[go: up one dir, main page]

JP2020056735A - 形状測定方法、形状測定装置、および物品の製造方法 - Google Patents

形状測定方法、形状測定装置、および物品の製造方法 Download PDF

Info

Publication number
JP2020056735A
JP2020056735A JP2018188694A JP2018188694A JP2020056735A JP 2020056735 A JP2020056735 A JP 2020056735A JP 2018188694 A JP2018188694 A JP 2018188694A JP 2018188694 A JP2018188694 A JP 2018188694A JP 2020056735 A JP2020056735 A JP 2020056735A
Authority
JP
Japan
Prior art keywords
measured
measurement data
shape
measurement
circumference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018188694A
Other languages
English (en)
Inventor
保坂 光太郎
Kotaro Hosaka
光太郎 保坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018188694A priority Critical patent/JP2020056735A/ja
Publication of JP2020056735A publication Critical patent/JP2020056735A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

【課題】測定方向の異なる、例えば断面測定、周測定のような複数の測定結果を無駄なく利用でき、測定精度の低下を抑制し、高精度な形状測定を行えるようにする。【解決手段】直動ステージ、回転ステージ、プローブを備えた形状測定装置により、被測定物の回転軸を中心とした複数の円周方向にそれぞれ倣い測定し周測定データを取得する(S201)。また、同装置により、被測定物の回転軸を中心とした複数の割り出し角度において、複数の径方向にそれぞれ倣い測定し径測定データを取得する(S202)。周測定データによって径測定データの誤差を補正し(S204、S205)、補正後のデータによって、周測定データの誤差を補正する(S206)。【選択図】図2

