JP2020050786A - Foam particle, foam molded body, fiber reinforced composite, and automobile component - Google Patents
Foam particle, foam molded body, fiber reinforced composite, and automobile component Download PDFInfo
- Publication number
- JP2020050786A JP2020050786A JP2018182437A JP2018182437A JP2020050786A JP 2020050786 A JP2020050786 A JP 2020050786A JP 2018182437 A JP2018182437 A JP 2018182437A JP 2018182437 A JP2018182437 A JP 2018182437A JP 2020050786 A JP2020050786 A JP 2020050786A
- Authority
- JP
- Japan
- Prior art keywords
- molded article
- foamed
- weight
- parts
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002245 particle Substances 0.000 title claims abstract description 184
- 239000006260 foam Substances 0.000 title claims abstract description 51
- 239000003733 fiber-reinforced composite Substances 0.000 title claims description 14
- 229920005989 resin Polymers 0.000 claims abstract description 107
- 239000011347 resin Substances 0.000 claims abstract description 107
- 229920001577 copolymer Polymers 0.000 claims abstract description 32
- 238000012360 testing method Methods 0.000 claims abstract description 31
- 229920002554 vinyl polymer Polymers 0.000 claims abstract description 31
- 150000001990 dicarboxylic acid derivatives Chemical class 0.000 claims abstract description 26
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims abstract description 9
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical group C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 71
- 229920002430 Fibre-reinforced plastic Polymers 0.000 claims description 27
- 239000011151 fibre-reinforced plastic Substances 0.000 claims description 27
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 25
- 238000005452 bending Methods 0.000 claims description 24
- -1 Aliphatic unsaturated dicarboxylic acid Chemical class 0.000 claims description 15
- 125000000217 alkyl group Chemical group 0.000 claims description 7
- 125000004432 carbon atom Chemical group C* 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 19
- 230000000704 physical effect Effects 0.000 abstract description 6
- 230000004927 fusion Effects 0.000 abstract description 5
- 230000001747 exhibiting effect Effects 0.000 abstract description 3
- 239000000758 substrate Substances 0.000 abstract description 3
- 238000005187 foaming Methods 0.000 description 52
- 238000000034 method Methods 0.000 description 49
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 42
- 239000000463 material Substances 0.000 description 39
- 239000012783 reinforcing fiber Substances 0.000 description 35
- 238000002835 absorbance Methods 0.000 description 26
- 239000000178 monomer Substances 0.000 description 22
- 239000001569 carbon dioxide Substances 0.000 description 21
- 229910002092 carbon dioxide Inorganic materials 0.000 description 21
- 238000005259 measurement Methods 0.000 description 21
- 239000000835 fiber Substances 0.000 description 19
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 19
- 239000007789 gas Substances 0.000 description 18
- 230000006835 compression Effects 0.000 description 17
- 238000007906 compression Methods 0.000 description 17
- 239000003822 epoxy resin Substances 0.000 description 17
- 229920000647 polyepoxide Polymers 0.000 description 17
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 16
- 238000005470 impregnation Methods 0.000 description 16
- 238000000862 absorption spectrum Methods 0.000 description 14
- 238000010030 laminating Methods 0.000 description 14
- 239000000203 mixture Substances 0.000 description 11
- 238000000465 moulding Methods 0.000 description 11
- 238000003756 stirring Methods 0.000 description 9
- 229920003002 synthetic resin Polymers 0.000 description 9
- 239000000057 synthetic resin Substances 0.000 description 9
- 229920001187 thermosetting polymer Polymers 0.000 description 9
- 239000012298 atmosphere Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 230000009477 glass transition Effects 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 230000010354 integration Effects 0.000 description 8
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 8
- WGOROJDSDNILMB-UHFFFAOYSA-N octatriacontanediamide Chemical compound NC(=O)CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC(N)=O WGOROJDSDNILMB-UHFFFAOYSA-N 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 238000001816 cooling Methods 0.000 description 7
- 239000000498 cooling water Substances 0.000 description 7
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 7
- 239000004925 Acrylic resin Substances 0.000 description 6
- 229920000178 Acrylic resin Polymers 0.000 description 6
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 6
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 6
- 238000011088 calibration curve Methods 0.000 description 6
- 239000002131 composite material Substances 0.000 description 6
- 238000010097 foam moulding Methods 0.000 description 6
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 150000001991 dicarboxylic acids Chemical class 0.000 description 5
- 239000004088 foaming agent Substances 0.000 description 5
- 238000004898 kneading Methods 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 229920001169 thermoplastic Polymers 0.000 description 5
- 229920005992 thermoplastic resin Polymers 0.000 description 5
- 239000004416 thermosoftening plastic Substances 0.000 description 5
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 5
- 239000004604 Blowing Agent Substances 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 4
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 4
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 4
- 239000006057 Non-nutritive feed additive Substances 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 210000004556 brain Anatomy 0.000 description 4
- 230000001143 conditioned effect Effects 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- BXKDSDJJOVIHMX-UHFFFAOYSA-N edrophonium chloride Chemical compound [Cl-].CC[N+](C)(C)C1=CC=CC(O)=C1 BXKDSDJJOVIHMX-UHFFFAOYSA-N 0.000 description 4
- 238000011049 filling Methods 0.000 description 4
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 4
- 239000001282 iso-butane Substances 0.000 description 4
- 229920001225 polyester resin Polymers 0.000 description 4
- 239000004645 polyester resin Substances 0.000 description 4
- 239000004926 polymethyl methacrylate Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- IJDNQMDRQITEOD-UHFFFAOYSA-N sec-butylidene Natural products CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 4
- HIDBROSJWZYGSZ-UHFFFAOYSA-N 1-phenylpyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C1=CC=CC=C1 HIDBROSJWZYGSZ-UHFFFAOYSA-N 0.000 description 3
- 238000005160 1H NMR spectroscopy Methods 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 239000004917 carbon fiber Substances 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 125000005442 diisocyanate group Chemical group 0.000 description 3
- 150000002009 diols Chemical class 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000003365 glass fiber Substances 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000001294 propane Substances 0.000 description 3
- 239000011342 resin composition Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- 229930185605 Bisphenol Natural products 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 238000004566 IR spectroscopy Methods 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 2
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000004760 aramid Substances 0.000 description 2
- 150000001491 aromatic compounds Chemical class 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 238000012669 compression test Methods 0.000 description 2
- 239000011162 core material Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000004643 cyanate ester Substances 0.000 description 2
- 150000001993 dienes Chemical class 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 238000012844 infrared spectroscopy analysis Methods 0.000 description 2
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229920003986 novolac Polymers 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229920006122 polyamide resin Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920005672 polyolefin resin Polymers 0.000 description 2
- 229920005990 polystyrene resin Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- 239000001124 (E)-prop-1-ene-1,2,3-tricarboxylic acid Substances 0.000 description 1
- XLYMOEINVGRTEX-ONEGZZNKSA-N (e)-4-ethoxy-4-oxobut-2-enoic acid Chemical compound CCOC(=O)\C=C\C(O)=O XLYMOEINVGRTEX-ONEGZZNKSA-N 0.000 description 1
- LVGUZGTVOIAKKC-UHFFFAOYSA-N 1,1,1,2-tetrafluoroethane Chemical compound FCC(F)(F)F LVGUZGTVOIAKKC-UHFFFAOYSA-N 0.000 description 1
- WVAFEFUPWRPQSY-UHFFFAOYSA-N 1,2,3-tris(ethenyl)benzene Chemical compound C=CC1=CC=CC(C=C)=C1C=C WVAFEFUPWRPQSY-UHFFFAOYSA-N 0.000 description 1
- ZJQIXGGEADDPQB-UHFFFAOYSA-N 1,2-bis(ethenyl)-3,4-dimethylbenzene Chemical group CC1=CC=C(C=C)C(C=C)=C1C ZJQIXGGEADDPQB-UHFFFAOYSA-N 0.000 description 1
- SKXCTCCZTWNYMD-UHFFFAOYSA-N 1,2-bis(ethenyl)anthracene Chemical compound C1=CC=CC2=CC3=C(C=C)C(C=C)=CC=C3C=C21 SKXCTCCZTWNYMD-UHFFFAOYSA-N 0.000 description 1
- QLLUAUADIMPKIH-UHFFFAOYSA-N 1,2-bis(ethenyl)naphthalene Chemical compound C1=CC=CC2=C(C=C)C(C=C)=CC=C21 QLLUAUADIMPKIH-UHFFFAOYSA-N 0.000 description 1
- BQTPKSBXMONSJI-UHFFFAOYSA-N 1-cyclohexylpyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C1CCCCC1 BQTPKSBXMONSJI-UHFFFAOYSA-N 0.000 description 1
- KJCUFYMLVDZPLS-UHFFFAOYSA-N 1-ethenyl-2-[(2-ethenylphenyl)methyl]benzene Chemical compound C=CC1=CC=CC=C1CC1=CC=CC=C1C=C KJCUFYMLVDZPLS-UHFFFAOYSA-N 0.000 description 1
- FAPKAHJYPAALBJ-UHFFFAOYSA-N 1-ethenyl-2-[1-(2-ethenylphenyl)ethyl]benzene Chemical compound C=1C=CC=C(C=C)C=1C(C)C1=CC=CC=C1C=C FAPKAHJYPAALBJ-UHFFFAOYSA-N 0.000 description 1
- KPMPESURTWDYGE-UHFFFAOYSA-N 1-ethenyl-2-[2-(2-ethenylphenyl)propan-2-yl]benzene Chemical compound C(=C)C1=C(C=CC=C1)C(C)(C)C1=C(C=CC=C1)C=C KPMPESURTWDYGE-UHFFFAOYSA-N 0.000 description 1
- IYSVFZBXZVPIFA-UHFFFAOYSA-N 1-ethenyl-4-(4-ethenylphenyl)benzene Chemical group C1=CC(C=C)=CC=C1C1=CC=C(C=C)C=C1 IYSVFZBXZVPIFA-UHFFFAOYSA-N 0.000 description 1
- BAWHYOHVWHQWFQ-UHFFFAOYSA-N 1-naphthalen-1-ylpyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C1=CC=CC2=CC=CC=C12 BAWHYOHVWHQWFQ-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- WYGWHHGCAGTUCH-UHFFFAOYSA-N 2-[(2-cyano-4-methylpentan-2-yl)diazenyl]-2,4-dimethylpentanenitrile Chemical compound CC(C)CC(C)(C#N)N=NC(C)(C#N)CC(C)C WYGWHHGCAGTUCH-UHFFFAOYSA-N 0.000 description 1
- SBYMUDUGTIKLCR-UHFFFAOYSA-N 2-chloroethenylbenzene Chemical compound ClC=CC1=CC=CC=C1 SBYMUDUGTIKLCR-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- BTOVVHWKPVSLBI-UHFFFAOYSA-N 2-methylprop-1-enylbenzene Chemical compound CC(C)=CC1=CC=CC=C1 BTOVVHWKPVSLBI-UHFFFAOYSA-N 0.000 description 1
- DXIJHCSGLOHNES-UHFFFAOYSA-N 3,3-dimethylbut-1-enylbenzene Chemical compound CC(C)(C)C=CC1=CC=CC=C1 DXIJHCSGLOHNES-UHFFFAOYSA-N 0.000 description 1
- VNGLVZLEUDIDQH-UHFFFAOYSA-N 4-[2-(4-hydroxyphenyl)propan-2-yl]phenol;2-methyloxirane Chemical compound CC1CO1.C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 VNGLVZLEUDIDQH-UHFFFAOYSA-N 0.000 description 1
- WPSWDCBWMRJJED-UHFFFAOYSA-N 4-[2-(4-hydroxyphenyl)propan-2-yl]phenol;oxirane Chemical compound C1CO1.C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 WPSWDCBWMRJJED-UHFFFAOYSA-N 0.000 description 1
- 229920002126 Acrylic acid copolymer Polymers 0.000 description 1
- 229920002748 Basalt fiber Polymers 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OZHMMNGPSTUXAR-UHFFFAOYSA-N CC(C(C)c1ccccc1C=C)c1ccccc1C=C Chemical compound CC(C(C)c1ccccc1C=C)c1ccccc1C=C OZHMMNGPSTUXAR-UHFFFAOYSA-N 0.000 description 1
- VOPWNXZWBYDODV-UHFFFAOYSA-N Chlorodifluoromethane Chemical compound FC(F)Cl VOPWNXZWBYDODV-UHFFFAOYSA-N 0.000 description 1
- IEPRKVQEAMIZSS-UHFFFAOYSA-N Di-Et ester-Fumaric acid Natural products CCOC(=O)C=CC(=O)OCC IEPRKVQEAMIZSS-UHFFFAOYSA-N 0.000 description 1
- IEPRKVQEAMIZSS-WAYWQWQTSA-N Diethyl maleate Chemical compound CCOC(=O)\C=C/C(=O)OCC IEPRKVQEAMIZSS-WAYWQWQTSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- GHAZCVNUKKZTLG-UHFFFAOYSA-N N-ethyl-succinimide Natural products CCN1C(=O)CCC1=O GHAZCVNUKKZTLG-UHFFFAOYSA-N 0.000 description 1
- HDFGOPSGAURCEO-UHFFFAOYSA-N N-ethylmaleimide Chemical compound CCN1C(=O)C=CC1=O HDFGOPSGAURCEO-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- YMOONIIMQBGTDU-VOTSOKGWSA-N [(e)-2-bromoethenyl]benzene Chemical compound Br\C=C\C1=CC=CC=C1 YMOONIIMQBGTDU-VOTSOKGWSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229940091181 aconitic acid Drugs 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 229920001893 acrylonitrile styrene Polymers 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 238000011074 autoclave method Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- MPMBRWOOISTHJV-UHFFFAOYSA-N but-1-enylbenzene Chemical compound CCC=CC1=CC=CC=C1 MPMBRWOOISTHJV-UHFFFAOYSA-N 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- NEHMKBQYUWJMIP-NJFSPNSNSA-N chloro(114C)methane Chemical compound [14CH3]Cl NEHMKBQYUWJMIP-NJFSPNSNSA-N 0.000 description 1
- GTZCVFVGUGFEME-IWQZZHSRSA-N cis-aconitic acid Chemical compound OC(=O)C\C(C(O)=O)=C\C(O)=O GTZCVFVGUGFEME-IWQZZHSRSA-N 0.000 description 1
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 1
- 229940018557 citraconic acid Drugs 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- IEPRKVQEAMIZSS-AATRIKPKSA-N diethyl fumarate Chemical compound CCOC(=O)\C=C\C(=O)OCC IEPRKVQEAMIZSS-AATRIKPKSA-N 0.000 description 1
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 1
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 1
- LDCRTTXIJACKKU-ONEGZZNKSA-N dimethyl fumarate Chemical compound COC(=O)\C=C\C(=O)OC LDCRTTXIJACKKU-ONEGZZNKSA-N 0.000 description 1
- 229960004419 dimethyl fumarate Drugs 0.000 description 1
- LDCRTTXIJACKKU-ARJAWSKDSA-N dimethyl maleate Chemical compound COC(=O)\C=C/C(=O)OC LDCRTTXIJACKKU-ARJAWSKDSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 229920006241 epoxy vinyl ester resin Polymers 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- XLYMOEINVGRTEX-UHFFFAOYSA-N fumaric acid monoethyl ester Natural products CCOC(=O)C=CC(O)=O XLYMOEINVGRTEX-UHFFFAOYSA-N 0.000 description 1
- 238000009787 hand lay-up Methods 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 229910001872 inorganic gas Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- SEEYREPSKCQBBF-UHFFFAOYSA-N n-methylmaleimide Chemical compound CN1C(=O)C=CC1=O SEEYREPSKCQBBF-UHFFFAOYSA-N 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- AFEQENGXSMURHA-UHFFFAOYSA-N oxiran-2-ylmethanamine Chemical compound NCC1CO1 AFEQENGXSMURHA-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- DBSDMAPJGHBWAL-UHFFFAOYSA-N penta-1,4-dien-3-ylbenzene Chemical compound C=CC(C=C)C1=CC=CC=C1 DBSDMAPJGHBWAL-UHFFFAOYSA-N 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920006327 polystyrene foam Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- SCUZVMOVTVSBLE-UHFFFAOYSA-N prop-2-enenitrile;styrene Chemical compound C=CC#N.C=CC1=CC=CC=C1 SCUZVMOVTVSBLE-UHFFFAOYSA-N 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 239000012925 reference material Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 1
- 238000009958 sewing Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 238000005211 surface analysis Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- GTZCVFVGUGFEME-UHFFFAOYSA-N trans-aconitic acid Natural products OC(=O)CC(C(O)=O)=CC(O)=O GTZCVFVGUGFEME-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- GZXOHHPYODFEGO-UHFFFAOYSA-N triglycine sulfate Chemical class NCC(O)=O.NCC(O)=O.NCC(O)=O.OS(O)(=O)=O GZXOHHPYODFEGO-UHFFFAOYSA-N 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
Description
本発明は、発泡粒子、発泡成形体、繊維強化複合体及び自動車用部品に関する。更に詳しくは、本発明は、機械的物性が向上した発泡成形体を与え得る発泡粒子、及びその発泡粒子から得られた発泡成形体、繊維強化複合体及び自動車用部品に関する。 The present invention relates to expanded particles, expanded molded articles, fiber-reinforced composites, and automotive parts. More specifically, the present invention relates to foamed particles capable of providing a foamed molded article having improved mechanical properties, and a foamed molded article, a fiber-reinforced composite, and an automobile part obtained from the foamed particle.
近年、航空機、自動車、船舶等の乗り物は、地球環境への負荷低減のために燃費向上が必要とされており、これらの乗り物を構成する金属材料を樹脂材料へ転換し、大きな軽量化を図る流れが強くなってきている。これらの樹脂材料としては、繊維強化プラスチックが挙げられるが、一部に軽量コア材を使用することで更なる軽量化や高剛性化を図ることも検討されている。軽量コア材として用いられる材料として高い圧縮強度を有するポリスチレン発泡体が検討されている。
しかしながら、ポリスチレン系樹脂は、ガラス転移温度が低いため、機械的物性が十分でなかった。そのため、機械的物性が向上した発泡成形体及びその発泡成形体を製造し得る発泡粒子の提供が望まれていた。
そこで、本願出願人は、ポリスチレン系樹脂に代えて他の種類の樹脂を使用すれば機械的物性が向上するのではないかとの考えの下で試験を繰り返した。その結果、芳香族ビニルと、(メタ)アクリル酸エステルと、不飽和ジカルボン酸との共重合体を発泡粒子の基材樹脂として使用すれば発泡成形体の機械的物性をある程度向上できることに気付き、この基材樹脂を使用しつつ、発泡粒子を構成する気泡径を制御することにより、機械的物性を大幅に向上できることを見出した(特開2017−186503号公報:特許文献1)。
2. Description of the Related Art In recent years, vehicles such as aircraft, automobiles, and ships have been required to have improved fuel efficiency in order to reduce the impact on the global environment. The flow is getting stronger. As these resin materials, fiber reinforced plastics can be cited, but it is also studied to further reduce the weight and increase the rigidity by partially using a lightweight core material. A polystyrene foam having high compressive strength has been studied as a material used as a lightweight core material.
However, since the polystyrene resin has a low glass transition temperature, its mechanical properties are not sufficient. Therefore, it has been desired to provide a foamed molded article having improved mechanical properties and foamed particles capable of producing the foamed molded article.
