifically, the control module 131 determines whether the tilt angle is smaller than 0 degree. When the taper angle is smaller than 0 degree, the control module 131 determines that the shape of the trench is a forward taper.
トレンチの形状が順テーパであると判定された場合、制御モジュール131はステップS205に進む。 When it is determined that the shape of the trench is a forward taper, the control module 131 proceeds to step S205.
トレンチの形状が順テーパでないと判定された場合、制御モジュール131は、傾斜角に基づいて、トレンチの形状が逆テーパであるか否かを判定する(ステップS204)。 When it is determined that the shape of the trench is not a forward taper, the control module 131 determines whether the shape of the trench is an inverse taper based on the inclination angle (step S204).
具体的には、制御モジュール131は傾斜角が0度より大きいか否かを判定する。テーパ角が0度より大きい場合、制御モジュール131は、トレンチの形状が逆テーパであると判定する。 Specifically, the control module 131 determines whether the tilt angle is larger than 0 degree. When the taper angle is larger than 0 degree, the control module 131 determines that the shape of the trench is an inverse taper.
トレンチの形状が逆テーパであると判定された場合、制御モジュール131はステップS205に進む。 When it is determined that the shape of the trench is an inverse taper, the control module 131 proceeds to step S205.
トレンチの形状が逆テーパでない、すなわち、テーパを有さないと判定された場合、制御モジュール131はステップS205に進む。 When it is determined that the shape of the trench is not the reverse taper, that is, the trench does not have the taper, the control module 131 proceeds to step S205.
ステップS205では、制御モジュール131は解析結果を生成する(ステップS205)。その後、制御モジュール131は解析処理を終了する。 In step S205, the control module 131 generates an analysis result (step S205). Then, the control module 131 ends the analysis process.
例えば、制御モジュール131は、テーパ角、テーパ幅、及びテーパの種類を含む情報を解析結果として生成する。解析結果にはラインプロファイル及び画像が含まれてもよい。 For example, the control module 131 generates information including the taper angle, the taper width, and the taper type as the analysis result. The analysis result may include a line profile and an image.
実施例1によれば、試料116の表面の垂線に対して傾斜した一次電子線112を照射して得られた二つのラインプロファイルを用いることによって、トレンチの異常を判定することができる。
According to the first embodiment, the abnormality of the trench can be determined by using the two line profiles obtained by irradiating the
試料116を計測するために、試料116の加工等の作業が不要であるため、プロセス開発の効率の向上及びコストの削減を実現できる。また、角度が異なる画像を三つ以上取得する必要がないため、処理コストを低減することができる。
Since measurement of the
実施例2では、試料116の表面の垂線に対して傾斜した一次電子線112を照射して得られたラインプロファイルを用いて、トレンチの側壁の異常を判定する。以下、実施例1との差異を中心に、実施例2について説明する。
In the second embodiment, the abnormality of the side wall of the trench is determined by using the line profile obtained by irradiating the
図6は、実施例2の走査電子顕微鏡10の構成の一例を示す図である。
FIG. 6 is a diagram showing an example of the configuration of the
実施例2の走査電子顕微鏡10は電子光学系鏡筒101及び制御ユニット102から構成される。電子光学系鏡筒101の構成は実施例1と同一である。制御ユニット102のハードウェア構成は実施例1と同一である。
The
実施例2では、制御ユニット102のソフトウェア構成が一部異なる。具体的には、記憶装置122は、比較用ラインプロファイル情報133を保持する。
In the second embodiment, the software configuration of the
比較用ラインプロファイル情報133は、トレンチの側壁が正常である試料116から得られたラインプロファイルを管理するための情報である。比較用ラインプロファイル情報133は、角度及びラインプロファイルを対応づけたデータを含む。実施例2では、予め、正常な試料116のラインプロファイルを比較用ラインプロファイルとして格納する。
The comparative
なお、比較用ラインプロファイルは、実際の計測結果に基づいて生成されてもよいし、また、シミュレーションの結果に基づいて生成されてもよい。 The comparison line profile may be generated based on the actual measurement result, or may be generated based on the result of the simulation.
その他の構成は実施例1と同一である。 Other configurations are the same as those in the first embodiment.
図7は、実施例2の走査電子顕微鏡10が実行する処理の一例を説明するフローチャートである。
FIG. 7 is a flowchart illustrating an example of processing executed by the
ステップS101からステップS105までの処理、及びステップS110の処理は実施例1で説明した処理と同一である。 The processing of steps S101 to S105 and the processing of step S110 are the same as the processing described in the first embodiment.