Description

本発明は、被測定物を直線移動させる直動ステージと、被測定物を回転軸を中心に回転移動させる回転ステージと、被測定物を倣い測定するプローブと、を用いて形状測定を行う形状測定方法、形状測定装置、および物品の製造方法に関する。
一般に、回転対称な形状を有する光学素子、例えば非球面レンズの表面形状を測定する場合、接触ないし非接触式のプローブをレンズ表面に倣い移動させ、その移動軌跡から表面形状を測定する形状測定装置が知られている。この種の形状測定装置は、例えばワーク表面を移動させる軸と、ワークの表面にプローブを位置決めする軸、のように最低2軸を備えた門型のステージと、その下部に配置されたワークを回転させる回転軸とを備える。
この種の形状測定装置では、図15に示すようにプローブをワーク1509に接触させ、X軸ステージスライダを駆動してプローブを表面に倣い移動させ、ワークの断面測定を行う。続いて、回転ステージを任意の角度だけ駆動し、ワークを回転させ、同様にX軸ステージスライダを駆動してワークの断面測定を行う。この回転ステージの駆動とX軸ステージスライダの駆動を任意の回数繰り返して、例えば、回転ステージを半回転分回転させると、図15に示すようにワークに対して複数本の断面測定が実施される。
また、別の手法によると、図16に示すようにX軸ステージスライダとZ軸ステージスライダを駆動して、プローブを例えばワーク1509のほぼ外周近くに接触させる。そして回転ステージを駆動しワーク1509を回転させて一周させ、一周分の周測定データに相当するものとして、回転ステージの回転角度データとZ軸ステージスライダの位置データを取得する。続いて、X軸ステージスライダを駆動してプローブをワーク1509の中心方向へ任意の量を移動させる。そして、同様に回転ステージを回転駆動し、プローブにワーク1509を一周させ、回転ステージの回転角度データとZ軸ステージスライダの位置データを取得する。以上のX軸ステージスライダの移動と回転ステージの回転を繰り返すことにより、図16に示すように同心円状の複数本の周測定の形態で、ワーク1509の面測定が行われる。
しかし、上記のような従来の測定手法によると、時間経過、それに伴なうドリフトによって形状に誤差が生じてしまう可能性がある。この点に鑑み、下記の特許文献1、2のように、対象ワーク表面をプローブがトレースする間に温度等のドリフトで生じる形状誤差を補正する手法が提案されている。
また、上記のような従来の測定手法によると、ワークの面測定のZ軸と、ワークの回転軸が厳密に一致していない場合に誤差が発生する可能性がある。この回転軸の不一致により形状測定に誤差が発生するため、下記の特許文献3のように、断面測定の座標における周回転の回転軸の位置を特定し、補正する手法が提案されている。
特開2004−286507号公報 特開2002−054921号公報 特開2014−132264号公報
上記の特許文献1の構成では、面を測定する軌跡データに対して交差するように被測定面を測定し、その交点に対して誤差を求め、面データ全体の補正を行う。ところが、特許文献1の構成では、補正用に測定したデータは面データとして使用しておらず、無駄な面データ測定を行っている問題がある。そのために、高密度な面測定を行えていない可能性がある。補正に関しても交点での近傍の誤差を全体の誤差として処理を行うので、例えば交点付近にゴミなどの補正の必要のない誤差が存在する場合、全体の補正に影響し、かえって誤差が増える可能性があった。
上記の特許文献2の構成では、面測定を行う第2のパターンと補正を行うための第1のパターンの測定を行い、第1の走査パターン領域では補間関数を使うことにより交点の誤差を削減することにより、比較的、高精度にドリフト補正を行える可能性がある。しかしながら、特許文献2の場合も補正用に測定したデータは面データとして使用しておらず、上記同様に無駄な面データ測定を行っている問題がある。
上記の特許文献3の構成では、回転ステージの回転軸はワークの割出位置決めのみに使用しており、非球面形状を用いて、回転軸の算出を行う。しかしながら、回転ステージの回転軸には割出停止している場合と回転駆動している場合で動的な振れの差が発生し、動的な振れの差により、ワークに位置ずれが発生する可能性がある。回転軸の動的な振れの差とは、回転軸を一定角度で割り出して一旦停止させ、これを繰り返しながら回転させる時の回転軸と、回転軸を一定の速度で連続回転させる時の回転軸とに差が生じることを言う。そのため、断面測定と周測定のどちらも行い、円周データと断面データとを同じ面形状のデータとして合成するような用途では、回転軸の差によるワークの位置ずれが一部の測定データに含まれていると、これにより測定誤差が大きくなる可能性があった。
以上に鑑み、本発明の課題は、測定方向の異なる、例えば断面測定、周測定のような複数の測定結果を無駄なく利用でき、測定精度の低下を抑制し、高精度な形状測定を行えるようにすることにある。
上記課題を解決するため、本発明においては、プローブを被測定物の表面に倣って走査させて、前記被測定物の形状を測定する形状測定方法において、所定の回転軸を中心とし、前記回転軸からの距離が互いに異なる複数の周方向に前記プローブを走査させ、前記被測定物の周測定データを取得する周測定工程と、前記被測定物の互いに交差する複数の径方向に前記プローブを走査させ、前記被測定物の径測定データを取得する径測定工程と、前記周測定データおよび前記径測定データのいずれか一方によって、前記径測定データおよび前記周測定データの他方の誤差を補正し、補正後の前記径測定データまたは前記周測定データによって、補正していない方の前記周測定データまたは前記径測定データの誤差を補正する補正工程と、を含む構成を採用した。
上記構成によれば、測定方向の異なる、断面測定および周測定のような複数の測定結果を無駄なく利用し、測定精度の低下を抑制し、高精度な形状測定を行うことができる。
本発明を実施した形状測定装置、さらにそれを利用した生産システムの構成を示した説明図である。 本発明を実施した形状測定装置で、実施形態1のメインプログラムの流れを示したフローチャート図である。 本発明を実施した形状測定装置で、実施形態2の部分プログラムの流れを示したフローチャート図である。 本発明を実施した形状測定装置で、実施形態2の部分プログラムの流れを示したフローチャート図である。 複数の周測定を実施した被測定物のトレース状況を模式的に示した説明図である。 複数の断面測定を実施した被測定物のトレース状況を模式的に示した説明図である。 複数の周測定の際に生じるドリフト誤差発生要因を示した説明図である。 周測定の際に被測定物に生じるドリフト誤差を示したZ方向からの説明図である。 周測定の際に被測定物に生じるドリフト誤差を示したY方向からの説明図である。 複数の断面測定を実施する際に生じるドリフト誤差発生要因を示した説明図である。 断面測定を実施する際に被測定物に生じるドリフト誤差をY方向から示した説明図である。 断面測定を実施したときに被測定物に生じるドリフト誤差を鳥瞰視によって示した説明図である。 断面測定データの位置誤差を示した説明図である。 周測定データの位置誤差を示した説明図である。 一般的な測定装置で複数の断面測定を実施した被測定物のトレース状況を模式的に示した説明図である。 一般的な測定装置で複数の周測定を実施した被測定物のトレース状況を模式的に示した説明図である。 周測定と断面測定を組み合わせて面データを生成した状態を模式的に示した説明図である。 回転軸の駆動時と停止時の動的な振れの差とワークの誤差を模式的に示した説明図である。 本発明を実施した形状測定装置で、実施形態3のメインプログラムの流れを示したフローチャート図である。 本発明を実施した形状測定装置で、実施形態3の座標変化量の算出方法を表したフローチャート図である。 本発明の実施形態に係る三次元形状測定を適用可能な、回転対称な非球面形状を有する測定対象のワークとして非球面レンズの構成を示した説明図である。 本発明の実施形態に係る三次元形状測定に用いられる制御系の構成を示した説明図である。
以下、添付図面を参照して本発明を実施するための形態につき説明する。なお、以下に示す構成はあくまでも一例であり、例えば細部の構成については本発明の趣旨を逸脱しない範囲において当業者が適宜変更することができる。また、本実施形態で取り上げる数値は、参考数値であって、本発明を限定するものではない。
<実施形態1>
次に、本発明を実施した形状測定装置の実施形態について、図を参照して説明する。図1は本実施形態の形状測定装置の構成例を示している。図1において、形状計測装置100の基部を構成する装置本体定盤101は、装置本体に振動を伝えない役割を果す除振台102、装置本体全体を支える架台103上に設置されている。
装置本体定盤101上には、2本の柱状のフレーム104によってX軸ステージガイド105が支持されている。この形態はいわゆる門型の形状である。X軸ステージガイド105は、X軸方向に走査可能なX軸ステージスライダ121を支持する。このX軸ステージスライダ121は、被測定物を直線移動させる直動ステージを構成する。
X軸ステージスライダ121には、Z軸ステージガイド106が装着され、このZ軸ステージガイド106にはZ軸方向に移動可能なZ軸ステージスライダ107が支持されている。
図1では、Z軸ステージスライダ107には被測定物109を倣い測定するプローブ手段として接触式プローブ108が装着されている。本実施形態では、プローブ手段として接触式プローブ108を例示するが、プローブ手段として非接触式の光学プローブなどを用いる場合でも、後述の測定技術は実施することができる。
X軸ステージスライダ121はZ軸ステージガイド106を搭載し、X軸ステージガイド105に搭載されていて、X軸方向に移動が可能である。Z軸ステージスライダ107はZ軸ステージガイド106に搭載されていてZ軸方向に移動が可能である。接触式プローブ108はZ軸スライダ107に搭載されており、X軸ステージスライダ121の移動並びにZ軸スライダ107の駆動によって、X軸方向およびZ軸方向に移動可能である。本実施形態において、X軸は第1のステージ軸、Z軸は第2のステージ軸に対応する。
X軸ステージガイド105には不図示の駆動モータ、たとえばシャフトモーターなどによりX軸ステージスライダ121をX軸方向に移動させる駆動機構が搭載されている。Z軸ステージガイド106には図中の上下方向、即ちZ軸方向にZ軸ステージスライダ107を駆動する不図示の駆動モータ、たとえばリニアモーターなどが搭載されている。さらに、Z軸ステージスライダ107のZ軸方向位置を計測するための不図示のスケールが組み込まれている。このスケールは、レーザスケールやリニアエンコーダなどによって構成される(下記の他軸方向のスケールも同様)。