Therefore, the applicant of the present application repeated the test on the assumption that the use of another type of resin instead of the polystyrene-based resin would improve the mechanical properties. As a result, he noticed that the use of a copolymer of aromatic vinyl, (meth) acrylic acid ester, and unsaturated dicarboxylic acid as the base resin for the foamed particles could improve the mechanical properties of the foamed molded article to some extent. It has been found that the mechanical properties can be significantly improved by controlling the diameter of the cells constituting the expanded particles while using the base resin (Japanese Patent Application Laid-Open No. 2017-186503: Patent Document 1).
しかしながら、特許文献1の発泡成形体よりも更に優れた機械的物性を有する発泡成形体及びその発泡成形体を製造し得る発泡粒子の提供が望まれている。
そこで、本発明は、優れた機械的物性を示す発泡成形体及びその発泡成形体を製造し得る発泡粒子を提供することを課題とする。
However, it is desired to provide a foamed molded article having more excellent mechanical properties than the foamed molded article of Patent Document 1, and a foamed particle capable of producing the foamed molded article.
Therefore, an object of the present invention is to provide a foamed molded article exhibiting excellent mechanical properties and a foamed particle capable of producing the foamed molded article.
本発明の発明者は、特許文献1の技術について更に検討したところ、小気泡と大気泡の気泡径差をより大きく、かつ特定の範囲内とすることにより、発泡粒子から得られる発泡成形体の曲げ試験による最大応力のような機械的物性を大幅に向上できることを意外にも見出すことで本発明を完成するに至った。 The inventor of the present invention further studied the technique of Patent Document 1, and found that the difference in cell diameter between small bubbles and large cells was larger and within a specific range, whereby a foam molded article obtained from expanded particles was obtained. The present invention has been completed by surprisingly finding that mechanical properties such as the maximum stress in a bending test can be greatly improved.
かくして本発明によれば、芳香族ビニルと、(メタ)アクリル酸エステルと、不飽和ジカルボン酸との共重合体を含む基材樹脂から構成された発泡粒子であり、前記発泡粒子が、30倍で11.9mm2の面積を撮影した断面写真において、50μm以上かつ300μm未満の気泡径の小気泡と300μm以上かつ2mm以下の気泡径の大気泡とを備え、小気泡の平均気泡径と大気泡の平均気泡径との差が1000μm以上、1500μm未満であり、前記発泡粒子が、その融着体から構成される発泡成形体に1.0MPa以上の曲げ試験による最大点応力を与えることを特徴とする発泡粒子が提供される。
また、本発明によれば、芳香族ビニルと、(メタ)アクリル酸エステルと、不飽和ジカルボン酸との共重合体を含む基材樹脂から構成された発泡成形体であり、前記発泡成形体が、複数の発泡粒子から構成され、前記発泡粒子が、30倍で11.9mm2の面積を撮影した断面写真において、50μm以上かつ300μm未満の気泡径の小気泡と300μm以上かつ2mm以下の気泡径の大気泡とを備え、小気泡の平均気泡径と大気泡の平均気泡径との差が1000μm以上、1500μm未満であり、前記発泡粒子が、その融着体から構成される発泡成形体に1.0MPa以上の曲げ試験による最大点応力を与えることを特徴とする発泡成形体が提供される。
更に、本発明によれば、上記の発泡成形体と、この発泡成形体の表面に積層一体化された繊維強化プラスチック層とを有することを特徴とする繊維強化複合体が提供される。
また、本発明によれば、上記の発泡成形体又は繊維強化複合体から構成される自動車用部品が提供される。
Thus, according to the present invention, foamed particles composed of a base resin containing a copolymer of an aromatic vinyl, a (meth) acrylic acid ester, and an unsaturated dicarboxylic acid, wherein the foamed particles are 30 times larger in the cross section photograph of an area of 11.9 mm 2, and a large bubble of the small bubble and less bubble diameter 300 [mu] m or more and 2mm of bubble size less than 50μm or more and 300 [mu] m, an average cell diameter and large bubbles of small bubbles The difference from the average cell diameter of the above is 1000μm or more and less than 1500μm, the foamed particles give a maximum point stress by a bending test of 1.0MPa or more to a foamed molded article formed from the fused body. A foamed particle is provided.
Further, according to the present invention, there is provided a foamed molded product composed of a base resin containing a copolymer of aromatic vinyl, a (meth) acrylate, and an unsaturated dicarboxylic acid, wherein the foamed molded product is In a cross-sectional photograph taken of an area of 11.9 mm 2 at a magnification of 30 times, small bubbles having a bubble diameter of 50 μm or more and less than 300 μm and a bubble diameter of 300 μm or more and 2 mm or less are formed. Wherein the difference between the average cell diameter of the small cells and the average cell diameter of the large cells is 1000 μm or more and less than 1500 μm, and wherein the expanded particles are 1% in the expanded molded article composed of the fused body. A foam molded article characterized by giving a maximum point stress by a bending test of 0.0 MPa or more.
Further, according to the present invention, there is provided a fiber-reinforced composite comprising the above-mentioned foamed molded article and a fiber-reinforced plastic layer laminated and integrated on the surface of the foamed molded article.
Further, according to the present invention, there is provided an automobile part comprising the above-mentioned foamed molded article or fiber-reinforced composite.
本発明によれば、優れた機械的物性を示す発泡成形体及びその発泡成形体を製造し得る発泡粒子を提供できる。
また、以下のいずれかの場合、より優れた機械的物性を示す発泡成形体、及びその発泡成形体を製造し得る発泡粒子を提供できる。
(1)発泡粒子が、その1つにおいて、ただ1つの大気泡を有する。
(2)芳香族ビニルがスチレン系単量体、(メタ)アクリル酸エステルが(メタ)アクリル酸アルキルエステル(アルキル基の炭素数は1〜5)、不飽和ジカルボン酸が炭素数2〜6の脂肪族不飽和ジカルボン酸、からそれぞれ選択され、共重合体が、芳香族ビニルと(メタ)アクリル酸エステルと不飽和ジカルボン酸の3つに由来する単位の合計を100重量部とすると、芳香族ビニルに由来する単位を30〜80重量部、(メタ)アクリル酸エステルに由来する単位を8〜35重量部、不飽和ジカルボン酸に由来する単位を10〜50重量部を含む。
ADVANTAGE OF THE INVENTION According to this invention, the foaming molded article which shows excellent mechanical properties, and the foaming particle which can manufacture the foaming molded article can be provided.
Further, in any of the following cases, it is possible to provide a foamed molded article exhibiting more excellent mechanical properties and a foamed particle capable of producing the foamed molded article.
(1) The expanded particles have, in one of them, only one large cell.
(2) Aromatic vinyl is a styrene monomer, (meth) acrylate is (meth) acrylic acid alkyl ester (alkyl group has 1 to 5 carbon atoms), and unsaturated dicarboxylic acid is 2 to 6 carbon atoms. And the copolymer is selected from aliphatic unsaturated dicarboxylic acids, and when the total of the units derived from the aromatic vinyl, the (meth) acrylate ester and the unsaturated dicarboxylic acid is 100 parts by weight, It contains 30 to 80 parts by weight of units derived from vinyl, 8 to 35 parts by weight of units derived from (meth) acrylate, and 10 to 50 parts by weight of units derived from unsaturated dicarboxylic acid.
(1)発泡粒子
(1−1)基材樹脂
発泡粒子は、芳香族ビニルと、(メタ)アクリル酸エステルと、不飽和ジカルボン酸との共重合体を含む基材樹脂から構成される。基材樹脂中に共重合体が占める割合は、70重量%以上であることが好ましく、85重量%以上であることがより好ましく、100重量%であってもよい。共重合体は115〜160℃のガラス転移温度Tgを有していることが好ましい。Tgが115℃より低い場合、発泡粒子を用いて製造された発泡成形体の表面への表皮材の積層一体化が不十分となって、機械的物性が低下することがある。160℃より高い場合、発泡粒子の発泡性が低下して、発泡粒子同士の熱融着一体化が不十分となって発泡成形体の機械的物性が低下することがある。より好ましいTgは120〜150℃である。
(1) Expanded Particles (1-1) Base Resin The expanded particles are made of a base resin containing a copolymer of aromatic vinyl, (meth) acrylate and unsaturated dicarboxylic acid. The proportion occupied by the copolymer in the base resin is preferably 70% by weight or more, more preferably 85% by weight or more, and may be 100% by weight. Preferably, the copolymer has a glass transition temperature Tg of 115-160C. When Tg is lower than 115 ° C., lamination and integration of the skin material on the surface of the foamed molded article manufactured using the foamed particles may be insufficient, and mechanical properties may be reduced. When the temperature is higher than 160 ° C., the foaming properties of the foamed particles are reduced, and the heat fusion and integration of the foamed particles are insufficient, so that the mechanical properties of the foamed molded article may be reduced. A more preferred Tg is from 120 to 150C.
(a)芳香族ビニル
芳香族ビニルは、ビニル基からなる置換基を備えた芳香族化合物である。ビニル基の数及び芳香族化合物の炭素数は特に限定されない。具体的な芳香族ビニルとしては、スチレン、α−メチルスチレン、ビニルトルエン、エチルスチレン、i−プロピルスチレン、t−ブチルスチレン、ジメチルスチレン、ブロモスチレン、クロロスチレン等のスチレン系単官能単量体、ジビニルベンゼン、トリビニルベンゼン、ジビニルトルエン、ジビニルキシレン、ビス(ビニルフェニル)メタン、ビス(ビニルフェニル)エタン、ビス(ビニルフェニル)プロパン、ビス(ビニルフェニル)ブタン、ジビニルナフタレン、ジビニルアントラセン、ジビニルビフェニル、ビスフェノールAのエチレンオキシド付加物ジ(メタ)アクリレート、ビスフェノールAのプロピレンオキシド付加物ジ(メタ)アクリレートが挙げられる。芳香族ビニルは、単独で用いられても二種以上が併用されてもよい。この内、入手容易性の観点から、スチレンが好ましい。
(b)(メタ)アクリル酸エステル
(メタ)アクリル酸エステルとしては、特に限定されないが、例えば、(メタ)アクリル酸アルキルエステルが挙げられる。(メタ)アクリル酸アルキルエステル中のアルキル基の炭素数は1〜5とすることができる。具体的な(メタ)アクリル酸エステルとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル等が挙げられる。(メタ)アクリル酸エステルは、単独で用いられても二種以上が併用されてもよい。発泡成形体の機械的物性を向上させる観点から、(メタ)アクリル酸メチルが好ましく、メタクリル酸メチルがより好ましい。
(c)不飽和ジカルボン酸
不飽和ジカルボン酸は、特に限定されないが、炭素数2〜6の脂肪族不飽和ジカルボン酸が挙げられる。具体的な不飽和ジカルボン酸としては、マレイン酸、イタコン酸、シトラコン酸、アコニット酸、これらの無水物等が挙げられる。不飽和ジカルボン酸は、単独で用いられても二種以上が併用されてもよい。
(A) Aromatic vinyl Aromatic vinyl is an aromatic compound having a substituent consisting of a vinyl group. The number of vinyl groups and the carbon number of the aromatic compound are not particularly limited. Specific aromatic vinyls include styrene, α-methylstyrene, vinyltoluene, ethylstyrene, i-propylstyrene, t-butylstyrene, dimethylstyrene, bromostyrene, chlorostyrene and other styrene-based monofunctional monomers, Divinylbenzene, trivinylbenzene, divinyltoluene, divinylxylene, bis (vinylphenyl) methane, bis (vinylphenyl) ethane, bis (vinylphenyl) propane, bis (vinylphenyl) butane, divinylnaphthalene, divinylanthracene, divinylbiphenyl, Examples include bisphenol A ethylene oxide adduct di (meth) acrylate and bisphenol A propylene oxide adduct di (meth) acrylate. The aromatic vinyls may be used alone or in combination of two or more. Of these, styrene is preferred from the viewpoint of availability.
(B) (Meth) acrylic acid ester The (meth) acrylic acid ester is not particularly limited, and examples thereof include (meth) acrylic acid alkyl esters. The carbon number of the alkyl group in the alkyl (meth) acrylate can be 1 to 5. Specific examples of (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and butyl (meth) acrylate. The (meth) acrylates may be used alone or in combination of two or more. From the viewpoint of improving the mechanical properties of the foam molded article, methyl (meth) acrylate is preferred, and methyl methacrylate is more preferred.
(C) Unsaturated dicarboxylic acid The unsaturated dicarboxylic acid is not particularly limited, and examples thereof include aliphatic unsaturated dicarboxylic acids having 2 to 6 carbon atoms. Specific examples of unsaturated dicarboxylic acids include maleic acid, itaconic acid, citraconic acid, aconitic acid, and anhydrides thereof. The unsaturated dicarboxylic acids may be used alone or in combination of two or more.
(d)芳香族ビニル、(メタ)アクリル酸エステル、不飽和ジカルボン酸に由来する単位の割合
芳香族ビニルと(メタ)アクリル酸エステルと不飽和ジカルボン酸の3つに由来する単位の合計を100重量部とすると、芳香族ビニルに由来する単位を30〜80重量部、(メタ)アクリル酸エステルに由来する単位を8〜35重量部、不飽和ジカルボン酸に由来する単位を10〜50重量部を含むことが好ましい。
芳香族ビニルに由来する単位が占める割合が30重量部未満の場合、発泡成形時に発泡粒子の発泡性が低下して、発泡粒子同士の熱融着一体化が不十分となって発泡成形体の機械的物性が低下することがある。この割合が80重量部より大きい場合、発泡成形体の耐熱性が低下することがある。この割合は40〜75重量部であることがより好ましく、45〜70重量部であることが更に好ましい。
(メタ)アクリル酸エステルに由来する単位が占める割合が8重量部未満の場合、発泡成形体の機械的物性が低下することがある。この割合が35重量部より大きい場合、発泡成形時に発泡粒子の発泡性が低下して、発泡粒子同士の熱融着一体化が不十分となって発泡成形体の機械的物性が低下することがある。この割合は10〜33重量部であることがより好ましく、15〜30重量部であることが更に好ましい。
不飽和ジカルボン酸に由来する単位が占める割合が10重量部未満の場合、発泡成形体の耐熱性が低下することがある。この割合が50重量部より大きい場合、発泡成形時に発泡粒子の発泡性が低下して、発泡粒子同士の熱融着一体化が不十分となって発泡成形体の機械的物性が低下することがある。この割合は15〜40重量部であることがより好ましく、20〜35重量部であることが更に好ましい。
なお、単量体の使用量とその単量体に由来する単位の含有量とはほぼ一致している。
各成分比、すなわち、芳香族ビニルと(メタ)アクリル酸エステルと不飽和ジカルボン酸に由来する単位、更には以下に説明する他の単量体及び他の樹脂に由来する単位の割合は、1H−NMRのピーク高さ又はFT−IRの面積比で規定することができる。具体的な測定方法については、実施例において説明する。
(D) Percentage of units derived from aromatic vinyl, (meth) acrylate and unsaturated dicarboxylic acid The sum of units derived from aromatic vinyl, (meth) acrylate and unsaturated dicarboxylic acid is 100 Assuming that the unit is parts by weight, a unit derived from aromatic vinyl is 30 to 80 parts by weight, a unit derived from (meth) acrylate is 8 to 35 parts by weight, and a unit derived from unsaturated dicarboxylic acid is 10 to 50 parts by weight. It is preferable to include
When the proportion of the unit derived from aromatic vinyl is less than 30 parts by weight, the foaming property of the foamed particles is reduced at the time of foam molding, and the heat-sealing integration of the foamed particles becomes insufficient and the foamed molded article Mechanical properties may be reduced. When this proportion is more than 80 parts by weight, the heat resistance of the foamed molded article may be reduced. This ratio is more preferably from 40 to 75 parts by weight, and even more preferably from 45 to 70 parts by weight.
If the proportion of the unit derived from the (meth) acrylate is less than 8 parts by weight, the mechanical properties of the foamed molded article may be reduced. If this proportion is greater than 35 parts by weight, the foaming properties of the foamed particles during foam molding may be reduced, and the heat fusion and integration of the foamed particles may be insufficient, and the mechanical properties of the foamed molded article may be reduced. is there. This ratio is more preferably from 10 to 33 parts by weight, and even more preferably from 15 to 30 parts by weight.
When the proportion occupied by the unit derived from the unsaturated dicarboxylic acid is less than 10 parts by weight, the heat resistance of the foamed molded article may be reduced. If this proportion is greater than 50 parts by weight, the foaming properties of the foamed particles may be reduced during foam molding, and the thermal fusion and integration of the foamed particles may be insufficient, and the mechanical properties of the foamed molded article may be reduced. is there. This ratio is more preferably from 15 to 40 parts by weight, and even more preferably from 20 to 35 parts by weight.
The amount of the monomer used and the content of the unit derived from the monomer substantially coincide with each other.
The ratio of each component, that is, the ratio of units derived from aromatic vinyl, (meth) acrylate and unsaturated dicarboxylic acid, and the ratio of units derived from other monomers and other resins described below is 1 It can be defined by the peak height of H-NMR or the area ratio of FT-IR. A specific measuring method will be described in Examples.
(e)他の単量体
基材樹脂は上記3つの単量体以外に本発明の特性を阻害しない範囲で他の単量体由来の成分との更なる共重合体であってもよい。他の単量体としては例えば、(メタ)アクリロニトリル、ジメチルマレエート、ジエチルマレエート、ジメチルフマレート、ジエチルフマレート、エチルフマレート、(メタ)アクリル酸等が挙げられる。
基材樹脂中に他の単量体由来の単位が占める割合は、30重量%以下であることが好ましく、0重量%であってもよい。
(f)他の樹脂
基材樹脂には他の樹脂が混合されていてもよい。他の樹脂としてはポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、ポリブタジエン、スチレン−ブタジエン共重合体、エチレン−プロピレン−非共役ジエン三次元共重合体等のジエン系のゴム状重合体を添加したゴム変性耐衝撃性ポリスチレン系樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリフェニレンエーテル、アクリロニトリル−ブタジエン−スチレン共重合体、アクリロニトリル−スチレン共重合体、ポリメタクリル酸メチル等、スチレン−(メタ)アクリル酸共重合体、スチレン−(メタ)アクリル酸エステル共重合体、芳香族ビニル−不飽和ジカルボン酸−不飽和ジカルボン酸イミド共重合体等が挙げられる。
上記他の樹脂の内、発泡粒子には、ポリメタクリル酸メチルが含有されていることが好ましい。ポリメタクリル酸メチルが含有されていることによって、発泡粒子の熱融着性が向上し、発泡粒子同士をより強固に熱融着一体化させて、更に優れた機械的物性を有する発泡成形体を得ることができる。発泡粒子中におけるポリメタクリル酸メチルの含有量は、共重合体100重量部に対して10〜500重量部が好ましく、20〜450重量部がより好ましく、30〜400重量部が特に好ましい。
(E) Other monomers The base resin may be a further copolymer with components derived from other monomers other than the above three monomers as long as the properties of the present invention are not impaired. Examples of other monomers include (meth) acrylonitrile, dimethyl maleate, diethyl maleate, dimethyl fumarate, diethyl fumarate, ethyl fumarate, (meth) acrylic acid and the like.
The proportion of units derived from other monomers in the base resin is preferably 30% by weight or less, and may be 0% by weight.