ステップS105の処理が実行された後、走査電子顕微鏡10は解析処理を実行する(ステップS115)。解析処理の詳細は図8を用いて説明する。
After the processing of step S105 is executed, the
図8は、実施例2の走査電子顕微鏡10が実行する解析処理の一例を説明するフローチャートである。図9A、図9B、図9C、及び図9Dは、実施例2の試料116のトレンチの側壁の形状及びラインプロファイルの関係性を示す図である。図10A、図10B、及び図10Cは、実施例2のノッチを有する試料116のラインプロファイルの特性を示す図である。図11A及び図11Bは、実施例2の走査電子顕微鏡10が出力する解析結果に含まれる情報の一例を示す図である。
FIG. 8 is a flowchart illustrating an example of analysis processing executed by the
制御モジュール131は、一つのラインプロファイル情報132のラインプロファイルと、比較用ラインプロファイル情報133のラインプロファイルとを比較する(ステップS301)。
The control module 131 compares the line profile of one
具体的には、制御モジュール131は、比較用ラインプロファイル情報133を参照し、ステップS101において設定された角度θに対応する比較用ラインプロファイルを取得する。制御モジュール131は、取得した比較用ラインプロファイルと、ステップS105において生成されたラインプロファイルとを比較する。
Specifically, the control module 131 refers to the comparison
制御モジュール131は、二つのラインプロファイルの形状が異なるか否かを判定する(ステップS302)。 The control module 131 determines whether or not the shapes of the two line profiles are different (step S302).
ここで、ラインプロファイルの形状の比較について説明する。 Here, the comparison of the shapes of the line profiles will be described.
図9A及び図9Cは試料116の一例を示す。なお、試料116の素材が異なる部分は、パターンを用いて区別している。
9A and 9C show an example of the
図9B及び図9Dはラインプロファイルの一例を示す。なお、ラインプロファイルの棒グラフ901は、一次電子線112が照射された試料116の面を表す。
9B and 9D show an example of a line profile. The line
図9Aに示すように、側壁にノッチが存在しないトレンチ部分に一次電子線112を照射した場合、図9Bに示すようなラインプロファイルが得られる。図9Cに示すように、側壁にノッチが存在するトレンチ部分に一次電子線112を照射した場合、図9Dに示すようなラインプロファイルが得られる。
As shown in FIG. 9A, when the
図9B及び図9Dに示すように、ノッチが存在する試料116から得られたラインプロファイルは、正常な試料116からえら得たラインプロファイルと相違する部分が存在する。
As shown in FIGS. 9B and 9D, the line profile obtained from the
制御モジュール131は、二つのラインプロファイルの比較結果に基づいて、相違する部分が存在するか否かを判定する。相違する部分が存在する場合、制御モジュール131は、二つのラインプロファイルの形状が異なると判定する。なお、信号強度の大きさの違いは考慮されない。 The control module 131 determines whether there is a different portion based on the comparison result of the two line profiles. If there is a different portion, the control module 131 determines that the shapes of the two line profiles are different. The difference in signal strength is not taken into consideration.
二つのラインプロファイルの形状が一致すると判定された場合、制御モジュール131はステップS304に進む。 When it is determined that the shapes of the two line profiles match, the control module 131 proceeds to step S304.
二つのラインプロファイルの形状が異なると判定された場合、制御モジュール131は、異常の程度を示す指標を算出する(ステップS303)。その後、制御モジュール131はステップS304に進む。 When it is determined that the shapes of the two line profiles are different, the control module 131 calculates an index indicating the degree of abnormality (step S303). After that, the control module 131 proceeds to step S304.
ここで、図10A、図10B、及び図10Cを用いて、算出される指標について説明する。 Here, the calculated index will be described with reference to FIGS. 10A, 10B, and 10C.
図10A、図10B、及び図10Cは、部分902を拡大した図である。なお、点線は比較用ラインプロファイルを示す。図に示すように、ノッチの大きさに応じて、比較用ラインプロファイルとの相違の大きさが異なる。すなわち、ノッチが大きいほど斜線部分(領域ABE)及び点線部分(領域ECD)の極値が大きくなり、また、斜線部分及び点線部分が大きくなる。
10A, 10B, and 10C are enlarged views of the
そこで、制御モジュール131は、斜線部分の面積又はCD間の距離等を指標として算出する。以上が異常の程度を示す指標の説明である。 Therefore, the control module 131 calculates the area of the shaded area or the distance between the CDs as an index. The above is the description of the index indicating the degree of abnormality.