また、装置本体定盤101上には、X軸ステージスライダ121のX軸方向の位置を測定するための第1のX軸スケール114がX軸スケールフレーム113を介して支持されている。第1のX軸スケール114および第1のX軸スケールを支えるX軸スケールフレーム113は、X軸ステージガイド105の下方に配置されている。また、例えば位相の異なる測定信号を得るため、装置本体定盤101上には、第2のX軸スケール116が、X軸スケールフレーム115によって支持されている。第2のX軸スケールフレーム115は、装置本体定盤101上に設置され、第2のX軸スケール116を支持する。第2のX軸スケール116および第2のX軸スケールを支持するX軸スケールフレーム115はX軸ステージガイド105の下方に配置されている。
第1のX軸スケールヘッド117は、第1のX軸スケール114と協働し、また、X軸ステージスライダ121のX軸方向の位置データを出力する。第1のX軸スケールヘッド117は、第1のX軸スケールヘッドフレーム118を介してX軸ステージスライダ121の下部に装着されている。
同様の構造は、第2のX軸スケールフレーム115と協働する不図示の第2のスケールヘッドについても設けられる。この不図示の第2のスケールヘッドは、第2のX軸スケールヘッドフレーム120を介して、装置本体定盤101上に設置されている。第2のX軸スケールヘッドフレーム120は、X軸ステージスライダ121の下部に設置され、不図示の第2のX軸スケールヘッドを支持する。
詳細不図示であるが、接触式プローブ108は、例えば球形の接触子と、この接触子を被測定物109の方向に付勢する付勢手段として、例えば板バネを備える。この板バネを介して、接触式プローブ108の接触子が被測定物109の表面に接触した時の接触子の接触圧を調節することができる。
例えば、接触子には接触式プローブ108の筐体に対する接触子位置を計測する不図示の変位センサを搭載しておく。そして、倣い測定においては、接触式プローブ108の接触子を被測定物109に接触させて、変位センサの変位量が一定値を指示するようにZ軸ステージ107のZ軸位置を制御することで板バネのたわみ量を一定に制御できる。このような機構により、倣い測定における被測定物109に対する接触子の接触圧を一定に制御することができる。
図1の構成では、被測定物109を傾斜させるティルトステージ110が設けられ、このティルトステージ110は概略直交方向にティルトが可能なように2軸分搭載されている。また、ティルトステージ110は、XYステージ111上に配置される。このXYステージ111によって、被測定物109およびティルトステージ110を互いに概略直交方向に平行移動させることができる。さらに、XYステージ111、ティルトステージ110は、θ回転ステージ112上に設置されている。
θ回転ステージ112は、いわゆる割り出し動作、ないし連続的な回転移動を行うことができる。このθ回転ステージ112は、被測定物を所定の回転軸を中心に回転移動させる回転ステージを構成する。このθ回転ステージ112の回転角度位置は不図示のエンコーダによって測定することができる。
形状計測装置100の測定処理は、例えば図1の下部に示すような制御装置によって制御される。図1の下部に示した制御系は、回転対称の非球面形状を有する物品、例えば、研削、研磨された非球面光学素子(例えばレンズやミラー)の形状測定、非球面光学素子を成形するための型(金型)の形状測定を行うために利用される。また、図1の下部に示した制御系は、形状測定の結果に基づき、これらの物品の良否判定や、非球面レンズやミラー、ないしその型(金型)を研削、研磨する加工装置500の駆動制御を行うことができる。例えば、形状測定データと、設計形状データとの誤差データに基づき、良否判定を行ったり、加工装置500を駆動制御したりすることにより、被測定物としてのこれらの物品を設計形状に加工することができる。即ち、図1の下部に示した制御系と、加工装置500を用いて、回転対称の非球面形状を有する物品を製造する、あるいは、検査する生産ラインを構成することができる。
図21に、本実施形態の形状計測装置100によって形状測定可能な回転対象かつ非球面形状の被測定物の一例として、例えば1つの凸面が非球面で構成された非球面レンズの断面形状を示す。例えば、非球面レンズでは、同図に示すように光軸(レンズ中心:一点鎖線)付近の形状が球面(二点鎖線:半径R)に近く、周辺部の形状がその球面から逸脱した非球面部位となっているものがある。
このような非球面レンズの面形状は、例えば光軸(レンズ中心:一点鎖線)からの距離rに応じた高さ(Z)などによって定義される。なお、ここでは、凸面が非球面で構成された非球面レンズを示した。しかし、本実施形態の構成により測定可能な回転対象な非球面形状としては、凸面のみならず、凹面や、反射鏡などにおいて用いられる双曲面や放物面などの形状も含まれる。また、本実施形態で測定(あるいは製造)可能なワークとしては、研削、研磨などにより成形される非球面形状を有するレンズや反射鏡の他、非球面形状を有するレンズや反射鏡をモールド成形するための型(金型)が考えられる。
図1の下部に示した制御系において、電装ラック122は、形状計測装置100の駆動系を備える。この駆動系には、例えばX軸ステージガイド105に搭載されたX軸ステージスライダ121およびZ軸ステージガイド106に搭載されたZ軸ステージスライダ107を駆動するためのドライバを備える。また、電装ラック122は、2軸のティルトステージ110、XYステージ111およびθ回転ステージ112を駆動するためのドライバを備える。さらに、電装ラック122は、第1のX軸スケールヘッド117、第2のX軸スケールヘッドが出力する第1、第2のX軸スケール位置のデータを読み取るボードを備える。また、このボードは、Z軸ステージガイド106に組み込まれた不図示のスケールが出力するデータを取り込むことができる。また、このボードは、θ回転ステージ112の不図示のエンコーダが出力するデータ、接触式プローブ108の変位センサが出力するデータを取り込むことができる。
測定制御コンピュータ123は、電装ラック122を介して形状計測装置100の測定処理を制御する。測定制御コンピュータ123は、X軸ステージガイド105に搭載したX軸ステージスライダ121、Z軸ステージスライダ107の移動位置等を電装ラック122に搭載の各ドライバへ指令するプログラムを搭載している。また、測定制御コンピュータ123は、ティルトステージ110、XYステージ111およびθ回転ステージ112の移動、回転位置等を電装ラック122に搭載の各ドライバへ指令するプログラムを搭載している。また、測定制御コンピュータ123は、電装ラック122のデータ取り込みボードから各スケールやエンコーダ、変位センサのデータを取り込むプログラムを搭載している。なお、図1では、測定制御コンピュータ123と、電装ラック122が別体である構成を示しているが、測定制御コンピュータ123と、電装ラック122と、は一体の制御装置として構成されていてもよい。
データ処理コンピュータ124は、マンマシンインターフェイスの機能を備えている。データ処理コンピュータ124は、例えばシステム管理者などのユーザによる測定条件パラメータなどに関する操作入力を取り込み、あるいは、形状測定結果を表示(あるいはプリント)出力するためのユーザーインターフェースを構成する。このデータ処理コンピュータ124が管理する形状測定条件としては、測定範囲、測定回数、測定速度、測定種類、被測定物の設計値形状などがある。データ処理コンピュータ124がこれらのパラメータを処理して測定手順データとし、測定パラメータと共に測定制御コンピュータ123に送る測定プログラムを搭載する。また、データ処理コンピュータ124は、各軸のスケールのデータおよび変位センサのデータを測定制御コンピュータ123から取り込むデータ取り込みプログラムを搭載する。
また、データ処理コンピュータ124は、形状計測装置100から取り込んだ各スケールデータ、エンコーダデータおよび変位センサデータから被測定物109の表面形状を算出する形状データ算出プログラムを搭載する。また、データ処理コンピュータ124は、算出した被測定物109の形状データと、被測定物109の設計値形状から被測定物109の設計値からの誤差を算出する誤差算出プログラムを搭載する。さらに、非球面形状を有する物品の製造システムにおいては、データ処理コンピュータ124は、誤差算出プログラムで算出した被測定物109の設計値からの誤差に基づき、被測定物109の良否判定を行うよう構成されていてもよい。あるいはさらに、データ処理コンピュータ124は、被測定物109の算出した形状データや誤差算出プログラムで算出した被測定物109の設計値からの誤差を加工装置500に出力できるよう構成されていてもよい。これにより、加工装置500は、数値制御によって、被測定物109、例えば非球面レンズやその型(金型)を設計形状に加工する物品の製造動作を行うことができる。
さらに、データ処理コンピュータ124は、算出した被測定物109の形状データから、被測定物109が装置の原点および座標、或いは任意原点および座標に対して置かれている三次元位置を算出する形状位置算出プログラムを搭載する。
なお、図1では、データ処理コンピュータ124、測定制御コンピュータ123を別体で図示しているが、データ処理コンピュータ124と測定制御コンピュータ123とは一体のコンピュータとして実装されていてもよい。さらに、データ処理コンピュータ124と測定制御コンピュータ123とは、電装ラック122と一体のコンピュータとして実装されていてもよい。
ここで、データ処理コンピュータ124、測定制御コンピュータ123、電装ラック122、あるいはこれらの任意の組合せで一体に構成された制御装置の制御回路として用いることができる構成を図22に示す。図22に示した制御装置1000は、CPU1601と、このCPU1601廻りに配置された各ブロックから成る構成である。
図22の制御装置1000は、主制御手段としてのCPU1601、記憶装置としてのROM1602、およびRAM1603を備える。ROM1602には、後述する制御手順を実現するためのCPU1601の制御プログラムや定数情報などを格納しておくことができる。また、RAM1603は、後述する制御手順を実行する時にCPU1601のワークエリアなどとして使用される。
図22の構成が、データ処理コンピュータ124や、測定制御コンピュータ123である場合には、ユーザーインターフェース装置として、例えばディスプレイ1608、および操作部1609がインターフェース1607に接続される。操作部1609は、例えばフルキーボードおよびポインティングデバイスなどから構成することができ、作業者のためのユーザーインターフェースを構成する。
図22の制御装置1000は、ネットワークNWを介して通信する通信手段としてネットワークインターフェース1605を備える。制御装置1000は、データ処理コンピュータ124、測定制御コンピュータ123、電装ラック122の制御部を構成することができる。その場合、これら122、123、124、あるいはさらに加工装置500はネットワークインターフェース1605〜ネットワークNWを介して他の装置(図中の1001A、1001B)と相互に通信することができる。例えば、データ処理コンピュータ124、測定制御コンピュータ123、電装ラック122の間では、各軸スライダの位置データを送受信することができる。また、データ処理コンピュータ124と加工装置500の間では、良否情報や、誤差算出プログラムで算出した形状誤差データなどを送受信することができる。ネットワークインターフェース1605は、例えばIEEE 802.3のような有線通信、IEEE 802.11、802.15のような無線通信による通信規格によって構成することができる。ただし、ネットワークNWの通信規格やプロトコルには、上記以外の任意の通信規格、プロトコルを採用しても構わない。