(F) Other Resins Other resins may be mixed with the base resin. As another resin, a rubber-modified resin containing a diene rubber-like polymer such as polyolefin resin such as polyethylene and polypropylene, polybutadiene, styrene-butadiene copolymer, and ethylene-propylene-non-conjugated diene three-dimensional copolymer is added. Styrene- (meth) acrylic acid copolymer such as impact polystyrene resin, polycarbonate resin, polyester resin, polyamide resin, polyphenylene ether, acrylonitrile-butadiene-styrene copolymer, acrylonitrile-styrene copolymer, polymethyl methacrylate, etc. Styrene- (meth) acrylate copolymer, aromatic vinyl-unsaturated dicarboxylic acid-unsaturated dicarboxylic acid imide copolymer, and the like.
Among the other resins, the expanded particles preferably contain polymethyl methacrylate. By containing polymethyl methacrylate, the heat-fusibility of the foamed particles is improved, and the foamed particles are more firmly heat-sealed together to form a foamed molded article having more excellent mechanical properties. Obtainable. The content of polymethyl methacrylate in the expanded particles is preferably from 10 to 500 parts by weight, more preferably from 20 to 450 parts by weight, and particularly preferably from 30 to 400 parts by weight based on 100 parts by weight of the copolymer.
発泡粒子には加工助剤としてのアクリル系樹脂が含有されていることが好ましい。加工助剤を含有していることによって、発泡粒子を構成している樹脂の発泡時における溶融張力(粘弾性)を発泡に適したものとして発泡粒子の連続気泡化を抑制し、発泡粒子の発泡性を向上させて、発泡粒子同士の熱融着をより強固なものとし、更に優れた機械的物性を有する発泡成形体を製造できる。発泡粒子中における加工助剤の含有量は、共重合体100重量部に対して0.5〜5重量部が好ましく、0.5〜3重量部がより好ましい。
加工助剤としてのアクリル系樹脂としては、特に限定されず、アクリル系単量体の単独重合体又はこれらの二種以上からなる共重合体、アクリル系単量体を50重量%以上含有しかつアクリル系単量体とこれと共重合可能なビニルモノマーとの共重合体等が挙げられる。アクリル系単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル等が挙げられる。アクリル系単量体と共重合可能なビニルモノマーとしては、α−メチルスチレン、アクリロニトリル等が挙げられる。アクリル系樹脂の重量平均分子量は、150万〜600万が好ましく、200万〜450万がより好ましく、250万〜400万が特に好ましい。アクリル系樹脂の重量平均分子量が低すぎても高すぎても、発泡粒子を構成している樹脂の発泡成形時における溶融張力(粘弾性)を発泡に適したものに十分に調整し難く、発泡粒子の発泡性を向上できないことがある。
It is preferable that the foamed particles contain an acrylic resin as a processing aid. By containing a processing aid, the melt tension (viscoelasticity) at the time of foaming of the resin constituting the foamed particles is set to be suitable for foaming, thereby suppressing the expansion of the foamed particles into open cells and expanding the foamed particles. By improving the properties, the heat fusion between the expanded particles can be further strengthened, and a foam molded article having more excellent mechanical properties can be manufactured. The content of the processing aid in the expanded particles is preferably 0.5 to 5 parts by weight, more preferably 0.5 to 3 parts by weight, based on 100 parts by weight of the copolymer.
The acrylic resin as a processing aid is not particularly limited, and may be a homopolymer of an acrylic monomer or a copolymer of two or more of these, containing 50% by weight or more of an acrylic monomer, and A copolymer of an acrylic monomer and a vinyl monomer copolymerizable with the acrylic monomer may be used. Examples of the acrylic monomer include methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, and the like. Examples of the vinyl monomer copolymerizable with the acrylic monomer include α-methylstyrene and acrylonitrile. The weight average molecular weight of the acrylic resin is preferably 1.5 to 6 million, more preferably 2 to 4.5 million, and particularly preferably 2.5 to 4 million. Even if the weight-average molecular weight of the acrylic resin is too low or too high, it is difficult to sufficiently adjust the melt tension (viscoelasticity) of the resin constituting the expanded particles during expansion molding to one suitable for expansion. In some cases, the foamability of the particles cannot be improved.
(g)芳香族ビニル−不飽和ジカルボン酸−不飽和ジカルボン酸イミド共重合体
上記の(f)他の樹脂としては、芳香族ビニル−不飽和ジカルボン酸−不飽和ジカルボン酸イミド共重合体が、発泡成形体の耐熱性を向上させる観点から好ましい。
芳香族ビニルとしては、特に限定されないが、上記の(a)に例示の化合物が挙げられる。芳香族ビニルは、単独で用いられても二種以上が併用されてもよい。この内、入手容易性の観点から、スチレンが好ましい。
不飽和ジカルボン酸としては、特に限定されないが、上記の(c)に例示の化合物が挙げられる。不飽和ジカルボン酸は、単独で用いられても二種以上が併用されてもよい。発泡成形体の機械的物性を向上させる観点から、無水マレイン酸が好ましい。
不飽和ジカルボン酸イミドとしては、特に限定されないが、マレイミド、N−メチルマレイミド、N−エチルマレイミド、N−シクロヘキシルマレイミド、N−フェニルマレイミド、N−ナフチルマレイミド等のマレイミド系単量体等が挙げられる。不飽和ジカルボン酸イミド誘導体は、単独で用いられても二種以上が併用されてもよい。発泡成形体の耐熱性を向上させる観点から、N−フェニルマレイミドが好ましい。
芳香族ビニルと不飽和ジカルボン酸と不飽和ジカルボン酸イミドに由来する単位の割合は、3つに由来する単位の合計を100重量部とすると、芳香族ビニルに由来する単位を20〜80重量部、不飽和ジカルボン酸に由来する単位を2〜30重量部、不飽和ジカルボン酸イミドに由来する単位を20〜80重量部を含むことが好ましい。
芳香族ビニルに由来する単位が占める割合が20重量部未満の場合、発泡成形時に発泡粒子の発泡性が低下して、発泡粒子同士の熱融着一体化が不十分となって発泡成形体の機械的物性が低下することがある。この割合が80重量部より大きい場合、発泡成形体の耐熱性が低下することがある。この割合は30〜75重量部であることがより好ましく、50〜70重量部であることが更に好ましい。
(h)添加剤
基材樹脂には必要に応じて、樹脂以外に添加剤が含まれていてもよい。添加剤としては、可塑剤、難燃剤、難燃助剤、帯電防止剤、展着剤、気泡調整剤、充てん剤、着色剤、耐候剤、老化防止剤、滑剤、防曇剤、香料等が挙げられる。
(G) Aromatic vinyl-unsaturated dicarboxylic acid-unsaturated dicarboxylic acid imide copolymer As the other resin (f), an aromatic vinyl-unsaturated dicarboxylic acid-unsaturated dicarboxylic acid imide copolymer includes: It is preferable from the viewpoint of improving the heat resistance of the foam molded article.
Examples of the aromatic vinyl include, but are not particularly limited to, the compounds exemplified in (a) above. The aromatic vinyls may be used alone or in combination of two or more. Of these, styrene is preferred from the viewpoint of availability.
The unsaturated dicarboxylic acid is not particularly limited, and examples thereof include the compounds exemplified in the above (c). The unsaturated dicarboxylic acids may be used alone or in combination of two or more. From the viewpoint of improving the mechanical properties of the foam molded article, maleic anhydride is preferred.
Examples of the unsaturated dicarboxylic acid imide include, but are not particularly limited to, maleimide monomers such as maleimide, N-methylmaleimide, N-ethylmaleimide, N-cyclohexylmaleimide, N-phenylmaleimide, and N-naphthylmaleimide. . The unsaturated dicarboxylic imide derivatives may be used alone or in combination of two or more. From the viewpoint of improving the heat resistance of the foam molded article, N-phenylmaleimide is preferred.
The proportion of units derived from aromatic vinyl, unsaturated dicarboxylic acid, and unsaturated dicarboxylic acid imide is 20 to 80 parts by weight, assuming that the total of the units derived from the three is 100 parts by weight. And 2 to 30 parts by weight of units derived from unsaturated dicarboxylic acid, and 20 to 80 parts by weight of units derived from unsaturated dicarboxylic acid imide.
When the proportion occupied by the units derived from aromatic vinyl is less than 20 parts by weight, the foaming property of the foamed particles is reduced at the time of foam molding, and the heat-sealing integration of the foamed particles becomes insufficient and the foamed molded article Mechanical properties may be reduced. When this proportion is more than 80 parts by weight, the heat resistance of the foamed molded article may be reduced. This ratio is more preferably from 30 to 75 parts by weight, even more preferably from 50 to 70 parts by weight.
(H) Additives The base resin may contain additives in addition to the resin, if necessary. Additives include plasticizers, flame retardants, flame retardant aids, antistatic agents, spreading agents, foam regulators, fillers, colorants, weathering agents, anti-aging agents, lubricants, anti-fog agents, fragrances, etc. No.
(1−2)構成
発泡粒子は、30倍で11.9mm2の面積を撮影した発泡粒子全体の断面写真において50μm以上かつ300μm未満の気泡径の小気泡と300μm以上かつ2mm以下の気泡径の大気泡とを備えている。
また、発泡粒子1つに対する大気泡の数は特に限定されず、複数個であってもよいが、多すぎると気泡率が高くなり、発泡成形体の機械的物性の低下を招くことになる。このようなことから、大気泡の気泡径にも因るが、発泡粒子が、その1つにおいて、ただ1つの大気泡を有するのが好ましい。
また、小気泡の平均気泡径と大気泡の平均気泡径とは1000μm以上、1500μm未満の差がある。この差があることで、機械的物性の向上した発泡成形体を与える発泡粒子を提供できる。ここで、小気泡の平均気泡径は30〜100μmの範囲内に存在することが好ましく、大気泡の平均気泡径は1200〜1600μmの範囲内に存在することが好ましい。
発泡粒子は、その融着体から構成される発泡成形体に1.0MPa以上の曲げ試験による最大点応力を与えるため、曲げに強い発泡成形体を提供し得る。この最大点応力の範囲は、特定の樹脂を基材樹脂として使用し、特定の気泡径の範囲の気泡を備える発泡粒子により実現可能である。最大点応力は、1.0MPa以上であることが好ましく、1.5MPa以上であることがより好ましい。
(1-2) Configuration In the cross-sectional photograph of the entire expanded bead obtained by photographing an area of 11.9 mm 2 at a magnification of 30 times, the expanded bead has a small bubble having a bubble diameter of 50 μm or more and less than 300 μm and a bubble having a bubble diameter of 300 μm or more and 2 mm or less. With large bubbles.
In addition, the number of large cells per one foamed particle is not particularly limited, and may be plural. However, if the number is too large, the cell ratio increases, and the mechanical properties of the foamed molded article are reduced. For this reason, it is preferable that the foamed particles have only one large cell in one of them, though it depends on the cell diameter of the large cell.
Further, there is a difference between the average bubble diameter of the small bubbles and the average bubble diameter of the large bubbles of 1000 μm or more and less than 1500 μm. Due to this difference, it is possible to provide foamed particles that give a foamed molded article with improved mechanical properties. Here, the average bubble diameter of the small bubbles is preferably in the range of 30 to 100 μm, and the average bubble diameter of the large bubbles is preferably in the range of 1200 to 1600 μm.
Since the foamed particles give a maximum point stress in a bending test of 1.0 MPa or more to the foamed molded article formed from the fused body, the foamed molded article can provide a foamed molded article having high bending resistance. This range of the maximum point stress can be realized by foamed particles using a specific resin as a base resin and having cells in a specific cell diameter range. The maximum point stress is preferably at least 1.0 MPa, more preferably at least 1.5 MPa.
発泡粒子の外形は、発泡成形体を製造できさえすれば特に限定されず、例えば、球状、略球状、円筒形等が挙げられる。発泡粒子は、0.7以上の平均のアスペクト比で示される外形を有していることが好ましい(上限は1の真球状)。
発泡粒子は、30〜2倍の嵩倍数を有することが好ましい。嵩倍数が30倍より大きい場合、発泡粒子の連続気泡率が上昇して、発泡成形の発泡時に発泡粒子の発泡性が低下することがある。2倍より小さい場合、発泡粒子の気泡が不均一となって、発泡成形時における発泡粒子の発泡性が不十分となることがある。嵩倍数は、25〜3倍がより好ましく、20〜5倍が特に好ましい。
The outer shape of the foamed particles is not particularly limited as long as a foamed molded article can be produced, and examples thereof include a sphere, a substantially sphere, and a cylinder. The expanded particles preferably have an outer shape represented by an average aspect ratio of 0.7 or more (the upper limit is a true sphere of 1).
The expanded particles preferably have a volume multiple of 30 to 2 times. When the bulk factor is larger than 30 times, the open cell ratio of the foamed particles may increase, and the foamability of the foamed particles may decrease during foaming in foam molding. If it is less than twice, the cells of the foamed particles may be non-uniform, and the foamability of the foamed particles during foam molding may be insufficient. The bulk multiple is more preferably 25 to 3 times, and particularly preferably 20 to 5 times.
(1−3)製造方法
発泡粒子の製造方法としては、樹脂粒子に発泡剤を気相含浸させて発泡性粒子を得、発泡性粒子を発泡させる方法が挙げられる。
樹脂粒子は、公知の製造方法及び製造設備を使用して得ることができる。ここで、以下で説明するボイドの数の調整は、例えば、樹脂への化学気泡剤等の添加量の調整により行うことができる。
例えば、押出機を使用して原料樹脂を溶融混練し、次いで押出、水中カット(アンダーウォーターカット)、ストランドカット等により造粒することによって、樹脂粒子を製造できる。溶融混練時の温度、時間、圧力等は、使用原料及び製造設備に合わせて適宜設定できる。
溶融混練時の押出機内の溶融混練温度は、原料樹脂が十分に軟化する温度である、220〜280℃が好ましく、240〜270℃がより好ましい。溶融混練温度とは、押出機ヘッド付近の溶融混練物流路の中心部温度を熱伝対式温度計で測定した押出機内部の溶融混練物の温度を意味する。
本発明の発泡粒子の特徴の1つである大気泡は、樹脂粒子の製造時に周囲からの急冷により樹脂粒子の中心領域に形成されるボイドに由来するものと考えられる。したがって、発泡粒子の製造では、急冷制御が容易な水中カットが特に好ましい。
なお、押出機には気泡調整剤が供給されることが好ましい。気泡調整剤としては、ポリテトラフルオロエチレン粉末、アクリル樹脂で変性されたポリテトラフルオロエチレン粉末、タルク等が挙げられる。気泡調整剤の量は、樹脂組成物100重量部に対して0.01〜5重量部が好ましい。気泡調整剤の量が0.01重量未満の場合、発泡粒子の気泡が粗大となり、得られる発泡成形体の外観が低下することがある。5重量部より多い場合、破泡により発泡粒子の独立気泡率が低下することがある。気泡調整剤の量は、0.05〜3重量部がより好ましく、0.1〜2重量部が特に好ましい。
(1-3) Production Method As a method for producing expanded particles, a method in which resin particles are impregnated with a blowing agent in a gas phase to obtain expandable particles, and the expandable particles are expanded.
The resin particles can be obtained using a known production method and production equipment. Here, the number of voids described below can be adjusted, for example, by adjusting the amount of a chemical foaming agent or the like added to the resin.
For example, resin particles can be produced by melt-kneading the raw material resin using an extruder and then granulating by extrusion, underwater cut (underwater cut), strand cut, or the like. The temperature, time, pressure, etc., during melt-kneading can be appropriately set according to the raw materials used and the production equipment.
The melt-kneading temperature in the extruder at the time of melt-kneading is a temperature at which the raw material resin is sufficiently softened, preferably from 220 to 280 ° C, more preferably from 240 to 270 ° C. The melt-kneading temperature means the temperature of the melt-kneaded material inside the extruder obtained by measuring the temperature at the center of the flow path of the melt-kneaded material near the extruder head with a thermocouple thermometer.
Large bubbles, which are one of the characteristics of the expanded particles of the present invention, are considered to be derived from voids formed in the central region of the resin particles by rapid cooling from the surroundings during the production of the resin particles. Therefore, in the production of foamed particles, underwater cutting in which rapid cooling control is easy is particularly preferable.
It is preferable that the extruder be supplied with a bubble regulator. Examples of the cell regulator include polytetrafluoroethylene powder, polytetrafluoroethylene powder modified with an acrylic resin, and talc. The amount of the cell regulator is preferably 0.01 to 5 parts by weight based on 100 parts by weight of the resin composition. When the amount of the cell regulator is less than 0.01% by weight, the cells of the expanded particles become coarse, and the appearance of the obtained foamed molded article may be deteriorated. If the amount is more than 5 parts by weight, the closed cells ratio of the foamed particles may be reduced due to foam breaking. The amount of the cell regulator is more preferably 0.05 to 3 parts by weight, and particularly preferably 0.1 to 2 parts by weight.
次に、発泡性粒子の製造方法としては、密閉し得る容器中で、発泡剤を樹脂粒子に気相含浸させる方法が挙げられる。発泡剤としては、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ヘキサン等の飽和脂肪族炭化水素、ジメチルエーテルのようなエーテル類、塩化メチル、1,1,1,2−テトラフルオロエタン、1,1−ジフルオロエタン、モノクロロジフルオロメタン等のフロン、二酸化炭素、窒素等の無機ガスが挙げられる。中でも、ジメチルエーテル、プロパン、ノルマルブタン、イソブタン、二酸化炭素が好ましく、プロパン、ノルマルブタン、イソブタン、二酸化炭素がより好ましく、ノルマルブタン、イソブタン、二酸化炭素が特に好ましい。なお、発泡剤は、単独で用いられても二種以上が併用されてもよい。
容器に投入される発泡剤量は、少なすぎると、発泡粒子を所望の発泡倍率まで発泡できないことがある。発泡剤量は、多すぎると、発泡剤が可塑剤として作用することから基材樹脂の粘弾性が低下し過ぎて発泡性が低下し良好な発泡粒子を得ることができないことがある。従って、発泡剤量は、原料樹脂100重量部に対して0.1〜5重量部が好ましく、0.2〜4重量部がより好ましく、0.3〜3重量部が特に好ましい。
更に、発泡粒子の製造方法としては、密閉し得る容器中で、水蒸気のような加熱媒体で加熱する方法が挙げられる。加熱条件としては、例えば、0.3〜0.5MPaのゲージ圧、120〜159℃の温度、10〜180秒が挙げられる。
発泡粒子の粒径は押出機の前端に取り付けたマルチノズル金型の径を変えること等によって変動させることができる。
Next, as a method for producing the expandable particles, there is a method in which the resin particles are gas-phase impregnated with a blowing agent in a sealable container. Examples of the blowing agent include propane, normal butane, isobutane, normal pentane, isopentane, saturated aliphatic hydrocarbons such as hexane, ethers such as dimethyl ether, methyl chloride, 1,1,1,2-tetrafluoroethane, Inorganic gases such as 1-difluoroethane and monochlorodifluoromethane such as chlorofluorocarbons, carbon dioxide, and nitrogen are exemplified. Among them, dimethyl ether, propane, normal butane, isobutane and carbon dioxide are preferred, propane, normal butane, isobutane and carbon dioxide are more preferred, and normal butane, isobutane and carbon dioxide are particularly preferred. The blowing agents may be used alone or in combination of two or more.
If the amount of the foaming agent charged into the container is too small, the foamed particles may not be able to be foamed to a desired foaming ratio. If the amount of the foaming agent is too large, the foaming agent acts as a plasticizer, so that the viscoelasticity of the base resin is too low, so that the foaming property is reduced and good foamed particles may not be obtained. Therefore, the amount of the foaming agent is preferably 0.1 to 5 parts by weight, more preferably 0.2 to 4 parts by weight, and particularly preferably 0.3 to 3 parts by weight based on 100 parts by weight of the raw material resin.