ステップS304では、制御モジュール131は解析結果を生成する(ステップS304)。その後、制御モジュール131は解析処理を終了する。 In step S304, the control module 131 generates an analysis result (step S304). Then, the control module 131 ends the analysis process.
例えば、制御モジュール131は、ノッチの有無及び指標を含む情報を解析結果として生成する。解析結果にはラインプロファイル及び画像が含まれてもよい。なお、試料116の複数の箇所に対して解析処理を実行することによって、図11A及び図11Bに示すようなグラフを含む解析結果を出力してもよい。
For example, the control module 131 generates information including the presence or absence of the notch and the index as the analysis result. The analysis result may include a line profile and an image. The analysis result including the graphs shown in FIGS. 11A and 11B may be output by executing the analysis process on a plurality of portions of the
図11Aは、斜線部分の面積が指標として算出された場合に出力されるグラフである。なお、側壁異常度は、面積の大きさの相対値等に基づいて設定されているものとする。 FIG. 11A is a graph output when the shaded area is calculated as an index. Note that the sidewall abnormality degree is set based on the relative value of the size of the area and the like.
図11Aに示すグラフを参照することによって、効率的かつ高い精度で試料116のトレンチの側壁の異常を把握できる。また、トレンチの側壁の異常の大きさも把握することができる。
By referring to the graph shown in FIG. 11A, the abnormality of the sidewall of the trench of the
図11Bは、CD間の距離が指標として算出された場合に出力されるグラフである。図11Bに示すグラフを参照することによって、側壁の大きさを見積もることができる。これによって、プロセス開発のコスト及び時間の削減が可能となる。 FIG. 11B is a graph output when the distance between CDs is calculated as an index. The size of the side wall can be estimated by referring to the graph shown in FIG. 11B. This makes it possible to reduce the cost and time of process development.
実施例2によれば、試料116の表面の垂線に対して傾斜した一次電子線112を照射して得られたラインプロファイル及び比較用ラインプロファイルを比較することによって、試料116のトレンチの側壁の異常を判定することができる。
According to the second embodiment, by comparing the line profile obtained by irradiating the
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。また、例えば、上記した実施例は本発明を分かりやすく説明するために構成を詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、各実施例の構成の一部について、他の構成に追加、削除、置換することが可能である。 It should be noted that the present invention is not limited to the above-described embodiments, but includes various modifications. In addition, for example, the above-described embodiment is a detailed description of the configuration in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to one having all the configurations described. Further, a part of the configuration of each embodiment can be added, deleted, or replaced with another configuration.
また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、本発明は、実施例の機能を実現するソフトウェアのプログラムコードによっても実現できる。この場合、プログラムコードを記録した記憶媒体をコンピュータに提供し、そのコンピュータが備えるプロセッサが記憶媒体に格納されたプログラムコードを読み出す。この場合、記憶媒体から読み出されたプログラムコード自体が前述した実施例の機能を実現することになり、そのプログラムコード自体、及びそれを記憶した記憶媒体は本発明を構成することになる。このようなプログラムコードを供給するための記憶媒体としては、例えば、フレキシブルディスク、CD−ROM、DVD−ROM、ハードディスク、SSD(Solid State Drive)、光ディスク、光磁気ディスク、CD−R、磁気テープ、不揮発性のメモリカード、ROMなどが用いられる。 Further, the above-described respective configurations, functions, processing units, processing means, etc. may be realized by hardware by designing a part or all of them with, for example, an integrated circuit. The present invention can also be realized by a program code of software that realizes the functions of the embodiments. In this case, the storage medium recording the program code is provided to the computer, and the processor included in the computer reads the program code stored in the storage medium. In this case, the program code itself read from the storage medium realizes the functions of the above-described embodiments, and the program code itself and the storage medium storing the program code constitute the present invention. As a storage medium for supplying such a program code, for example, a flexible disk, a CD-ROM, a DVD-ROM, a hard disk, an SSD (Solid State Drive), an optical disk, a magneto-optical disk, a CD-R, a magnetic tape, A non-volatile memory card, ROM or the like is used.