なお、後述の制御手順を実現するためのCPU1601の制御プログラムは、HDDやSSDなどから成る外部記憶装置1604や、ROM1602(の例えばEEPROM領域)のような記憶部に格納しておくこともできる。その場合、後述の制御手順を実現するためのCPU1601の制御プログラムは、ネットワークインターフェース1605を介して、上記の各記憶部に供給し、また新しい(別の)プログラムに更新することができる。あるいは、後述の制御手順を実現するためのCPU1601の制御プログラムは、各種の磁気ディスクや光ディスク、フラッシュメモリなどの記憶手段と、そのためのドライブ装置を経由して、上記の各記憶部に供給し、またその内容を更新することができる。上述の制御手順を実現するためのCPU1601の制御プログラムを格納した状態における各種の記憶手段や記憶部は、本発明の制御手順を格納したコンピュータ読み取り可能な記録媒体を構成することになる。
また、図22の制御装置は、加工装置500の制御部として用いることができる。その場合、加工装置500の駆動系、例えば不図示のモータやソレノイドなどのためのドライバ回路は、インターフェース1606に接続される。
図2は、本発明を実施した図1の形状測定装置における被測定物109の面形状測定を実現する制御手順の流れを示している。図2の制御手順は図1のデータ処理コンピュータ124に面測定プログラムとして実装される。その場合、図22の構成では、具体的なプログラムは、外部記憶装置1604やROM1602に格納しておくことができる。
ここで、図1、図2を参照して、例えばデータ処理コンピュータ124で実行される面測定シーケンスを説明する。図2においてステップS201は、被測定物109の表面を概略円周方向に複数周測定する周測定処理である。
ステップS201では、まず、ユーザが図1のデータ処理コンピュータ124が測定開始を指示すると、この時、被測定物109(例えば非球面レンズなど)の設計データや測定範囲、移動速度などのデータを取得する。続いて、読み込んだ各種設定データおよびパラメータからX軸ステージスライダ121の移動位置やZ軸ステージスライダ107の移動位置を測定制御コンピュータ123へ送る。これに応じて、測定制御コンピュータ123は、X軸ステージガイド105に搭載したX軸ステージスライダ121を一番目のX軸位置へ移動するように電装ラック122のX軸ドライバに指令する。これにより、形状計測装置100は、X軸ステージスライダ121を被測定物109の一番目の測定X座標へ移動させる。
上記のX軸移動が完了すると、測定制御コンピュータ123は、Z軸ステージスライダ107を駆動するZ軸ドライバに下降を指令する。これに応じて、形状計測装置100は、接触式プローブ108を被測定物109の表面に接触させる。一方、Z軸ステージスライダ107の下降によって接触式プローブ108の接触子が被測定物109の表面に接触すると、測定制御コンピュータ123は、不図示の変位センサの出力を介してこの事象を検出する。その後、測定制御コンピュータ123、または電装ラック122は、不図示の変位センサからの出力が一定になるようにZ軸ステージスライダ107を制御する。
次に、測定制御コンピュータ123から電装ラック122に対して、θ回転ステージ112を一周、回転させる指令を出力し、電装ラック122は、形状計測装置100のθ回転ステージ112を一周、回転させる。これにより、形状計測装置100では、接触式プローブ108が被測定物109の表面に接触しながらθ回転ステージ112が回転する。これにより、被測定物109の表面を概略、円周方向に沿って倣い測定で走査する周測定が行われる。なお、この間、図示しない変位センサからの出力がほぼ一定になるようにZ軸ステージ107を制御し、接触式プローブ108の接触子の被測定物109に対する接触状態がほぼ一定に保たれる。
この周測定の間、電装ラック122を介して、測定制御コンピュータ123は第1のX軸スケール114に対するX軸ステージスライダ121の位置データを、第1のX軸スケールヘッド117から読み込む。同時にθ回転軸ステージの図示しないエンコーダから回転角度を読み込む。また、同時に不図示のZ軸スケールからのデータ、および変位センサから取り込んだデータが電装ラック122を介して、測定制御コンピュータ123に読み込まれる。
これら各スケールおよび変位センサのデータは、電装ラック122の各スケールやエンコーダおよび変位センサ用ボードを経由して測定制御コンピュータ123に読み込まれる。1周の周測定が完了すると、測定制御コンピュータ123はZ軸を上昇させるよう、電装ラック122のZ軸ドライバに指令を出力し、Z軸ステージ107を上昇させる。以上のようにして1周分の周測定が行われる。
次の周、例えば2番(周)目の周測定を行うために、測定制御コンピュータ123は、X軸ステージガイド105に搭載したX軸ステージスライダ121を二番目のX軸位置へ移動するように電装ラック122のX軸ドライバに指令する。これにより、形状計測装置100は、X軸ステージスライダ121を被測定物109の二番目のX座標へ移動させる。その後、上記同様にZ軸ステージスライダ107を駆動し、接触式プローブ108を被測定物109の表面に接触させる。続いて、上記同様に接触式プローブ108を被測定物109の表面に接触させながらθ回転ステージ112を回転させることにより、被測定物109の表面の二番(周)目の周測定を行うことができる。
上述の処理を必要な周測定の回数分繰り返すことによって、ステップS201が完了し、これにより被測定物109の複数周による測定が完了する。図5は、周測定が理想的に行われた場合の測定結果の軌跡を模式的に示している。同図では、矢印で示すように被測定物109の異なる個所を4周、周測定している。
図7は、図2のステップS201の周測定で得られる周測定面測定データにおいて、発生し得るドリフト誤差を説明するものである。図7は、Y軸方向からの側面図の形式で、図1の被測定物109と接触式プローブ108の位置関係を示している。なお、本実施形態の測定技術は、特に被測定物109が回転対称な非球面形状を有する場合に大きな効果を奏するが、以下で測定処理を説明するために示す被測定物109は、図21を除き、簡略化を意図して、ほぼ球面の断面を有するものとして図示する。
図7においてCは被測定物109を回転させる回転中心軸、AはCから見た接触式プローブ108の初期位置(実線)、Bは接触式プローブ108のドリフト後の位置(破線)をそれぞれ示している。このような接触式プローブ108のX軸方向に関する位置のドリフトは、例えば環境温度の経時変化などに影響されて、機構の構成部材の寸法が変化することによって生じる。
ここで、図7のCを中心として被測定物109を回転させた時の動作を考える。その場合、接触式プローブ108のX軸方向に関する位置のドリフトの有、無によって図8の801(実線)と802(破線)に示す円周のように被測定物109の表面を倣い測定する走査の半径が異なったものとなる。これによって、測定制御コンピュータ123が例えば801(実線)の周位置を周測定していると認識している時に、実際には802(破線)の周位置を周測定しているのであれば、図9の破線で示すような測定誤差が生じる。図9は図8の走査状態の被測定物109を側方から示している。
図8のようなドリフトがある状態で各周の周走査を行うと、実際には測定制御コンピュータ123が意図しているよりも外周側にずれたZ軸方向の高さが低い、被測定物109の周位置を周走査することになる。このため、この例では、各周で実際よりもZ軸方向の高さは低く測定され、実線の半円で示す実形状に対して、破線の半円で示す形状を有するものとして測定されてしまう。なお、この単純化されたドリフトの例では、誤差はほぼZ方向のみに生じており、XやY方向の位置誤差はほぼ発生していない。
再び、図2の制御手順において、ステップS201に続き、ステップS202の断面測定を実行する。ステップS202は被測定物109の表面の概略中心を通り、互いに交差する径方向に沿って測定を行う断面測定(径測定)処理である。この断面測定(径測定)では、被測定物109の回転角度を割り出して複数の断面を測定する。なお、本明細書において、回転角度の「割り出し」は、異なる径方向の断面測定を行うために、θ回転ステージ112を所定の「割り出し角度」を単位として回転させる操作を指す。これに対して、上記の周測定では、θ回転ステージ112は、例えば一定の角速度で、連続的に回転駆動される。
図2のステップS202において、例えば図1のデータ処理コンピュータ124が測定開始を指示すると、被測定物109の設計データや測定範囲、移動速度などのデータを取得する。被測定物109の設計データに関しては、ステップS201で既に必要なデータが取得されている場合には、そのデータが用いられる。続いて、読み込んだ各種設定データおよびパラメータからX軸ステージスライダ121の移動位置やZ軸ステージスライダ107の移動位置などがデータ処理コンピュータ124から測定制御コンピュータ123へ出力される。これに応じて、測定制御コンピュータ123は、X軸ステージガイド105に搭載したX軸ステージスライダ121をX軸測定開始位置へ移動するように電装ラック122のX軸ドライバに指令する。これにより、形状計測装置100は、X軸ステージスライダ121を被測定物109の測定開始X座標へ移動させる。同時に測定制御コンピュータ123はθ回転ステージの一番目の割り出し回転位置(割り出し角度)に回転するように指令する。これにより、形状計測装置100は、θ回転ステージ112を回転させ、被測定物109が一番目の回転位置(割り出し角度)に移動させる。
X軸移動とθ回転ステージの移動が完了すると、測定制御コンピュータ123はZ軸ステージスライダ107駆動用Z軸ドライバに下降を指令する。これに応じて、形状計測装置100は、接触式プローブ108を被測定物109の表面に接触させる。一方、Z軸ステージスライダ107の下降によって接触子が被測定物109の表面に接触すると、測定制御コンピュータ123は、不図示の変位センサの出力を介してこの事象を検出する。
次に、測定制御コンピュータ123はX軸ステージスライダ121をX軸方向に測定終了位置まで移動するように電装ラック122のX軸ドライバに指令し、これに応じて形状計測装置100は、X軸ステージスライダ121をX軸方向に移動する。これにより、接触式プローブ108が被測定物109を径方向に倣い測定する(断面測定)。即ち、接触式プローブ108が被測定物109の表面に接触しながらX軸ステージスライダ121がX軸方向に移動する。この間、測定制御コンピュータ123、または電装ラック122は、不図示の変位センサからの出力が一定になるようにZ軸ステージスライダ107を制御する。