Further, as a method for producing the foamed particles, there is a method in which the foamed particles are heated with a heating medium such as steam in a sealable container. Examples of the heating conditions include a gauge pressure of 0.3 to 0.5 MPa, a temperature of 120 to 159 ° C., and 10 to 180 seconds.
The particle size of the foamed particles can be varied by changing the diameter of a multi-nozzle mold attached to the front end of the extruder.
(2)発泡成形体
(2−1)基材樹脂
発泡成形体を構成する基材樹脂は、上記発泡粒子の基材樹脂と同様である。
(2−2)物性
発泡成形体は、複数の発泡粒子から構成されている。個々の発泡粒子は、30倍で11.9mm2の面積を撮影した断面写真において、50μm以上かつ300μm未満の気泡径の小気泡と300μm以上かつ2mm以下の気泡径の大気泡とを備えている。
また、発泡粒子1つに対する大気泡の数は特に限定されず、複数個であってもよいが、多すぎると気泡率が高くなり、発泡成形体の機械的物性の低下を招くことになる。このようなことから、大気泡の気泡径にも因るが、発泡粒子が、その1つにおいて、ただ1つの大気泡を有するのが好ましい。
また、小気泡の平均気泡径と大気泡の平均気泡径とは1000μm以上、1500μm未満の差がある。この差があることで、曲げに強い発泡成形体を与える発泡粒子を提供できる。ここで、小気泡の平均気泡径は30〜100μmの範囲内に存在することが好ましく、大気泡の平均気泡径は1200〜1800μmの範囲内に存在することが好ましい。
発泡粒子は、その融着体から構成される発泡成形体に1.0MPa以上の曲げ試験による最大点応力を与えるため、曲げに強い発泡成形体を提供し得る。この最大点応力の範囲は、特定の樹脂を基材樹脂として使用し、特定の気泡径の範囲の気泡を備える発泡粒子により実現可能である。最大点応力は、1.0MPa以上であることが好ましく、1.5MPa以上であることがより好ましい。
(2) Foam molded article (2-1) Base resin The base resin constituting the foam molded article is the same as the base resin of the foamed particles.
(2-2) Physical properties The foam molded article is composed of a plurality of foam particles. Each of the foamed particles has small bubbles having a bubble diameter of 50 μm or more and less than 300 μm and large bubbles having a bubble diameter of 300 μm or more and 2 mm or less in a cross-sectional photograph of an area of 11.9 mm 2 at a magnification of 30 times. .
In addition, the number of large cells per one foamed particle is not particularly limited, and may be plural. However, if the number is too large, the cell ratio increases, and the mechanical properties of the foamed molded article are reduced. For this reason, it is preferable that the foamed particles have only one large cell in one of them, though it depends on the cell diameter of the large cell.
Further, there is a difference between the average bubble diameter of the small bubbles and the average bubble diameter of the large bubbles of 1000 μm or more and less than 1500 μm. Due to this difference, it is possible to provide a foamed particle that gives a foamed molded article that is resistant to bending. Here, the average bubble diameter of the small bubbles is preferably in the range of 30 to 100 μm, and the average bubble diameter of the large bubbles is preferably in the range of 1200 to 1800 μm.
Since the foamed particles give a maximum point stress in a bending test of 1.0 MPa or more to the foamed molded article formed from the fused body, the foamed molded article can provide a foamed molded article having high bending resistance. This range of the maximum point stress can be realized by foamed particles using a specific resin as a base resin and having cells in a specific cell diameter range. The maximum point stress is preferably at least 1.0 MPa, more preferably at least 1.5 MPa.
融着した発泡粒子の外形は、発泡成形体を維持できさえすれば特に限定されない。
発泡成形体は、30〜2倍の倍数を有することが好ましい。倍数が30倍より大きい場合、機械的物性が不十分となることがある。2倍より小さい場合、重量が増えるため発泡の利点が小さくなることがある。倍数は、25〜3倍がより好ましく、20〜5倍が特に好ましい。
したがって、発泡成形体は、0.058〜0.23g/cm3(58〜230kg/cm3)の密度を有することが好ましい。
The outer shape of the fused foamed particles is not particularly limited as long as the foamed molded body can be maintained.
The foamed molded article preferably has a multiple of 30 to 2 times. When the multiple is more than 30 times, mechanical properties may be insufficient. If it is less than twice, the advantage of foaming may be reduced due to the increased weight. The multiple is preferably 25 to 3 times, more preferably 20 to 5 times.
Therefore, it is preferable that the foam molded article has a density of 0.058 to 0.23 g / cm 3 (58 to 230 kg / cm 3 ).
発泡成形体における単位密度当たりの曲げ最大点応力は、0.015MPa/(kg/m3)以上が好ましい。曲げ最大点応力が小さすぎると、発泡成形体が容易に破断することがある。
発泡成形体における単位密度当たりの曲げ弾性率は、0.4MPa/(kg/m3)以上が好ましい。曲げ弾性率が小さすぎると、発泡成形体の表面に繊維強化プラスチックのような表皮材を積層一体化する際に加えられる圧力によって発泡成形体が変形することがある。
発泡成形体における単位密度当たりの5%圧縮応力は、0.008MPa/(kg/m3)以上が好ましく、0.009MPa/(kg/m3)以上がより好ましい。5%圧縮が小さすぎると、発泡成形体の表面に繊維強化プラスチックのような表皮材を積層一体化する際に加えられる圧力によって発泡成形体が変形することがある。
発泡成形体における単位密度当たりの圧縮弾性率は、0.3MPa/(kg/m3)以上が好ましい。圧縮弾性率が小さすぎると、発泡成形体の表面に繊維強化プラスチックのような表皮材を積層一体化する際に加えられる圧力によって発泡成形体が変形することがある。
The maximum bending point stress per unit density in the foamed molded body is preferably 0.015 MPa / (kg / m 3 ) or more. If the bending maximum point stress is too small, the foam molded article may be easily broken.
The flexural modulus per unit density of the foamed molded product is preferably 0.4 MPa / (kg / m 3 ) or more. If the flexural modulus is too small, the foam molded article may be deformed by the pressure applied when laminating and integrating a skin material such as fiber reinforced plastic on the surface of the foam molded article.
5% compressive stress per unit density in the foam molded article is preferably from 0.008MPa / (kg / m 3) or more, 0.009MPa / (kg / m 3 ) or more is more preferable. If the 5% compression is too small, the foam molded article may be deformed by the pressure applied when laminating and integrating a skin material such as fiber reinforced plastic on the surface of the foam molded article.
The compression elastic modulus per unit density of the foamed molded product is preferably 0.3 MPa / (kg / m 3 ) or more. If the compression modulus is too small, the foam molded article may be deformed by the pressure applied when laminating and integrating a skin material such as fiber reinforced plastic on the surface of the foam molded article.
(2−3)製造方法
発泡成形体の製造方法としては、発泡粒子を金型のキャビティ内に充てんし、キャビティ内に加熱媒体を供給して、発泡粒子を加熱して再発泡させ、再発泡させた発泡粒子同士をこれらの発泡圧力によって互いに熱融着一体化させることによって発泡成形体を得る方法が挙げられる。加熱媒体としては、例えば、水蒸気、熱風、温水等が挙げられ、水蒸気が好ましい。
(2-3) Manufacturing Method As a method for manufacturing a foamed molded article, foamed particles are filled in a cavity of a mold, a heating medium is supplied into the cavity, and the foamed particles are heated and refoamed, and then refoamed. A method of obtaining a foamed molded article by thermally fusing the foamed particles with each other by these foaming pressures. Examples of the heating medium include steam, hot air, hot water, and the like, and steam is preferred.
(2−4)用途
発泡成形体は、軽量性、耐熱性及び機械的物性に優れており、特に、高温環境下での耐荷重性に優れている。そのため、例えば、自動車、航空機、鉄道車輛、船舶等の輸送機器の部品に好適に用いることができる。自動車の部品としては、例えば、エンジン付近に用いられる部品、外装材等が挙げられる。
本発明によれば、本発明の発泡成形体から構成される自動車用部品が提供され、その自動車用部品としては、例えば、フロアパネル、ルーフ、ボンネット、フェンダー、アンダーカバー、ホイール、ステアリングホイール、コンテナ(筐体)、フードパネル、サスペンションアーム、バンパー、サンバイザー、トランクリッド、ラゲッジボックス、シート、ドア、カウル等の部品が挙げられる。
(2-4) Use The foamed molded article is excellent in lightness, heat resistance, and mechanical properties, and is particularly excellent in load resistance in a high-temperature environment. Therefore, for example, it can be suitably used for parts of transportation equipment such as automobiles, aircraft, railway vehicles, and ships. Examples of automobile parts include parts used near the engine, exterior materials, and the like.
According to the present invention, there is provided an automotive component comprising the foamed molded article of the present invention. Examples of the automotive component include a floor panel, a roof, a hood, a fender, an undercover, a wheel, a steering wheel, and a container. (Housing), hood panel, suspension arm, bumper, sun visor, trunk lid, luggage box, seat, door, cowl, and the like.
発泡成形体の表面に表皮材を積層一体化させて強化複合体として用いてもよい。発泡成形体が発泡シートである場合、発泡成形体の両面に積層一体化されている必要はなく、発泡成形体の両面のうち少なくとも一方の面に表皮材が積層一体化されていればよい。表皮材の積層は、強化複合体の用途に応じて決定すればよい。なかでも、強化複合体の表面硬度や機械的強度を考慮すると、発泡成形体の厚み方向における両面のそれぞれに表皮材が積層一体化されていることが好ましい。
表皮材としては、特に限定されず、繊維強化プラスチック、金属シート、合成樹脂フィルム等が挙げられる。この内、繊維強化プラスチックが好ましい。繊維強化プラスチックを表皮材とする強化複合体を繊維強化複合体と称する。
繊維強化プラスチックを構成している強化繊維としては、ガラス繊維、炭素繊維、炭化ケイ素繊維、アルミナ繊維、チラノ繊維、玄武岩繊維、セラミックス繊維等の無機繊維;ステンレス繊維、スチール繊維等の金属繊維;アラミド繊維、ポリエチレン繊維、ポリパラフェニレンベンズオキサドール(PBO)繊維等の有機繊維;ボロン繊維が挙げられる。強化繊維は、一種単独で用いられてもよく、二種以上が併用されてもよい。なかでも、炭素繊維、ガラス繊維及びアラミド繊維が好ましく、炭素繊維がより好ましい。これらの強化繊維は、軽量であるにも関わらず優れた機械的物性を有している。
A skin material may be laminated and integrated on the surface of the foam molded article to be used as a reinforced composite. When the foamed molded article is a foamed sheet, it is not necessary to be laminated and integrated on both sides of the foamed molded article, and it is sufficient that the skin material is laminated and integrated on at least one of the two surfaces of the foamed molded article. The lamination of the skin material may be determined according to the use of the reinforced composite. Above all, in consideration of the surface hardness and mechanical strength of the reinforced composite, it is preferable that the skin material is laminated and integrated on both surfaces in the thickness direction of the foamed molded product.
The skin material is not particularly limited, and examples thereof include a fiber reinforced plastic, a metal sheet, and a synthetic resin film. Of these, fiber reinforced plastics are preferred. A reinforced composite using fiber reinforced plastic as a skin material is referred to as a fiber reinforced composite.
The reinforcing fibers constituting the fiber-reinforced plastic include inorganic fibers such as glass fiber, carbon fiber, silicon carbide fiber, alumina fiber, Tyranno fiber, basalt fiber, and ceramic fiber; metal fibers such as stainless steel fiber and steel fiber; and aramid. Organic fibers such as fibers, polyethylene fibers, and polyparaphenylenebenzoxadol (PBO) fibers; and boron fibers. The reinforcing fibers may be used alone or in combination of two or more. Among them, carbon fibers, glass fibers and aramid fibers are preferred, and carbon fibers are more preferred. These reinforcing fibers have excellent mechanical properties despite their light weight.
強化繊維は、所望の形状に加工された強化繊維基材として用いられることが好ましい。強化繊維基材としては、強化繊維を用いてなる織物、編物、不織布、及び強化繊維を一方向に引き揃えた繊維束(ストランド)を糸で結束(縫合)してなる面材等が挙げられる。織物の織り方としては、平織、綾織、朱子織等が挙げられる。また、糸としては、ポリアミド樹脂糸、ポリエステル樹脂糸等の合成樹脂糸、及びガラス繊維糸のようなステッチ糸が挙げられる。
強化繊維基材は、一枚の強化繊維基材のみを積層せずに用いてもよく、複数枚の強化繊維基材を積層して積層強化繊維基材として用いてもよい。複数枚の強化繊維基材を積層した積層強化繊維基材としては、(1)一種のみの強化繊維基材を複数枚用意し、これらの強化繊維基材を積層した積層強化繊維基材、(2)複数種の強化繊維基材を用意し、これらの強化繊維基材を積層した積層強化繊維基材、(3)強化繊維を一方向に引き揃えた繊維束(ストランド)を糸で結束(縫合)してなる強化繊維基材を複数枚用意し、これらの強化繊維基材を繊維束の繊維方向が互いに相違した方向を指向するように重ね合わせ、重ね合わせた強化繊維基材同士を糸で一体化(縫合)してなる積層強化繊維基材等が用いられる。
The reinforcing fiber is preferably used as a reinforcing fiber base processed into a desired shape. Examples of the reinforcing fiber base include a woven fabric, a knitted fabric, and a nonwoven fabric using the reinforcing fiber, and a face material formed by binding (sewing) a fiber bundle (strand) in which reinforcing fibers are aligned in one direction with a thread. . Examples of the weaving method of the woven fabric include plain weave, twill weave, and satin weave. Examples of the yarn include a synthetic resin yarn such as a polyamide resin yarn and a polyester resin yarn, and a stitch yarn such as a glass fiber yarn.
The reinforcing fiber base may be used without laminating only one reinforcing fiber base, or may be used as a laminated reinforcing fiber base by laminating a plurality of reinforcing fiber bases. As the laminated reinforcing fiber base material obtained by laminating a plurality of reinforcing fiber base materials, (1) a plurality of one kind of reinforcing fiber base material is prepared, and a laminated reinforcing fiber base material obtained by laminating these reinforcing fiber base materials; 2) A plurality of types of reinforcing fiber base materials are prepared, a laminated reinforcing fiber base material obtained by stacking these reinforcing fiber base materials, and (3) a fiber bundle (strand) in which reinforcing fibers are aligned in one direction are bound with yarn ( A plurality of reinforced fiber substrates are prepared, and the reinforced fiber substrates are overlapped so that the fiber directions of the fiber bundles are directed in different directions. For example, a laminated reinforced fiber base material integrated (sewed) with the above is used.
繊維強化プラスチックは強化繊維に合成樹脂が含浸されてなるものである。含浸させた合成樹脂によって強化繊維同士を結着一体化させている。
強化繊維に合成樹脂を含浸させる方法としては、特に限定されず、例えば、(1)強化繊維を合成樹脂中に浸漬する方法、(2)強化繊維に合成樹脂を塗布する方法等が挙げられる。
強化繊維に含浸させる合成樹脂としては、熱可塑性樹脂又は熱硬化性樹脂のいずれも用いることができ、熱硬化性樹脂が好ましく用いられる。強化繊維に含浸させる熱硬化性樹脂としては、特に限定されず、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、メラミン樹脂、ポリウレタン樹脂、シリコーン樹脂、マレイミド樹脂、ビニルエステル樹脂、シアン酸エステル樹脂、マレイミド樹脂とシアン酸エステル樹脂とを予備重合した樹脂等が挙げられ、耐熱性、衝撃吸収性又は耐薬品性に優れていることから、エポキシ樹脂、ビニルエステル樹脂が好ましい。熱硬化性樹脂には、硬化剤、硬化促進剤等の添加剤が含有されていてもよい。なお、熱硬化性樹脂は、単独で用いられてもよく、二種以上が併用されてもよい。
The fiber-reinforced plastic is obtained by impregnating a reinforcing fiber with a synthetic resin. The reinforcing fibers are bound and integrated by the impregnated synthetic resin.
The method for impregnating the reinforcing fiber with the synthetic resin is not particularly limited, and examples thereof include (1) a method of immersing the reinforcing fiber in the synthetic resin, and (2) a method of applying the synthetic resin to the reinforcing fiber.
As the synthetic resin to be impregnated into the reinforcing fibers, either a thermoplastic resin or a thermosetting resin can be used, and a thermosetting resin is preferably used. The thermosetting resin to be impregnated into the reinforcing fibers is not particularly limited, and may be epoxy resin, unsaturated polyester resin, phenol resin, melamine resin, polyurethane resin, silicone resin, maleimide resin, vinyl ester resin, cyanate ester resin, maleimide. Epoxy resins and vinyl ester resins are preferred because they include a resin obtained by prepolymerizing a resin and a cyanate ester resin, and are excellent in heat resistance, shock absorption or chemical resistance. The thermosetting resin may contain additives such as a curing agent and a curing accelerator. The thermosetting resin may be used alone, or two or more kinds may be used in combination.
また、強化繊維に含浸させる熱可塑性樹脂としては、特に限定されず、オレフィン系樹脂、ポリエステル系樹脂、熱可塑性エポキシ樹脂、アミド系樹脂、熱可塑性ポリウレタン樹脂、サルファイド系樹脂、アクリル系樹脂等が挙げられ、発泡成形体との接着性又は繊維強化プラスチックを構成している強化繊維同士の接着性に優れていることから、ポリエステル系樹脂、熱可塑性エポキシ樹脂が好ましい。なお、熱可塑性樹脂は、単独で用いられてもよく、二種以上が併用されてもよい。
熱可塑性エポキシ樹脂としては、エポキシ化合物同士の重合体又は共重合体であって直鎖構造を有する重合体や、エポキシ化合物と、このエポキシ化合物と重合し得る単量体との共重合体であって直鎖構造を有する共重合体が挙げられる。具体的には、熱可塑性エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールフルオレン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、環状脂肪族型エポキシ樹脂、長鎖脂肪族型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂等が挙げられ、ビスフェノールA型エポキシ樹脂、ビスフェノールフルオレン型エポキシ樹脂が好ましい。なお、熱可塑性エポキシ樹脂は、単独で用いられてもよく、二種以上が併用されてもよい。
The thermoplastic resin to be impregnated into the reinforcing fibers is not particularly limited, and examples thereof include an olefin resin, a polyester resin, a thermoplastic epoxy resin, an amide resin, a thermoplastic polyurethane resin, a sulfide resin, and an acrylic resin. In addition, polyester resins and thermoplastic epoxy resins are preferred because they are excellent in adhesiveness to a foamed molded article or adhesiveness between reinforcing fibers constituting a fiber-reinforced plastic. The thermoplastic resin may be used alone, or two or more kinds may be used in combination.
The thermoplastic epoxy resin is a polymer or copolymer of epoxy compounds having a linear structure, or a copolymer of an epoxy compound and a monomer polymerizable with the epoxy compound. And a copolymer having a linear structure. Specifically, as the thermoplastic epoxy resin, for example, bisphenol A type epoxy resin, bisphenol fluorene type epoxy resin, cresol novolak type epoxy resin, phenol novolak type epoxy resin, cycloaliphatic type epoxy resin, long chain aliphatic type Epoxy resins, glycidyl ester type epoxy resins, glycidylamine type epoxy resins and the like are mentioned, and bisphenol A type epoxy resins and bisphenol fluorene type epoxy resins are preferred. The thermoplastic epoxy resin may be used alone, or two or more kinds may be used in combination.