また、本実施例に記載の機能を実現するプログラムコードは、例えば、アセンブラ、C/C++、perl、Shell、PHP、Python、Java(登録商標)等の広範囲のプログラム又はスクリプト言語で実装できる。 The program code that implements the functions described in this embodiment can be implemented in a wide range of programs or script languages such as assembler, C / C ++, perl, Shell, PHP, Python, and Java (registered trademark).
さらに、実施例の機能を実現するソフトウェアのプログラムコードを、ネットワークを介して配信することによって、それをコンピュータのハードディスクやメモリ等の記憶手段又はCD−RW、CD−R等の記憶媒体に格納し、コンピュータが備えるプロセッサが当該記憶手段や当該記憶媒体に格納されたプログラムコードを読み出して実行するようにしてもよい。 Furthermore, by distributing the program code of the software that realizes the functions of the embodiments via a network, the program code is stored in a storage means such as a hard disk or a memory of a computer or a storage medium such as a CD-RW or a CD-R. Alternatively, the processor included in the computer may read and execute the program code stored in the storage unit or the storage medium.
上述の実施例において、制御線や情報線は、説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。全ての構成が相互に接続されていてもよい。 In the above-described embodiments, the control lines and information lines are shown to be necessary for explanation, and not all the control lines and information lines on the product are necessarily shown. All configurations may be connected to each other.
10 走査電子顕微鏡
101 電子光学系鏡筒
102 制御ユニット
111 電子銃
112 一次電子線
113 偏向器
115 対物レンズ
116 試料
117 試料ホルダ
119 検出器
121 演算装置
122 記憶装置
123 走査信号制御装置
124 入力装置
125 出力装置
131 制御モジュール
132 ラインプロファイル情報
133 比較用ラインプロファイル情報
10
Claims (12)
前記荷電粒子線を出力する粒子源と、
前記荷電粒子線を集束するレンズと、
前記荷電粒子線を照射した前記試料から放出される放出電子の信号を検出する検出器と、
前記荷電粒子線の出力及び前記放出電子の信号の検出を制御する制御装置と、を備え、
前記制御装置は、
前記試料に対して任意の角度で前記荷電粒子線を照射することによって、照射位置及び前記放出電子の強度の関係を示すプロファイルを生成し、
二つの前記プロファイルを用いて、前記試料の形状を解析するための解析処理を実行し、
前記解析処理の結果を出力することを特徴とする計測装置。 A measuring device for irradiating a charged particle beam to measure the shape of a sample having an uneven portion,
A particle source for outputting the charged particle beam,
A lens for focusing the charged particle beam,
A detector for detecting a signal of emitted electrons emitted from the sample irradiated with the charged particle beam,
A control device for controlling the output of the charged particle beam and the detection of the signal of the emitted electron,
The control device is
By irradiating the sample with the charged particle beam at an arbitrary angle, a profile showing the relationship between the irradiation position and the intensity of the emitted electrons is generated,
Using the two profiles, perform an analysis process for analyzing the shape of the sample,
A measuring device which outputs the result of the analysis process.
前記制御装置は、
第1の角度で前記荷電粒子線を前記試料に対して照射することによって、第1のプロファイルを生成し、
第2の角度で前記荷電粒子線を前記試料に対して照射することによって、第2のプロファイルを生成し、
前記第1のプロファイルにおける、信号強度の増加率が第1の閾値より大きくなる点から信号強度の最大値を経由して、信号強度が最小値となる点までの範囲を第1のテーパ幅として算出し、
前記第2のプロファイルにおける、信号強度の増加率が前記第1の閾値より大きくなる点から信号強度の最大値を経由して、信号強度が最小値となる点までの範囲を第2のテーパ幅として算出し、
前記第1のテーパ幅及び前記第2のテーパ幅に基づいて、前記凹凸部のテーパ幅及び深さに関連する特徴量を算出し、
前記特徴量に基づいて、前記凹凸部のテーパ幅及び深さを算出し、
前記凹凸部のテーパ幅及び深さを含む前記解析処理の結果を出力することを特徴とする計測装置。 The measuring device according to claim 1, wherein
The control device is
Irradiating the sample with the charged particle beam at a first angle to generate a first profile,
Irradiating the sample with the charged particle beam at a second angle to generate a second profile,
In the first profile, the range from the point where the increase rate of the signal strength is larger than the first threshold value to the point where the signal strength reaches the minimum value via the maximum value of the signal strength is defined as the first taper width. Calculate,
In the second profile, the range from the point where the rate of increase of the signal strength is larger than the first threshold value to the point where the signal strength reaches the minimum value via the maximum value of the signal strength is the second taper width. Calculated as
Based on the first taper width and the second taper width, a feature amount related to the taper width and depth of the uneven portion is calculated,
Based on the feature amount, calculate the taper width and depth of the uneven portion,
A measuring device which outputs the result of the analysis process including the taper width and the depth of the uneven portion.