この断面測定の間、第1のX軸スケール114に対するX軸ステージスライダ121の位置データが第1のX軸スケールヘッド117から読み込まれる。同時に第2のX軸スケール116に対するX軸ステージスライダ121の位置データが第2のX軸スケールヘッドから読み込まれる。また、同時に図示していないZ軸スケールからのデータ、および変位センサ等から取り込んだデータを読み込む。また、θ回転ステージ112の割り出し角度が、不図示のエンコーダを介して検出され、電装ラック122を介して、測定制御コンピュータ123に読み込まれる。
これら各スケールやエンコーダおよび変位センサのデータは、電装ラック122の各スケールやエンコーダおよび変位センサ用ボードから測定制御コンピュータ123に読み込まれる。測定終了位置へのX軸移動が完了すると、測定制御コンピュータ123は、測定制御コンピュータ123はZ軸を上昇させるよう、電装ラック122のZ軸ドライバに指令を出力し、Z軸ステージ107を上昇させる。以上のようにして径1本分の断面測定が行われる。1本の断面測定の間、X軸が移動する間に取り込んだ各スケールやエンコーダおよび変位センサのデータは、測定制御コンピュータ123からデータ処理コンピュータ124に転送される。
以上の制御により、データ処理コンピュータ124は、接触式プローブ108が被測定物109の表面を倣い移動している間の接触式プローブ108の移動軌跡座標を取り込むことができる。以上で一番(本)目の断面測定が完了する。
次に二番(本)目の断面測定を行うため、測定制御コンピュータ123がθ回転ステージ112を二番目の割り出し位置へ回転させる指令を電装ラック122のθ回転軸ドライバに出力する。これにより、形状計測装置100は、θ回転ステージ112を回転駆動し、二番(本)目のθ回転割り出し位置へ移動させる。その後、一番(本)目と同様にZ軸ステージスライダ107を駆動し、接触式プローブ108を被測定物109の表面に接触させる。続いて同様に接触式プローブ108を被測定物109の表面に接触させながらX軸ステージスライダ121を移動させることによって、被測定物109の表面の二番(本)目の断面測定を行うことができる。
以上の処理を必要な断面測定の回数分繰り返すことにより図2のステップS202が完了し、被測定物109の複数断面による測定が完了する。図6は、周測定が理想的に行われた場合の測定結果の軌跡を模式的に示している。同図では、矢印で示すように被測定物109の異なる直径上の位置を4本、断面測定している。
図10は、図2のステップS202の断面測定で得られる断面測定面測定データにおいて、発生し得るドリフト誤差を説明するものである。図10は、図7と同等の形式で、図1の被測定物109と接触式プローブ108の位置関係を示している。
図10においてCは被測定物109の中心座標、AはCから見た接触式プローブ108の初期位置(実線)、Bは接触式プローブ108のドリフト後の位置(破線)をそれぞれ示している。上述の通り、このような接触式プローブ108のX軸方向に関する位置のドリフトは、例えば環境温度の経時変化などに影響されて、機構の構成部材の寸法が変化することによって生じる。
図10において、Bのように接触式プローブ108のドリフトが生じている時に、断面測定を行うと、被測定物109はC軸を中心としてX方向に相対的に移動するので、図10の破線のように被測定物109がX方向に移動したかのように測定される。図11は断面測定を4本分、繰り返した状態を模式的に示しており、被測定物109はX方向の位置が順次ずれて測定することになる。図12は、被測定物109の4つの割り出し角度において、図11の4本分の断面測定を行なった時の、被測定物109上のトレース位置の例を斜視様式で示している。図12に示すように、4つの割り出し角度における各断面データはドリフトの誤差によって結果的にXY方向に移動したように測定される。なお、断面移動中の時間は、十分短いので各断面データのZ方向のドリフト誤差は、ごく小さく、ほぼ発生していないとみなして差し仕えない。
以上のように、ステップS201およびステップS202が終了した時点で、被測定物109に対する周測定、および断面測定、の2種類の面測定が完了する。なお、図2は、ステップS201、ステップS202のように、周測定、続いて断面測定行うよう構成されているが、ステップS201とステップS202は順番が逆であっても構わない。
本実施形態では、以下、説明するように、図2のステップS201で得た周測定面データと、ステップS202で得た断面測定データ(径測定データ)の誤差成分を補正して、被測定物109の面データ(形状データ)を生成する。図2のステップS203は、ステップS201で測定した周測定面データの位置ズレを計算する処理で、このステップS203ではフィッティング処理を行う。
このフィッティング処理とは、被測定物109の表面形状測定データと、被測定物109の設計形状データを比較し、その差が最小になる被測定物109の表面形状データ位置移動量を計算するものである。一般に、このフィッティング処理のための補正演算には最小二乗法が用いられる。例えば、表面形状測定データを平行移動、および傾き移動させる座標変換式から、最小二乗法を用いて表面形状測定データと表面形状設計データとの差の二乗和が最小となる表面形状データの平行移動位置量および傾き移動位置量を求めることができる。このようなフィッティング処理によって位置誤差を修正した被測定物109の周測定面データが求まる。
次にステップS204において、ステップS202で得た断面測定データをステップS203で得た周測定面データによって、例えばドリフトに起因して発生した誤差を補正する処理を行う。ここでは、FSを周測定面データ、FDnを断面測定面データのn番目のデータとしたとき、下式(1)のEnが最小となる各断面のxy並進方向の位置誤差dx、dyと、各断面の傾き誤差wx、wyを求める。この場合も補正演算には、例えば最小二乗法を利用できる。
Figure 2020056735
そして、式(1)によるEnが最小となるdx、dy、wx、wyを求める処理を断面測定割り出しの回数分、n回行う。図13は、補正すべき断面データ1301と、その補正量に相当する、上記の位置誤差dx、dyおよび傾き誤差wx、wyを示している。
ステップS201の周測定面データには非対称成分、即ちXY方向のドリフト誤差はごく僅かしか存在しない。そのため、上記の処理によってステップS202の断面測定データに含まれている、例えばドリフトに起因するXY方向位置誤差を精度よく求めることができる。
次に、ステップS205では、ステップS204でドリフトによる位置誤差を求めた断面測定データから形状(面)データを生成する。ステップS205では各断面のデータFDnを各断面の位置誤差dx、dy、傾き誤差wx、wyを用いて座標変換する。これにより、各断面データから位置誤差を補正した形状(面)データを生成することができる。このようにして、ステップS205の演算によってドリフトを補正した断面測定データに基づく形状(面)データを得ることができる。
続いて、ステップS206において、ステップS201で測定した周測定データの例えばドリフトに起因する誤差を、ステップS205で位置誤差を補正した断面測定面データを使って補正する。ここでは、例えば、FSmを周測定面データのm番目のデータ、FDfをドリフト補正済みの断面測定面データ、dzを各周のZ方向(高さ方向)の位置誤差としたとき、下式(2)のEmが最小となる誤差dzを求める。
Figure 2020056735
この場合も、誤差dzを求めるには例えば最小二乗法を利用できる。この式(2)のEmが最小となる誤差dzを求める処理を周測定の回数分、m回、行って、各断面測定データのZ方向の位置誤差dzを求めることができる。図14は、補正すべき周データ1401と、その補正量に相当する、上記のZ方向に関する位置誤差dzの方向を示している。さらに、各周測定データFSmを各周の位置誤差dzで座標変換することにより、位置誤差を補正した周測定データに変換することができる。
ステップS202で得た断面測定データには、Z方向の誤差はごく僅かしか存在しないため、上記のステップS206の処理によって、周測定面データのドリフトによる位置誤差dzを精度よく補正することができる。
以上のように、図2の測定処理によれば、周測定および断面測定のドリフト誤差を互いに除去し、補正された周測定および断面測定による面(形状)データを取得し、補正後の周測定と断面測定を組み合わせて、高精度に面(形状)データを生成できる。本実施形態の測定処理では、面測定と断面測定に作用する測定誤差が異なることを利用して、周測定と断面測定で得た測定データを相互に精度よく補正することができる。即ち、本実施形態では、面測定では非対称成分、即ちXY方向のドリフト誤差がごく僅かであり、一方、断面測定ではZ方向の誤差はごく僅かである点を利用している。
そして、本実施形態の測定処理によれば、周測定と断面測定で得た面(形状)データを無駄なく利用することができ、従来技術におけるように、補正ないし校正の目的のみに利用される測定シーケンスを実行しないで済む。従って、本実施形態によれば、測定方向の異なる、例えば断面測定、周測定のような複数の測定結果を無駄なく利用でき、ドリフトや回転軸ずれなどによる測定精度の低下を抑制し、高精度かつ高密度な形状測定を行うことができる。
なお、以上に示した処理例では、周測定データによって、断面(表面)測定データの誤差を補正し(第1の補正工程)、補正後の断面(表面)測定データによって周測定データを補正する(第2の補正工程)処理順序を例示した。しかしながら、補正に用いる測定データはこの逆であってもよい。
例えば、断面(径)測定データのフィッティングを行ってから、断面(径)測定データで周測定データの誤差を補正し(第1の補正工程)、補正後の周測定データで断面(表面)測定データを補正する(第2の補正工程)処理順序を採用してもよい。即ち、周測定データまたは断面測定データの一方によって、断面(径)データまたは周測定データの他方の誤差を補正する。そして、補正後の断面(径)データまたは周測定データによって、補正していない方の周測定データまたは断面(径)データの誤差を補正するのである。いずれの処理順序であっても、周測定データと、断面(表面)測定データとに作用する誤差が互いに異なっているため、上記と同等の作用効果を期待することができる。
<実施形態2>
本実施形態2では、図2の測定処理において、ステップS204、S206で実施可能な異なる演算処理について処理内容を説明する。ハードウェア的な構成と、図2のステップS204、S206以外の部分のソフトウェア的な構成は実施形態1と同様である。
図3は、図2のステップS204として実行する本実施形態の演算処理を、図4は、図2のステップS206として実行する本実施形態の演算処理をそれぞれ示している。図2のステップS201からステップS203までは上述の実施形態1と同様に実施される。
図2のステップS204として実行される図3の処理手順において、まず、ステップS301では、ステップS201で測定した周データとステップS202で測定した断面データを関数に置き換える関数変換を行う。ここでは、例えば、周データをツェルニケ関数に置き換え、断面データは、被測定物109の設計値関数に置き換えることができる。この場合、両方置き換えても良いし、どちらか一方のみ置き換える手法を採ってもよい。