熱可塑性ポリウレタン樹脂としては、ジオールとジイソシアネートとを重合させて得られる直鎖構造を有する重合体が挙げられる。ジオールとしては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3−ブタンジオール、1,4−ブタンジオール等が挙げられる。ジオールは、単独で用いられても二種以上が併用されてもよい。ジイソシアネートとしては、例えば、芳香族ジイソシアネート、脂肪族ジイソシアネート、脂環式ジイソシアネートが挙げられる。ジイソシアネートは、単独で用いられても二種以上が併用されてもよい。なお、熱可塑性ポリウレタン樹脂は、単独で用いられてもよく、二種以上が併用されてもよい。
繊維強化プラスチック中における合成樹脂の含有量は、20〜70重量%が好ましい。含有量が20重量%未満の場合、強化繊維同士の結着性や繊維強化プラスチックと発泡成形体との接着性が不十分となり、繊維強化プラスチックの機械的物性や繊維強化複合体の機械的強度を十分に向上できないことがある。70重量%より多い場合、繊維強化プラスチックの機械的物性が低下して、繊維強化複合体の機械的強度を十分に向上できないことがある。含有量は30〜60重量%がより好ましい。
繊維強化プラスチックの厚みは、0.02〜2mmが好ましく、0.05〜1mmがより好ましい。厚みがこの範囲内である繊維強化プラスチックは、軽量であるにも関わらず機械的物性に優れている。
繊維強化プラスチックの目付は、50〜4000g/m2が好ましく、100〜1000g/m2がより好ましい。目付がこの範囲内である繊維強化プラスチックは、軽量であるにも関わらず機械的物性に優れている。
Examples of the thermoplastic polyurethane resin include a polymer having a linear structure obtained by polymerizing a diol and a diisocyanate. Examples of the diol include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, 1,3-butanediol, 1,4-butanediol, and the like. The diols may be used alone or in combination of two or more. Examples of the diisocyanate include an aromatic diisocyanate, an aliphatic diisocyanate and an alicyclic diisocyanate. The diisocyanates may be used alone or in combination of two or more. The thermoplastic polyurethane resin may be used alone, or two or more kinds may be used in combination.
The content of the synthetic resin in the fiber reinforced plastic is preferably from 20 to 70% by weight. When the content is less than 20% by weight, the binding properties between the reinforcing fibers and the adhesiveness between the fiber-reinforced plastic and the foamed molded article become insufficient, and the mechanical properties of the fiber-reinforced plastic and the mechanical strength of the fiber-reinforced composite are reduced. May not be sufficiently improved. If the content is more than 70% by weight, the mechanical properties of the fiber-reinforced plastic may decrease, and the mechanical strength of the fiber-reinforced composite may not be sufficiently improved. The content is more preferably 30 to 60% by weight.
The thickness of the fiber reinforced plastic is preferably 0.02 to 2 mm, more preferably 0.05 to 1 mm. A fiber reinforced plastic having a thickness within this range is excellent in mechanical properties despite its light weight.
Basis weight of the fiber reinforced plastic is preferably 50~4000g / m 2, 100~1000g / m 2 is more preferable. Fiber reinforced plastics having a basis weight within this range are excellent in mechanical properties despite being lightweight.
次に、強化複合体の製造方法を説明する。発泡成形体の表面に表皮材を積層一体化させて強化複合体を製造する方法としては、特に限定されず、例えば、(1)発泡成形体の表面に接着剤を介して表皮材を積層一体化する方法、(2)発泡成形体の表面に、強化繊維に熱可塑性樹脂が含浸されてなる繊維強化プラスチック形成材を積層し、強化繊維中に含浸させた熱可塑性樹脂をバインダーとして発泡成形体の表面に繊維強化プラスチック形成材を繊維強化プラスチックとして積層一体化する方法、(3)発泡成形体の表面に、強化繊維に未硬化の熱硬化性樹脂が含浸された繊維強化プラスチック形成材を積層し、強化繊維中に含浸させた熱硬化性樹脂をバインダーとして、熱硬化性樹脂を硬化させて形成された繊維強化プラスチックを発泡成形体の表面に積層一体化する方法、(4)発泡成形体の表面に、加熱されて軟化状態の表皮材を配設し、発泡成形体の表面に表皮材を押圧させることによって表皮材を必要に応じて発泡成形体の表面に沿って変形させながら発泡成形体の表面に積層一体化させる方法、(5)繊維強化プラスチックの成形で一般的に適用される方法等が挙げられる。発泡成形体は高温環境下における耐荷重性のような機械的物性に優れている観点では、上記(4)の方法も好適に用いることができる。
繊維強化プラスチックの成形で用いられる方法としては、例えば、オートクレーブ法、ハンドレイアップ法、スプレーアップ法、PCM(Prepreg Compression Molding)法、RTM(Resin Transfer Molding)法、VaRTM(Vacuum assisted Resin Transfer Molding)法等が挙げられる。
Next, a method for producing a reinforced composite will be described. The method for producing a reinforced composite body by laminating and integrating a skin material on the surface of a foamed molded article is not particularly limited. For example, (1) laminating and unifying a skin material on the surface of a foamed molded article via an adhesive. (2) Laminating a fiber-reinforced plastic forming material obtained by impregnating a reinforcing fiber with a thermoplastic resin on the surface of a foamed molded article, and using the thermoplastic resin impregnated in the reinforcing fiber as a binder to form a foamed molded article Method of laminating and integrating a fiber-reinforced plastic forming material as a fiber-reinforced plastic on the surface of (3) Laminating a fiber-reinforced plastic forming material in which uncured thermosetting resin is impregnated into reinforcing fibers on the surface of a foamed molded article And a method of laminating and integrating a fiber-reinforced plastic formed by curing the thermosetting resin with the thermosetting resin impregnated in the reinforcing fibers as a binder, on the surface of the foamed molded article; A heated and softened skin material is disposed on the surface of the foam molded body, and the skin material is deformed along the surface of the foam molded body as necessary by pressing the skin material against the surface of the foam molded body. A method of laminating and integrating it on the surface of the foamed molded article, and (5) a method generally applied in molding of fiber reinforced plastic. From the viewpoint that the foamed molded article has excellent mechanical properties such as load resistance under a high temperature environment, the method (4) can also be suitably used.
Examples of the method used for molding the fiber reinforced plastic include an autoclave method, a hand lay-up method, a spray-up method, a PCM (Prepreg Compression Molding) method, an RTM (Resin Transfer Molding) method, and a VaRTM (Vacuum assisted Resin Transfer) method. And the like.
このようにして得られた繊維強化複合体は、耐熱性、機械的強度及び軽量性に優れている。そのため、自動車、航空機、鉄道車輛、船舶等の輸送機器分野、家電分野、情報端末分野、家具の分野等の広範な用途に用いることができる。
例えば、繊維強化複合体は、輸送機器の部品、及び、輸送機器の本体を構成する構造部品を含めた輸送機器構成用部品(特に自動車用部品)、風車翼、ロボットアーム、ヘルメット用緩衝材、農産箱、保温保冷容器等の輸送容器、産業用ヘリコプターのローターブレード、部品梱包材として好適に用いることができる。
本発明によれば、本発明の繊維強化複合体から構成される自動車用部品が提供され、その自動車用部品としては、例えば、フロアパネル、ルーフ、ボンネット、フェンダー、アンダーカバー、ホイール、ステアリングホイール、コンテナ(筐体)、フードパネル、サスペンションアーム、バンパー、サンバイザー、トランクリッド、ラゲッジボックス、シート、ドア、カウル等の部品が挙げられる。
The fiber-reinforced composite thus obtained is excellent in heat resistance, mechanical strength, and lightness. Therefore, it can be used in a wide range of applications such as in the field of transportation equipment such as automobiles, aircraft, railway vehicles, and ships, in the field of home appliances, in the field of information terminals, and in the field of furniture.
For example, fiber-reinforced composites include transport equipment components, transport equipment component parts (especially automotive parts) including structural components constituting the main body of the transport equipment, windmill wings, robot arms, cushioning materials for helmets, It can be suitably used as a transportation container such as an agricultural box, a heat insulation / cooling container, a rotor blade of an industrial helicopter, and a component packing material.
According to the present invention, there is provided an automotive component comprising the fiber-reinforced composite of the present invention. As the automotive component, for example, a floor panel, a roof, a bonnet, a fender, an undercover, a wheel, a steering wheel, Components include a container (housing), a hood panel, a suspension arm, a bumper, a sun visor, a trunk lid, a luggage box, a seat, a door, and a cowl.
以下に実施例を挙げて本発明を更に詳細に説明するが、本実施例に何ら限定されるものでない。まず、実施例及び比較例中の測定方法及び評価方法について説明する。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto. First, measurement methods and evaluation methods in Examples and Comparative Examples will be described.
(ガラス転移温度)
ガラス転移温度は、JIS K7121:1987「プラスチックの転移温度測定方法」に記載されている方法で測定した。但し、サンプリング方法・温度条件に関しては以下のように行った。
示差走査熱量計装置 DSC6220型(エスアイアイナノテクノロジー社製)を用いアルミニウム製測定容器の底にすきまのないよう試料を約6mg充てんした。試料を、窒素ガス流量20mL/minの下、20℃/minの昇温速度で30℃から220℃まで昇温した。10分間保持後速やかに試料を取り出し、25±10℃の環境下にて放冷させた後、20℃/minの昇温速度で30℃から220℃まで昇温した時に得られたDSC曲線よりガラス転移温度(開始点)を算出した。この時に基準物質としてアルミナを用いる。このガラス転移開始温度は規格(9.3「ガラス転移温度の求め方」)より求めた。
(Glass-transition temperature)
The glass transition temperature was measured by a method described in JIS K7121: 1987 "Method for measuring plastic transition temperature". However, sampling methods and temperature conditions were as follows.
Approximately 6 mg of a sample was filled in the bottom of an aluminum measurement container using a differential scanning calorimeter device DSC6220 type (manufactured by SII NanoTechnology Inc.) so that there was no gap. The sample was heated from 30 ° C. to 220 ° C. at a rate of 20 ° C./min under a nitrogen gas flow rate of 20 mL / min. After holding for 10 minutes, the sample was taken out immediately, allowed to cool in an environment of 25 ± 10 ° C., and obtained from a DSC curve obtained when the temperature was raised from 30 ° C. to 220 ° C. at a rate of 20 ° C./min. The glass transition temperature (starting point) was calculated. At this time, alumina is used as a reference material. The glass transition onset temperature was determined from a standard (9.3 "How to determine glass transition temperature").
(嵩密度及び嵩倍数)
嵩密度は、JIS K6911:1995「熱硬化性プラスチック一般試験方法」に準拠して測定した。即ち、JIS K6911に準拠した見掛け密度測定器を用いて測定し、下記式に基づいて嵩密度を測定した。
発泡粒子の嵩密度(kg/m3)=〔試料を入れたメスシリンダーの重量(kg)−メスシリンダーの重量(kg)〕/〔メスシリンダーの容量(m3)〕
嵩倍数は、嵩密度の逆数に樹脂の密度を積算した値とした。
(Bulk density and bulk multiple)
The bulk density was measured according to JIS K6911: 1995 “General thermosetting plastic test method”. That is, the bulk density was measured using an apparent density measuring device based on JIS K6911, and the bulk density was measured based on the following equation.
Bulk density of expanded particles (kg / m 3 ) = [weight of measuring cylinder containing sample (kg) −weight of measuring cylinder (kg)] / [volume of measuring cylinder (m 3 )]
The bulk multiple was a value obtained by integrating the density of the resin with the reciprocal of the bulk density.
(曲げ試験:密度ならびに最大点の荷重、応力、変位及びエネルギー)
最大点の荷重、応力、変位及びエネルギーはJIS K7221−1:2006「硬質発泡プラスチック−曲げ試験−第1部:たわみ特性の求め方」に準拠した方法により測定した。即ち、発泡成形体から、縦20mm×横25mm×高さ130mmの直方体形状の試験片を切り出した。測定には、テンシロン万能試験機(オリエンテック社製「UCT−10T」)を用いた。曲げ強度の曲げ最大点応力は、万能試験機データ処理システム(ソフト・ブレーン社製「UTPS−237S Ver,1.00」)を用いて算出した。
短冊状試験片を支持台に載置し、ロードセル1000N、試験速度10mm/min、支持台の先端治具5R、開き幅100mmの条件下で曲げ最大点応力を測定した。試験片の数は5個以上とし、JIS K 7100:1999の記号「23/50」(温度23℃、相対湿度50%)、2級の標準雰囲気下で16時間かけて状態調整した後、同じ標準雰囲気下で測定した。各試験片の曲げ最大点応力の相加平均値をそれぞれ、発泡成形体の曲げ最大点応力とした。
また、単位密度当たりの曲げ最大点応力は、曲げ最大点応力を発泡成形体の密度で除して算出した。
なお、発泡成形体の密度(kg/m3)は、発泡成形体から切り出した試験片の重量(a)と体積(b)を測定し、式(a)/(b)により求めた。
(Bending test: density, maximum point load, stress, displacement and energy)
The load, stress, displacement and energy at the maximum point were measured by a method in accordance with JIS K7221-1: 2006 "Hard foamed plastic-Bending test-Part 1: Determination of deflection characteristics". That is, a rectangular parallelepiped test piece having a length of 20 mm, a width of 25 mm, and a height of 130 mm was cut out from the foam molded article. For the measurement, a Tensilon universal tester (“UCT-10T” manufactured by Orientec) was used. The bending maximum point stress of the bending strength was calculated using a universal testing machine data processing system ("UTPS-237S Ver, 1.00" manufactured by Soft Brain).
The strip-shaped test piece was placed on a support, and the maximum bending stress was measured under the conditions of a load cell of 1000 N, a test speed of 10 mm / min, a jig 5R at the tip of the support, and an opening width of 100 mm. The number of test pieces is 5 or more, and the condition is the same after conditioned in a standard atmosphere of second grade for 16 hours under the symbol “23/50” (temperature 23 ° C., relative humidity 50%) of JIS K 7100: 1999. It was measured under a standard atmosphere. The arithmetic mean value of the maximum bending point stress of each test piece was defined as the maximum bending point stress of the foam molded article.
The maximum bending point stress per unit density was calculated by dividing the maximum bending point stress by the density of the foam molded article.
In addition, the density (kg / m 3 ) of the foamed molded body was determined by the formula (a) / (b) by measuring the weight (a) and the volume (b) of a test piece cut from the foamed molded body.
(曲げ試験:弾性率)
曲げ弾性率はJIS K7221−1:2006「硬質発泡プラスチック−曲げ試験−第1部:たわみ特性の求め方」に準拠した方法により測定した。即ち、発泡成形体から、縦20mm×横25mm×高さ130mmの直方体形状の試験片を切り出した。測定には、テンシロン万能試験機(オリエンテック社製「UCT−10T」)を用いた。曲げ弾性率は、万能試験機データ処理システム(ソフト・ブレーン社製「UTPS−237S Ver,1.00」)を用いて算出した。試験片の数は5個以上とし、JIS K 7100:1999の記号「23/50」(温度23℃、相対湿度50%)、2級の標準雰囲気下で16時間かけて状態調整した後、同じ標準雰囲気下で測定した。各試験片の圧縮弾性率の相加平均値をそれぞれ、発泡成形体の曲げ弾性率とした。
曲げ弾性率は、荷重−変形曲線の始めの直線部分を用いて次式により計算した。
E=Δσ/Δε
E:曲げ弾性率(MPa)
Δσ:直線上の2点間の応力の差(MPa)
Δε:同じ2点間の変形の差(%)
また、単位密度当たりの曲げ弾性率は、曲げ弾性率を発泡成形体の密度で除して算出した。
(Bending test: elastic modulus)
The flexural modulus was measured by a method in accordance with JIS K7221-1: 2006 "Hard foamed plastic-Bending test-Part 1: Determination of deflection characteristics". That is, a rectangular parallelepiped test piece having a length of 20 mm, a width of 25 mm, and a height of 130 mm was cut out from the foam molded article. For the measurement, a Tensilon universal tester (“UCT-10T” manufactured by Orientec) was used. The flexural modulus was calculated using a universal testing machine data processing system ("UTPS-237S Ver, 1.00" manufactured by Soft Brain). The number of test pieces is 5 or more, and the condition is the same after conditioned in a standard atmosphere of second grade for 16 hours under the symbol “23/50” (temperature 23 ° C., relative humidity 50%) of JIS K 7100: 1999. It was measured under a standard atmosphere. The arithmetic mean value of the compressive modulus of each test piece was defined as the flexural modulus of the foam molded article.
The flexural modulus was calculated by the following equation using the straight line at the beginning of the load-deformation curve.
E = Δσ / Δε
E: Flexural modulus (MPa)
Δσ: difference in stress between two points on a straight line (MPa)
Δε: difference in deformation between the same two points (%)
The flexural modulus per unit density was calculated by dividing the flexural modulus by the density of the foam molded article.
(圧縮試験:密度ならびに5%、10%及び25%応力)
発泡成形体の5%圧縮応力、10%圧縮応力、25%圧縮応力は、JIS K7220:2006「硬質発泡プラスチック−圧縮特性の求め方」記載の方法により測定した。即ち、テンシロン万能試験機(オリエンテック社製「UCT−10T」)、万能試験機データ処理システム(ソフト・ブレーン社製「UTPS−237S Ver,1.00」)を用いて、試験体サイズ断面50mm×50mm、厚み25mmで圧縮速度を2.5mm/minとして圧縮強さ(5%変形圧縮応力、25%変形圧縮応力、圧縮弾性率)を測定した。試験片の数は5個以上とし、JIS K 7100:1999の記号「23/50」(温度23℃、相対湿度50%)、2級の標準雰囲気下で16時間かけて状態調整した後、同じ標準雰囲気下で測定を行った。各試験片の圧縮強さ(5%変形圧縮応力、10%変形圧縮応力、25%変形圧縮応力)の相加平均値をそれぞれ、発泡成形体の5%圧縮応力、10%圧縮応力、25%圧縮応力とした。
(5%(10%、25%)変形圧縮応力)
5%(10%、25%)変形圧縮応力は次式により算出した。なお、()内は10%変形圧縮応力、25%変形圧縮応力を算出するときの条件とした。
σ5(10、25)=F5(10、25)/A0
σ5(10、25):5%(10%、25%)変形圧縮応力(MPa)
F5(10、25):5%(10%、25%)変形時の力(N)
A0:試験片の初めの断面積(mm2)
また、単位密度当たりの5%変形圧縮応力は、5%変形圧縮応力を発泡成形体の密度で除して算出した。
(Compression test: density and 5%, 10% and 25% stress)
The 5% compressive stress, 10% compressive stress, and 25% compressive stress of the foamed molded article were measured by the method described in JIS K7220: 2006 “Hard foamed plastics—How to determine compression properties”. That is, using a Tensilon universal testing machine (“UCT-10T” manufactured by Orientec) and a universal testing machine data processing system (“UTPS-237S Ver, 1.00” manufactured by Soft Brain), the specimen size cross section was 50 mm. The compression strength (5% deformation compression stress, 25% deformation compression stress, compression modulus) was measured at a compression rate of 2.5 mm / min with a size of × 50 mm and a thickness of 25 mm. The number of test pieces is 5 or more, and the condition is the same after conditioned in a standard atmosphere of second grade for 16 hours under the symbol “23/50” (temperature 23 ° C., relative humidity 50%) of JIS K 7100: 1999. The measurement was performed under a standard atmosphere. The arithmetic mean values of the compressive strengths (5% deformation compressive stress, 10% deformation compressive stress, 25% deformation compressive stress) of each test piece were respectively calculated as 5% compressive stress, 10% compressive stress, 25% Compressive stress was used.