前記制御装置は、
前記特徴量に基づいて、前記凹凸部のテーパの種別を特定し、
前記凹凸部のテーパの種別を含む前記解析処理の結果を出力することを特徴とする計測装置。 The measuring device according to claim 2,
The control device is
Based on the feature amount, specify the type of taper of the uneven portion,
A measuring apparatus, which outputs a result of the analysis process including a taper type of the uneven portion.
前記制御装置は、
角度に対応づけられる比較用プロファイルを格納する比較用プロファイル情報を管理し、
第3の角度で前記荷電粒子線を前記試料に対して照射することによって、第3のプロファイルを生成し、
前記第3の角度に対応づけられる前記比較用プロファイル及び前記第3のプロファイルを比較することによって、前記凹凸部の側壁の異常の有無を判定し、
前記凹凸部の側壁の異常の有無に関する情報を含む前記解析処理の結果を出力することを特徴とする計測装置。 The measuring device according to claim 1, wherein
The control device is
Manages comparison profile information that stores comparison profiles that are associated with angles,
Irradiating the sample with the charged particle beam at a third angle to generate a third profile,
By comparing the third profile and the comparison profile associated with the third angle, it is determined whether or not there is an abnormality in the sidewall of the uneven portion,
A measuring apparatus, which outputs a result of the analysis processing including information regarding whether or not there is an abnormality on a sidewall of the uneven portion.
前記制御装置は、前記第3のプロファイルの形状が、前記第3の角度に対応づけられる前記比較用プロファイルの形状と異なる場合、前記凹凸部の側壁に異常があると判定することを特徴とする計測装置。 The measuring device according to claim 4, wherein
The control device determines that there is an abnormality in the side wall of the uneven portion when the shape of the third profile is different from the shape of the comparison profile associated with the third angle. Measuring device.
前記制御装置は、
前記凹凸部の側壁に異常があると判定された場合、前記第3のプロファイルの形状及び前記第3の角度に対応づけられる前記比較用プロファイルの形状の違いを示す値を、前記凹凸部の側壁の異常の大きさを示す指標として算出し、
前記指標を含む前記解析処理の結果を出力することを特徴とする計測装置。 The measuring device according to claim 5,
The control device is
When it is determined that the side wall of the uneven portion has an abnormality, a value indicating a difference between the shape of the third profile and the shape of the comparison profile associated with the third angle is set to be a sidewall of the uneven portion. Calculated as an index showing the size of the abnormality of
A measuring device which outputs a result of the analysis process including the index.
前記荷電粒子線を出力する粒子源と、
前記荷電粒子線を集束するレンズと、
前記荷電粒子線を照射した前記試料から放出される放出電子の信号を検出する検出器と、
前記荷電粒子線の出力及び前記放出電子の信号の検出を制御する制御装置と、を有し、
前記試料の計測方法は、
前記制御装置が、前記試料に対して任意の角度で前記荷電粒子線を照射することによって、照射位置及び前記放出電子の強度の関係を示すプロファイルを生成する第1のステップと、
前記制御装置が、二つの前記プロファイルを用いて、前記試料の形状を解析するための解析処理を実行する第2のステップと、
前記制御装置が、前記解析処理の結果を出力する第3のステップと、を含むことを特徴とする試料の計測方法。 A method for measuring a sample, which is executed by a measuring device for irradiating a charged particle beam to measure the shape of a sample having an uneven portion,
A particle source for outputting the charged particle beam,
A lens for focusing the charged particle beam,
A detector for detecting a signal of emitted electrons emitted from the sample irradiated with the charged particle beam,
A controller for controlling the output of the charged particle beam and the detection of the signal of the emitted electron,
The measuring method of the sample is
A first step in which the control device irradiates the sample with the charged particle beam at an arbitrary angle to generate a profile indicating a relationship between an irradiation position and the intensity of the emitted electron;
A second step in which the control device executes an analysis process for analyzing the shape of the sample using the two profiles;
The control device includes a third step of outputting a result of the analysis processing, and a method of measuring a sample.