この関数への置き換えには、関数の係数を変数として測定データとの差分の式を作り、その式の二乗和が最小となる変数を求める最小二乗法を用いることができる。
次に、ステップS302では、ステップS301で関数化した周データを用いて関数変換後の断面データのドリフトを補正する処理を行う。ここでは、FSkを関数化した周測定面データ、FDknを関数化した断面測定面データのn番目のデータとしたとき、下式(3)のEknが最小となる各断面の位置誤差dx、dyと、各断面の傾き誤差wx、wyを求める。この場合も例えば最小二乗法を利用できる。
Figure 2020056735
そして、式(3)によるEknが最小となる上記のdx、dy、wx、wyを求める処理を断面測定割り出しの回数分、n回行う。
上述の通り、ステップS201の周測定面データには非対称成分、即ちXY方向のドリフト誤差はごく僅かしか存在しない。そのため、上記の処理によってステップS202の断面測定データに含まれている、例えばドリフトに起因するXY方向位置誤差を精度よく求めることができる。
続いて、ステップS303では、ステップS302でドリフトに起因する位置誤差を補正した断面測定データから面データを生成する。このステップS303では、各断面のデータFDknを各断面の位置誤差dx、dy、傾き誤差wx、wyによって座標変換し、位置誤差を補正した断面データに変換する。上記のステップS303の演算により、ドリフトに起因する誤差を補正可能な各断面測定データの位置誤差データを得ることができる。
続いて、実施形態1と同じ、図2のステップS205の処理を実行する。このステップS205では、図3のステップS301〜S303でドリフトによる位置誤差を補正した断面測定データから面データを生成する。このステップS205では、各断面のデータFDknを各断面の位置誤差dx、dy、傾き誤差wx、wyにより座標変換し、位置誤差を補正した断面データに変換する。このようにして、ステップS205の演算によってドリフトを補正した断面測定データに基づく形状(面)データを得ることができる。
続いて、図2のステップS206として図4の処理手順を実行する。ここでは、まず、ステップS401では、ステップS201で測定した周測定データを、ステップS205で位置誤差を補正した断面測定面データを用いて、例えばドリフトに起因する誤差を補正する。
このステップS401では、例えば、FSkmを関数変換した周測定面データのm番目のデータ、FDkfをドリフト補正済みの関数変換した断面測定面データとしたとき、下式(4)のEkmが最小となるdzを求める。この場合も例えば最小二乗法を利用できる。
Figure 2020056735
そして、式(4)によるEkmが最小となるdzを求める処理を周測定の回数分、m回行う。これにより、各断面測定データのZ方向位置誤差dzを求めることができる。
さらに、ステップS402では、各周測定データFSkmを各周の位置誤差dzを用いて座標変換し、位置誤差を補正した周測定データに変換する。
上述の通り、ステップS202の断面測定データにはZ方向の誤差はごく僅かしか存在しないため、上記のステップS401、S402の処理によって、ステップS201の周測定面データのドリフトによる位置誤差を精度よく補正することができる。
図17は、以上のようにして周測定と断面測定を組み合わせて面データを生成した状態を模式的に示した説明図である。同図では、矢印で示すように4周の周測定と4本の径方向の断面測定を行って得た周データと断面データから被測定物の形状測定を行う処理を示している。
上述の図2、図3、図4に示した測定処理によれば、周および断面測定のドリフト誤差を互いに除去し、補正された周および断面測定による面(形状)データを取得し、補正後の周測定と断面測定を組み合わせて、高精度に面(形状)データを生成できる。本実施形態の測定処理では、面測定と断面測定に作用する測定誤差が異なることを利用して、周測定と断面測定で得た測定データを相互に精度よく補正することができる。即ち、本実施形態では、面測定では非対称成分、即ちXY方向のドリフト誤差がごく僅かであり、一方、断面測定ではZ方向の誤差はごく僅かである点を利用している。
そして、本実施形態の測定処理によれば、周測定と断面測定で得た面(形状)データを無駄なく利用することができ、従来技術におけるように、補正ないし校正の目的のみに利用される測定シーケンスを実行しないで済む。従って、本実施形態によれば、測定方向の異なる、例えば断面測定、周測定のような複数の測定結果を無駄なく利用でき、ドリフトや回転軸ずれなどによる測定精度の低下を抑制し、高精度かつ高密度な形状測定を行うことができる。
また、本実施形態では、関数変換(図3のS301)したデータを用いて測定処理を行う。そのため、周測定と断面(径)測定の交点付近に不規則な誤差が乗っているような場合でも、測定結果が影響を受ける可能性を低減することができる。
<実施形態3>
本実施形態では、周測定、および断面測定の割り出しの回転軸の動的な誤差を考慮した形状測定処理を示す。本実施形態における形状計測装置100ないし測定(製造)システムのハードウェア構成は実施形態1、2の図1と同様である。本実施形態では、図1のデータ処理コンピュータ124によって、図19、図20に示すような形状測定処理を行う。
図19において、ステップS2001は図2のステップS201と同様の周測定処理、ステップS2002は図2のステップS202と同様の断面測定処理である。本実施形態では、ステップS2001、S2002に続き、ステップS2003を実施する。ステップS2003では各断面測定結果に対して、動的な振れの差の分の座標変換を行う。
図18(a)〜(c)は、ワーク回転軸の停止時と駆動時の動的な変動、振れの差に起因するワーク位置ずれを模式的に示している。図18(a)において1901は回転軸であり、1902は停止時の回転テーブル、1903は停止時のワーク位置である。また、図18(b)において1904、1905は回転駆動中の例えば0度位相の回転テーブルとワーク位置をそれぞれ示す。また、図18(c)において1906、1907は駆動中の例えば180度位相の回転テーブルとワーク位置をそれぞれ示す。図18(a)〜(c)において、1903と1904、1905との角度差Θが動的なワーク位置のずれに相当する。
上記のような動的な回転軸の誤差は、図20に示すような座標変換を含む測定処理を行うことにより補正することができる。
図20のステップS2101では、回転対称かつ非球面形状のワークをθ回転ステージ112の上部にセットする。このワークの形状は既知の設計形状に対して誤差が十分小さい方が好ましい。ステップS2102では、回転軸の割り出しを伴なって、複数回の断面測定を行う。この時の、断面測定の制御は、図2のステップS202と同じでよい。座標変換量をより正確に算出するためには、できるだけ多くの断面を測定し、また、同じ断面を複数回測定して平均化処理をする、などの措置を講じることができる。
続いて、ステップS2103では、複数の断面測定の結果を面データとして処理し、非球面ワークのXYZ直交座標系での位置を算出する。この時、例えば、特許文献3に記載されるように、各測定断面を事前に既知の回転軸を中心に断面測定した割出角度で回転させ、それら全てを0度方位へ座標変換して戻すことにより非球面ワークのXYZ直交座標系での位置を算出することができる。
ここでは、FAを設計形状(または既知形状)データ、FDを0度方位に戻した場合の複数断面の測定データとしたとき、下式(5)のEDが最小となる0度方位での並進設置誤差、dxD、dyD、および0度方位でのワーク傾き誤差wxD、wyDを求める。この演算は、例えば最小二乗法によって行うことができる。
Figure 2020056735
続いて、図20のステップS2104において、複数の周測定を行う。この周測定の制御は、図2のステップS201と同じでよい。座標変換量をより正確に算出するためには、できるだけ多くの周を測定し、また、同じ周を複数回測定して平均化処理をする、などの措置を講じることができる。なお、ステップS2102〜2104の間では、ワーク着脱などのステージ上でのワークの設置位置が変化することは実施しないものとする。
次にステップS2105にて、複数周測定の結果を面データとして処理し、非球面ワークのXYZ直交座標系での位置を算出する。事前に既知の回転軸を中心に周測定をした結果をRΘZ座標系からXYZ直交座標系に変換し、0度方位を基準とした測定結果を得る。
ここでは、FAを設計形状(または既知形状)データ、FSを複数周の測定データとする。そして、下式(6)のESが最小となる0度方位での並進設置誤差dxS、dyS、0度方位でのワーク傾き誤差wxS、wySを求める。この演算は、例えば最小二乗法によって行うことができる。
Figure 2020056735
次にステップS2106にて断面測定によって算出されたdxD、dyD、wxD、wyDと、周測定によって算出されたdxS、dyS、wxS、wySとの差分を算出する。算出した差分、即ち座標変化量は、断面測定と周測定の座標変化量としてデータ処理コンピュータ124に記憶させる。この座標変化量のデータは、例えばRAM1603や外部記憶装置1604などに格納する。また、図20の座標変化量の算出は形状測定の度に行っても良いし、あるいは装置立上げ時や定期的な校正時に行ってもよい。ステップS2003で求める座標変換量は、断面測定から周測定位置への変換量として求めてもよく、また、周測定から断面測定位置への逆変換を行う変換量として求めてもよい。このように取得した座標変化量を周測定データまたは径測定データに対して加算する座標変換を行うことにより、補正された形状測定データを得ることができる。
以上のように、本実施形態によれば、図19、および図20に示した測定処理によって、周測定と断面測定の間の動的な軸振れの差を取り除いた周測定と断面測定を合わせた面データを生成することができる。即ち、本実施形態によれば、図1、図2、図3、図4および図20に示した形状測定装置によって、被測定物の非球面、球面等からなるレンズに代表される光学素子、またはそれに類する構造物の表面形状を正確に求めることが可能となる。本発明は、上述の実施例の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステムまたは装置に供給し、そのシステムまたは装置のコンピュータにおける1つ以上のプロセッサがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
100…形状測定装置、102…除振台、103…架台、104…フレーム、105…X軸ステージガイド、106…Z軸ステージガイド、107…Z軸ステージスライダ、108…接触式プローブ、109…被測定物、110…ティルトステージ、111…XYステージ、112…θ回転ステージ、122…電装ラック、123…測定制御コンピュータ、124…データ処理コンピュータ。