(5% (10%, 25%) deformation compressive stress)
The 5% (10%, 25%) deformation compressive stress was calculated by the following equation. The conditions in parentheses are conditions for calculating 10% deformation compressive stress and 25% deformation compressive stress.
σ5 (10, 25) = F5 (10, 25) / A 0
σ5 (10, 25): 5% (10%, 25%) deformation compressive stress (MPa)
F5 (10, 25): Force (N) at 5% (10%, 25%) deformation
A 0 : initial cross-sectional area of test piece (mm 2 )
The 5% deformation compressive stress per unit density was calculated by dividing the 5% deformation compressive stress by the density of the foam molded article.
(圧縮試験:弾性率)
発泡成形体の圧縮弾性率は、JIS K7220:2006「硬質発泡プラスチック−圧縮特性の求め方」記載の方法により測定した。即ち、テンシロン万能試験機(オリエンテック社製「UCT−10T」)、万能試験機データ処理システム(ソフト・ブレーン社製「UTPS−237S Ver,1.00」)を用いて、試験体サイズ断面50mm×50mm、厚み25mmで圧縮速度を2.5mm/minとして圧縮弾性率を測定した。試験片の数は5個以上とし、JIS K 7100:1999の記号「23/50」(温度23℃、相対湿度50%)、2級の標準雰囲気下で16時間かけて状態調整した後、同じ標準雰囲気下で測定を行った。各試験片の圧縮弾性率の相加平均値を、発泡成形体の圧縮弾性率とした。
(圧縮弾性率)
圧縮弾性率は、荷重−変形曲線の始めの直線部分を用いて次式により計算した。
E=Δσ/Δε
E:圧縮弾性率(MPa)
Δσ:直線上の2点間の応力の差(MPa)
Δε:同じ2点間の変形の差(%)
また、単位密度当たりの圧縮弾性率は、圧縮弾性率を発泡成形体の密度で除して算出した。
(Compression test: elastic modulus)
The compression elastic modulus of the foamed molded article was measured by the method described in JIS K7220: 2006 “Hard foamed plastic-Determination of compression characteristics”. That is, using a Tensilon universal testing machine (“UCT-10T” manufactured by Orientec) and a universal testing machine data processing system (“UTPS-237S Ver, 1.00” manufactured by Soft Brain), the specimen size cross section was 50 mm. The compression modulus was measured at a compression rate of 2.5 mm / min with a size of × 50 mm and a thickness of 25 mm. The number of test pieces is 5 or more, and the condition is the same after conditioned in a standard atmosphere of second grade for 16 hours under the symbol “23/50” (temperature 23 ° C., relative humidity 50%) of JIS K 7100: 1999. The measurement was performed under a standard atmosphere. The arithmetic mean value of the compressive modulus of each test piece was defined as the compressive modulus of the foam molded article.
(Compressive modulus)
The compression modulus was calculated by the following equation using the straight line at the beginning of the load-deformation curve.
E = Δσ / Δε
E: compression modulus (MPa)
Δσ: difference in stress between two points on a straight line (MPa)
Δε: difference in deformation between the same two points (%)
Further, the compression elastic modulus per unit density was calculated by dividing the compression elastic modulus by the density of the foam molded article.
(基材樹脂の樹脂成分の割合)
(1H−NMR)
日本電子製 ECX400P型核磁気共鳴装置を用い、以下の条件で測定した。
<測定条件>
・測定モード シングルパルス
・パルス幅 45°(6.05μ秒)
・ポイント数 32k
・繰り返し時間 7.0秒
・積算回数 128回
・測定溶媒 重クロロホルム
・試料濃度 約20mg/0.6mL
・測定温度 50℃
・ケミカルシフト基準 クロロホルム:7.24ppm
・測定範囲 20ppm(−5ppm〜15ppm)
・ウインドウ関数 exponnential(BF:0.12Hz)
基材樹脂の組成比を、1H−NMR測定から得られたスペクトルの各シグナルの積分強度比より算出した。なお、各シグナルの領域に不純物由来と推測されるシグナルが観測される場合には、計算の際、これらの寄与を無視した。
(Ratio of resin component of base resin)
( 1 H-NMR)
The measurement was performed under the following conditions using an ECX400P nuclear magnetic resonance apparatus manufactured by JEOL Ltd.
<Measurement conditions>
・ Measurement mode Single pulse ・ Pulse width 45 ° (6.05μsec)
・ Points 32k
・ Repeat time 7.0 seconds ・ Integration count 128 times ・ Measurement solvent deuterated chloroform ・ Sample concentration about 20mg / 0.6mL
・ Measurement temperature 50 ℃
・ Chemical shift standard chloroform: 7.24ppm
・ Measurement range 20 ppm (-5 ppm to 15 ppm)
・ Window function exponnential (BF: 0.12 Hz)
The composition ratio of the base resin was calculated from the integrated intensity ratio of each signal of the spectrum obtained from the 1 H-NMR measurement. When a signal presumed to be derived from impurities is observed in each signal region, these contributions were ignored in the calculation.
(FT−IR)
基材樹脂の吸光度比(D1780/D698、D1720/D698)を次の要領で測定した。
無作為に選択した10個の各樹脂粒子について、赤外分光分析ATR測定法により表面分析を行って赤外吸収スペクトルを得た。この分析では、試料表面から数μm(約2μm)までの深さの範囲の赤外吸収スペクトルが得られた。各赤外吸収スペクトルから吸光度比(D1780/D698、D1720/D698)を算出し、算出した吸光度比の相加平均を吸光度比とした。
吸光度D1780、D1720及びD698は、Thermo SCIENTIFIC社から商品名「フーリエ変換赤外分光光度計 Nicolet iS10」で販売されている測定装置に、ATRアクセサリーとしてThermo SCIENTIFIC社製「Smart−iTR」を接続して測定した。以下の条件にて赤外分光分析ATR測定を行った。
(FT-IR)
The absorbance ratio (D1780 / D698, D1720 / D698) of the base resin was measured in the following manner.
Surface analysis was performed on each of the 10 randomly selected resin particles by an infrared spectroscopic analysis ATR measurement method to obtain an infrared absorption spectrum. In this analysis, an infrared absorption spectrum in a depth range from the sample surface to several μm (about 2 μm) was obtained. The absorbance ratio (D1780 / D698, D1720 / D698) was calculated from each infrared absorption spectrum, and the arithmetic mean of the calculated absorbance ratio was defined as the absorbance ratio.
The absorbances D1780, D1720 and D698 are obtained by connecting "Smart-iTR" manufactured by Thermo SCIENTIFIC as an ATR accessory to a measuring device sold under the trade name "Fourier transform infrared spectrophotometer Nicolet iS10" from Thermo SCIENTIFIC. It was measured. Infrared spectroscopy ATR measurement was performed under the following conditions.
<測定条件>
・測定装置:フーリエ変換赤外分光光度計 Nicolet iS10(Thermo SCIENTIFIC社製)及び一回反射型水平状ATR Smart−iTR(Thermo SCIENTIFIC社製)
・ATRクリスタル:Diamond with ZnSe lens、角度=42°
・測定法:一回ATR法
・測定波数領域:4000cm-1〜650cm-1
・測定深度の波数依存性:補正せず
・検出器:重水素化硫酸トリグリシン(DTGS)検出器及びKBrビームスプリッター
・分解能:4cm-1
・積算回数:16回(バックグランド測定時も同様)
ATR法では、試料と高屈折率結晶の密着度合によって測定で得られる赤外吸収スペクトルの強度が変化するため、ATRアクセサリーの「Smart−iTR」で掛けられる最大荷重を掛けて密着度合をほぼ均一にして測定を行った。
以上の条件で得られた赤外線吸収スペクトルは、次のようにピーク処理をしてそれぞれのD1780、D1720及びD698を求めた。
赤外吸収スペクトルから得られる1780cm-1での吸光度D1780は、無水マレイン酸中の2つのカルボニル基のC=Oによる逆対称の伸縮振動に由来する吸収スペクトルに対応する吸光度とした。
この吸光度の測定では、1780cm-1で他の吸収スペクトルが重なっている場合でもピーク分離を実施しなかった。吸光度D1780は、1920cm-1と1620cm-1を結ぶ直線をベースラインとして、1810cm-1と1745cm-1間の最大吸光度とした。
<Measurement conditions>
-Measuring device: Fourier transform infrared spectrophotometer Nicolet iS10 (manufactured by Thermo SCIENTIFIC) and single reflection horizontal ATR Smart-iTR (manufactured by Thermo SCIENTIFIC)
・ ATR crystal: Diamond with ZnSe lenses, angle = 42 °
・ Measurement method: single ATR method ・ Measurement wave number region: 4000 cm -1 to 650 cm -1
-Wave number dependence of measurement depth: uncorrected-Detector: deuterated triglycine sulfate (DTGS) detector and KBr beam splitter-Resolution: 4 cm -1
・ Number of integration: 16 times (same for background measurement)
In the ATR method, since the intensity of the infrared absorption spectrum obtained by the measurement changes depending on the degree of adhesion between the sample and the high refractive index crystal, the degree of adhesion is almost uniform by applying the maximum load applied by the "Smart-iTR" of the ATR accessory. Was measured.
The infrared absorption spectrum obtained under the above conditions was subjected to peak processing as follows to obtain D1780, D1720 and D698, respectively.
The absorbance D1780 at 1780 cm −1 obtained from the infrared absorption spectrum was defined as the absorbance corresponding to the absorption spectrum derived from the inverse symmetric stretching vibration of two carbonyl groups in maleic anhydride due to C = O.
In the measurement of the absorbance, no peak separation was performed even when another absorption spectrum overlapped at 1780 cm -1 . Absorbance D1780 is a straight line connecting the 1920Cm -1 and 1620 cm -1 as a baseline, and the maximum absorbance between 1810 cm -1 and 1745 cm -1.
また、1720cm-1での吸光度D1720は、メタクリル酸メチル中に含まれるカルボニル基C=Oによる逆対称の伸縮振動に由来する吸収スペクトルに対応する吸光度とした。
この吸光度の測定では、1720cm-1で他の吸収スペクトルが重なっている場合でもピーク分離を実施しない。吸光度D1720は、1920cm-1と1620cm-1を結ぶ直線をベースラインとして、1745cm-1と1690cm-1間の最大吸光度とした。
698cm-1での吸光度D698は、スチレン中の1置換ベンゼン環中のC−Hの面外変角振動に由来する吸収スペクトルに対応する吸光度とした。
この吸光度の測定では、698cm-1で他の吸収スペクトルが重なっている場合でもピーク分離を実施しなかった。吸光度D698は、1510cm-1と810cm-1を結ぶ直線をベースラインとして、720cm-1と660cm-1間の最大吸光度とした。
Further, the absorbance D1720 at 1720 cm -1 was an absorbance corresponding to an absorption spectrum derived from an antisymmetric stretching vibration due to a carbonyl group C 基 O contained in methyl methacrylate.
In the measurement of the absorbance, peak separation is not performed even when another absorption spectrum is overlapped at 1720 cm -1 . Absorbance D1720 is a straight line connecting the 1920Cm -1 and 1620 cm -1 as a baseline, and the maximum absorbance between 1745 cm -1 and 1690 cm -1.
The absorbance D698 at 698 cm -1 was an absorbance corresponding to an absorption spectrum derived from out-of-plane bending vibration of CH in a monosubstituted benzene ring in styrene.
In the measurement of the absorbance, peak separation was not performed even when another absorption spectrum overlapped at 698 cm -1 . Absorbance D698 is a straight line connecting the 1510 cm -1 and 810 cm -1 as a baseline, and the maximum absorbance between 720 cm -1 and 660 cm -1.
スチレン、メタクリル酸メチル、無水マレイン酸比率(重量%)を、後述の検量線に基づいて、吸光度比(D1780/D698、D1720/D698)から算出した。なお、ピーク処理方法は前述の樹脂粒子と同様の方法を用いた。
吸光度比からスチレンとメタクリル酸メチルの組成割合を求める方法としては、スチレン樹脂とメタクリル酸メチル樹脂とを所定の組成割合に均一に混合してなる複数種類の標準試料を作製した。
具体的には、メタクリル酸メチルとスチレンとをそれぞれ0/100、20/80、40/60、50/50及び60/40の重量割合で計量した単量体を10mlのスクリューバイアルに入れ、ここに単量体100重量部に対して10重量部の2,2’−アゾビス(2,4−ジメチルバレロニトリル)を加えて単量体を溶解させた。得られた混合液を2ml試料管(φ7mm×122mm×190mm)に移し入れ、窒素パージした後に封管する。次にこれを65℃に設定したウォーターバスに入れ、10時間加熱して重合を完了させ、アンプルから取り出した重合体を標準試料とした。
各標準試料について赤外分光分析ATR法により赤外線吸収スペクトルを得た後に吸光度比(D1780/D698)を算出した。そして、縦軸に組成割合(標準試料中のスチレン樹脂比率=重量%)を、横軸に吸光度比(D1780/D698)をとることで検量線を描いた。この検量線に基づいて、スチレン樹脂とメタクリル酸メチル樹脂の組成割合を求めることができた。
Styrene, methyl methacrylate, and maleic anhydride ratios (% by weight) were calculated from the absorbance ratios (D1780 / D698, D1720 / D698) based on the calibration curve described below. In addition, the peak processing method used the same method as the above-mentioned resin particle.
As a method of obtaining the composition ratio of styrene and methyl methacrylate from the absorbance ratio, a plurality of types of standard samples were prepared by uniformly mixing a styrene resin and a methyl methacrylate resin at a predetermined composition ratio.
Specifically, a monomer obtained by weighing methyl methacrylate and styrene at a weight ratio of 0/100, 20/80, 40/60, 50/50 and 60/40, respectively, was put into a 10 ml screw vial, Then, 10 parts by weight of 2,2'-azobis (2,4-dimethylvaleronitrile) was added to 100 parts by weight of the monomer to dissolve the monomer. The obtained mixed solution is transferred to a 2 ml sample tube (φ7 mm × 122 mm × 190 mm), and the tube is sealed after purging with nitrogen. Next, this was placed in a water bath set at 65 ° C. and heated for 10 hours to complete the polymerization, and the polymer taken out from the ampule was used as a standard sample.
After the infrared absorption spectrum of each standard sample was obtained by the infrared spectroscopy ATR method, the absorbance ratio (D1780 / D698) was calculated. Then, a calibration curve was drawn by taking the composition ratio (the styrene resin ratio in the standard sample =% by weight) on the vertical axis and the absorbance ratio (D1780 / D698) on the horizontal axis. Based on this calibration curve, the composition ratio of the styrene resin and the methyl methacrylate resin could be determined.
また、スチレン樹脂と無水マレイン酸樹脂の標準試料としては、スチレンと無水マレイン酸の1/1共重合体(商品名SMA1000(P)CRAY VALLEY社製)及びスチレンと無水マレイン酸の3/1共重合体(SMA3000(P)CRAY VALLEY社製)を用いた。
各標準試料について赤外分光分析ATR法により赤外線吸収スペクトルを得た後に吸光度比(D1720/D698)を算出した。そして、縦軸に組成割合(標準試料中のスチレン樹脂比率=重量%)を、横軸に吸光度比(D1720/D698)をとることで検量線を描いた。この検量線に基づいて、スチレン樹脂と無水マレイン酸樹脂の組成割合を求めることができた。
検量線からスチレンとメタクリル酸メチル及びスチレンと無水マレイン酸の組成割合を求めた。それぞれの組成割合から、樹脂中のスチレン、メタクリル酸メチル、無水マレイン酸の3成分の組成割合を以下の手順で求めた。
ここで、各標準試料の割合を以下のように設定した。
メタクリル酸メチル:スチレン=A:B [1]
スチレン:無水マレイン酸 =C:D [2]
スチレンが共通項なので、[2]のスチレン割合Cを[1]のスチレン割合Bに合わせた。
[2]より
スチレン :無水マレイン酸
=C :D
=C×(B/C):D×(B/C)
=B :D×(B/C) [3]
[3]より、スチレンの割合が[1]と等しくなるので、[1]、[3]よりメタクリル酸メチル、スチレン、無水マレイン酸の存在比は以下のようになった。
メタクリル酸メチル:スチレン:無水マレイン酸
=A :B :D×(B/C) [4]
[4]の存在比より、各成分の割合は以下のようになった。
メタクリル酸メチル={A/((A+B+D×(B/C))}×100
スチレン ={B/((A+B+D×(B/C))}×100
無水マレイン酸 ={D×(B/C)/((A+B+D×(B/C))}×100
Further, as a standard sample of a styrene resin and a maleic anhydride resin, a 1/1 copolymer of styrene and maleic anhydride (trade name, manufactured by SMA1000 (P) CRAY VALLEY) and a 3/1 copolymer of styrene and maleic anhydride were used. A polymer (SMA3000 (P) CRAY VALLEY) was used.
After obtaining an infrared absorption spectrum of each standard sample by the infrared spectroscopic analysis ATR method, the absorbance ratio (D1720 / D698) was calculated. Then, a calibration curve was drawn by taking the composition ratio (the ratio of styrene resin in the standard sample =% by weight) on the vertical axis and the absorbance ratio (D1720 / D698) on the horizontal axis. Based on this calibration curve, the composition ratio of the styrene resin and the maleic anhydride resin could be determined.
The composition ratios of styrene and methyl methacrylate and styrene and maleic anhydride were determined from the calibration curve. From the respective composition ratios, the composition ratios of the three components of styrene, methyl methacrylate, and maleic anhydride in the resin were determined by the following procedure.
Here, the ratio of each standard sample was set as follows.
Methyl methacrylate: styrene = A: B [1]
Styrene: maleic anhydride = C: D [2]
Since styrene is a common term, the styrene ratio C of [2] was adjusted to the styrene ratio B of [1].
From [2] Styrene: maleic anhydride = C: D
= C × (B / C): D × (B / C)
= B: D × (B / C) [3]
According to [3], the ratio of styrene becomes equal to [1]. Therefore, the abundance ratios of methyl methacrylate, styrene, and maleic anhydride were as follows from [1] and [3].
Methyl methacrylate: styrene: maleic anhydride = A: B: D × (B / C) [4]
From the abundance ratio of [4], the ratio of each component was as follows.
Methyl methacrylate = {A / ((A + B + D × (B / C))} × 100
Styrene = {B / ((A + B + D × (B / C))} × 100
Maleic anhydride = {D × (B / C) / ((A + B + D × (B / C))} × 100
(気泡数)
発泡粒子及び発泡成形体中の気泡の気泡数は、次の要領で測定した。まず、切断面を走査型電子顕微鏡(日立ハイテクノロジーズ社製「SU1510」)により30倍で11.9mm2の面積を撮影した。発泡粒子については発泡粒子の中心部で略二分割した断面の中心部を撮影した。撮影した画像をA4用紙に印刷し、すべての気泡において平均気泡径を算出した。なお、気泡径は、気泡断面の長径及び短径を測定し、短径と長径の相加平均値により得られた値とした。具体的には、気泡断面の外側輪郭線上において相互の距離が最大となる任意の2点を選び、この2点間の距離を「気泡の長径」とした。また、この気泡の長径に対して直交する直線と気泡断面の外側輪郭線とが交わる任意の2点のうち相互の距離が最大となる任意の2点を選び、この2点間の距離を「気泡の短径」とした。平均気泡径が、50μm以上かつ300μm未満の気泡径の小気泡と300μm以上かつ2mm以下の気泡径の大気泡について、用紙上で個別気泡数を計数した。
上述と同様の要領で9個の発泡粒子及び発泡成形体をそれぞれ切断し、拡大写真を得、これらの拡大写真に基づいて上述と同様の要領で小気泡の個別気泡数と大気泡の個別気泡数を算出した。10個の個別気泡数の相加平均値を気泡数とした。
(Bubble number)
The number of bubbles in the foamed particles and foamed foam was measured in the following manner. First, an area of 11.9 mm 2 was photographed at a magnification of 30 using a scanning electron microscope (“SU1510” manufactured by Hitachi High-Technologies Corporation). Regarding the expanded particles, the center of the cross section substantially divided into two at the center of the expanded particles was photographed. The photographed image was printed on A4 paper, and the average bubble diameter was calculated for all the bubbles. The bubble diameter was obtained by measuring the major axis and the minor axis of the cell cross section and calculating the arithmetic mean of the minor axis and the major axis. Specifically, on the outer contour line of the bubble cross section, any two points at which the mutual distance is the largest were selected, and the distance between these two points was defined as "the major axis of the bubble". In addition, any two points where the mutual distance is the largest are selected from any two points where a straight line orthogonal to the long diameter of the bubble and the outer contour line of the bubble cross section are selected, and the distance between the two points is set to “ "Short diameter of bubble". The number of individual bubbles was counted on paper for small bubbles having an average bubble diameter of 50 μm or more and less than 300 μm and for large bubbles having a bubble diameter of 300 μm or more and 2 mm or less.
In the same manner as described above, the nine foamed particles and the foamed molded body are cut, respectively, to obtain enlarged photographs. Based on these enlarged photographs, the number of individual bubbles of small bubbles and the individual bubbles of large bubbles are determined in the same manner as described above. The number was calculated. The arithmetic average of the number of 10 individual bubbles was defined as the number of bubbles.
(大気泡と小気泡の平均気泡径)
大気泡の平均気泡径と小気泡の平均気泡径は、それぞれ以下の方法により測定した。
大気泡の平均気泡径は、発泡粒子については発泡粒子の中心部で略二分割した断面の中心部、成形品については任意の切断面を走査型電子顕微鏡(日立ハイテクノロジーズ社製「SU1510」)により30倍で11.9mm2の面積を撮影した。撮影した画像をA4用紙に印刷し、すべての大気泡において気泡径を算出した。なお、気泡径は、気泡断面の長径及び短径を測定し、短径と長径の相加平均値により得られた値とした。具体的には、気泡断面の外側輪郭線上において相互の距離が最大となる任意の2点を選び、この2点間の距離を「気泡の長径」とした。また、この気泡の長径に対して直交する直線と気泡断面の外側輪郭線とが交わる任意の2点のうち相互の距離が最大となる任意の2点を選び、この2点間の距離を「気泡の短径」とした。
上述と同様の要領で9個の発泡粒子及び発泡成形体をそれぞれ切断し、拡大写真を得、これらの拡大写真に基づいて上述と同様の要領で大気泡の平均気泡径を算出した。10枚の写真の大気泡の気泡径の相加平均値を平均気泡径とした。
小気泡の平均気泡径は、発泡粒子については中心部で略二分割した断面の中心部、成形品については任意の切断面を走査型電子顕微鏡(日立ハイテクノロジーズ社製「SU1510」)を用いて撮影した。
このとき、顕微鏡写真は、横向きのA4用紙1枚に縦横2画像(合計4画像)並んだ状態で印刷した際に所定の倍率となるように撮影した。具体的には、上記のように印刷した画像上に、タテ方向(画像の上下方向)、ヨコ方向(画像の左右方向)の各方向に平行する60mmの任意の直線を描いた際に、この任意の直線上に存在する気泡の数が10〜50個程度となるように電子顕微鏡での拡大倍率を調整した。2粒の発泡粒子の断面に対して、1視野ずつ合計2視野の顕微鏡写真を撮影し、上記のようにA4用紙に印刷した。
発泡粒子断面の2つの画像のそれぞれに、タテ方向及びヨコ方向に平行な3本の任意の直線(長さ60mm)を描き、任意の直線を各方向6本ずつ描いた。
なお、任意の直線は大気泡に接することなく、できる限り気泡が接点でのみ接しないようにし、接してしまう場合には、この気泡も数に加えた。タテ方向、ヨコ方向の各方向の6本の任意の直線について数えた気泡数を相加平均し、各方向の気泡数とした。
気泡数を数えた画像の倍率とこの気泡数から気泡の平均弦長(t)を次式により算出した。
平均弦長t(mm)=60/(気泡数×写真倍率)
画像の倍率は写真上のスケールバーをミツトヨ社製「デジマチックキャリパ」にて1/100mmまで計測し、次式により求めた。
画像倍率=スケールバー実測値(mm)/スケールバーの表示値(mm)
そして、次式により各方向における気泡径を算出した。
気泡径D(mm)=t/0.616
更に、それらの積の2乗根を小気泡の平均気泡径とした。
小気泡の平均気泡径(mm)=(Dタテ×Dヨコ)1/2
(Average bubble diameter of large and small bubbles)
The average cell diameter of the large cells and the average cell diameter of the small cells were measured by the following methods.
The average cell diameter of the large cells is determined by scanning a scanning electron microscope (“SU1510”, manufactured by Hitachi High-Technologies Corporation) at the center of the cross section of the foamed particles, which is roughly divided into two at the center of the expanded particles, and at an arbitrary cut surface for the molded product. An image of 11.9 mm 2 was photographed at a magnification of 30 times. The photographed image was printed on A4 paper, and the bubble diameter was calculated for all the large bubbles. The bubble diameter was obtained by measuring the major axis and the minor axis of the cell cross section and calculating the arithmetic mean of the minor axis and the major axis. Specifically, on the outer contour line of the bubble cross section, any two points at which the mutual distance is the largest were selected, and the distance between these two points was defined as "the major axis of the bubble". In addition, any two points where the mutual distance is the largest are selected from any two points where a straight line orthogonal to the long diameter of the bubble and the outer contour line of the bubble cross section are selected, and the distance between the two points is set to “ "Short diameter of bubble".
Nine expanded particles and the foamed molded article were cut in the same manner as described above, and enlarged photographs were obtained. Based on these enlarged photographs, the average cell diameter of large cells was calculated in the same manner as described above. The arithmetic mean value of the cell diameters of the large cells in the ten photographs was defined as the average cell diameter.
The average cell diameter of the small bubbles is determined by using a scanning electron microscope ("SU1510" manufactured by Hitachi High-Technologies Corporation) at the center of the cross section of the foamed particles at the center and at an arbitrary cut surface of the molded product. Taken.
At this time, the micrograph was taken so as to have a predetermined magnification when printed in a state where two images (a total of four images) were arranged side by side on one landscape A4 sheet. Specifically, when an arbitrary 60 mm straight line parallel to each of the vertical direction (the vertical direction of the image) and the horizontal direction (the horizontal direction of the image) is drawn on the image printed as described above, The magnification with an electron microscope was adjusted so that the number of bubbles existing on an arbitrary straight line was about 10 to 50. Micrographs of a total of two visual fields were taken for each cross-section of the two expanded particles, one for each visual field, and printed on A4 paper as described above.
Three arbitrary straight lines (length: 60 mm) parallel to the vertical and horizontal directions were drawn on each of the two images of the expanded particle cross section, and six arbitrary straight lines were drawn for each direction.
In addition, an arbitrary straight line did not contact large bubbles, and as much as possible, the bubbles were prevented from contacting only at the contact points. If they did, the bubbles were added to the number. The number of bubbles counted for six arbitrary straight lines in each of the vertical direction and the horizontal direction was arithmetically averaged to obtain the number of bubbles in each direction.
The average chord length (t) of the bubbles was calculated from the following formula from the magnification of the image in which the number of bubbles was counted and the number of bubbles.
Average chord length t (mm) = 60 / (number of bubbles x photo magnification)
The magnification of the image was obtained by measuring the scale bar on the photograph up to 1/100 mm using a “Digimatic caliper” manufactured by Mitutoyo Corporation, and calculating the following formula.
Image magnification = actual measured value of scale bar (mm) / display value of scale bar (mm)
And the bubble diameter in each direction was calculated by the following formula.
Bubble diameter D (mm) = t / 0.616
Further, the square root of the product was defined as the average cell diameter of the small cells.
Average bubble diameter of small bubbles (mm) = (D vertical x D horizontal) 1/2
(実施例1)
(樹脂粒子製造工程)
スチレン−メタクリル酸メチル−無水マレイン酸共重合体(商品名「DENKA RESISFY R-310」、デンカ社製、スチレン:62重量部、メタクリル酸メチル:12重量部、無水マレイン酸:26重量部、密度1.15g/cm3)100重量部を、時間当たり10kg/hrの割合で口径が40mmの単軸押出機に供給して270℃で溶融混練した。続いて、単軸押出機の先端部に装着したダイス(温度:285℃、入り口側樹脂圧:13MPa)のダイス孔(直径0.8mmのノズルが5個配置)から約70℃の冷却水を収容したチャンバー内に押出し、6枚の切断刃を有する回転刃の回転軸を5000rpmの回転数で回転させ、粒状に切断することで、前記冷却水で冷却させて脱水乾燥することで樹脂粒子を作製した。得られた樹脂粒子は、平均粒子径が1.2mmであった。
(Example 1)
(Resin particle manufacturing process)
Styrene-methyl methacrylate-maleic anhydride copolymer (trade name “DENKA RESISTY R-310”, manufactured by Denka Co., Ltd., styrene: 62 parts by weight, methyl methacrylate: 12 parts by weight, maleic anhydride: 26 parts by weight, density 1.15 g / cm 3 ) of 100 parts by weight was supplied at a rate of 10 kg / hr per hour to a single-screw extruder having a diameter of 40 mm and melt-kneaded at 270 ° C. Subsequently, cooling water of about 70 ° C. was supplied from a die hole (five nozzles having a diameter of 0.8 mm arranged) of a die (temperature: 285 ° C., resin pressure at the entrance side: 13 MPa) mounted on the tip of the single screw extruder. The resin particles are extruded into the housed chamber, and the rotary shaft of a rotary blade having six cutting blades is rotated at a rotation speed of 5000 rpm, cut into granules, cooled with the cooling water, and dehydrated and dried to obtain resin particles. Produced. The average particle diameter of the obtained resin particles was 1.2 mm.
(含浸工程)
上記樹脂粒子100重量部を圧力容器中に密閉し、圧力容器内を炭酸ガスで置換した後、炭酸ガスを、含浸圧(ゲージ圧)0.7MPaまで圧入した。20℃の環境下に静置し、含浸時間24時間が経過した後、5分間かけて圧力容器内をゆっくりと除圧した。このようにして、樹脂粒子に炭酸ガスを含浸させて、発泡性粒子を得た。
(発泡工程)
上記含浸工程における除圧の後直ぐに、圧力容器から発泡性粒子を取り出した後、エチレンビスステアリン酸アミド0.1重量部を添加し、混合した。その後、水蒸気を用いて、発泡温度143℃で50秒間撹拌しながら、高圧の発泡槽で、上記含浸物を水蒸気により発泡させた。発泡後に、気流乾燥機にて乾燥を行い、発泡粒子を得た。上述した方法により、得られた発泡粒子の嵩密度を測定したところ、102kg/m3(発泡倍率10倍)であった。
(成形工程)
得られた発泡粒子を1日間室温(23℃)に放置した後、圧力容器中に密閉し、圧力容器内を炭酸ガスで置換した後、炭酸ガスを、含浸圧(ゲージ圧)含浸圧0.5MPaまで圧入した。20℃の環境下に静置し、加圧養生を8時間実施した。取り出し後、30mm×300mm×400mmの成形用金型に充てんし、0.38MPaの水蒸気にて20秒間加熱を行い、次いで、発泡成形体の最高面圧が0.05MPaに低下するまで冷却することで、発泡成形体を得た。
(Impregnation step)
After 100 parts by weight of the resin particles were sealed in a pressure vessel and the inside of the pressure vessel was replaced with carbon dioxide gas, carbon dioxide gas was injected to an impregnation pressure (gauge pressure) of 0.7 MPa. It was left still in an environment of 20 ° C., and after 24 hours of impregnation, the pressure inside the pressure vessel was slowly released over 5 minutes. In this way, the resin particles were impregnated with carbon dioxide gas to obtain expandable particles.
(Foaming process)
Immediately after the pressure reduction in the impregnation step, the expandable particles were taken out of the pressure vessel, and then 0.1 parts by weight of ethylenebisstearic acid amide was added and mixed. Thereafter, the impregnated material was foamed with steam in a high-pressure foaming tank while stirring at a foaming temperature of 143 ° C. for 50 seconds using steam. After foaming, drying was performed with a flash dryer to obtain foamed particles. When the bulk density of the obtained expanded particles was measured by the method described above, it was 102 kg / m 3 (expansion ratio: 10 times).
(Molding process)
The obtained foamed particles were allowed to stand at room temperature (23 ° C.) for one day, then sealed in a pressure vessel, and the inside of the pressure vessel was replaced with carbon dioxide gas. It was press-fitted to 5 MPa. It was left still in an environment of 20 ° C., and pressure curing was performed for 8 hours. After taking out, filling a molding die of 30 mm x 300 mm x 400 mm, heating with steam of 0.38 MPa for 20 seconds, and then cooling until the maximum surface pressure of the foamed molded product is reduced to 0.05 MPa. Thus, a foam molded article was obtained.
(実施例2)
(発泡工程)において、エチレンビスステアリン酸アミドを0.15重量部添加したことと、発泡温度143℃で55秒間撹拌しながら発泡させたこと以外は実施例1と同様にして、発泡密度74kg/m3(発泡倍率15倍)の発泡粒子、発泡成形体を得た。
上記実施例1及び2の発泡粒子及び発泡成形体の物性を表1に示す。
また、実施例1及び2の発泡粒子及び発泡成形体の断面写真を図1に示す。
(Example 2)
In the (foaming step), a foaming density of 74 kg / cm 2 was obtained in the same manner as in Example 1 except that 0.15 parts by weight of ethylenebisstearic acid amide was added and foaming was carried out with stirring at a foaming temperature of 143 ° C. for 55 seconds. As a result, foamed particles having a m 3 (expansion ratio of 15 times) and a foamed molded article were obtained.
Table 1 shows the physical properties of the foamed particles and foamed molded products of Examples 1 and 2 described above.
FIG. 1 shows cross-sectional photographs of the expanded particles and the expanded molded articles of Examples 1 and 2.
表1から、特定の範囲の気泡を有する発泡粒子から得られた発泡成形体は、優れた機械的物性を有していることが分かる。 From Table 1, it can be seen that the foamed molded article obtained from the foamed particles having a specific range of cells has excellent mechanical properties.
(実施例3)
(樹脂粒子製造工程)
スチレン−メタクリル酸メチル−無水マレイン酸共重合体(商品名「DENKA RESISFY R-200」、デンカ社製、スチレン:55重量部、メタクリル酸メチル:26重量部、無水マレイン酸:19重量部、密度1.16g/cm3)100重量部を、時間当たり10kg/hrの割合で口径が40mmの単軸押出機に供給して260℃で溶融混練した。続いて、単軸押出機の先端部に装着したダイス(温度:280℃、入り口側樹脂圧:14MPa)のダイス孔(直径0.8mmのノズルが5個配置)から約70℃の冷却水を収容したチャンバー内に押出し、6枚の切断刃を有する回転刃の回転軸を5000rpmの回転数で回転させ、粒状に切断することで、前記冷却水で冷却させて脱水乾燥することで樹脂粒子を作製した。得られた樹脂粒子は、平均粒子径が1.2mmであった。
(Example 3)
(Resin particle manufacturing process)
Styrene-methyl methacrylate-maleic anhydride copolymer (trade name “DENKA RESISTY R-200”, manufactured by Denka Co., Ltd., styrene: 55 parts by weight, methyl methacrylate: 26 parts by weight, maleic anhydride: 19 parts by weight, density 1.16 g / cm 3 ) of 100 parts by weight was supplied at a rate of 10 kg / hr per hour to a single-screw extruder having a diameter of 40 mm and melt-kneaded at 260 ° C. Subsequently, cooling water of about 70 ° C. was supplied from a die hole (five nozzles having a diameter of 0.8 mm) of a die (temperature: 280 ° C., resin pressure at the entrance side: 14 MPa) mounted on the tip of the single screw extruder. The resin particles are extruded into the housed chamber, and the rotary shaft of a rotary blade having six cutting blades is rotated at a rotation speed of 5000 rpm, cut into granules, cooled with the cooling water, and dehydrated and dried to obtain resin particles. Produced. The average particle diameter of the obtained resin particles was 1.2 mm.
(含浸工程)
上記樹脂粒子100重量部を圧力容器中に密閉し、圧力容器内を炭酸ガスで置換した後、炭酸ガスを、含浸圧(ゲージ圧)0.7MPaまで圧入した。20℃の環境下に静置し、含浸時間24時間が経過した後、5分間かけて圧力容器内をゆっくりと除圧した。このようにして、樹脂粒子に炭酸ガスを含浸させて、発泡性粒子を得た。
(発泡工程)
上記含浸工程における除圧の後直ぐに、圧力容器から発泡性粒子を取り出した後、エチレンビスステアリン酸アミドを0.1重量部添加し、混合した。その後、水蒸気を用いて、発泡温度131℃で50秒間撹拌しながら、高圧の発泡槽で、上記含浸物を水蒸気により発泡させた。発泡後に、気流乾燥機にて乾燥を行い、発泡粒子を得た。上述した方法により、得られた発泡粒子の嵩密度を測定したところ、105kg/m3(発泡倍率10倍)であった。
(成形工程)
得られた発泡粒子を1日間室温(23℃)に放置した後、圧力容器中に密閉し、圧力容器内を炭酸ガスで置換した後、炭酸ガスを、含浸圧(ゲージ圧)含浸圧0.5MPaまで圧入した。20℃の環境下に静置し、加圧養生を8時間実施した。取り出し後、30mm×300mm×400mmの成形用金型に充てんし、0.30MPaの水蒸気にて20秒間加熱を行い、次いで、発泡成形体の最高面圧が0.05MPaに低下するまで冷却することで、発泡成形体を得た。
上記実施例3の発泡粒子及び発泡成形体の物性を表2に示す。
また、実施例3の発泡粒子及び発泡成形体の断面写真を図2に示す。
(Impregnation step)
After 100 parts by weight of the resin particles were sealed in a pressure vessel and the inside of the pressure vessel was replaced with carbon dioxide gas, carbon dioxide gas was injected to an impregnation pressure (gauge pressure) of 0.7 MPa. It was left still in an environment of 20 ° C., and after 24 hours of impregnation, the pressure inside the pressure vessel was slowly released over 5 minutes. In this way, the resin particles were impregnated with carbon dioxide gas to obtain expandable particles.
(Foaming process)
Immediately after the pressure reduction in the impregnation step, the expandable particles were taken out of the pressure vessel, and then 0.1 parts by weight of ethylenebisstearic acid amide was added and mixed. Thereafter, the impregnated material was foamed with steam in a high-pressure foaming tank while stirring at a foaming temperature of 131 ° C. for 50 seconds using steam. After foaming, drying was performed with a flash dryer to obtain foamed particles. When the bulk density of the obtained expanded particles was measured by the method described above, it was 105 kg / m 3 (expansion ratio: 10 times).
(Molding process)
The obtained foamed particles were allowed to stand at room temperature (23 ° C.) for one day, then sealed in a pressure vessel, and the inside of the pressure vessel was replaced with carbon dioxide gas. It was press-fitted to 5 MPa. It was left still in an environment of 20 ° C., and pressure curing was performed for 8 hours. After taking out, filling a molding die of 30 mm × 300 mm × 400 mm, heating with steam of 0.30 MPa for 20 seconds, and then cooling until the maximum surface pressure of the foamed molded product is reduced to 0.05 MPa. Thus, a foam molded article was obtained.
Table 2 shows the physical properties of the foamed particles and the foamed molded product of Example 3 described above.
FIG. 2 shows a cross-sectional photograph of the expanded particles and the expanded molded article of Example 3.
表2から、特定の範囲の気泡を有する発泡粒子から得られた発泡成形体は、優れた機械的物性を有していることが分かる。 From Table 2, it can be seen that the foamed molded article obtained from the foamed particles having the cells in the specific range has excellent mechanical properties.
(実施例4)
(樹脂粒子製造工程)
スチレン−メタクリル酸メチル−無水マレイン酸共重合体(商品名「DENKA RESISFY R-310」、デンカ社製、スチレン:62重量部、メタクリル酸メチル:12重量部、無水マレイン酸:26重量部、密度1.15g/cm3)100重量部を85重量部とし、残りの15重量部をスチレン−無水マレイン酸−N−フェニルマレイミド共重合体(商品名「DENKA IP MS−NIP」、デンカ社製、スチレン:58重量部、無水マレイン酸:4重量部、N−フェニルマレイミド:38重量部、密度1.18g/cm3、ガラス転移温度Tg186℃)とした100重量部を、時間当たり10kg/hrの割合で口径が40mmの単軸押出機に供給して270℃で溶融混練した。続いて、単軸押出機の先端部に装着したダイス(温度:285℃、入り口側樹脂圧:14MPa)のダイス孔(直径0.8mmのノズルが5個配置)から約70℃の冷却水を収容したチャンバー内に押出し、6枚の切断刃を有する回転刃の回転軸を5000rpmの回転数で回転させ、粒状に切断することで、前記冷却水で冷却させて脱水乾燥することで樹脂粒子を作製した。得られた樹脂粒子は、平均粒子径が1.2mmであった。
(Example 4)
(Resin particle manufacturing process)
Styrene-methyl methacrylate-maleic anhydride copolymer (trade name “DENKA RESISTY R-310”, manufactured by Denka Co., Ltd., styrene: 62 parts by weight, methyl methacrylate: 12 parts by weight, maleic anhydride: 26 parts by weight, density 1.15 g / cm 3 ) 100 parts by weight was 85 parts by weight, and the remaining 15 parts by weight was a styrene-maleic anhydride-N-phenylmaleimide copolymer (trade name “DENKA IP MS-NIP”, manufactured by Denka Co., Ltd.) Styrene: 58 parts by weight, maleic anhydride: 4 parts by weight, N-phenylmaleimide: 38 parts by weight, density 1.18 g / cm 3 , glass transition temperature Tg 186 ° C.) The mixture was supplied to a single-screw extruder having a diameter of 40 mm at a ratio and melt-kneaded at 270 ° C. Subsequently, cooling water of about 70 ° C. was supplied from a die hole (five nozzles having a diameter of 0.8 mm arranged) of a die (temperature: 285 ° C., resin pressure at the inlet side: 14 MPa) mounted on the tip of the single screw extruder. The resin particles are extruded into the housed chamber, and the rotary shaft of a rotary blade having six cutting blades is rotated at a rotation speed of 5000 rpm, cut into granules, cooled with the cooling water, and dehydrated and dried to obtain resin particles. Produced. The average particle diameter of the obtained resin particles was 1.2 mm.
(含浸工程)
上記樹脂粒子100重量部を圧力容器中に密閉し、圧力容器内を炭酸ガスで置換した後、炭酸ガスを、含浸圧(ゲージ圧)0.7MPaまで圧入した。20℃の環境下に静置し、含浸時間24時間が経過した後、5分間かけて圧力容器内をゆっくりと除圧した。このようにして、樹脂粒子に炭酸ガスを含浸させて、発泡性粒子を得た。
(発泡工程)
上記含浸工程における除圧の後直ぐに、圧力容器から発泡性粒子を取り出した後、エチレンビスステアリン酸アミド0.1重量部を添加し、混合した。その後、水蒸気を用いて、発泡温度145℃で80秒間撹拌しながら、高圧の発泡槽で、上記含浸物を水蒸気により発泡させた。発泡後に、気流乾燥機にて乾燥を行い、発泡粒子を得た。上述した方法により、得られた発泡粒子の嵩密度を測定したところ、104kg/m3(発泡倍率10倍)であった。
(成形工程)
得られた発泡粒子を1日間室温(23℃)に放置した後、圧力容器中に密閉し、圧力容器内を炭酸ガスで置換した後、炭酸ガスを、含浸圧(ゲージ圧)含浸圧0.5MPaまで圧入した。20℃の環境下に静置し、加圧養生を8時間実施した。取り出し後、30mm×300mm×400mmの成形用金型に充てんし、0.45MPaの水蒸気にて20秒間加熱を行い、次いで、発泡成形体の最高面圧が0.05MPaに低下するまで冷却することで、発泡成形体を得た。
(Impregnation step)
After 100 parts by weight of the resin particles were sealed in a pressure vessel and the inside of the pressure vessel was replaced with carbon dioxide gas, carbon dioxide gas was injected to an impregnation pressure (gauge pressure) of 0.7 MPa. It was left still in an environment of 20 ° C., and after 24 hours of impregnation, the pressure inside the pressure vessel was slowly released over 5 minutes. In this way, the resin particles were impregnated with carbon dioxide gas to obtain expandable particles.
(Foaming process)
Immediately after the pressure reduction in the impregnation step, the expandable particles were taken out of the pressure vessel, and then 0.1 parts by weight of ethylenebisstearic acid amide was added and mixed. Thereafter, the impregnated material was foamed with steam in a high-pressure foaming tank while stirring at a foaming temperature of 145 ° C. for 80 seconds using steam. After foaming, drying was performed with a flash dryer to obtain foamed particles. When the bulk density of the obtained expanded particles was measured by the method described above, it was 104 kg / m 3 (expansion ratio: 10 times).
(Molding process)
The obtained foamed particles were allowed to stand at room temperature (23 ° C.) for one day, then sealed in a pressure vessel, and the inside of the pressure vessel was replaced with carbon dioxide gas. It was press-fitted to 5 MPa. It was left still in an environment of 20 ° C., and pressure curing was performed for 8 hours. After taking out, filling in a molding die of 30 mm x 300 mm x 400 mm, heating with 0.45 MPa steam for 20 seconds, and then cooling until the maximum surface pressure of the foamed molded product is reduced to 0.05 MPa. Thus, a foam molded article was obtained.
(実施例5)
(発泡工程)において、エチレンビスステアリン酸アミドを0.15重量部添加したことと、発泡温度145℃で90秒間撹拌しながら発泡させたこと以外は実施例6と同様にして、発泡密度72kg/m3(発泡倍率15倍)の発泡粒子、発泡成形体を得た。
上記実施例4〜5の発泡粒子及び発泡成形体の物性を表3に示す。
また、実施例4〜5の発泡粒子及び発泡成形体の断面写真を図3に示す。
(Example 5)
In the (foaming step), a foaming density of 72 kg / kg was obtained in the same manner as in Example 6, except that 0.15 parts by weight of ethylenebisstearic acid amide was added and foaming was performed with stirring at a foaming temperature of 145 ° C. for 90 seconds. As a result, foamed particles having a m 3 (expansion ratio of 15 times) and a foamed molded article were obtained.
Table 3 shows the physical properties of the foamed particles and foamed molded products of Examples 4 and 5 above.
FIG. 3 shows cross-sectional photographs of the foamed particles and the foamed molded products of Examples 4 and 5.
表3から、特定の範囲の気泡を有する発泡粒子から得られた発泡成形体は、優れた機械的物性を有していることが分かる。 From Table 3, it can be seen that the foamed molded product obtained from the foamed particles having the cells in the specific range has excellent mechanical properties.
(比較例1)
(発泡工程)において、エチレンビスステアリン酸アミドを0.15重量部添加したことと、発泡温度143℃で60秒間撹拌しながら発泡させたこと以外は実施例1と同様にして、発泡密度61kg/m3(発泡倍率20倍)の発泡粒子、発泡成形体を得た。
(Comparative Example 1)
In the (foaming step), a foaming density of 61 kg / kg was obtained in the same manner as in Example 1 except that 0.15 parts by weight of ethylenebisstearic acid amide was added, and foaming was performed with stirring at a foaming temperature of 143 ° C. for 60 seconds. m 3 (expansion ratio 20 times) expanded particles and expanded molded articles were obtained.
(比較例2)
(発泡工程)において、エチレンビスステアリン酸アミドを0.15重量部添加したことと、発泡温度131℃で70秒間撹拌しながら発泡させたこと以外は実施例3と同様にして、発泡密度52kg/m3(発泡倍率20倍)の発泡粒子、発泡成形体を得た。
(Comparative Example 2)
In the (foaming step), a foaming density of 52 kg / kg was obtained in the same manner as in Example 3 except that 0.15 parts by weight of ethylenebisstearic acid amide was added, and foaming was performed with stirring at a foaming temperature of 131 ° C. for 70 seconds. m 3 (expansion ratio 20 times) expanded particles and expanded molded articles were obtained.
(比較例3)
(発泡工程)において、エチレンビスステアリン酸アミドを0.15重量部添加したことと、発泡温度145℃で100秒間撹拌しながら発泡させたこと以外は実施例4と同様にして、発泡密度47kg/m3(発泡倍率20倍)の発泡粒子、発泡成形体を得た。
(Comparative Example 3)
In the (foaming step), a foaming density of 47 kg / kg was obtained in the same manner as in Example 4 except that 0.15 parts by weight of ethylenebisstearic acid amide was added and foaming was performed with stirring at a foaming temperature of 145 ° C. for 100 seconds. m 3 (expansion ratio 20 times) expanded particles and expanded molded articles were obtained.
(比較例4)
(樹脂粒子製造工程)
スチレン−メタクリル酸メチル−無水マレイン酸共重合体(商品名「DENKA RESISFY KX-406」、電気化学工業社製、スチレン:70重量部、メタクリル酸メチル:9重量部、無水マレイン酸:21重量部、密度1.15g/cm3)100重量部、及びタルクを含む樹脂組成物1重量部を口径が30mmの二軸押出機に供給して254℃で溶融混練した。続いて、二軸押出機の前端に取り付けたマルチノズル金型〔円状に、直径1.0mmのノズルが20個、配置されたもの〕の各ノズルから樹脂組成物を押出した。押出した樹脂を、直ちに冷却水槽で冷却した。そして、冷却されたストランド状の樹脂を十分に水切りしたのち、ペレタイザーを用いて小粒状に切断して樹脂粒子を製造した。得られた樹脂粒子は、粒子の長さLが1.3〜1.8mmで、粒子の径Dが1.0〜1.2mmであった。
(Comparative Example 4)
(Resin particle manufacturing process)
Styrene-methyl methacrylate-maleic anhydride copolymer (trade name “DENKA RESISTY KX-406”, manufactured by Denki Kagaku Kogyo KK), styrene: 70 parts by weight, methyl methacrylate: 9 parts by weight, maleic anhydride: 21 parts by weight , A density of 1.15 g / cm 3 ) and 100 parts by weight of talc-containing resin composition were fed to a twin screw extruder having a diameter of 30 mm and melt-kneaded at 254 ° C. Subsequently, the resin composition was extruded from each nozzle of a multi-nozzle mold (20 nozzles each having a diameter of 1.0 mm and arranged in a circle) attached to the front end of the twin-screw extruder. The extruded resin was immediately cooled in a cooling water bath. Then, the cooled strand-shaped resin was sufficiently drained, and cut into small particles using a pelletizer to produce resin particles. The obtained resin particles had a particle length L of 1.3 to 1.8 mm and a particle diameter D of 1.0 to 1.2 mm.
(含浸工程)
上記樹脂粒子100重量部を圧力容器中に密閉し、圧力容器内を炭酸ガスで置換した後、炭酸ガスを、含浸圧1.0MPaまで圧入した。20℃の環境下に静置し、含浸時間24時間が経過した後、5分間かけて圧力容器内をゆっくりと除圧した。このようにして、樹脂粒子に炭酸ガスを含浸させて、発泡性粒子を得た。
(発泡工程)
上記含浸工程における除圧の後直ぐに、圧力容器から発泡性粒子を取り出した後、炭酸カルシウム0.08重量部を添加し、混合した。その後、水蒸気を用いて、発泡温度136℃で150秒撹拌しながら、高圧の発泡槽で、上記含浸物を水蒸気により発泡させた。発泡後に、高圧の発泡槽から粒子を取り出して、塩化水素水溶液で炭酸カルシウムを除去した後に、気流乾燥機にて乾燥を行い、発泡粒子を得た。上述した方法により、得られた発泡粒子の嵩密度を測定したところ、104kg/m3であった。発泡粒子の断面写真を確認したところ、大気泡は存在していなかった。
(Impregnation step)
After 100 parts by weight of the resin particles were sealed in a pressure vessel and the inside of the pressure vessel was replaced with carbon dioxide gas, carbon dioxide gas was injected to an impregnation pressure of 1.0 MPa. It was left still in an environment of 20 ° C., and after 24 hours of impregnation, the pressure inside the pressure vessel was slowly released over 5 minutes. In this way, the resin particles were impregnated with carbon dioxide gas to obtain expandable particles.
(Foaming process)
Immediately after the pressure reduction in the impregnation step, the expandable particles were taken out of the pressure vessel, and 0.08 parts by weight of calcium carbonate was added and mixed. Thereafter, the impregnated material was foamed with steam in a high-pressure foaming tank while stirring at a foaming temperature of 136 ° C. for 150 seconds using steam. After foaming, the particles were taken out of the high-pressure foaming tank, and after removing calcium carbonate with a hydrogen chloride aqueous solution, drying was performed with a flash dryer to obtain foamed particles. When the bulk density of the obtained expanded particles was measured by the method described above, it was 104 kg / m 3 . When a cross-sectional photograph of the expanded particles was confirmed, no large bubbles were present.
(成形工程)
得られた発泡粒子を1日間室温(23℃)に放置した後、圧力容器中に密閉し、圧力容器内を炭酸ガスで置換した後、炭酸ガスを、含浸圧(ゲージ圧)0.4MPaまで圧入した。20℃の環境下に静置し、加圧養生を8時間実施した。取り出し後、30mm×300mm×400mmの成形用金型に充てんし、0.42MPaの水蒸気にて60秒間加熱を行い、次いで、発泡成形体の最高面圧が0.01MPaに低下するまで冷却することで、発泡成形体を得た。
上記比較例1〜4の発泡粒子及び発泡成形体の物性を表4に示す。
また、比較例1〜3の発泡粒子及び発泡成形体の断面写真を図4に示す。
(Molding process)
After leaving the obtained foamed particles at room temperature (23 ° C.) for one day, they are sealed in a pressure vessel, and the inside of the pressure vessel is replaced with carbon dioxide gas. Then, the carbon dioxide gas is impregnated (gauge pressure) to 0.4 MPa. Pressed. It was left still in an environment of 20 ° C., and pressure curing was performed for 8 hours. After taking out, filling in a molding die of 30 mm x 300 mm x 400 mm, heating with 0.42 MPa steam for 60 seconds, and then cooling until the maximum surface pressure of the foamed molded product is reduced to 0.01 MPa. Thus, a foam molded article was obtained.
Table 4 shows the physical properties of the foamed particles and foamed molded products of Comparative Examples 1 to 4.
FIG. 4 shows cross-sectional photographs of the foamed particles and the foamed molded products of Comparative Examples 1 to 3.
Claims (9)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018182437A JP2020050786A (en) | 2018-09-27 | 2018-09-27 | Foam particle, foam molded body, fiber reinforced composite, and automobile component |
PCT/JP2019/008696 WO2019188052A1 (en) | 2018-03-30 | 2019-03-05 | Foam particles, foam molded article, fiber-reinforced composite article and automobile parts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018182437A JP2020050786A (en) | 2018-09-27 | 2018-09-27 | Foam particle, foam molded body, fiber reinforced composite, and automobile component |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2020050786A true JP2020050786A (en) | 2020-04-02 |
Family
ID=69995903
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018182437A Pending JP2020050786A (en) | 2018-03-30 | 2018-09-27 | Foam particle, foam molded body, fiber reinforced composite, and automobile component |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2020050786A (en) |
-
2018
- 2018-09-27 JP JP2018182437A patent/JP2020050786A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6043677B2 (en) | Thermoplastic polyester resin extruded foam sheet, molded product using the same, method for producing thermoplastic polyester resin extruded foam sheet, and fiber reinforced composite | |
WO2018061263A1 (en) | Expanded beads, molded foam, fiber-reinforced composite, and automotive component | |
JP6161563B2 (en) | Fiber reinforced composite | |
JP2017043011A (en) | Method for producing fiber-reinforced composite foam and foamed thermoplastic resin particles usable in the method | |
WO2019189635A1 (en) | Expanded beads, molded foam, fiber-reinforced composite, and automotive component | |
JP2019044105A (en) | Foamed particles, foamed molded product, fiber reinforced composite, method for producing the same, and automotive parts | |
JP6395896B2 (en) | Foamed particles for in-mold foam molding, in-mold foam molded body and fiber reinforced composite | |
JP6244265B2 (en) | Method for producing fiber reinforced composite and fiber reinforced composite | |
JP2020033484A (en) | Expanded particles, expanded molded articles, fiber reinforced composites and automotive parts | |
JP6200861B2 (en) | Resin foam for forming composite and method for producing fiber-reinforced composite | |
JP6050730B2 (en) | In-mold foam molded article, fiber reinforced composite, and method for producing in-mold foam molded article | |
JP6484206B2 (en) | Foamed particles, foamed molded products, fiber reinforced composites, and automotive parts | |
JP6668433B1 (en) | Expanded particles, expanded molded article, method for producing the same, and fiber-reinforced composite | |
JP2020050786A (en) | Foam particle, foam molded body, fiber reinforced composite, and automobile component | |
JP6449953B1 (en) | Foamed particles and foamed moldings for the production of fiber reinforced composites, fiber reinforced composites and automotive parts | |
JP2020050785A (en) | Expanded particles, expanded molded articles, fiber reinforced composites and automotive parts | |
WO2019188052A1 (en) | Foam particles, foam molded article, fiber-reinforced composite article and automobile parts | |
JP2019183099A (en) | Foam particle, foam molded body, fiber reinforced composite and automobile component | |
JP2019183093A (en) | Foam particle, foam molded body, fiber reinforced composite and automobile component | |
JP2015105334A (en) | Method for manufacturing fiber-reinforced composite, fiber-reinforced composite, and member for configuration of transportation equipment | |
JP7262273B2 (en) | Foamed particles and foamed moldings | |
JP2019001980A (en) | Aromatic vinyl resin composition for producing expanded particles and use thereof | |
JP2019001981A (en) | Polylactic acid resin composition for the production of foamed particle and use therefor | |
JP7262266B2 (en) | Foamed particles and foamed moldings | |
JP7058315B2 (en) | Fiber complex and its manufacturing method |