前記第1のステップは、
前記制御装置が、第1の角度で前記荷電粒子線を前記試料に対して照射することによって、第1のプロファイルを生成するステップと、
前記制御装置が、第2の角度で前記荷電粒子線を前記試料に対して照射することによって、第2のプロファイルを生成するステップと、を含み、
前記第2のステップは、
前記制御装置が、前記第1のプロファイルにおける、信号強度の増加率が第1の閾値より大きくなる点から信号強度の最大値を経由して、信号強度が最小値となる点までの範囲を第1のテーパ幅として算出するステップと、
前記制御装置が、前記第2のプロファイルにおける、信号強度の増加率が前記第1の閾値より大きくなる点から信号強度の最大値を経由して、信号強度が最小値となる点までの範囲を第2のテーパ幅として算出するステップと、
前記制御装置が、前記第1のテーパ幅及び前記第2のテーパ幅に基づいて、前記凹凸部のテーパ幅及び深さに関連する特徴量を算出するステップと、
前記制御装置が、前記特徴量に基づいて、前記凹凸部のテーパ幅及び深さを算出するステップと、を含み、
前記第3のステップは、前記制御装置が、前記凹凸部のテーパ幅及び深さを含む前記解析処理の結果を出力するステップを含むことを特徴とする試料の計測方法。 The method of measuring a sample according to claim 7,
The first step is
The controller irradiating the sample with the charged particle beam at a first angle to generate a first profile;
Generating a second profile by irradiating the sample with the charged particle beam at a second angle.
The second step is
In the first profile, the control device determines a range from a point where the rate of increase of the signal strength is larger than a first threshold value to a point where the signal strength reaches the minimum value via the maximum value of the signal strength. Calculating as a taper width of 1;
In the second profile, the control device sets a range from a point where the rate of increase of the signal strength is larger than the first threshold value to a point where the signal strength reaches the minimum value via the maximum value of the signal strength. Calculating a second taper width,
A step in which the control device calculates a characteristic amount related to a taper width and a depth of the uneven portion based on the first taper width and the second taper width;
The controller includes a step of calculating a taper width and a depth of the uneven portion based on the characteristic amount,
The said 3rd step includes the step which the said control apparatus outputs the result of the said analysis process containing the taper width and depth of the said uneven | corrugated | grooved part, The measuring method of the sample characterized by the above-mentioned.
前記第2のステップは、前記制御装置が、前記特徴量に基づいて、前記凹凸部のテーパの種別を特定するステップを含み、
前記第3のステップは、前記制御装置が、前記凹凸部のテーパの種別を含む前記解析処理の結果を出力するステップを含むことを特徴とする試料の計測方法。 The method of measuring a sample according to claim 8, wherein
The second step includes a step in which the control device specifies a taper type of the uneven portion based on the characteristic amount,
The said 3rd step includes the step which the said control apparatus outputs the result of the said analysis process containing the taper type of the said uneven | corrugated part, The measuring method of the sample characterized by the above-mentioned.
前記制御装置は、角度に対応づけられる比較用プロファイルを格納する比較用プロファイル情報を管理し、
前記第1のステップは、前記制御装置が、第3の角度で前記荷電粒子線を前記試料に対して照射することによって、第3のプロファイルを生成するステップを含み、
前記第2のステップは、前記制御装置が、前記第3の角度に対応づけられる前記比較用プロファイル及び前記第3のプロファイルを比較することによって、前記凹凸部の側壁の異常の有無を判定するステップを含み、
前記第3のステップは、前記制御装置が、前記凹凸部の側壁の異常の有無に関する情報を含む前記解析処理の結果を出力するステップを含むことを特徴とする試料の計測方法。 The method of measuring a sample according to claim 7,
The control device manages comparison profile information that stores a comparison profile that is associated with an angle,
The first step includes a step of causing the control device to generate a third profile by irradiating the sample with the charged particle beam at a third angle,
In the second step, the control device determines whether or not there is an abnormality in a sidewall of the uneven portion by comparing the comparison profile and the third profile that are associated with the third angle. Including,
The said 3rd step includes the step which the said control apparatus outputs the result of the said analysis process containing the information regarding the presence or absence of abnormality of the side wall of the said uneven | corrugated part, The measuring method of the sample characterized by the above-mentioned.