Claims (20)

  1. プローブを被測定物の表面に倣って走査させて、前記被測定物の形状を測定する形状測定方法において、
    所定の回転軸を中心とし、前記回転軸からの距離が互いに異なる複数の周方向に前記プローブを走査させ、前記被測定物の周測定データを取得する周測定工程と、
    前記被測定物の互いに交差する複数の径方向に前記プローブを走査させ、前記被測定物の径測定データを取得する径測定工程と、
    前記周測定データおよび前記径測定データのいずれか一方によって、前記径測定データおよび前記周測定データの他方の誤差を補正し、補正後の前記径測定データまたは前記周測定データによって、補正していない方の前記周測定データまたは前記径測定データの誤差を補正する補正工程と、を含む形状測定方法。
  2. プローブを被測定物の表面に倣って走査させて、前記被測定物の形状を測定する形状測定方法において、
    所定の回転軸を中心とし、前記回転軸からの距離が互いに異なる複数の周方向に前記プローブを走査させ、前記被測定物の周測定データを取得する周測定工程と、
    前記被測定物の互いに交差する複数の径方向に前記プローブを走査させ、前記被測定物の径測定データを取得する径測定工程と、
    前記周測定データによって、前記径測定データの誤差を補正する第1の補正工程と、
    前記第1の補正工程で補正された補正後の径測定データによって前記周測定データの誤差を補正する第2の補正工程と、を含む形状測定方法。
  3. 請求項2に記載の形状測定方法において、前記第1または第2の補正工程の前に、前記周測定データおよび前記径測定データの少なくとも一方を関数変換し、関数変換された前記周測定データおよび/または前記径測定データを用いて前記第1または第2の補正工程を実行する形状測定方法。
  4. 請求項2または3に記載の形状測定方法において、前記第1または第2の補正工程における補正を最小二乗法による補正演算により行う形状測定方法。
  5. 請求項2から4のいずれか1項に記載の形状測定方法において、前記第1の補正工程において、前記周測定データによって、前記径測定データの並進方向の位置誤差と、各断面の傾き誤差を補正する形状測定方法。
  6. 請求項2から5のいずれか1項に記載の形状測定方法において、前記第2の補正工程において、補正後の前記径測定データによって、前記周測定データの高さ方向の位置誤差を補正する形状測定方法。
  7. 請求項2から6のいずれか1項に記載の形状測定方法において、前記第1の補正工程の前に、前記周測定データを、前記周測定データと前記被測定物の設計形状データを比較するフィッティング処理によって補正する形状測定方法。
  8. 請求項1から7のいずれか1項に記載の形状測定方法において、前記被測定物が回転対象な非球面形状を有する形状測定方法。
  9. 請求項1から8のいずれか1項に記載の形状測定方法において、前記被測定物が回転対称な非球面光学素子、または回転対称な非球面光学素子の成形に用いる型である形状測定方法。
  10. プローブを被測定物の表面に倣って走査させて、前記被測定物の形状を測定する形状測定方法において、
    所定の回転軸を中心とし、前記回転軸からの距離が互いに異なる複数の周方向に前記プローブを走査させ、前記被測定物の周測定データを取得する周測定工程と、
    前記被測定物の互いに交差する複数の径方向に前記プローブを走査させ、前記被測定物の径測定データを取得する径測定工程と、
    前記周測定データおよび前記径測定データから、前記回転軸の変動に起因する座標変化量を演算する演算工程と、
    前記周測定データまたは前記径測定データに対して前記座標変化量を加算する座標変換工程と、を含む形状測定方法。
  11. 請求項10に記載の形状測定方法において、前記座標変化量が、前記周測定工程で得られた周測定データおよび前記径測定工程で得られた径測定データの差分である形状測定方法。
  12. 被測定物を直線移動させる直動ステージと、前記被測定物を回転軸を中心に回転移動させる回転ステージと、前記被測定物を倣い測定するプローブと、前記被測定物の形状測定を制御する制御装置と、を備える形状計測装置の前記制御装置を構成するコンピュータに読み込ませることにより、請求項1から11のいずれか1項に記載の形状測定方法の各工程を実行させる制御プログラム。
  13. 請求項12に記載の制御プログラムを格納したコンピュータ読み取り可能な記録媒体。
  14. 被測定物を直線移動させる直動ステージと、前記被測定物を回転軸を中心に回転移動させる回転ステージと、前記被測定物を倣い測定するプローブと、前記被測定物の形状測定を制御する制御装置と、を備え、前記被測定物の形状を測定する形状測定装置において、
    前記制御装置が、前記直動ステージにより前記プローブを前記回転軸を中心とした複数の周位置に移動させ、それぞれの周位置で前記プローブによって前記被測定物を倣い測定させ、複数の周測定データを取得する周測定工程と、前記回転ステージを前記回転軸を中心とした複数の割り出し角度に回転移動させ、それぞれの割り出し角度で前記プローブによって前記被測定物を倣い測定させ、複数の径測定データを取得する径測定工程と、を実行し、
    前記制御装置が、前記周測定データおよび前記径測定データのいずれか一方によって、前記径測定データおよび前記周測定データの他方の誤差を補正し、補正後の前記径測定データまたは前記周測定データによって、補正していない方の前記周測定データまたは前記径測定データの誤差を補正する形状測定装置。
  15. 被測定物を直線移動させる直動ステージと、前記被測定物を回転軸を中心に回転移動させる回転ステージと、前記被測定物を倣い測定するプローブと、前記被測定物の形状測定を制御する制御装置と、を備え、前記被測定物の形状を測定する形状測定装置において、
    前記制御装置が、前記直動ステージにより前記プローブを前記回転軸を中心とした複数の周位置に移動させ、それぞれの周位置で前記プローブによって前記被測定物を倣い測定させ、複数の周測定データを取得する周測定工程と、前記回転ステージを前記回転軸を中心とした複数の割り出し角度に回転移動させ、それぞれの割り出し角度で前記プローブによって前記被測定物を倣い測定させ、複数の径測定データを取得する径測定工程と、を実行し、
    前記制御装置が、前記周測定データによって、前記径測定データの誤差を補正し、補正後の径測定データによって前記周測定データを補正する形状測定装置。
  16. 被測定物を直線移動させる直動ステージと、前記被測定物を回転軸を中心に回転移動させる回転ステージと、前記被測定物を倣い測定するプローブと、前記被測定物の形状測定を制御する制御装置と、を備え、前記被測定物の形状を測定する形状測定装置において、
    前記制御装置が、前記直動ステージにより前記プローブを前記回転軸を中心とした複数の周位置に移動させ、それぞれの周位置で前記プローブによって前記被測定物を倣い測定させ、複数の周測定データを取得する周測定工程と、前記回転ステージを前記回転軸を中心とした複数の割り出し角度に回転移動させ、それぞれの割り出し角度で前記プローブによって前記被測定物を倣い測定させ、複数の径測定データを取得する径測定工程と、を実行し、
    前記制御装置が、前記周測定データおよび前記径測定データから、前記回転軸の変動に起因する座標変化量を演算し、前記周測定データまたは前記径測定データに対して前記座標変化量を加算する形状測定装置。
  17. 請求項14から16のいずれか1項に記載の形状測定装置を用いて物品を検査する検査方法において、前記形状測定装置で前記物品を前記被測定物として形状測定した形状測定結果と、前記物品の設計形状データとの誤差データに基づき前記物品を検査する検査方法。
  18. 請求項17に記載の検査方法によって物品を検査し、物品を製造する製造方法において、前記形状測定結果と、前記物品の設計形状データとの誤差データに基づき前記物品を加工する加工装置を駆動制御する物品の製造方法。
  19. 請求項18に記載の物品の製造方法において、前記被測定物として形状測定される物品が回転対称な非球面光学素子、または回転対称な非球面光学素子の成形に用いる型である物品の製造方法。
  20. 請求項14から16のいずれか1項に記載の形状測定装置と、前記被測定物として形状測定される物品の加工装置と、を含み、前記形状測定装置で前記物品を前記被測定物として形状測定した形状測定結果と、前記物品の設計形状データとの誤差データに基づき前記加工装置が駆動制御される物品の製造システム。
JP2018188694A 2018-10-03 2018-10-03 形状測定方法、形状測定装置、および物品の製造方法 Pending JP2020056735A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018188694A JP2020056735A (ja) 2018-10-03 2018-10-03 形状測定方法、形状測定装置、および物品の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018188694A JP2020056735A (ja) 2018-10-03 2018-10-03 形状測定方法、形状測定装置、および物品の製造方法

Publications (1)

Publication Number Publication Date
JP2020056735A true JP2020056735A (ja) 2020-04-09

Family

ID=70107076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018188694A Pending JP2020056735A (ja) 2018-10-03 2018-10-03 形状測定方法、形状測定装置、および物品の製造方法

Country Status (1)

Country Link
JP (1) JP2020056735A (ja)

Similar Documents

Publication Publication Date Title
US10751883B2 (en) Robot system with supplementary metrology position coordinates determination system
JP5998058B2 (ja) 座標位置決め装置を用いて得られる測定値の誤差の補正
US10871366B2 (en) Supplementary metrology position coordinates determination system for use with a robot
JP2013503380A (ja) 工作機械の校正方法
US10913156B2 (en) Robot system with end tool metrology position coordinates determination system
TW201439502A (zh) 用於量測一零件之方法及裝置
JP2013218684A (ja) Cnc工作機械の誤差を補正する装置
JPH1183438A (ja) 光学式測定装置の位置校正方法
KR20170008222A (ko) 객체의 기하 측정 장치 및 그 방법
US10578414B2 (en) Inner-wall measuring instrument and offset-amount calculation method
KR20060113967A (ko) 다축 계측학 시스템의 기하학 조정방법
JP2019105615A (ja) 空間精度補正方法、及び空間精度補正装置
JP2011002317A (ja) 画像プローブの校正方法および形状測定機
CN106796095B (zh) 操作坐标测量设备的方法、坐标测量设备和计算机程序
JP6800442B2 (ja) 三次元形状計測システム
JP6757391B2 (ja) 測定方法
JP4646520B2 (ja) 3次元形状測定方法及び装置
JP2020056735A (ja) 形状測定方法、形状測定装置、および物品の製造方法
CN112945102B (zh) 一种基于玻璃切割技术的精密平台精度计量与补偿方法
JP6478603B2 (ja) 面形状測定方法及び面形状測定装置
CN110849266B (zh) 一种影像测量仪的远心镜头远心度调试方法
CN109732643B (zh) 一种用于机械臂的标定装置及方法
JP2022160171A (ja) 形状測定方法、物品の検査方法、物品の製造方法、形状測定装置、物品の検査システム、物品の製造システム、プログラム、記録媒体
CN105180872B (zh) 高精度镜间隔调整环的测量方法及装置
JPH10332349A (ja) 3次元形状測定方法

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200207