前記第2のステップでは、前記第3のプロファイルの形状が、前記第3の角度に対応づけられる前記比較用プロファイルの形状と異なる場合、前記制御装置が、前記凹凸部の側壁に異常があると判定することを特徴とする試料の計測方法。 The method for measuring a sample according to claim 10, wherein
In the second step, when the shape of the third profile is different from the shape of the comparison profile associated with the third angle, the control device determines that the sidewall of the uneven portion has an abnormality. A method for measuring a sample, characterized by making a determination.
前記第2のステップは、前記制御装置が、前記凹凸部の側壁に異常があると判定された場合、前記第3のプロファイルの形状及び前記第3の角度に対応づけられる前記比較用プロファイルの形状の違いを示す値を、前記凹凸部の側壁の異常の大きさを示す指標として算出するステップを含み、
前記第3のステップは、前記制御装置が、前記指標を含む前記解析処理の結果を出力するステップを含むことを特徴とする試料の計測方法。 The method for measuring a sample according to claim 11,
In the second step, when the control device determines that the sidewall of the uneven portion is abnormal, the shape of the third profile and the shape of the comparison profile associated with the third angle. Including a step of calculating a value indicating the difference as an index indicating the magnitude of abnormality of the side wall of the uneven portion,
The said 3rd step includes the step which the said control apparatus outputs the result of the said analysis process containing the said index, The measuring method of the sample characterized by the above-mentioned.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018190848A JP7120873B2 (en) | 2018-10-09 | 2018-10-09 | Measuring device and method for measuring surface of sample |
PCT/JP2019/031904 WO2020075385A1 (en) | 2018-10-09 | 2019-08-14 | Measuring device and method for measuring surface of sample |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018190848A JP7120873B2 (en) | 2018-10-09 | 2018-10-09 | Measuring device and method for measuring surface of sample |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020061240A true JP2020061240A (en) | 2020-04-16 |
JP7120873B2 JP7120873B2 (en) | 2022-08-17 |
Family
ID=70164268
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018190848A Active JP7120873B2 (en) | 2018-10-09 | 2018-10-09 | Measuring device and method for measuring surface of sample |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7120873B2 (en) |
WO (1) | WO2020075385A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2025013282A1 (en) * | 2023-07-13 | 2025-01-16 | 株式会社日立ハイテク | Charged particle beam device and surface state evaluation method |
WO2025099797A1 (en) * | 2023-11-06 | 2025-05-15 | 株式会社日立ハイテク | Charged particle beam device and image processing device |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01311551A (en) * | 1988-06-08 | 1989-12-15 | Toshiba Corp | Pattern shape measuring device |
JPH02199755A (en) * | 1989-01-30 | 1990-08-08 | Hitachi Ltd | Sample surface observation method and observation device |
JP2003065743A (en) * | 2001-08-29 | 2003-03-05 | Hitachi Ltd | Sample unevenness determination method |
JP2004247394A (en) * | 2003-02-12 | 2004-09-02 | Hitachi High-Technologies Corp | Semiconductor pattern evaluation system, pattern formation process control method, and process monitoring method |
JP2006093251A (en) * | 2004-09-22 | 2006-04-06 | Hitachi High-Technologies Corp | Dimension measuring method and apparatus |
JP2006332069A (en) * | 2001-07-12 | 2006-12-07 | Hitachi Ltd | Sample unevenness determination method and charged particle beam apparatus |
WO2011013342A1 (en) * | 2009-07-27 | 2011-02-03 | 株式会社日立ハイテクノロジーズ | Pattern evaluation method, device therefor, and electron beam device |
JP2011181393A (en) * | 2010-03-02 | 2011-09-15 | Hitachi High-Technologies Corp | Charged particle beam device and length measurement method using charged particle beam |
JP2019087518A (en) * | 2017-11-10 | 2019-06-06 | 株式会社日立ハイテクノロジーズ | Pattern measurement apparatus and measurement method |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6316578B2 (en) * | 2013-12-02 | 2018-04-25 | 株式会社日立ハイテクノロジーズ | Scanning electron microscope system, pattern measuring method using the same, and scanning electron microscope |
JP2017016791A (en) * | 2015-06-29 | 2017-01-19 | 株式会社東芝 | Measurement apparatus, measurement method, and semiconductor device manufacturing method |
JP6527799B2 (en) * | 2015-09-25 | 2019-06-05 | 株式会社日立ハイテクノロジーズ | Charged particle beam device and pattern measurement device |
KR20170041986A (en) * | 2015-10-08 | 2017-04-18 | 삼성전자주식회사 | Apparatus for measuring a semiconductor device |
JP6511193B2 (en) * | 2016-04-13 | 2019-05-15 | 株式会社日立ハイテクノロジーズ | Pattern measurement apparatus and pattern measurement method |
JP6640057B2 (en) * | 2016-09-14 | 2020-02-05 | 株式会社日立ハイテクノロジーズ | Electron microscope apparatus and method for measuring inclined hole using the same |
-
2018
- 2018-10-09 JP JP2018190848A patent/JP7120873B2/en active Active
-
2019
- 2019-08-14 WO PCT/JP2019/031904 patent/WO2020075385A1/en active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01311551A (en) * | 1988-06-08 | 1989-12-15 | Toshiba Corp | Pattern shape measuring device |
JPH02199755A (en) * | 1989-01-30 | 1990-08-08 | Hitachi Ltd | Sample surface observation method and observation device |
JP2006332069A (en) * | 2001-07-12 | 2006-12-07 | Hitachi Ltd | Sample unevenness determination method and charged particle beam apparatus |
JP2003065743A (en) * | 2001-08-29 | 2003-03-05 | Hitachi Ltd | Sample unevenness determination method |
JP2004247394A (en) * | 2003-02-12 | 2004-09-02 | Hitachi High-Technologies Corp | Semiconductor pattern evaluation system, pattern formation process control method, and process monitoring method |
JP2006093251A (en) * | 2004-09-22 | 2006-04-06 | Hitachi High-Technologies Corp | Dimension measuring method and apparatus |
WO2011013342A1 (en) * | 2009-07-27 | 2011-02-03 | 株式会社日立ハイテクノロジーズ | Pattern evaluation method, device therefor, and electron beam device |
JP2011181393A (en) * | 2010-03-02 | 2011-09-15 | Hitachi High-Technologies Corp | Charged particle beam device and length measurement method using charged particle beam |
JP2019087518A (en) * | 2017-11-10 | 2019-06-06 | 株式会社日立ハイテクノロジーズ | Pattern measurement apparatus and measurement method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2025013282A1 (en) * | 2023-07-13 | 2025-01-16 | 株式会社日立ハイテク | Charged particle beam device and surface state evaluation method |
WO2025099797A1 (en) * | 2023-11-06 | 2025-05-15 | 株式会社日立ハイテク | Charged particle beam device and image processing device |
Also Published As
Publication number | Publication date |
---|---|
WO2020075385A1 (en) | 2020-04-16 |
JP7120873B2 (en) | 2022-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7230243B2 (en) | Method and apparatus for measuring three-dimensional shape of specimen by using SEM | |
JP6736498B2 (en) | Measuring device and method of setting observation conditions | |
TWI608512B (en) | Charged particle beam device, simulation method and simulation device | |
US11211226B2 (en) | Pattern cross-sectional shape estimation system and program | |
WO2020075385A1 (en) | Measuring device and method for measuring surface of sample | |
TWI709155B (en) | Charged particle beam device, cross-sectional shape estimation program | |
JP2005228560A (en) | Image processing method and image processing apparatus | |
KR102740249B1 (en) | Pattern Checking Device | |
JP3959379B2 (en) | Shape measuring apparatus and shape measuring method | |
JP5317556B2 (en) | Electron diffraction image analysis method and transmission electron microscope | |
KR102765643B1 (en) | Charged particle beam apparatus and method for observing samples using the same | |
JP5589089B2 (en) | Pattern determination apparatus and computer program | |
JP7091263B2 (en) | Depth calculation method for electron microscope and 3D structure | |
JP6101445B2 (en) | Signal processing apparatus and charged particle beam apparatus | |
US11355304B2 (en) | Electronic microscope device | |
WO2023238193A1 (en) | Charged particle beam device, observation condition setting method, and program | |
JP2020144995A (en) | Method of removing image distortion | |
JP2024008451A (en) | Charged particle beam device | |
JP2011233466A (en) | Resolution-evaluating method of electron microscope, program and information storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210312 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220405 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220518 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220802 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220804 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7120873 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |