JP2020034858A - Display panel, image display device, and method for selecting ultraviolet absorption layer for display panel - Google Patents
Display panel, image display device, and method for selecting ultraviolet absorption layer for display panel Download PDFInfo
- Publication number
- JP2020034858A JP2020034858A JP2018163311A JP2018163311A JP2020034858A JP 2020034858 A JP2020034858 A JP 2020034858A JP 2018163311 A JP2018163311 A JP 2018163311A JP 2018163311 A JP2018163311 A JP 2018163311A JP 2020034858 A JP2020034858 A JP 2020034858A
- Authority
- JP
- Japan
- Prior art keywords
- polarized light
- layer
- retardation
- linearly polarized
- wavelength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 22
- 238000010521 absorption reaction Methods 0.000 title abstract description 26
- 230000003595 spectral effect Effects 0.000 claims abstract description 75
- 230000005540 biological transmission Effects 0.000 claims abstract description 70
- 238000000411 transmission spectrum Methods 0.000 claims abstract description 68
- 150000001875 compounds Chemical class 0.000 claims description 84
- 239000004973 liquid crystal related substance Substances 0.000 claims description 75
- 229920005989 resin Polymers 0.000 claims description 39
- 239000011347 resin Substances 0.000 claims description 39
- 238000002834 transmittance Methods 0.000 claims description 22
- 230000014509 gene expression Effects 0.000 claims description 15
- 230000007423 decrease Effects 0.000 claims description 10
- 238000000862 absorption spectrum Methods 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 6
- 239000006096 absorbing agent Substances 0.000 claims description 5
- 238000001782 photodegradation Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 263
- 239000010408 film Substances 0.000 description 79
- 239000012071 phase Substances 0.000 description 39
- 239000000203 mixture Substances 0.000 description 26
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 18
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 18
- 229920000642 polymer Polymers 0.000 description 18
- 239000000758 substrate Substances 0.000 description 18
- -1 tungsten halogen Chemical class 0.000 description 18
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 17
- 239000012790 adhesive layer Substances 0.000 description 15
- 239000006185 dispersion Substances 0.000 description 15
- 238000005259 measurement Methods 0.000 description 13
- 239000011248 coating agent Substances 0.000 description 11
- 238000000576 coating method Methods 0.000 description 11
- 230000006866 deterioration Effects 0.000 description 11
- 230000002441 reversible effect Effects 0.000 description 11
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 9
- 230000015556 catabolic process Effects 0.000 description 9
- 238000006731 degradation reaction Methods 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- 239000004094 surface-active agent Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 238000001035 drying Methods 0.000 description 7
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 6
- 230000002745 absorbent Effects 0.000 description 6
- 239000002250 absorbent Substances 0.000 description 6
- 229910052805 deuterium Inorganic materials 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000003999 initiator Substances 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 230000010287 polarization Effects 0.000 description 6
- 230000002123 temporal effect Effects 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 5
- 229910052736 halogen Inorganic materials 0.000 description 5
- 229910052721 tungsten Inorganic materials 0.000 description 5
- 239000010937 tungsten Substances 0.000 description 5
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 4
- 238000010030 laminating Methods 0.000 description 4
- 239000011254 layer-forming composition Substances 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 239000011342 resin composition Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000012964 benzotriazole Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229920000058 polyacrylate Polymers 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 239000003505 polymerization initiator Substances 0.000 description 3
- VVBLNCFGVYUYGU-UHFFFAOYSA-N 4,4'-Bis(dimethylamino)benzophenone Chemical compound C1=CC(N(C)C)=CC=C1C(=O)C1=CC=C(N(C)C)C=C1 VVBLNCFGVYUYGU-UHFFFAOYSA-N 0.000 description 2
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- 229920002799 BoPET Polymers 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 2
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- HVVWZTWDBSEWIH-UHFFFAOYSA-N [2-(hydroxymethyl)-3-prop-2-enoyloxy-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(CO)(COC(=O)C=C)COC(=O)C=C HVVWZTWDBSEWIH-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- ISAOCJYIOMOJEB-UHFFFAOYSA-N benzoin Chemical compound C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 2
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 2
- 239000012965 benzophenone Substances 0.000 description 2
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 230000006735 deficit Effects 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 125000005647 linker group Chemical group 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000010187 selection method Methods 0.000 description 2
- ODIGIKRIUKFKHP-UHFFFAOYSA-N (n-propan-2-yloxycarbonylanilino) acetate Chemical compound CC(C)OC(=O)N(OC(C)=O)C1=CC=CC=C1 ODIGIKRIUKFKHP-UHFFFAOYSA-N 0.000 description 1
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 1
- AUXIEQKHXAYAHG-UHFFFAOYSA-N 1-phenylcyclohexane-1-carbonitrile Chemical class C=1C=CC=CC=1C1(C#N)CCCCC1 AUXIEQKHXAYAHG-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- UHFFVFAKEGKNAQ-UHFFFAOYSA-N 2-benzyl-2-(dimethylamino)-1-(4-morpholin-4-ylphenyl)butan-1-one Chemical compound C=1C=C(N2CCOCC2)C=CC=1C(=O)C(CC)(N(C)C)CC1=CC=CC=C1 UHFFVFAKEGKNAQ-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- CBECDWUDYQOTSW-UHFFFAOYSA-N 2-ethylbut-3-enal Chemical compound CCC(C=C)C=O CBECDWUDYQOTSW-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- WLNDDIWESXCXHM-UHFFFAOYSA-N 2-phenyl-1,4-dioxane Chemical compound C1OCCOC1C1=CC=CC=C1 WLNDDIWESXCXHM-UHFFFAOYSA-N 0.000 description 1
- OXPDQFOKSZYEMJ-UHFFFAOYSA-N 2-phenylpyrimidine Chemical class C1=CC=CC=C1C1=NC=CC=N1 OXPDQFOKSZYEMJ-UHFFFAOYSA-N 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 239000004985 Discotic Liquid Crystal Substance Substances 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 239000004988 Nematic liquid crystal Substances 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 244000028419 Styrax benzoin Species 0.000 description 1
- 235000000126 Styrax benzoin Nutrition 0.000 description 1
- 235000008411 Sumatra benzointree Nutrition 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- KYIKRXIYLAGAKQ-UHFFFAOYSA-N abcn Chemical compound C1CCCCC1(C#N)N=NC1(C#N)CCCCC1 KYIKRXIYLAGAKQ-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 229920001893 acrylonitrile styrene Polymers 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 125000005337 azoxy group Chemical group [N+]([O-])(=N*)* 0.000 description 1
- 125000005605 benzo group Chemical group 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid group Chemical group C(C1=CC=CC=C1)(=O)O WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- CHIHQLCVLOXUJW-UHFFFAOYSA-N benzoic anhydride Chemical compound C=1C=CC=CC=1C(=O)OC(=O)C1=CC=CC=C1 CHIHQLCVLOXUJW-UHFFFAOYSA-N 0.000 description 1
- 229960002130 benzoin Drugs 0.000 description 1
- JRXXLCKWQFKACW-UHFFFAOYSA-N biphenylacetylene Chemical compound C1=CC=CC=C1C#CC1=CC=CC=C1 JRXXLCKWQFKACW-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229940125904 compound 1 Drugs 0.000 description 1
- 229940125782 compound 2 Drugs 0.000 description 1
- 229940126214 compound 3 Drugs 0.000 description 1
- 229940125898 compound 5 Drugs 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 125000004802 cyanophenyl group Chemical group 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000019382 gum benzoic Nutrition 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-M hexanoate Chemical compound CCCCCC([O-])=O FUZZWVXGSFPDMH-UHFFFAOYSA-M 0.000 description 1
- 230000005525 hole transport Effects 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- JTHNLKXLWOXOQK-UHFFFAOYSA-N n-propyl vinyl ketone Natural products CCCC(=O)C=C JTHNLKXLWOXOQK-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000012788 optical film Substances 0.000 description 1
- OPYYWWIJPHKUDZ-UHFFFAOYSA-N phenyl cyclohexanecarboxylate Chemical class C1CCCCC1C(=O)OC1=CC=CC=C1 OPYYWWIJPHKUDZ-UHFFFAOYSA-N 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- SCUZVMOVTVSBLE-UHFFFAOYSA-N prop-2-enenitrile;styrene Chemical compound C=CC#N.C=CC1=CC=CC=C1 SCUZVMOVTVSBLE-UHFFFAOYSA-N 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- YRHRIQCWCFGUEQ-UHFFFAOYSA-N thioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3SC2=C1 YRHRIQCWCFGUEQ-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Landscapes
- Optical Filters (AREA)
- Polarising Elements (AREA)
- Electroluminescent Light Sources (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
Description
本発明は、表示パネル、画像表示装置及び表示パネルの紫外線吸収層の選別方法に関する。 The present invention relates to a display panel, an image display device, and a method for selecting an ultraviolet absorbing layer of a display panel.
画像表示装置等に適用される光学フィルムとして、入射した光に所望の位相差を付与する位相差フィルムがある。例えば有機エレクトロルミネッセンス(有機EL)表示装置では、λ/4位相差フィルムと直線偏光板とを組み合わせてなる円偏光板を、外光反射防止のために用いている。また、IPSモード等の液晶表示装置では、斜め方向からの視野に対するコントラストを高めるために、ポジティブAプレートとポジティブCプレートとが組み合わされた位相差フィルムが光学補償フィルムの一部として用いられている。 As an optical film applied to an image display device or the like, there is a retardation film that imparts a desired retardation to incident light. For example, in an organic electroluminescence (organic EL) display device, a circularly polarizing plate formed by combining a λ / 4 retardation film and a linearly polarizing plate is used to prevent external light reflection. Further, in a liquid crystal display device of an IPS mode or the like, a retardation film in which a positive A plate and a positive C plate are combined is used as a part of an optical compensation film in order to increase a contrast in a field of view from an oblique direction. .
しかし、汎用的な位相差フィルムは、長波長で測定した位相差が短波長で測定した位相差より小さくなるという位相差の波長依存性(位相差の正分散性)を有するため、純粋な黒表示ができず、青紫がかった色となり、画像表示装置の表示品質が低下するという問題がある。 However, general-purpose retardation films have a wavelength dependence of retardation (positive dispersion of retardation) such that the retardation measured at a long wavelength is smaller than the retardation measured at a short wavelength. There is a problem that the image cannot be displayed and the color becomes bluish purple, and the display quality of the image display device is reduced.
上記の問題を解決する手法として、例えば、λ/4位相差フィルムとλ/2位相差フィルムとを積層する方法が提案されている。
当該手法では、広い波長領域に対して、正面方向の色味に対する補償をすることができるが、2枚の位相差フィルムを特定の角度で貼り合わせる工程が必要になるため生産性が悪く、また、部材が増えるためコストが上昇するという問題がある。
As a method for solving the above problem, for example, a method of laminating a λ / 4 retardation film and a λ / 2 retardation film has been proposed.
In this method, for a wide wavelength region, it is possible to compensate for the color in the front direction, but productivity is poor because a step of bonding two retardation films at a specific angle is required, and However, there is a problem that the cost increases because the number of members increases.
また、上記の問題を解決する別の手法として、特許文献1には、特定の芳香族ポリカーボネートからなる位相差フィルムが提案されている。
しかし、特許文献1の位相差フィルムは、面内複屈折が小さいため、λ/4位相差フィルムとして機能させるためにはフィルムの厚みを厚くする必要があり、画像表示装置の薄型化に支障をきたすという問題がある。
Further, as another method for solving the above problem, Patent Document 1 proposes a retardation film made of a specific aromatic polycarbonate.
However, since the retardation film of Patent Document 1 has a small in-plane birefringence, it is necessary to increase the thickness of the film in order to function as a λ / 4 retardation film, which hinders the thinning of the image display device. There is a problem of coming.
そこで、特許文献2〜4のような逆分散特性を有する液晶化合物を用いた位相差フィルムが提案されている。逆分散特性とは、長波長で測定した位相差が短波長で測定した位相差より大きくなるという位相差の波長依存性である。 Therefore, a retardation film using a liquid crystal compound having reverse dispersion characteristics as disclosed in Patent Documents 2 to 4 has been proposed. The inverse dispersion characteristic is a wavelength dependence of the phase difference such that a phase difference measured at a long wavelength becomes larger than a phase difference measured at a short wavelength.
特許文献2〜4の位相差フィルムは、上述したディスプレイの表示品質の問題を、1枚の位相差フィルムで抑制し得るものである。
しかし、特許文献2〜4の位相差フィルムは、光劣化対策のための紫外線吸収を用いた場合であっても、経時的に位相差値が大きく低下し、画像表示装置の表示品質が低下することが散見された。
The retardation films of Patent Documents 2 to 4 can suppress the above-described problem of display quality of a display with one retardation film.
However, in the retardation films of Patent Documents 2 to 4, even when ultraviolet absorption is used for light degradation countermeasures, the retardation value significantly decreases over time, and the display quality of the image display device deteriorates. That was scattered.
本発明者らは鋭意研究した結果、通常の光(非偏光)ではなく、直線偏光を用いて液晶化合物の紫外線領域の透過率を測定した際に、直線偏光が水平偏光の場合と垂直偏光との場合とで、透過率が異なる場合があることを見出した。
そして、本発明者らはさらに研究を重ねた結果、液晶化合物の紫外線領域における直線偏光の透過率を考慮した上で、紫外線吸収剤の吸収波長を最適化することにより、位相差層の位相差が経時的に大きく低下することを抑制し得ることを見出し、本発明を完成するに至った。
The present inventors have conducted intensive studies. As a result of measuring the transmittance of a liquid crystal compound in the ultraviolet region using linearly polarized light instead of ordinary light (non-polarized light), the inventors have determined that linearly polarized light is horizontally polarized and vertically polarized. It has been found that the transmittance may be different from the case of the above.
The present inventors have further studied and, as a result, taking into account the transmittance of the liquid crystal compound for linearly polarized light in the ultraviolet region, and optimizing the absorption wavelength of the ultraviolet absorber, the retardation of the retardation layer. Has been found to be able to suppress a large decrease over time, and the present invention has been completed.
すなわち、本発明は、以下の[1]〜[3]を提供する。
[1]表示素子(A)と、表示素子の光出射面側に配置してなる位相差層(B)と、位相差層の光出射面側に配置してなる紫外線吸収層(C)とを有する表示パネルであって、
前記位相差層(B)が液晶化合物を含み、前記位相差層(B)の面内において屈折率が最も大きい方向である遅相軸方向の屈折率をnx、前記位相差層(B)の面内において前記遅相軸方向と直交する方向である進相軸方向の屈折率をny、前記位相差層(B)の厚み方向の屈折率をnzとした際に、下記条件1〜3を満たす、表示パネル。
<条件1>
nx>ny≒nz または nx≒nz>ny
<条件2>
前記位相差層(B)の面に対して垂直な方向から、振動方向が前記位相差層(B)の遅相軸の方向と平行な直線偏光1を入射し、前記位相差層(B)を透過した直線偏光1の分光透過スペクトルをt1とする。直線偏光1は水平偏光又は垂直偏光とする。
また、前記位相差層(B)の面に対して垂直な方向から、振動方向が前記位相差層(B)の遅相軸の方向と垂直な直線偏光2を入射し、前記位相差層(B)を透過した直線偏光2の分光透過スペクトルをt2とする。直線偏光1が水平偏光の場合、直線偏光2は垂直偏光として、直線偏光1が垂直偏光の場合、直線偏光2は水平偏光とする。
t1及びt2は波長300〜450nmの領域に、波長が短くなる側に向けて透過率が減少する吸収スペクトルを有し、t1の透過開始波長をa1(nm)、t2の透過開始波長をa2(nm)とした際に、a1≠a2の関係を満たす。
<条件3>
前記紫外線吸収層(C)の面に対して垂直な方向から、偏光していない光を入射し、前記紫外線吸収層(C)を透過した光の分光透過スペクトルt3に基づく透過開始波長をa3(nm)とした際に、下記式(1)〜(3)を満たす。
a1<a3 (1)
a2<a3 (2)
a3≦420nm (3)
[2]上記[1]に記載の表示パネルを備えた画像表示装置。
[3]表示素子(A)と、表示素子の光出射面側に配置してなる位相差層(B)と、位相差層の光出射面側に配置してなる紫外線吸収層(C)とを有する表示パネルにおいて、
前記位相差層(B)が液晶化合物を含み、前記位相差層(B)の面内において屈折率が最も大きい方向である遅相軸方向の屈折率をnx、前記位相差層(B)の面内において前記遅相軸方向と直交する方向である進相軸方向の屈折率をny、前記位相差層(B)の厚み方向の屈折率をnzとした際に、
下記条件1’〜2’を満たすように、紫外線吸収層(C)を選別する、表示パネルの紫外線吸収層の選別方法。
<条件1’>
nx>ny≒nz または nx≒nz>ny
<条件2’>
前記位相差層(B)の面に対して垂直な方向から、振動方向が前記位相差層(B)の遅相軸の方向と平行な直線偏光1を入射し、前記位相差層(B)を透過した直線偏光1の分光透過スペクトルをt1とする。直線偏光1は水平偏光又は垂直偏光とする。
また、前記位相差層(B)の面に対して垂直な方向から、振動方向が前記位相差層(B)の遅相軸の方向と垂直な直線偏光2を入射し、前記位相差層(B)を透過した直線偏光2の分光透過スペクトルをt2とする。直線偏光1が水平偏光の場合、直線偏光2は垂直偏光として、直線偏光1が垂直偏光の場合、直線偏光2は水平偏光とする。
t1及びt2は波長300〜450nmの領域に、波長が短くなる側に向けて透過率が減少する吸収スペクトルを有し、t1の透過開始波長をa1(nm)、t2の透過開始波長をa2(nm)とする。また、前記紫外線吸収層(C)の面に対して垂直な方向から、偏光していない光を入射し、前記紫外線吸収層(C)を透過した光の分光透過スペクトルt3に基づく透過開始波長をa3(nm)とする。
上記前提条件において、下記式(1’)及び(2’)を満たす。
a1≠a2<a3 (1’)
a3≦420nm (2’)
That is, the present invention provides the following [1] to [3].
[1] A display element (A), a retardation layer (B) arranged on the light emitting surface side of the display element, and an ultraviolet absorbing layer (C) arranged on the light emitting surface side of the retardation layer. A display panel having:
The retardation layer (B) comprises a liquid crystal compound, the retardation layer refractive index in the slow axis direction refractive index is largest and the direction in the plane n x of (B), the retardation layer (B) When the refractive index in the fast axis direction, which is the direction orthogonal to the slow axis direction, is ny and the refractive index in the thickness direction of the retardation layer (B) is nz , the following condition 1 is satisfied . A display panel that satisfies ~ 3.
<Condition 1>
n x> n y ≒ n z, or n x ≒ n z> n y
<Condition 2>
Linearly polarized light 1 whose vibration direction is parallel to the direction of the slow axis of the phase difference layer (B) is incident from a direction perpendicular to the plane of the phase difference layer (B), and the phase difference layer (B) Let t 1 be the spectral transmission spectrum of the linearly polarized light 1 transmitted through. The linearly polarized light 1 is horizontal polarized light or vertical polarized light.
Also, linearly polarized light 2 whose vibration direction is perpendicular to the direction of the slow axis of the phase difference layer (B) is incident from a direction perpendicular to the plane of the phase difference layer (B), B) transmitted through the spectral transmission spectrum of the linearly polarized light 2 and t 2. When the linearly polarized light 1 is horizontal polarized light, the linearly polarized light 2 is vertical polarized light, and when the linearly polarized light 1 is vertical polarized light, the linearly polarized light 2 is horizontal polarized light.
t 1 and t 2 each have an absorption spectrum in which the transmittance decreases in the wavelength range of 300 to 450 nm toward the shorter wavelength, and the transmission start wavelength of t 1 is a 1 (nm) and the transmission of t 2 When the starting wavelength is a 2 (nm), the relationship a 1 ≠ a 2 is satisfied.
<Condition 3>
From a direction perpendicular to the plane of the ultraviolet absorbing layer (C), incident unpolarized light, a transmission start wavelength based on the spectral transmission spectrum t 3 of the light transmitted the ultraviolet absorbing layer (C) a 3 (nm), the following expressions (1) to (3) are satisfied.
a 1 <a 3 (1)
a 2 <a 3 (2)
a 3 ≦ 420 nm (3)
[2] An image display device including the display panel according to [1].
[3] A display element (A), a retardation layer (B) arranged on the light emitting surface side of the display element, and an ultraviolet absorbing layer (C) arranged on the light emitting surface side of the retardation layer. In the display panel having
The retardation layer (B) comprises a liquid crystal compound, the retardation layer refractive index in the slow axis direction refractive index is largest and the direction in the plane n x of (B), the retardation layer (B) the refractive index n y in the fast axis direction is a direction perpendicular to the slow axis direction in the plane, the refractive index in the thickness direction of the retardation layer (B) upon the n z of
A method for selecting an ultraviolet absorbing layer of a display panel, wherein the ultraviolet absorbing layer (C) is selected so as to satisfy the following conditions 1 ′ to 2 ′.
<Condition 1 '>
n x> n y ≒ n z, or n x ≒ n z> n y
<Condition 2 '>
Linearly polarized light 1 whose vibration direction is parallel to the direction of the slow axis of the phase difference layer (B) is incident from a direction perpendicular to the plane of the phase difference layer (B), and the phase difference layer (B) Let t 1 be the spectral transmission spectrum of the linearly polarized light 1 transmitted through. The linearly polarized light 1 is horizontal polarized light or vertical polarized light.
Also, linearly polarized light 2 whose vibration direction is perpendicular to the direction of the slow axis of the phase difference layer (B) is incident from a direction perpendicular to the plane of the phase difference layer (B), B) transmitted through the spectral transmission spectrum of the linearly polarized light 2 and t 2. When the linearly polarized light 1 is horizontal polarized light, the linearly polarized light 2 is vertical polarized light, and when the linearly polarized light 1 is vertical polarized light, the linearly polarized light 2 is horizontal polarized light.
t 1 and t 2 each have an absorption spectrum in which the transmittance decreases in the wavelength range of 300 to 450 nm toward the shorter wavelength, and the transmission start wavelength of t 1 is a 1 (nm) and the transmission of t 2 The starting wavelength is a 2 (nm). Further, from the direction perpendicular to the plane of the ultraviolet absorbing layer (C), incident unpolarized light, transmission start wavelength based on the spectral transmission spectrum t 3 of the light transmitted the ultraviolet absorbing layer (C) Is a 3 (nm).
Under the above preconditions, the following expressions (1 ′) and (2 ′) are satisfied.
a 1 ≠ a 2 <a 3 (1 ′)
a 3 ≦ 420 nm (2 ′)
本発明の表示パネル及び画像表示装置は、位相差層の経時的な光劣化を大幅に抑制することができ、表示品質の経時的な低下を抑制することができる。また、本発明の表示パネルの紫外線吸収層の選別方法によれば、位相差層の経時的な光劣化を抑制し得る紫外線吸収層を効率よく選択することができ、表示パネルの生産効率及び歩留まりを向上することができる。 ADVANTAGE OF THE INVENTION The display panel and image display device of this invention can largely suppress the temporal degradation of a phase difference layer, and can suppress the degradation of display quality over time. Further, according to the method for selecting an ultraviolet absorbing layer of a display panel of the present invention, it is possible to efficiently select an ultraviolet absorbing layer capable of suppressing temporal deterioration of a retardation layer, and to improve display panel production efficiency and yield. Can be improved.
以下、本発明の実施形態を説明する。
[表示パネル]
本発明の表示パネルは、表示素子(A)と、表示素子の光出射面側に配置してなる位相差層(B)と、位相差層の光出射面側に配置してなる紫外線吸収層(C)とを有してなり、
前記位相差層(B)が液晶化合物を含み、前記位相差層(B)の面内において屈折率が最も大きい方向である遅相軸方向の屈折率をnx、前記位相差層(B)の面内において前記遅相軸方向と直交する方向である進相軸方向の屈折率をny、前記位相差層(B)の厚み方向の屈折率をnzとした際に、下記条件1〜3を満たすものである。
Hereinafter, embodiments of the present invention will be described.
[Display panel]
The display panel according to the present invention includes a display element (A), a retardation layer (B) disposed on the light exit surface side of the display element, and an ultraviolet absorbing layer disposed on the light exit surface side of the retardation layer. (C)
The retardation layer (B) comprises a liquid crystal compound, the retardation layer refractive index in the slow axis direction refractive index is largest and the direction in the plane n x of (B), the retardation layer (B) When the refractive index in the fast axis direction, which is the direction orthogonal to the slow axis direction, is ny and the refractive index in the thickness direction of the retardation layer (B) is nz , the following condition 1 is satisfied . ~ 3.
<条件1>
nx>ny≒nz または nx≒nz>ny
<条件2>
前記位相差層(B)の面に対して垂直な方向から、振動方向が前記位相差層(B)の遅相軸の方向と平行な直線偏光1を入射し、前記位相差層(B)を透過した直線偏光1の分光透過スペクトルをt1とする。直線偏光1は水平偏光又は垂直偏光とする。
また、前記位相差層(B)の面に対して垂直な方向から、振動方向が前記位相差層(B)の遅相軸の方向と垂直な直線偏光2を入射し、前記位相差層(B)を透過した直線偏光2の分光透過スペクトルをt2とする。直線偏光1が水平偏光の場合、直線偏光2は垂直偏光として、直線偏光1が垂直偏光の場合、直線偏光2は水平偏光とする。
t1及びt2は波長300〜450nmの領域に、波長が短くなる側に向けて透過率が減少する吸収スペクトルを有し、t1の透過開始波長をa1(nm)、t2の透過開始波長をa2(nm)とした際に、a1≠a2の関係を満たす。
<条件3>
前記紫外線吸収層(C)の面に対して垂直な方向から、偏光していない光を入射し、前記紫外線吸収層(C)を透過した光の分光透過スペクトルt3に基づく透過開始波長をa3(nm)とした際に、下記式(1)〜(3)を満たす。
a1<a3 (1)
a2<a3 (2)
a3≦420nm (3)
<Condition 1>
n x> n y ≒ n z, or n x ≒ n z> n y
<Condition 2>
Linearly polarized light 1 whose vibration direction is parallel to the direction of the slow axis of the phase difference layer (B) is incident from a direction perpendicular to the plane of the phase difference layer (B), and the phase difference layer (B) Let t 1 be the spectral transmission spectrum of the linearly polarized light 1 transmitted through. The linearly polarized light 1 is horizontal polarized light or vertical polarized light.
Also, linearly polarized light 2 whose vibration direction is perpendicular to the direction of the slow axis of the phase difference layer (B) is incident from a direction perpendicular to the plane of the phase difference layer (B), B) transmitted through the spectral transmission spectrum of the linearly polarized light 2 and t 2. When the linearly polarized light 1 is horizontal polarized light, the linearly polarized light 2 is vertical polarized light, and when the linearly polarized light 1 is vertical polarized light, the linearly polarized light 2 is horizontal polarized light.
t 1 and t 2 each have an absorption spectrum in which the transmittance decreases in the wavelength range of 300 to 450 nm toward the shorter wavelength, and the transmission start wavelength of t 1 is a 1 (nm) and the transmission of t 2 When the starting wavelength is a 2 (nm), the relationship a 1 ≠ a 2 is satisfied.
<Condition 3>
From a direction perpendicular to the plane of the ultraviolet absorbing layer (C), incident unpolarized light, a transmission start wavelength based on the spectral transmission spectrum t 3 of the light transmitted the ultraviolet absorbing layer (C) a 3 (nm), the following expressions (1) to (3) are satisfied.
a 1 <a 3 (1)
a 2 <a 3 (2)
a 3 ≦ 420 nm (3)
図1は、本発明の表示パネル100の実施の形態を示す断面図である。図1の表示パネル100は、表示素子(A)10と、表示素子の光出射面側に配置してなる位相差層(B)20と、位相差層の光出射面側に配置してなる紫外線吸収層(C)30とを有している。 FIG. 1 is a sectional view showing an embodiment of the display panel 100 of the present invention. The display panel 100 in FIG. 1 includes a display element (A) 10, a retardation layer (B) 20 disposed on the light exit surface side of the display element, and a retardation layer (B) 20 disposed on the light exit surface side of the retardation layer. An ultraviolet absorbing layer (C) 30.
本発明の表示パネルは、上記条件1〜3を満たすことにより、位相差層の経時的な光劣化を大幅に抑制することができ、表示品質の経時的な低下を抑制することができる。
以下、条件1〜3の技術的意義を説明する。
When the display panel of the present invention satisfies the above conditions 1 to 3, the temporal deterioration of the retardation layer over time can be significantly suppressed, and the deterioration of the display quality over time can be suppressed.
Hereinafter, the technical significance of the conditions 1 to 3 will be described.
<<条件1>>
条件1は、nx>ny≒nz又はnx≒nz>nyを満たすことを規定している。言い換えると、条件1は、位相差層(B)がポジティブAプレートもしくはネガティブAプレートであることを規定している。
条件1を満たす位相差層(B)は、例えば、λ/2位相差層及びλ/4位相差層等として用いることができる。
<< Condition 1 >>
Condition 1 defines that satisfy n x> n y ≒ n z, or n x ≒ n z> n y . In other words, Condition 1 specifies that the retardation layer (B) is a positive A plate or a negative A plate.
The retardation layer (B) satisfying the condition 1 can be used, for example, as a λ / 2 retardation layer, a λ / 4 retardation layer, or the like.
条件1において、nx>ny≒nzの場合は、nyとnzとの差の絶対値は0.03以下であることが好ましく、0.02以下であることがより好ましい。
nx≒nz>nyである場合は、nxとnzの差の絶対値は0.03以下である事が好ましく、0.02以下である事がより好ましい
In condition 1, in the case of n x> n y ≒ n z , it is preferable that the absolute value of the difference between n y and n z is 0.03 or less, more preferably 0.02 or less.
When nx ≒ nz > ny , the absolute value of the difference between nx and nz is preferably 0.03 or less, more preferably 0.02 or less.
<<条件2>>
条件2は、a1≠a2の関係を規定している。
<< Condition 2 >>
Condition 2 defines a relationship of a 1 ≠ a 2 .
図2は、a1を決定する元となる「直線偏光1の分光透過スペクトルt1」の測定方法を説明する該略図である。
図2に示すように、直線偏光1の分光透過スペクトルt1を測定する際は、まず、位相差層(B)20の面に対して垂直な方向から、振動方向が位相差層(B)20の遅相軸の方向と平行な直線偏光1を入射する。図2及び後述の図3の点線は、遅相軸の配列方向を示している。そして、位相差層(B)20を透過した直線偏光1の透過率を波長ごとに算出することにより、分光透過スペクトルt1を得ることができる。なお、直線偏光1は水平偏光又は垂直偏光とする。
分光透過スペクトルt1及び後述の分光透過スペクトルt2は、例えば、日本分光社製の紫外可視近赤外分光光度計「商品名:V7100」を用いて、偏光フィルタをONとすることにより測定することができる。該分光光度計では、直線偏光1及び直線偏光2を、P偏光及びS偏光で切り替えることができる。なお、分光透過スペクトルは、光源としてタングステンハロゲン光源もしくは重水素光源を用い、測定波長ピッチを1nmとして測定することが好ましい。
またt1及びt2は、位相差層(B)を他の層と積層した積層体の状態で測定してもよい。他の層としては透明基材、配向膜が挙げられる。但し、他の層としては、該他の層の波長a1及びa2における分光透過率が90%以上であり、かつ、該他の層の直線偏光1の波長300〜450nmの分光透過スペクトルと、該他の層の直線偏光2の波長300〜450nmの分光透過スペクトルとが実質的に等しいものを用いる。実質的に等しいとは、直線偏光1の波長300〜450nmの分光透過スペクトルの平均と、直線偏光2の波長300〜450nmの分光透過スペクトルの平均との差が1%以下のものをいう。
FIG. 2 is a schematic diagram illustrating a method of measuring “spectral transmission spectrum t 1 of linearly polarized light 1 ” from which a 1 is determined.
As shown in FIG. 2, when measuring the spectral transmission spectrum t 1 of the linearly polarized light 1, first, a phase difference layer (B) in a direction perpendicular to 20 the plane, vibration direction retardation layer (B) The linearly polarized light 1 parallel to the direction of the slow axis 20 is incident. Dotted lines in FIG. 2 and FIG. 3 described later indicate the arrangement direction of the slow axis. Then, by calculating the phase difference layer (B) 20 transmittance of linearly polarized light 1 that has passed through the each wavelength, it is possible to obtain the spectral transmission spectrum t 1. Note that the linearly polarized light 1 is horizontal polarized light or vertical polarized light.
The spectral transmission spectrum t 1 and the spectral transmission spectrum t 2 described later are measured by turning on a polarizing filter using, for example, an ultraviolet-visible-near-infrared spectrophotometer “V7100” manufactured by JASCO Corporation. be able to. In the spectrophotometer, the linearly polarized light 1 and the linearly polarized light 2 can be switched between P-polarized light and S-polarized light. Note that the spectral transmission spectrum is preferably measured using a tungsten halogen light source or a deuterium light source as a light source and a measurement wavelength pitch of 1 nm.
Further, t 1 and t 2 may be measured in a state of a laminate in which the retardation layer (B) is laminated with another layer. Other layers include a transparent substrate and an alignment film. However, as the other layer, and the spectral transmittance at a wavelength of a 1 and a 2 of the other layer 90% or more, and the spectral transmission spectrum of the wavelength 300~450nm linearly polarized light 1 of the other layers The other layer has substantially the same spectral transmission spectrum as that of the linearly polarized light 2 at a wavelength of 300 to 450 nm. "Substantially equal" means that the difference between the average of the spectral transmission spectrum of linearly polarized light 1 at a wavelength of 300 to 450 nm and the average of the linearly polarized light 2 at a wavelength of 300 to 450 nm is 1% or less.
図3は、a2を決定する元となる「直線偏光2の分光透過スペクトルt2」の測定方法を説明する該略図である。
図3に示すように、直線偏光2の分光透過スペクトルt2を測定する際は、まず、位相差層(B)20の面に対して垂直な方向から、振動方向が位相差層(B)20の遅相軸の方向と垂直な直線偏光2を入射する。そして、位相差層(B)20を透過した直線偏光2の透過率を波長ごとに算出することにより、分光透過スペクトルt2を得ることができる。
なお、直線偏光1が水平偏光の場合、直線偏光2は垂直偏光として、直線偏光1が垂直偏光の場合、直線偏光2は水平偏光とする。
FIG. 3 is a schematic diagram illustrating a method of measuring “spectral transmission spectrum t 2 of linearly polarized light 2 ” from which a 2 is determined.
As shown in FIG. 3, when measuring the spectral transmission spectrum t 2 of the linearly polarized light 2 is first retardation layer (B) in a direction perpendicular to 20 the plane, vibration direction retardation layer (B) The linearly polarized light 2 perpendicular to the direction of the slow axis 20 is incident. Then, by calculating the phase difference layer (B) 20 transmittance of linearly polarized light 2 transmitted through each wavelength, it is possible to obtain the spectral transmission spectrum t 2.
When the linearly polarized light 1 is horizontal polarized light, the linearly polarized light 2 is vertical polarized light, and when the linearly polarized light 1 is vertical polarized light, the linearly polarized light 2 is horizontal polarized light.
図4は、実施例1の表示パネルに用いた位相差層(B)の分光透過スペクトルである。図4中、実線は偏光していない光の分光透過スペクトル、点線は直線偏光1の分光透過スペクトルt1、一点鎖線は直線偏光2の分光透過スペクトルt2を示している。
図4から、実施例1で用いている位相差層(B)は、波長300〜450nmの領域に、波長が短くなる側に向けて透過率が減少する吸収スペクトルを有しており、直線偏光1の透過開始波長a1(374nm)と、直線偏光2の透過開始波長a2(389nm)とが異なっていることが確認できる。すなわち、実施例1で用いている位相差層(B)は、a1≠a2の関係が成立して条件2を満たしている。
FIG. 4 is a spectral transmission spectrum of the retardation layer (B) used in the display panel of Example 1. In FIG. 4, the solid line indicates the spectral transmission spectrum of unpolarized light, the dotted line indicates the spectral transmission spectrum t 1 of linearly polarized light 1 , and the dashed line indicates the spectral transmission spectrum t 2 of linearly polarized light 2 .
From FIG. 4, the retardation layer (B) used in Example 1 has an absorption spectrum in which the transmittance decreases in the wavelength region of 300 to 450 nm toward the side where the wavelength becomes shorter, and is linearly polarized. It can be confirmed that the transmission start wavelength a 1 (374 nm) of No. 1 is different from the transmission start wavelength a 2 (389 nm) of the linearly polarized light 2 . That is, the retardation layer (B) used in the first embodiment satisfies the condition 2 by satisfying the relationship of a 1 ≠ a 2 .
一般的に、波長300〜450nmの領域における吸収スペクトルは、液晶化合物等の化合物の劣化の原因となる。
そして、実施例1で用いている位相差層(B)のように、a1≠a2の関係が成立して条件2を満たすことは、水平偏光の場合と、垂直偏光の場合とで、液晶化合物を劣化する透過開始波長が異なっていることを意味している。
Generally, an absorption spectrum in a wavelength range of 300 to 450 nm causes deterioration of a compound such as a liquid crystal compound.
As in the retardation layer (B) used in the first embodiment, the relationship of a 1 ≠ a 2 is satisfied and the condition 2 is satisfied when the case of the horizontally polarized light and the case of the vertically polarized light are as follows. This means that the transmission start wavelength that deteriorates the liquid crystal compound is different.
一方、図5は、比較例1の表示パネルに用いた位相差層(B)の分光透過スペクトルである。図5中、実線は偏光していない光の分光透過スペクトル、点線は直線偏光1の分光透過スペクトルt1、一点鎖線は直線偏光2の分光透過スペクトルt2を示している。
図5から、比較例1で用いている位相差層(B)は、波長300〜450nmの領域に、波長が短くなる側に向けて透過率が減少する吸収スペクトルを有しているものの、直線偏光1の透過開始波長a1(308nm)と、直線偏光2の透過開始波長a2(308nm)とが略同一であることが確認できる。すなわち、比較例1で用いている位相差層(B)は、a1≠a2の関係が成立せず条件2を満たしていない。
FIG. 5 shows a spectral transmission spectrum of the retardation layer (B) used for the display panel of Comparative Example 1. In FIG. 5, the solid line polarized non spectral transmission spectrum of light, the dotted line spectral transmission spectrum t 1 of the linearly polarized light 1, the dashed line represents the spectral transmission spectrum t 2 of the linearly polarized light 2.
From FIG. 5, the retardation layer (B) used in Comparative Example 1 has an absorption spectrum in which the transmittance decreases in the wavelength region of 300 to 450 nm toward the shorter wavelength, but has a straight line. and transmission start wavelength a 1 polarization 1 (308 nm), transmission start wavelength a 2 of the linearly polarized light 2 and (308 nm) can be confirmed to be substantially the same. In other words, the retardation layer (B) used in Comparative Example 1 does not satisfy the relationship of a 1 ≠ a 2 and does not satisfy the condition 2.
本明細書において、透過開始波長及び吸収開始波長は下記(A1)〜(A4)のように算出するものとする。
(A1)450〜500nmの分光透過率の平均をT(%)とする。
(A2)分光透過率がT/2(%)以下となる波長のうち、最も長波長の波長をx(nm)とする。
(A3)x−15(nm)の時の分光透過率をy1(%)、x+15(nm)の分光透過率をy2(%)とする。
(A4)点1(x−15,y1)と点2(x+15,y2)とを結ぶ直線をy=f(x)とした時、該直線が透過率0%と交差した時の波長を透過開始波長として、該直線が透過率T%と交差した時の波長を吸収開始波長とする。
In this specification, the transmission start wavelength and the absorption start wavelength are calculated as in the following (A1) to (A4).
(A1) The average of the spectral transmittance from 450 to 500 nm is defined as T (%).
(A2) Among the wavelengths at which the spectral transmittance is T / 2 (%) or less, let the longest wavelength be x (nm).
(A3) The spectral transmittance at x-15 (nm) is y1 (%), and the spectral transmittance at x + 15 (nm) is y2 (%).
(A4) When a straight line connecting point 1 (x-15, y1) and point 2 (x + 15, y2) is set to y = f (x), the wavelength when the straight line intersects with the transmittance of 0% is transmitted. The wavelength at which the straight line intersects with the transmittance T% is defined as the start wavelength.
本明細書において、透過開始波長a1、透過開始波長a2、透過開始波長a4及び透過開始波長a5、吸収開始波長b1、吸収開始波長b2、吸収開始波長b4及び吸収開始波長b5は、位相差層(B)の16箇所で測定した分光透過率から算出した透過開始波長及び吸収開始波長を平均化したものをいう。同様に、透過開始波長a3及び吸収開始波長a3は、紫外線吸収層(C)の16箇所で測定した分光透過率から算出した透過開始波長及び吸収開始波長を平均化したものをいう。また、nx、ny、nz、面内位相差及び厚み方向の位相差は、位相差層(B)の16箇所の測定値を平均化したものをいう。
16の測定箇所は、測定サンプルの外縁から1cmの領域を余白として、該余白よりも内側の領域に関して、縦方向及び横方向を5等分する線を引いた際の、交点の16箇所を測定の中心とすることが好ましい。例えば、測定サンプルが四角形の場合、四角形の外縁から1cmの領域を余白として、該余白よりも内側の領域を縦方向及び横方向に5等分した点線の交点の16箇所を中心として測定を行い、その平均値でパラメータを算出することが好ましい。なお、測定サンプルが円形、楕円形、三角形、五角形等の四角形以外の形状の場合、これら形状に内接する四角形を描き、該四角形に関して、上記手法により16箇所の測定を行うことが好ましい。
In this specification, transmission start wavelength a 1 , transmission start wavelength a 2 , transmission start wavelength a 4 and transmission start wavelength a 5 , absorption start wavelength b 1 , absorption start wavelength b 2 , absorption start wavelength b 4 and absorption start wavelength b 5 refers to those retardation layer transmission start wavelength and the absorption start wavelength were calculated from the spectral transmittance measured at 16 points of the (B) were averaged. Similarly, transmission start wavelength a 3 and the absorption start wavelength a 3 refers to those ultraviolet-absorbing layer the transmitted start wavelength and the absorption start wavelength were calculated from the spectral transmittance measured at 16 points of the (C) were averaged. In addition, nx , ny , nz , in-plane retardation, and retardation in the thickness direction mean values obtained by averaging 16 measured values of the retardation layer (B).
The 16 measurement points were measured at 16 intersection points when a line dividing the vertical and horizontal directions into five equal parts was drawn with respect to the area inside the margin with the area 1 cm from the outer edge of the measurement sample as the margin. Is preferably the center. For example, when the measurement sample is a quadrangle, the measurement is performed centering on 16 points at the intersection of the dotted lines obtained by equally dividing the area 1 cm from the outer edge of the quadrilateral into five in the vertical and horizontal directions. , It is preferable to calculate the parameter by its average value. When the measurement sample has a shape other than a quadrangle such as a circle, an ellipse, a triangle, and a pentagon, it is preferable to draw a quadrilateral inscribed in these shapes, and to measure the quadrilateral at 16 points by the above method.
<<条件3>>
条件3は、紫外線吸収層(C)の面に対して垂直な方向から、偏光していない光を入射し、紫外線吸収層(C)を透過した光の分光透過スペクトルt3に基づく透過開始波長をa3(nm)とした際に、下記式(1)〜(3)を満たすことを規定している。
a1<a3 (1)
a2<a3 (2)
a3≦420nm (3)
<< Condition 3 >>
Condition 3 is that a non-polarized light is incident from a direction perpendicular to the plane of the ultraviolet absorbing layer (C), and a transmission start wavelength based on a spectral transmission spectrum t 3 of light transmitted through the ultraviolet absorbing layer (C). Satisfies the following expressions (1) to (3) when a 3 (nm).
a 1 <a 3 (1)
a 2 <a 3 (2)
a 3 ≦ 420 nm (3)
分光透過スペクトルt3は、汎用の分光光度計により測定することができる。なお、分光透過スペクトルは、光源を重水素光源又はキセノン光源、測定波長ピッチを1nmとして測定することが好ましい。 Spectral transmission spectrum t 3 can be measured by a general-purpose spectrophotometer. Note that the spectral transmission spectrum is preferably measured using a deuterium light source or a xenon light source as the light source and a measurement wavelength pitch of 1 nm.
上述したように、位相差層(B)が条件2を満たすことは、直線偏光1と直線偏光2とで、位相差層(B)の液晶化合物を劣化する透過開始波長が異なることを意味している。言い換えると、位相差層(B)が条件2を満たすことは、水平偏光と垂直偏光とで、位相差層(B)の液晶化合物を劣化する透過開始波長が異なることを意味している。
したがって、位相差層(B)が条件2を満たす場合、水平偏光の透過開始波長及び垂直偏光の透過開始波長の両方を考慮して、紫外線吸収層(C)の分光透過スペクトルに基づく透過開始波長を決定することが重要となる。
As described above, that the retardation layer (B) satisfies the condition 2 means that the linearly polarized light 1 and the linearly polarized light 2 have different transmission start wavelengths that deteriorate the liquid crystal compound of the retardation layer (B). ing. In other words, that the retardation layer (B) satisfies the condition 2 means that the horizontal polarization and the vertical polarization have different transmission start wavelengths that deteriorate the liquid crystal compound of the retardation layer (B).
Therefore, when the retardation layer (B) satisfies the condition 2, the transmission start wavelength based on the spectral transmission spectrum of the ultraviolet absorbing layer (C) is considered in consideration of both the transmission start wavelength of the horizontal polarization and the transmission start wavelength of the vertical polarization. It is important to determine
従来の製品設計においても、紫外線劣化を抑制する対象物の分光透過スペクトルに基づく透過開始波長を算出し、該透過開始波長よりも透過開始波長が長波長側である紫外線吸収層を選定することによって、紫外線による劣化を抑制することが行われていた。
しかし、従来の製品設計では、対象物の分光透過スペクトルは専ら非偏光で測定していた。これは、従来では、水平偏光と垂直偏光とで、対象物の透過開始波長が異なる場合があることを想定していなかったためである。そして、図4に示すように、非偏光の分光透過スペクトルは、水平偏光の分光透過スペクトルと垂直偏光の分光透過スペクトルとの間に位置することになる。表示画像への悪影響を避けるため、紫外線吸収層の透過開始波長は極力短波長側とすることが求められる。したがって、図4を例に説明すると、従来の製品設計では、一点鎖線の分光透過スペクトルの透過開始波長(389nm)を考慮せず、実線の分光透過スペクトルの透過開始波長(381nm)のみを考慮して、透過開始波長が381nmを僅かに超える紫外線吸収剤を選定していたため、後者の透過開始波長による化合物の光劣化を抑制できなかった。
一方、本発明者らは、水平偏光と垂直偏光とで、対象物である液晶化合物の透過開始波長が異なる場合があることを見出し、水平偏光及び垂直偏光の透過開始波長よりも透過開始波長が長波長側である紫外線吸収層を選定することによって、液晶化合物の紫外線劣化を抑制することを可能として、本発明の完成に至った。
Even in the conventional product design, by calculating the transmission start wavelength based on the spectral transmission spectrum of the object whose UV deterioration is to be suppressed, by selecting the ultraviolet absorption layer whose transmission start wavelength is longer on the long wavelength side than the transmission start wavelength. It has been practiced to suppress deterioration due to ultraviolet rays.
However, in the conventional product design, the spectral transmission spectrum of an object is measured exclusively with non-polarized light. This is because it has not conventionally been assumed that the transmission start wavelength of the object may be different between the horizontally polarized light and the vertically polarized light. Then, as shown in FIG. 4, the unpolarized spectral transmission spectrum is located between the horizontally polarized spectral transmission spectrum and the vertically polarized spectral transmission spectrum. In order to avoid adverse effects on the displayed image, it is required that the transmission start wavelength of the ultraviolet absorbing layer be as short as possible. Therefore, referring to FIG. 4 as an example, the conventional product design does not consider the transmission start wavelength (389 nm) of the dashed-dotted spectral transmission spectrum but only considers the transmission start wavelength (381 nm) of the solid spectral transmission spectrum. Since an ultraviolet absorber having a transmission start wavelength slightly exceeding 381 nm was selected, it was not possible to suppress the latter light degradation of the compound due to the transmission start wavelength.
On the other hand, the present inventors have found that the transmission start wavelength of the liquid crystal compound as an object may be different between horizontal polarized light and vertical polarized light, and the transmission start wavelength is longer than the transmission start wavelength of horizontal polarized light and vertical polarized light. By selecting an ultraviolet absorbing layer on the long wavelength side, it is possible to suppress ultraviolet degradation of the liquid crystal compound, and the present invention has been completed.
条件2は、位相差層(B)が側鎖を有する液晶化合物を含む場合に満たしやすい傾向にある。まず、条件1を満たすために、側鎖を有する液晶化合物は、液晶化合物の主鎖が面内で一定の方向に規則正しく配列されることになる。液晶化合物の主鎖が前述のように配列されることによって、位相差層(B)の面内で遅相軸の方向が一定となり、条件1を満たすことができる。そして、その際、側鎖はz軸方向を向くことになる。
上記のように、位相差層(B)の面内で遅相軸の方向を一定の方向に規則正しく配列した状態で、振動方向が遅相軸の方向と平行な直線偏光1を入射し、位相差層(B)を透過した直線偏光1の分光透過スペクトルt1は、主鎖の分光透過スペクトルと擬制できる。そして、分光透過スペクトルt1から算出した透過開始波長a1は、主鎖の透過開始波長と擬制できる。一方、位相差層(B)の面内で遅相軸の方向を一定の方向に規則正しく配列した状態で、振動方向が遅相軸の方向と垂直な直線偏光2を入射し、位相差層(B)を透過した直線偏光2の分光透過スペクトルt2は、側鎖の分光透過スペクトルと擬制できる。そして、分光透過スペクトルt2から算出した透過開始波長a2は、側鎖の透過開始波長と擬制できる。
側鎖を有する液晶化合物においては、主鎖の透過開始波長a1と、側鎖の透過開始波長a2とを比較した場合、両者が異なる傾向が高い。特に、位相差層(B)が逆分散特性を有する場合、側鎖は主鎖とは光学的性質の異なる基を必然的に有するため、a1とa2との差がより大きくなりやすい。
なお、一般的に、主鎖の透過開始波長a1よりも、側鎖の透過開始波長a2の方が長波長側に位置する傾向が高い。
Condition 2 tends to be easily satisfied when the retardation layer (B) contains a liquid crystal compound having a side chain. First, in order to satisfy the condition 1, in the liquid crystal compound having a side chain, the main chain of the liquid crystal compound is regularly arranged in a certain direction in a plane. By arranging the main chains of the liquid crystal compound as described above, the direction of the slow axis is constant in the plane of the retardation layer (B), and Condition 1 can be satisfied. Then, at that time, the side chain is oriented in the z-axis direction.
As described above, in a state where the direction of the slow axis is regularly arranged in a certain direction in the plane of the retardation layer (B), the linearly polarized light 1 whose vibration direction is parallel to the direction of the slow axis is incident, and The spectral transmission spectrum t 1 of the linearly polarized light 1 transmitted through the phase difference layer (B) can be simulated as the spectral transmission spectrum of the main chain. The transmission start wavelength a 1 calculated from the spectral transmission spectrum t 1 may transmissive start wavelength and fiction backbone. On the other hand, in a state where the direction of the slow axis is regularly arranged in a certain direction in the plane of the phase difference layer (B), linearly polarized light 2 whose vibration direction is perpendicular to the direction of the slow axis is incident, and the phase difference layer ( spectral transmission spectrum t 2 of the linearly polarized light 2 transmitted through the B) may spectral transmission spectrum and fiction of the side chain. The transmission start wavelength a 2 calculated from the spectral transmission spectrum t 2 may transmissive start wavelength and fiction of the side chain.
In the liquid crystal compound having a side chain, a transmission start wavelength a 1 backbone, when compared with the transmission start wavelength a 2 side chains, different tendency is high both. In particular, when the phase difference layer (B) has a reverse dispersion characteristics, side chains to have necessarily different group of optical properties and the main chain, the difference tends to become larger with a 1 and a 2.
Incidentally, generally, than the transmission start wavelength a 1 backbone, tends to located towards the long wavelength side of the transmission start wavelength a 2 of the side chain is high.
主鎖の透過開始波長a1と、側鎖の透過開始波長a2とが異なる場合、上記式(1)及び(2)の両方を満たさなければ、液晶化合物の光劣化を抑制できない。例えば、上記式(1)を満たすものの上記式(2)を満たさない場合、側鎖の光劣化が引き金となり、主鎖を含めた液晶化合物の全体が劣化してしまう。
したがって、上記式(1)及び(2)の両方を満たすことが重要となる。上述したように、位相差層(B)が逆分散特性を有する場合には、主鎖の透過開始波長a1と、側鎖の透過開始波長a2との差が大きくなりやすい。したがって、本発明は、位相差層(B)が逆分散特性を有する場合に、より効果を発揮しやすい点で有効である。
And transmission start wavelength a 1 backbone, when the transmission start wavelength a 2 of the side chain is different, to meet both of the above formula (1) and (2), can not suppress light degradation of the liquid crystal compound. For example, when the above formula (1) is satisfied but the above formula (2) is not satisfied, light degradation of the side chain triggers and the entire liquid crystal compound including the main chain is deteriorated.
Therefore, it is important to satisfy both the expressions (1) and (2). As described above, when the phase difference layer (B) has a reverse dispersion characteristics, a transmission start wavelength a 1 in the main chain, the difference between the transmission start wavelength a 2 of the side chain tends to be large. Therefore, the present invention is effective in that when the retardation layer (B) has reverse dispersion characteristics, the effect is more easily exhibited.
なお、条件3において、式(3)を満たさない場合、可視光領域のうちの短波長域の光が紫外線吸収層(B)で吸収されてしまい、表示される画像が黄色っぽくなり色味が損なわれてしまう。
a3は410nm以下であることが好ましく、400nm以下であることがより好ましく、395nm以下であることがさらに好ましい。
In addition, when the condition (3) is not satisfied in the condition 3, the light in the short wavelength region of the visible light region is absorbed by the ultraviolet absorbing layer (B), and the displayed image becomes yellowish and the tint becomes poor. Will be spoiled.
Preferably a 3 is 410nm or less, more preferably 400nm or less, and more preferably less 395 nm.
本発明の表示パネルが条件1〜3を満たす場合、さらに下記条件4を満たすことが好ましい。
<<条件4>>
a1とa2のうちの波長が大きいものと、a3との差が2nm以上
When the display panel of the present invention satisfies the conditions 1 to 3, it is more preferable that the following condition 4 is further satisfied.
<< Condition 4 >>
as the wavelength of a 1 and a 2 is large, the difference between a 3 or more 2nm
条件4を満たすことにより、液晶化合物の光劣化をより抑制することができる。条件4の差は3nm以上であることがより好ましい。また、条件4の差は、20nm以下であることが好ましく、10nm以下であることがより好ましい。 By satisfying condition 4, light degradation of the liquid crystal compound can be further suppressed. More preferably, the difference in condition 4 is 3 nm or more. Further, the difference in Condition 4 is preferably 20 nm or less, and more preferably 10 nm or less.
本発明の表示パネルが条件1〜3を満たす場合において、t1の吸収開始波長をb1(nm)、t2の吸収開始波長をb2(nm)、紫外線吸収層(C)の吸収開始波長をb3(nm)とした際に、後述する関係を満たすことが好ましい。 When the display panel of the present invention satisfies the conditions 1 to 3, the absorption start wavelength of t 1 is b 1 (nm), the absorption start wavelength of t 2 is b 2 (nm), and the ultraviolet light absorption layer (C) starts absorption. When the wavelength is b 3 (nm), it is preferable to satisfy the relationship described later.
b3は、表示画像の色味を損なうことを抑制する観点から、450nm以下であることが好ましく、430nm以下であることがより好ましい。
また、表示画像の色味を損なうことを抑制しつつ、液晶化合物の光劣化を抑制する観点から、b3−a3は、20〜40nmであることが好ましく、25〜38nmであることがより好ましく、30〜36nmであることがさらに好ましい。
b 3, from the viewpoint of suppressing compromising the color of the displayed image, preferably at 450nm or less, and more preferably less 430 nm.
In addition, from the viewpoint of suppressing the light deterioration of the liquid crystal compound while suppressing the impairment of the color of the display image, b 3 -a 3 is preferably from 20 to 40 nm, more preferably from 25 to 38 nm. More preferably, it is 30 to 36 nm.
また、b3−a3をX3(nm)、b2−a2をX2(nm)、b1−a1をX1(nm)とした際に、X3−X2の絶対値は10nm以下であることが好ましく、5nm以下であることがより好ましく、3nm以下であることがさらに好ましい。また、X3−X1の絶対値は10nm以下であることが好ましく、5nm以下であることがより好ましく、3nm以下であることがさらに好ましい。
X3−X2、X3−X1を上記範囲とすることにより、表示画像の色味を損なうことを抑制しつつ、液晶化合物の光劣化を抑制しやすくできる。
When b 3 -a 3 is X 3 (nm), b 2 -a 2 is X 2 (nm), and b 1 -a 1 is X 1 (nm), the absolute value of X 3 -X 2 Is preferably 10 nm or less, more preferably 5 nm or less, and even more preferably 3 nm or less. Further, the absolute value of X 3 -X 1 is preferably 10 nm or less, more preferably 5 nm or less, and even more preferably 3 nm or less.
By setting X 3 -X 2 and X 3 -X 1 within the above ranges, it is possible to easily suppress the light deterioration of the liquid crystal compound while suppressing the impairment of the tint of the displayed image.
a1とa2との差は特に限定されないが、a1とa2との差の絶対値(|a1−a2|)を3〜25nmとすることが好ましく、5〜22nmとすることがより好ましく、8〜20nmとすることがさらに好ましく、11〜18nmとすることがよりさらに好ましい。
該絶対値を3nm以上とすることにより、本発明の構成とすることによる効果をより有効なものとすることができる。また、該絶対値を25nm以下とすることにより、a3を短波長側としても上記式(1)及び(2)を満たしやすくすることができるため、表示される画像が黄色っぽくなり色味が損なわれることを抑制しやすくできる。
the difference between a 1 and a 2 is not particularly limited, the absolute value of the difference between a 1 and a 2 (| a 1 -a 2 |) is preferably set to 3~25nm to, be 5~22nm , More preferably 8 to 20 nm, even more preferably 11 to 18 nm.
By setting the absolute value to 3 nm or more, the effect of the configuration of the present invention can be made more effective. Moreover, by the said absolute value with 25nm or less, it is possible also to easily satisfy the above formula (1) and (2) a a 3 as the short wavelength side, is color image to be displayed becomes yellowish Damage can be easily suppressed.
また、a1及びa2の波長は特に限定されないが、a1及びa2のうちの波長が小さいものの波長が350〜400nmであることが好ましく、360〜390nmであることがより好ましい。
a1及びa2のうちの波長が小さいものの波長が上記範囲である場合、非偏光の透過開始波長は上記範囲よりも長波長側にシフトした範囲となり、可視光領域の低波長側を含む場合がある。したがって、非偏光の透過開始波長を基準として紫外線吸収剤を選択する場合には、極力、非偏光の透過開始波長と同等の透過開始波長を有する紫外線吸収剤が選択される。しかし、これでは透過開始波長が長波長側に位置する偏光を原因とした液晶化合物の光劣化を抑制できない。
一方、本発明では、a1及びa2のうちの波長が小さいものの波長が、上記のように可視光領域の低波長側を含み得る場合において、液晶化合物の光劣化を抑制できる紫外線吸収剤を適切に選択できる点で有効である。
Although not specifically limited wavelength of a 1 and a 2 is preferably a wavelength ones wavelengths less of a 1 and a 2 are 350 to 400 nm, more preferably 360~390Nm.
When the wavelength of a 1 and a 2 having a smaller wavelength is within the above range, the transmission start wavelength of the unpolarized light is shifted to a longer wavelength side than the above range, and includes the lower wavelength side of the visible light region. There is. Therefore, when selecting an ultraviolet absorber based on the transmission start wavelength of non-polarized light, an ultraviolet absorber having a transmission start wavelength equivalent to the transmission start wavelength of non-polarized light is selected as much as possible. However, this cannot suppress the photodeterioration of the liquid crystal compound caused by polarized light whose transmission start wavelength is located on the long wavelength side.
On the other hand, in the present invention, the wavelength of one wavelength is less of a 1 and a 2 are, in the case, which may include a low wavelength side in the visible light region as described above, an ultraviolet absorber that can suppress light degradation of the liquid crystal compound It is effective in that it can be selected appropriately.
<表示素子>
表示素子としては、液晶表示素子、EL(無機EL、有機EL)表示素子、プラズマ表示素子、LED表示素子(マイクロLEDなど)、量子ドットを用いた表示素子等が挙げられる。なお、液晶表示素子は、タッチパネル機能を素子内に備えたインセルタッチパネル液晶表示素子であってもよい。
<Display element>
Examples of the display element include a liquid crystal display element, an EL (inorganic EL, organic EL) display element, a plasma display element, an LED display element (such as a micro LED), a display element using quantum dots, and the like. Note that the liquid crystal display element may be an in-cell touch panel liquid crystal display element having a touch panel function in the element.
表示素子の中でも、有機EL素子及びマイクロLED素子は反射率が高いため、紫外線が位相差層(B)を2回通過し、位相差層(B)が光劣化しやすい傾向にある。このため、表示素子が有機EL素子及びマイクロLED素子の際に、本発明の効果がより有効に発揮できる点で有効である。 Among the display elements, the organic EL element and the micro LED element have high reflectivity, so that the ultraviolet light passes through the retardation layer (B) twice, and the retardation layer (B) tends to deteriorate easily. Therefore, when the display element is an organic EL element or a micro LED element, the effect of the present invention is more effectively exhibited.
有機EL表示素子は、例えば、出光側から透明電極層、正孔注入層、正孔輸送層、発光層、電子注入層、電極層の順に積層する構成等が挙げられる。有機EL表示パネルは、パッシブ駆動方式の有機EL表示装置にもアクティブ駆動方式の有機EL表示装置にも適用可能である。 The organic EL display element has, for example, a configuration in which a transparent electrode layer, a hole injection layer, a hole transport layer, a light emitting layer, an electron injection layer, and an electrode layer are sequentially stacked from the light emitting side. The organic EL display panel can be applied to a passive drive type organic EL display device and an active drive type organic EL display device.
表示素子が液晶表示素子である場合、液晶表示素子の背面にはバックライトが必要である。 When the display element is a liquid crystal display element, a backlight is required on the back of the liquid crystal display element.
<位相差層(B)>
位相差層(B)は、液晶化合物を含む層であり、表示素子の光出射面側に配置される。
位相差層(B)は、条件1及び2を満たすものであれば特に限定されない。
位相差層中の液晶化合物の割合は、位相差層の全固形に対して、60〜99.9質量%であることが好ましく、65〜98質量%であることがより好ましい。
<Retardation layer (B)>
The retardation layer (B) is a layer containing a liquid crystal compound, and is arranged on the light emitting surface side of the display element.
The retardation layer (B) is not particularly limited as long as it satisfies the conditions 1 and 2.
The ratio of the liquid crystal compound in the retardation layer is preferably from 60 to 99.9% by mass, more preferably from 65 to 98% by mass, based on the total solids of the retardation layer.
位相差層(B)は、位相差層(B)の波長450nmの面内位相差をRe(450)、位相差層(B)の波長550nmの面内位相差をRe(550)、位相差層(B)の波長650nmの面内位相差をRe(650)とした際に、下記式(i)を満たすことが好ましい。
Re(450)<Re(550)<Re(650) (i)
The retardation layer (B) has an in-plane retardation of the retardation layer (B) at a wavelength of 450 nm of Re (450), the in-plane retardation of the retardation layer (B) of a wavelength of 550 nm is Re (550), and the retardation When the in-plane retardation at a wavelength of 650 nm of the layer (B) is defined as Re (650), it is preferable that the following formula (i) is satisfied.
Re (450) <Re (550) <Re (650) (i)
上記式(i)を満たすことは、位相差層(B)が逆分散特性を示すことを意味している。上記式(i)を満たすことにより、斜め方向の色味を改善しやすくできる。
本明細書において、面内位相差(Re)及び厚さ方向の位相差(Rth)は、nx、ny、nz及び膜厚(d(nm))から、下記式で表されるものを意味する。
面内位相差(Re)=(nx−ny)×d
厚さ方向の位相差(Rth)=((nx+ny)/2−nz)×d
Satisfying the above equation (i) means that the retardation layer (B) shows inverse dispersion characteristics. By satisfying the above expression (i), the color in the oblique direction can be easily improved.
In this specification, the in-plane retardation (Re) and the thickness direction retardation (Rth) is from n x, n y, n z and a thickness (d (nm)), those represented by the following formula Means
In-plane retardation (Re) = (nx−ny) × d
Phase difference (Rth) in thickness direction = ((nx + ny) / 2−nz) × d
位相差層(B)は、さらに下記式(ii)を満たすことが好ましい。
0.75≦Re(450)/Re(550)≦0.98 (ii)
The retardation layer (B) preferably further satisfies the following formula (ii).
0.75 ≦ Re (450) / Re (550) ≦ 0.98 (ii)
上記式(ii)を満たすことにより、斜め方向の色味をより改善しやすくできる。なお、上記式(ii)において、Re(450)/Re(550)は0.80以上0.95以下であることがより好ましく、0.82以上0.93以下であることがさらに好ましい。 By satisfying the above expression (ii), the color in the oblique direction can be more easily improved. In the above formula (ii), Re (450) / Re (550) is more preferably 0.80 or more and 0.95 or less, further preferably 0.82 or more and 0.93 or less.
位相差層(B)は下記式(iii)を満たすことが好ましい。
80nm≦Re(550)≦220nm (iii)
The retardation layer (B) preferably satisfies the following formula (iii).
80 nm ≦ Re (550) ≦ 220 nm (iii)
位相差層(B)がさらに上記式(iii)を満たすことは、位相差層(B)がλ/4位相差層として機能することを意味している。位相差層(B)が上記式(iii)を満たし、かつ、位相差層(B)よりも光出射面側に偏光子を配置することにより、位相差層(B)と偏光子とが円偏光板として機能し、外光反射を抑制することができる。
上記式(iii)において、Re(550)は、90nm以上200nm以下であることがより好ましく、100nm以上180nm以下であることがさらに好ましい。
The fact that the retardation layer (B) further satisfies the above expression (iii) means that the retardation layer (B) functions as a λ / 4 retardation layer. When the retardation layer (B) satisfies the above expression (iii) and the polarizer is disposed on the light emitting surface side of the retardation layer (B), the retardation layer (B) and the polarizer are circular. It functions as a polarizing plate and can suppress external light reflection.
In the above formula (iii), Re (550) is more preferably 90 nm or more and 200 nm or less, further preferably 100 nm or more and 180 nm or less.
上記式(iii)を満たす位相差層(B)と、偏光子とは、偏光子の吸収軸と、位相差層(B)の遅相軸との成す角度が45±5°となるように配置することが好ましく、45±2°となるように配置することがより好ましい。 The retardation layer (B) that satisfies the above formula (iii) and the polarizer are set so that the angle between the absorption axis of the polarizer and the slow axis of the retardation layer (B) is 45 ± 5 °. It is preferable to arrange them, and it is more preferable to arrange them so as to be 45 ± 2 °.
また、位相差層(B)の波長550nmにおける厚さ方向の位相差(Rth(550))は、nx>ny≒nzの場合は30nm以上120nm以下であることが好ましく、50nm以上100nm以下であることがより好ましく、nx≒nz>nyの場合は−120nm以上−30nm以下であることが好ましく、−100nm以上−50nm以下であることがより好ましい。 The thickness direction retardation at a wavelength of 550nm of the retardation layer (B) (Rth (550) ) is preferably in the case of n x> n y ≒ n z is 30nm or more 120nm or less, 50 nm or more 100nm more preferably less, preferably in the case of n x ≒ n z> n y is less than -30nm or -120 nm, more preferably less than -100 nm -50 nm.
<<液晶化合物>>
位相差層(B)に含まれる液晶化合物は、条件1及び2を満たし得るものであれば特に限定されない。
<< liquid crystal compound >>
The liquid crystal compound contained in the retardation layer (B) is not particularly limited as long as it satisfies the conditions 1 and 2.
条件1及び2を満たす液晶化合物は、主鎖及び側鎖を有し、位相差層(B)の面内で主鎖が一定方向に配列可能であるものが好ましい。また、該液晶化合物は、逆分散特性を有することが好ましい。 The liquid crystal compound that satisfies the conditions 1 and 2 preferably has a main chain and a side chain, and the main chain can be arranged in a certain direction in the plane of the retardation layer (B). Further, the liquid crystal compound preferably has reverse dispersion characteristics.
主鎖及び側鎖を有し、位相差層(B)の面内で主鎖が一定方向に配列可能であり、かつ、逆分散特性を有する液晶化合物は、棒状重合液晶化合物に由来する構造単位と、逆分散特性を示す重合性化合物に由来する構造単位とを含むことが好ましい。このような液晶化合物は、例えば、特開2011−6360号公報、特開2016−56106号公報、特開2017−206460号公報、特表2010−522892号公報(特許第5670179号公報)、特開2007−2209号公報、特開2010−31223号公報、特許第6055569号公報等に記載のものが挙げられる。 A liquid crystal compound having a main chain and side chains, in which the main chain can be arranged in a certain direction in the plane of the retardation layer (B), and having a reverse dispersion property is a structural unit derived from a rod-shaped polymerized liquid crystal compound. And a structural unit derived from a polymerizable compound exhibiting reverse dispersion characteristics. Such a liquid crystal compound is disclosed in, for example, JP-A-2011-6360, JP-A-2006-56106, JP-A-2017-206460, JP-T-2010-522892 (Patent No. 5670179), JP-A-2007-2209, JP-A-2010-31223, JP-A-6055569, and the like can be mentioned.
棒状重合液晶化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類及びアルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。棒状液晶化合物としては、これらの低分子液晶化合物だけではなく、高分子液晶化合物も用いることができる。また、棒状液晶化合物は重合性基を有することが好ましい。棒状液晶化合物の一分子中の重合性基の数は2〜3であることが好ましい。 Examples of the rod-shaped polymerized liquid crystal compound include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, and alkoxy-substituted phenylpyrimidines. , Phenyldioxane, tolan and alkenylcyclohexylbenzonitrile are preferably used. As the rod-shaped liquid crystal compound, not only these low-molecular liquid crystal compounds but also high-molecular liquid crystal compounds can be used. Further, the rod-shaped liquid crystal compound preferably has a polymerizable group. The number of polymerizable groups in one molecule of the rod-shaped liquid crystal compound is preferably 2 to 3.
棒状液晶化合物の具体例としては、下記式(1)〜(17)に示す化合物が挙げられる。
逆分散特性を示す重合性化合物としては、特開2010−31223号公報に記載された「式(A)で表される基を有する化合物」、特開2007−2209号公報に記載された「重合性化合物(1)」、特開2011−6360号公報に記載された「化合物(1)」等が挙げられる。 Examples of the polymerizable compound exhibiting the inverse dispersion property include “compound having a group represented by formula (A)” described in JP-A-2010-31223 and “polymerization described in JP-A-2007-2209”. Compound (1) "and" Compound (1) "described in JP-A-2011-6360.
また、主鎖及び側鎖を有し、位相差層(B)の面内で主鎖が一定方向に配列可能であり、かつ、逆分散特性を有する液晶化合物として、円盤状コアに由来する構造単位(主鎖)と、逆分散特性を示す重合性化合物に由来する構造単位とを含むものも好ましく使用できる。かかる液晶化合物は、ディスコティック液晶性化合物と呼ばれ、例えば、下記式で表される化合物が挙げられる。
D(−L−P)n
式中、Dは円盤状コアであり、Lは二価の連結基であり、Pは重合性基であり、nは1〜12の整数である。前記式中の円盤状コア(D)、二価の連結基(L)及び重合性基(P)の好ましい具体例は、それぞれ、特開2001−4837号公報に記載の(D1)〜(D15)、(L1)〜(L25)、(P1)〜(P18)であり、同公報に記載の内容を好ましく用いることができる。なお、液晶性化合物のディスコティックネマティック液晶相−固相転移温度は、30〜300℃が好ましく、30〜170℃が更に好ましい。
Further, a liquid crystal compound having a main chain and side chains, in which the main chain can be arranged in a certain direction in the plane of the retardation layer (B), and having a reverse dispersion characteristic, is derived from a disc-shaped core. Those containing a unit (main chain) and a structural unit derived from a polymerizable compound exhibiting reverse dispersion characteristics can also be preferably used. Such a liquid crystal compound is called a discotic liquid crystal compound, and examples thereof include a compound represented by the following formula.
D (-LP) n
In the formula, D is a discotic core, L is a divalent linking group, P is a polymerizable group, and n is an integer of 1 to 12. Preferred specific examples of the discotic core (D), the divalent linking group (L) and the polymerizable group (P) in the above formula are (D1) to (D15) described in JP-A-2001-4837, respectively. ), (L1) to (L25), and (P1) to (P18), and the contents described in the publication can be preferably used. In addition, the discotic nematic liquid crystal phase-solid phase transition temperature of the liquid crystal compound is preferably 30 to 300C, more preferably 30 to 170C.
ディスコティック液晶性化合物は、様々な文献(C.Destrade et al.,Mol.Crysr.Liq.Cryst.,vol.71,page 111(1981);日本化学会編、季刊化学総説、No.22、液晶の化学、第5章、第10章第2節(1994);B.Kohne et al.,Angew.Chem.Soc.Chem.Comm.,page 1794(1985);J.Zhang et al.,J.Am.Chem.Soc.,vol.116,page 2655(1994)等)に記載されている。ディスコティック液晶性化合物の重合については、特開平8−27284号公報に記載がある。 Discotic liquid crystalline compounds are described in various publications (C. Destrade et al., Mol. Crysr. Liq. Cryst., Vol. 71, page 111 (1981); edited by The Chemical Society of Japan, quarterly chemistry review, No. 22, Liquid Crystal Chemistry, Chapter 5, Chapter 10, Section 2 (1994); B. Kohne et al., Angew. Chem. Soc. Chem. Comm., Page 1794 (1985); J. Zhang et al., J. Am. Chem. Soc., Vol. 116, page 2655 (1994)). The polymerization of discotic liquid crystalline compounds is described in JP-A-8-27284.
<位相差層(B)の形成方法>
位相差層(B)は、透明基材上、あるいは、配向膜を備えた透明基材の配向膜上に、液晶化合物を含む位相差層形成組成物を塗布し、必要に応じて、乾燥及び硬化することにより形成することができる。また、前述のように形成した位相差層(B)を別の透明基材上に転写してもよい。
具体的な乾燥条件は、位相差層形成組成物により異なるため一概にはいえないが、乾燥温度を70〜150℃、乾燥時間を30〜250秒とすることが好ましく、乾燥温度を90〜130℃、乾燥時間を50〜200秒とすることがより好ましい。
重合性液晶化合物を重合するための光照射は、紫外線を用いることが好ましい。具体的な紫外線の照射エネルギーは、位相差層の厚み等により異なるため一概にはいえないが、50mJ/cm2〜1J/cm2であることが好ましく、150mJ/cm2〜900mJ/cm2であることがより好ましい。
<Method of forming retardation layer (B)>
The retardation layer (B) is formed by coating a retardation layer-forming composition containing a liquid crystal compound on a transparent substrate or on an alignment film of a transparent substrate provided with an alignment film. It can be formed by curing. Further, the retardation layer (B) formed as described above may be transferred onto another transparent substrate.
Specific drying conditions vary depending on the phase difference layer forming composition, and thus cannot be unconditionally determined. However, the drying temperature is preferably 70 to 150 ° C., the drying time is preferably 30 to 250 seconds, and the drying temperature is 90 to 130. More preferably, the drying time is 50 to 200 seconds.
Light irradiation for polymerizing the polymerizable liquid crystal compound is preferably performed using ultraviolet light. The irradiation energy of a specific ultraviolet radiation can not be said sweepingly because it varies by such thickness of the retardation layer is preferably 50mJ / cm 2 ~1J / cm 2 , at 150mJ / cm 2 ~900mJ / cm 2 More preferably, there is.
<位相差層形成用組成物>
位相差層形成組成物中には、液晶化合物を構成する以外の成分として、光重合開始剤、溶剤、界面活性剤等を含有していてもよい。
<Composition for forming retardation layer>
The composition for forming a retardation layer may contain a photopolymerization initiator, a solvent, a surfactant and the like as components other than constituting the liquid crystal compound.
<<光重合開始剤>>
位相差層形成組成物は光重合開始剤を含むことが好ましい。光重合開始剤としては、アセトフェノン、ベンゾフェノン、α−ヒドロキシアルキルフェノン、ミヒラーケトン、ベンゾイン、ベンジルジメチルケタール、ベンゾイルベンゾエート、α−アシルオキシムエステル及びチオキサンソン類等が挙げられる。
光重合開始剤の含有量は、位相差層形成組成物の全固形分の0.01〜20質量%であることが好ましく、0.5〜5質量%であることがより好ましい。
<< Photopolymerization initiator >>
The composition for forming a retardation layer preferably contains a photopolymerization initiator. Examples of the photopolymerization initiator include acetophenone, benzophenone, α-hydroxyalkylphenone, Michler's ketone, benzoin, benzyldimethyl ketal, benzoylbenzoate, α-acyl oxime ester, and thioxanthone.
The content of the photopolymerization initiator is preferably from 0.01 to 20% by mass, more preferably from 0.5 to 5% by mass of the total solids of the composition for forming a retardation layer.
<<界面活性剤>>
位相差層形成組成物は、界面活性剤を含有することが好ましい。また、界面活性剤の中でも、重合性基を有するフッ素系界面活性剤及び重合性基を有するシリコン系界面活性剤より選択される1種以上を選択して用いることが好ましい。
界面活性剤の含有量は、位相差層形成組成物の全固形分の0.01〜2.0質量%であることが好ましく、0.1〜1.0質量%であることがより好ましい。
<< Surfactant >>
The composition for forming a retardation layer preferably contains a surfactant. Further, among the surfactants, it is preferable to select and use at least one selected from a fluorine-based surfactant having a polymerizable group and a silicon-based surfactant having a polymerizable group.
The content of the surfactant is preferably from 0.01 to 2.0% by mass, more preferably from 0.1 to 1.0% by mass of the total solids of the composition for forming a retardation layer.
<<溶剤>>
位相差層形成組成物は、通常は溶剤を含有する。
溶剤としては、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等)、エーテル類(ジオキサン、テトラヒドロフラン等)、脂肪族炭化水素類(ヘキサン等)、脂環式炭化水素類(シクロヘキサン等)、芳香族炭化水素類(トルエン、キシレン等)、ハロゲン化炭素類(ジクロロメタン、ジクロロエタン等)、エステル類(酢酸メチル、酢酸エチル、酢酸ブチル等)、アルコール類(ブタノール、シクロヘキサノール等)、セロソルブ類(メチルセロソルブ、エチルセロソルブ等)、セロソルブアセテート類、スルホキシド類(ジメチルスルホキシド等)、アミド類(ジメチルホルムアミド、ジメチルアセトアミド等)等が例示でき、これらの混合物であってもよい。
位相差層形成組成物における溶剤の含有量は、位相差層形成組成物中の50〜90質量%であることが好ましく、70〜80質量%であることがより好ましい。
<< Solvent >>
The composition for forming a retardation layer usually contains a solvent.
Solvents include ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.), ethers (dioxane, tetrahydrofuran, etc.), aliphatic hydrocarbons (hexane, etc.), alicyclic hydrocarbons (cyclohexane, etc.), aromatics Group hydrocarbons (toluene, xylene, etc.), halogenated carbons (dichloromethane, dichloroethane, etc.), esters (methyl acetate, ethyl acetate, butyl acetate, etc.), alcohols (butanol, cyclohexanol, etc.), cellosolves (methyl Cellosolve, ethyl cellosolve, etc.), cellosolve acetates, sulfoxides (dimethylsulfoxide, etc.), amides (dimethylformamide, dimethylacetamide, etc.) and the like, and mixtures thereof.
The content of the solvent in the retardation layer forming composition is preferably 50 to 90% by mass, more preferably 70 to 80% by mass in the retardation layer forming composition.
<透明基材>
本発明の表示パネルは、透明基材を有していてもよい。
透明基材は、位相差層を形成する際の支持体としての役割、位相差層を保護する役割、紫外線吸収層(C)を構成する一部材としての役割等を有する。
<Transparent substrate>
The display panel of the present invention may have a transparent substrate.
The transparent substrate has a role as a support when forming the retardation layer, a role to protect the retardation layer, a role as one member constituting the ultraviolet absorbing layer (C), and the like.
透明基材は光学的等方性であるものが好ましい。透明基材は、ポリマーから形成したものでもよいし、ガラスから形成したものであってもよい。
ポリマーとしては、セルロースアシレート、ポリカーボネート系ポリマー、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル系ポリマー、ポリメチルメタクリレート等のアクリル系ポリマー、ポリスチレンやアクリロニトリル・スチレン共重合体(AS樹脂)等のスチレン系ポリマー等を利用することができる。また、ポリエチレン、ポリプロピレン等のポリオレフィン、エチレン・プロピレン共重合体の如きポリオレフィン系ポリマー、塩化ビニル系ポリマー、ナイロンや芳香族ポリアミド等のアミド系ポリマー、イミド系ポリマー、スルホン系ポリマー、ポリエーテルスルホン系ポリマー、ポリエーテルエーテルケトン系ポリマー、ポリフェニレンスルフィド系ポリマー、塩化ビニリデン系ポリマー、ビニルアルコール系ポリマー、ビニルブチラール系ポリマー、アリレート系ポリマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマー、又はこれらポリマーの混合物等が挙げられる。
The transparent substrate is preferably one that is optically isotropic. The transparent substrate may be formed from a polymer or may be formed from glass.
Examples of the polymer include cellulose acylate, polycarbonate polymer, polyester polymer such as polyethylene terephthalate and polyethylene naphthalate, acrylic polymer such as polymethyl methacrylate, and styrene polymer such as polystyrene and acrylonitrile-styrene copolymer (AS resin). Etc. can be used. Polyolefins such as polyethylene and polypropylene; polyolefin polymers such as ethylene-propylene copolymer; vinyl chloride polymers; amide polymers such as nylon and aromatic polyamide; imide polymers; sulfone polymers; and polyethersulfone polymers. , A polyether ether ketone polymer, a polyphenylene sulfide polymer, a vinylidene chloride polymer, a vinyl alcohol polymer, a vinyl butyral polymer, an arylate polymer, a polyoxymethylene polymer, an epoxy polymer, or a mixture of these polymers. Can be
透明基材の厚みは、ポリマーから形成した透明基材の場合は、通常25〜125μm程度であり、ガラスから形成した透明基材の場合は、通常100μm〜5mm程度である。 The thickness of the transparent substrate is usually about 25 to 125 μm in the case of a transparent substrate formed of a polymer, and is usually about 100 μm to 5 mm in the case of a transparent substrate formed of glass.
<配向膜>
配向膜は、液晶化合物を面内の一定方向に配向しやすくする「水平配向膜」が好ましい。
なお、位相差層(B)の形成時点で配向膜を有していても、他の部材(例えば偏光子)に位相差層(B)を転写し、かつ、転写時に配向膜が転写されないようにすれば、配向膜を有さない表示パネルを得ることができる。
<Orientation film>
The alignment film is preferably a “horizontal alignment film” that facilitates alignment of the liquid crystal compound in a certain direction in the plane.
In addition, even if it has an alignment film at the time of forming the retardation layer (B), the retardation layer (B) is transferred to another member (for example, a polarizer) and the alignment film is not transferred during the transfer. By doing so, a display panel having no alignment film can be obtained.
<<水平配向膜>>
水平配向膜は、水平方向の配向規制力を備えた配向膜であり、公知のA型の位相差フィルムの作製に供する各種水平配向膜を適用することができ、例えば、光二量化型の材料等を適用することができる。
水平配向膜に配向規制力を付与する手段は、従来公知のものとすることができ、例えば、ラビング法、光配向法、賦形法などが挙げられる。
水平配向膜の厚みは、通常、1〜1000nmであり、60〜300nmが好ましい。
<< horizontal alignment film >>
The horizontal alignment film is an alignment film having an alignment regulating force in the horizontal direction, and various types of horizontal alignment films used for producing a known A-type retardation film can be applied. For example, a light dimerization type material or the like can be used. Can be applied.
The means for imparting the alignment regulating force to the horizontal alignment film may be a conventionally known means, and examples thereof include a rubbing method, a photo-alignment method, and a shaping method.
The thickness of the horizontal alignment film is usually 1 to 1000 nm, preferably 60 to 300 nm.
<紫外線吸収層(C)>
紫外線吸収層(C)は、紫外線吸収剤を含む樹脂層の単層であってもよいし、透明基材と紫外線吸収剤を含む樹脂層との積層構造等の多層であってもよい。紫外線吸収剤を含む樹脂層は、例えば、紫外線吸収剤とバインダー樹脂とから形成することができる。
紫外線吸収層(C)を構成する透明基材は、上記に例示したものと同様のものを用いることができる。なお、紫外線吸収層(C)を構成する透明基材は、上記に例示した透明基材中に紫外線吸収剤を練りこんだものであってもよい。
<Ultraviolet absorbing layer (C)>
The ultraviolet absorbing layer (C) may be a single layer of a resin layer containing an ultraviolet absorbent, or may be a multilayer such as a laminated structure of a transparent substrate and a resin layer containing an ultraviolet absorbent. The resin layer containing an ultraviolet absorber can be formed from, for example, an ultraviolet absorber and a binder resin.
As the transparent substrate constituting the ultraviolet absorbing layer (C), the same ones as those exemplified above can be used. The transparent base material constituting the ultraviolet absorbing layer (C) may be a material obtained by kneading an ultraviolet absorber in the transparent base material exemplified above.
<<紫外線吸収剤>>
紫外線吸収剤は、条件3の式(1)〜(3)を満たすものであれば、特に限定なく用いることができる。
紫外線吸収剤としては、ベンゾトリアゾール系紫外線剤、ベンゾフェノン系紫外線吸収剤、トリアジン系紫外線吸収剤等が挙げられる。
<<<< UV absorber >>
The ultraviolet absorber can be used without any particular limitation as long as it satisfies the expressions (1) to (3) of the condition 3.
Examples of the ultraviolet absorber include a benzotriazole-based ultraviolet agent, a benzophenone-based ultraviolet absorber, and a triazine-based ultraviolet absorber.
また、紫外線吸収剤は、ブリードアウト抑制の観点から、バインダー樹脂と架橋反応し得る反応性基を備えたものが好ましい。 Further, the ultraviolet absorber is preferably provided with a reactive group capable of performing a crosslinking reaction with a binder resin from the viewpoint of suppressing bleed-out.
<<バインダー樹脂>>
紫外線吸収剤を含む樹脂層のバインダー樹脂は、汎用の熱可塑性樹脂、熱硬化性樹脂及び電離放射線硬化性樹脂から選ばれる1種又はこれらから選ばれる2種以上の混合物が挙げられる。
なお、バインダー樹脂が接着性を有していると、接着剤層を介することなく他の層(位相差層(B)、偏光子等)と積層できる点で好適である。
<< Binder resin >>
As the binder resin of the resin layer containing the ultraviolet absorber, one kind selected from general-purpose thermoplastic resins, thermosetting resins, and ionizing radiation-curable resins, or a mixture of two or more kinds selected from these may be used.
In addition, it is preferable that the binder resin has an adhesive property in that it can be laminated with another layer (a retardation layer (B), a polarizer, or the like) without an adhesive layer.
紫外線吸収剤を含む樹脂層中の紫外線吸収剤の含有量は、該層の全固形分の10〜45質量%であることが好ましく、15〜40質量%であることがより好ましい。
また、紫外線吸収剤を含む層の厚みは、0.5〜10μmであることが好ましく、0.7〜5μmであることがより好ましい。
The content of the ultraviolet absorbent in the resin layer containing the ultraviolet absorbent is preferably from 10 to 45% by mass, more preferably from 15 to 40% by mass of the total solids of the layer.
Further, the thickness of the layer containing the ultraviolet absorbent is preferably from 0.5 to 10 μm, more preferably from 0.7 to 5 μm.
<その他の層>
表示素子(A)の光出射面側には、位相差層(B)、紫外線吸収層(C)以外の層や部材を有していてもよい。
その他の層としては、上述した透明基材及び配向膜が挙げられ、さらには、位相差層(B)以外の位相差層、偏光子、偏光子保護フィルム、接着剤層、機能層等が挙げられる。その他の部材としてタッチパネルが挙げられる。
<Other layers>
On the light emitting surface side of the display element (A), layers or members other than the retardation layer (B) and the ultraviolet absorbing layer (C) may be provided.
Examples of the other layers include the above-mentioned transparent base material and alignment film, and further include a retardation layer other than the retardation layer (B), a polarizer, a polarizer protective film, an adhesive layer, and a functional layer. Can be Other members include a touch panel.
<表示パネルの具体的な積層構成>
表示パネルの具体的な積層構成は特に限定されないが、例えば、下記(1)〜(3)の構成が挙げられる。なお、「/」は層の界面を示す。
(1)表示素子(A)/接着剤層/透明基材/接着剤層/位相差層(B)/接着剤層/透明基材と紫外線吸収剤を含む樹脂層とを積層してなる紫外線吸収層(C)/接着剤層/偏光子/接着剤層/偏光子保護フィルム
(2)表示素子(A)/接着剤層/位相差層(B)/接着剤層/透明基材と紫外線吸収剤を含む樹脂層とを積層してなる紫外線吸収層(C)/接着剤層/偏光子/接着剤層/偏光子保護フィルム
(3)表示素子(A)/接着剤層/位相差層(B)/紫外線吸収剤を含む紫外線吸収層(C)/接着剤層/偏光子/接着剤層/偏光子保護フィルム
<Specific laminated structure of display panel>
The specific layered configuration of the display panel is not particularly limited, and examples thereof include the following configurations (1) to (3). Note that “/” indicates an interface between layers.
(1) Display element (A) / adhesive layer / transparent substrate / adhesive layer / retardation layer (B) / adhesive layer / ultraviolet light obtained by laminating transparent substrate and resin layer containing ultraviolet absorber Absorbing layer (C) / adhesive layer / polarizer / adhesive layer / polarizer protective film (2) Display element (A) / adhesive layer / retardation layer (B) / adhesive layer / transparent substrate and ultraviolet light UV-absorbing layer (C) / adhesive layer / polarizer / adhesive layer / polarizer protective film (3) display element (A) / adhesive layer / retardation layer obtained by laminating resin layer containing absorber (B) / ultraviolet absorbing layer containing ultraviolet absorber (C) / adhesive layer / polarizer / adhesive layer / polarizer protective film
[画像表示装置]
本発明の画像表示装置は、上述した本発明の表示パネルを備えるものである。
[Image display device]
An image display device according to the present invention includes the above-described display panel according to the present invention.
画像表示装置は、上述した本発明の表示パネルと、該表示パネルに電気的に接続された駆動制御部と、これらを収容する筐体とを備えることが好ましい。 It is preferable that the image display device includes the display panel of the present invention described above, a drive control unit electrically connected to the display panel, and a housing for accommodating them.
[表示パネルの紫外線吸収層の選別方法]
本発明の表示パネルの紫外線吸収層の選別方法は、
表示素子(A)と、表示素子の光出射面側に配置してなる位相差層(B)と、位相差層の光出射面側に配置してなる紫外線吸収層(C)とを有する表示パネルにおいて、
前記位相差層(B)が液晶化合物を含み、前記位相差層(B)の面内において屈折率が最も大きい方向である遅相軸方向の屈折率をnx、前記位相差層(B)の面内において前記遅相軸方向と直交する方向である進相軸方向の屈折率をny、前記位相差層(B)の厚み方向の屈折率をnzとした際に、
下記条件1’〜2’を満たすように、紫外線吸収層(C)を選別するものである。
<条件1’>
nx>ny≒nz または nx≒nz>ny
<条件2’>
前記位相差層(B)の面に対して垂直な方向から、振動方向が前記位相差層(B)の遅相軸の方向と平行な直線偏光1を入射し、前記位相差層(B)を透過した直線偏光1の分光透過スペクトルをt1とする。直線偏光1は水平偏光又は垂直偏光とする。
また、前記位相差層(B)の面に対して垂直な方向から、振動方向が前記位相差層(B)の遅相軸の方向と垂直な直線偏光2を入射し、前記位相差層(B)を透過した直線偏光2の分光透過スペクトルをt2とする。直線偏光1が水平偏光の場合、直線偏光2は垂直偏光として、直線偏光1が垂直偏光の場合、直線偏光2は水平偏光とする。
t1及びt2は波長300〜450nmの領域に、波長が短くなる側に向けて透過率が減少する吸収スペクトルを有し、t1の透過開始波長をa1(nm)、t2の透過開始波長をa2(nm)とする。また、前記紫外線吸収層(C)の面に対して垂直な方向から、偏光していない光を入射し、前記紫外線吸収層(C)を透過した光の分光透過スペクトルt3に基づく透過開始波長をa3(nm)とする。
上記前提条件において、下記式(1’)及び(2’)を満たす。
a1≠a2<a3 (1’)
a3≦420nm (2’)
[Selection method of ultraviolet absorbing layer of display panel]
The method for selecting the ultraviolet absorbing layer of the display panel according to the present invention includes:
A display having a display element (A), a retardation layer (B) arranged on the light emitting surface side of the display element, and an ultraviolet absorbing layer (C) arranged on the light emitting surface side of the retardation layer. In the panel,
The retardation layer (B) comprises a liquid crystal compound, the retardation layer refractive index in the slow axis direction refractive index is largest and the direction in the plane n x of (B), the retardation layer (B) the refractive index n y in the fast axis direction is a direction perpendicular to the slow axis direction in the plane, the refractive index in the thickness direction of the retardation layer (B) upon the n z of
The ultraviolet absorbing layer (C) is selected so as to satisfy the following conditions 1 ′ to 2 ′.
<Condition 1 '>
n x> n y ≒ n z, or n x ≒ n z> n y
<Condition 2 '>
Linearly polarized light 1 whose vibration direction is parallel to the direction of the slow axis of the phase difference layer (B) is incident from a direction perpendicular to the plane of the phase difference layer (B), and the phase difference layer (B) Let t 1 be the spectral transmission spectrum of the linearly polarized light 1 transmitted through. The linearly polarized light 1 is horizontal polarized light or vertical polarized light.
Also, linearly polarized light 2 whose vibration direction is perpendicular to the direction of the slow axis of the phase difference layer (B) is incident from a direction perpendicular to the plane of the phase difference layer (B), B) transmitted through the spectral transmission spectrum of the linearly polarized light 2 and t 2. When the linearly polarized light 1 is horizontal polarized light, the linearly polarized light 2 is vertical polarized light, and when the linearly polarized light 1 is vertical polarized light, the linearly polarized light 2 is horizontal polarized light.
t 1 and t 2 each have an absorption spectrum in which the transmittance decreases in the wavelength range of 300 to 450 nm toward the shorter wavelength, and the transmission start wavelength of t 1 is a 1 (nm) and the transmission of t 2 The starting wavelength is a 2 (nm). Further, from the direction perpendicular to the plane of the ultraviolet absorbing layer (C), incident unpolarized light, transmission start wavelength based on the spectral transmission spectrum t 3 of the light transmitted the ultraviolet absorbing layer (C) Is a 3 (nm).
Under the above preconditions, the following expressions (1 ′) and (2 ′) are satisfied.
a 1 ≠ a 2 <a 3 (1 ′)
a 3 ≦ 420 nm (2 ′)
条件1’は、上述した本発明の表示パネルの条件1に対応する。また、条件2’は、上述した本発明の表示パネルの条件2と条件3とを合わせたものである。 Condition 1 'corresponds to condition 1 for the display panel of the present invention described above. The condition 2 'is a combination of the above conditions 2 and 3 of the display panel of the present invention.
本発明の表示パネルの紫外線吸収層の選別方法によれば、位相差層の経時的な光劣化を抑制し得る紫外線吸収層を効率よく選択することができ、表示パネルの生産効率及び歩留まりを向上することができる。 ADVANTAGE OF THE INVENTION According to the selection method of the ultraviolet absorption layer of the display panel of this invention, the ultraviolet absorption layer which can suppress the temporal deterioration of a phase difference layer can be selected efficiently, and the production efficiency and the yield of a display panel improve. can do.
本発明の表示パネルの紫外線吸収層の選別方法は、位相差層(B)の構成が上述した本発明の表示パネルの位相差層(B)の好適な実施態様である場合に、上記効果をより有効なものとすることができる点で好ましい。
また、本発明の表示パネルの紫外線吸収層の選別方法は、紫外線吸収層(C)の構成が上述した本発明の表示パネルの紫外線吸収層(C)の好適な実施態様である場合に、上記効果をより有効なものとすることができる点で好ましい。
The method for selecting an ultraviolet absorbing layer of a display panel according to the present invention has the above-described effect when the configuration of the retardation layer (B) is a preferred embodiment of the above-described retardation layer (B) of the display panel of the present invention. It is preferable in that it can be more effective.
Further, the method for selecting an ultraviolet absorbing layer of the display panel of the present invention is characterized in that, when the configuration of the ultraviolet absorbing layer (C) is a preferred embodiment of the above-described ultraviolet absorbing layer (C) of the display panel of the present invention, This is preferable in that the effect can be made more effective.
次に、本発明を実施例により更に詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。なお、「部」及び「%」は特に断りのない限り質量基準とする。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. Note that “parts” and “%” are based on mass unless otherwise specified.
1.測定、評価
実施例及び比較例で得られた位相差層及び紫外線吸収層について、下記の測定、評価を行った。
1. Measurement and evaluation The following measurement and evaluation were performed on the retardation layer and the ultraviolet absorbing layer obtained in the examples and comparative examples.
1−1.屈折率及び位相差の測定
王子計測機器製の商品名「KOBRA-WR(測定スポット:直径5mm)」を用いて、位相差フィルム1〜8の位相差層の屈折率(nx、ny及びnz)、面内位相差及び厚み方向の位相差を測定した。結果を表1に示す。
1-1. Measurement of Refractive Index and Retardation Using the trade name “KOBRA-WR (measurement spot: diameter 5 mm)” manufactured by Oji Scientific Instruments, the refractive indices ( nx , ny and nz ), the in-plane retardation and the thickness direction retardation were measured. Table 1 shows the results.
1−2.透過開始波長a1及びa2、並びに、吸収開始波長b1及びb2の算出
明細書本文の測定方法に従って、位相差フィルム1〜8の位相差層の直線偏光1の分光透過スペクトルt1及び直線偏光2の分光透過スペクトルt2を測定し、透過開始波長a1及びa2、並びに、吸収開始波長b1及びb2を算出した。結果を表1に示す。
なお、分光透過スペクトルt1及び分光透過スペクトルt2は、日本分光社製の商品名「V−7100」を用いて、偏光フィルタをONとすることにより測定した。なお、光源は、重水素ランプ及びタングステンハロゲンランプを用い(350nm以下の波長は重水素ランプ、それ以外の波長はタングステンハロゲンランプ。装置内で自動切り替え)、測定波長ピッチは1nmとした。
1-2. Calculation of transmission start wavelengths a 1 and a 2 , and absorption start wavelengths b 1 and b 2 According to the measurement method described in the specification, the spectral transmission spectra t 1 and linear polarized light 1 of the phase difference layers of the phase difference films 1 to 8 and measuring the spectral transmission spectrum t 2 of the linearly polarized light 2, transmission start wavelength a 1 and a 2, as well, was calculated absorption start wavelength b 1 and b 2. Table 1 shows the results.
The spectral transmission spectrum t 1 and the spectral transmission spectrum t 2 were measured by using a trade name “V-7100” manufactured by JASCO Corporation by turning on the polarizing filter. As a light source, a deuterium lamp and a tungsten halogen lamp were used (a deuterium lamp was used for a wavelength of 350 nm or less, and a tungsten halogen lamp was used for other wavelengths. The wavelength was automatically switched in the apparatus), and the measurement wavelength pitch was 1 nm.
1−3.透過開始波長a3及び吸収開始波長b3の算出
明細書本文の測定方法に従って、紫外線吸収層(C)1〜4の非偏光の分光透過スペクトルt3を測定し、透過開始波長a3及び吸収開始波長b3を算出した。結果を表2に示す。
なお、分光透過スペクトルt3は、日本分光社製の商品名「V−7100」を用いて、偏光フィルタをOFFとして測定した。なお、光源は、重水素ランプ及びタングステンハロゲンランプを用い(350nm以下の波長は重水素ランプ、それ以外の波長はタングステンハロゲンランプ。装置内で自動切り替え)、測定波長ピッチは1nmとした。
1-3. According to the measuring method calculating specification Text of transmission start wavelength a 3 and the absorption start wavelength b 3, the spectral transmission spectrum t 3 of the unpolarized ultraviolet absorbing layer (C) 1 to 4 were measured, the transmission start wavelength a 3 and the absorption It was calculated start wavelength b 3. Table 2 shows the results.
It should be noted that the spectral transmission spectrum t 3 is, JASCO Corporation under the trade name using the "V-7100", to measure the polarization filter as OFF. As a light source, a deuterium lamp and a tungsten halogen lamp were used (a deuterium lamp was used for a wavelength of 350 nm or less, and a tungsten halogen lamp was used for other wavelengths. The wavelength was automatically switched in the apparatus), and the measurement wavelength pitch was 1 nm.
1−4.耐光性
岩崎電気社製のサンシャインカーボンアーク式耐候性試験機を用い、位相差フィルムと紫外線吸収フィルムとを表3及び表4の組み合わせで重ね合わせた積層体(後述の「4」で作製した積層体)の紫外線吸収フィルム側から140時間光照射する耐光性試験を行った。耐光性試験の終了後に位相差フィルムを取り出し、1−1と同様にして面内位相差を測定した。
耐光性試験前の波長550nmの面内位相差をRe1(550)、耐光性試験後の波長550nmの面内位相差をRe2(550)として、Re2(550)/Re1(550)を算出した。
その結果、Re2(550)/Re1(550)が0.92以上1.0未満のものを「A」、Re2(550)/Re1(550)が0.86以上0.92未満のものを「B」、Re2(550)/Re1(550)が0以上0.86未満のものを「C」とした。結果を表3及び表4に示す。
1-4. Light resistance Using a sunshine carbon arc type weather resistance tester manufactured by Iwasaki Electric Co., Ltd., a retardation film and an ultraviolet absorbing film were laminated in a combination of Tables 3 and 4 (lamination prepared by “4” described later). A light resistance test was carried out by irradiating light from the ultraviolet absorbing film side of the body for 140 hours. After completion of the light resistance test, the retardation film was taken out, and the in-plane retardation was measured in the same manner as in 1-1.
Re 2 (550) / Re 1 (550), where the in-plane retardation at a wavelength of 550 nm before the light resistance test is Re 1 (550), and the in-plane retardation at a wavelength of 550 nm after the light resistance test is Re 2 (550). Was calculated.
As a result, those having Re 2 (550) / Re 1 (550) of 0.92 or more and less than 1.0 are “A”, and those of Re 2 (550) / Re 1 (550) are 0.86 or more and less than 0.92. "B" ones, and the Re 2 (550) / Re 1 (550) that is less than 0 or 0.86 to as "C". The results are shown in Tables 3 and 4.
1−5.位相差層の厚み
位相差層の厚みが5μm以下のものを「A」、位相差層の厚みが5μmを超えるものを「C」とした。結果を表3及び表4に示す。
1-5. Thickness of Retardation Layer “A” indicates that the thickness of the retardation layer is 5 μm or less, and “C” indicates that the thickness of the retardation layer exceeds 5 μm. The results are shown in Tables 3 and 4.
1−6.画像の色味
実施例及び比較例の表示パネルを有機EL表示装置に組み込んで画像を表示させ、正面及び斜め方向から画像の色味を目視で評価した。黄色味が気にならないものを「A」、どちらともいえないが許容レベルであるものを「B」、黄色味が気になり許容できないものを「C」とした。結果を表3及び表4に示す。
1-6. Image tint The display panels of Examples and Comparative Examples were incorporated into an organic EL display device to display an image, and the color of the image was visually evaluated from the front and oblique directions. "A" indicates that the yellowish color is not worrisome, "B" indicates that the color is unacceptable but has an acceptable level, and "C" indicates that the yellowish color is unacceptable. The results are shown in Tables 3 and 4.
2.位相差フィルムの作製
2−1.位相差フィルム1
厚み80μmのPETフィルム上に、ポリシンナメート系化合物を含有する配向膜形成組成物(固形分4%、プロピレングリコールモノメチルエーテル希釈)を、塗布し、塗膜を形成した。得られた塗膜を120℃で1分間乾燥して、偏光露光20mJ/cm2(310nm)照射を行い、膜厚が200nmの配向膜を形成した。
次いで、配向膜上に、下記組成の位相差層(B)形成組成物をバーコーターで乾燥後の膜厚が2.0μmになるように塗布、乾燥、硬化し、PETフィルム、配向膜及び位相差層(B)を備えた積層体iを得た。乾燥条件は、温度120℃、時間60秒とした。硬化条件(紫外線照射量)は200mJ/cm2とした。
次いで、光学的等方性を有するTACフィルム(鹸化処理品、厚み80μm)上に光学的等方性を有するアクリル系粘着剤層(厚み25μm)を有する粘着シートの粘着剤層側の面と、積層体iの位相差層(B)側の面とを対向させて貼り合わせ、積層体iiを得た。
次いで、積層体iiのPETフィルム及び配向膜を剥離し、TAC、粘着剤層及び位相差層(B)をこの順に有する位相差フィルム1を得た。
<位相差層(B)形成組成物>
特許第6055569号公報の段落0351に記載されている化合物X(棒状重合液晶化合物に由来する構造単位と、逆分散特性を示す重合性化合物に由来する構造単位とを含む化合物)を15質量%、光重合開始剤(BASF社製、商品名:イルガキュア369)を5質量%、フッ素系界面活性剤(DIC社製、商品名:メガファックF477)を0.4質量%含む重合性液晶組成物。
2. 2. Production of retardation film 2-1. Retardation film 1
An alignment film forming composition (solid content: 4%, diluted with propylene glycol monomethyl ether) containing a polycinnamate-based compound was applied on a PET film having a thickness of 80 μm to form a coating film. The obtained coating film was dried at 120 ° C. for 1 minute and irradiated with polarized light at 20 mJ / cm 2 (310 nm) to form an alignment film having a thickness of 200 nm.
Next, a phase difference layer (B) forming composition having the following composition is applied on the alignment film with a bar coater so that the film thickness after drying becomes 2.0 μm, dried, and cured. The laminate i provided with the phase difference layer (B) was obtained. The drying conditions were a temperature of 120 ° C. and a time of 60 seconds. Curing conditions (ultraviolet irradiation amount) were set to 200 mJ / cm 2 .
Next, a pressure-sensitive adhesive layer-side surface of a pressure-sensitive adhesive sheet having an optically isotropic acrylic pressure-sensitive adhesive layer (thickness: 25 μm) on a TAC film having optical isotropy (saponified product, thickness: 80 μm); The laminate i was bonded to the surface on the side of the retardation layer (B) to obtain a laminate ii.
Next, the PET film and the alignment film of the laminate ii were peeled off to obtain a retardation film 1 having a TAC, an adhesive layer, and a retardation layer (B) in this order.
<Composition for forming retardation layer (B)>
15% by mass of compound X (a compound containing a structural unit derived from a rod-shaped polymerized liquid crystal compound and a structural unit derived from a polymerizable compound having reverse dispersion properties) described in paragraph 0351 of Japanese Patent No. 6055569; A polymerizable liquid crystal composition containing 5% by mass of a photopolymerization initiator (trade name: Irgacure 369, manufactured by BASF) and 0.4% by mass of a fluorine-based surfactant (trade name: Megafac F477, manufactured by DIC).
2−2.位相差フィルム2〜7
液晶化合物1を下記の液晶化合物2〜7に変更した以外は、位相差フィルム1と同様にして、位相差フィルム2〜7を得た。液晶化合物2〜7は、何れも、棒状重合液晶化合物に由来する構造単位と、逆分散特性を示す重合性化合物に由来する構造単位とを含む化合物である。
液晶化合物2:特開2011−162678号の段落0250に記載されている化合物7−1の構造を含む液晶化合物
液晶化合物3:特許第6055569号に記載されている実施例11の液晶化合物
液晶化合物4:特許第5670179号の段落0171に記載されている混合物5の液晶化合物
液晶化合物5:特許第6055569号に記載されている実施例16の液晶化合物
液晶化合物6:特許第6055569号に記載されている実施例18の液晶化合物
液晶化合物7:特開2016−56106の実施例4に記載されている(1−47−1)に記載の構造を含む液晶化合物
2-2. Retardation film 2-7
The retardation films 2 to 7 were obtained in the same manner as the retardation film 1 except that the liquid crystal compound 1 was changed to the following liquid crystal compounds 2 to 7. Each of the liquid crystal compounds 2 to 7 is a compound containing a structural unit derived from a rod-shaped polymerized liquid crystal compound and a structural unit derived from a polymerizable compound having reverse dispersion characteristics.
Liquid crystal compound 2: Liquid crystal compound having the structure of compound 7-1 described in paragraph 0250 of JP-A-2011-162678 Liquid crystal compound 3: Liquid crystal compound of Example 11 described in Patent No. 6055569 Liquid crystal compound 4 Liquid crystal compound of mixture 5 described in paragraph 0171 of Patent No. 5670179 Liquid crystal compound 5: Liquid crystal compound of Example 16 described in Patent No. 6055569 Liquid crystal compound 6: Described in Patent No. 6055569 Liquid crystal compound of Example 18 Liquid crystal compound 7: Liquid crystal compound having a structure described in (1-47-1) described in Example 4 of JP-A-2006-56106.
2−3.位相差フィルム8
位相差フィルム8として、市販の芳香族ポリカーボネートからなる位相差フィルムを準備した。
2-3. Retardation film 8
As the retardation film 8, a retardation film made of a commercially available aromatic polycarbonate was prepared.
3.紫外線吸収層(C)の準備及び作製
3−1.紫外線吸収層1
厚み60μmの光学等方性を有するTACフィルムを紫外線吸収層1として用いた。
3. Preparation and preparation of ultraviolet absorbing layer (C) 3-1. UV absorbing layer 1
A TAC film having a thickness of 60 μm and having optical isotropy was used as the ultraviolet absorbing layer 1.
3−2.紫外線吸収層2〜4
(樹脂層用組成物1の調整)
200mLの4つ口フラスコに玉付きコンデンサー、水銀温度計、撹拌装置を取り付け、6−[5−(2−ヒドロキシエチル)−2H−ベンゾトリアゾール−2−イル]ベンゾ[1,3]ジオキソール−5−オール4.0g(0.013モル)、トルエン40mL、メタクリル酸1.8g(0.021モル)、メタンスルホン酸0.4g(0.004モル)を入れて、110〜115℃で4時間還流脱水した。次いで、水30mL、炭酸ナトリウム0.6g(0.006モル)を加え、静置して下層部の水層を分離して除去し、活性炭0.2gを加え、還流撹拌して脱色させた。そして、ろ過した後に、ろ液からトルエン40mLを減圧で回収し、イソプロピルアルコール100mLを加え、析出した結晶をろ過し、イソプロピルアルコール40mLで洗浄した後、減圧下40℃で乾燥し、黄色結晶を4.2g得た。この黄色結晶4.2gをイソプロピルアルコールでリパルプ洗浄して、減圧下40℃で乾燥し、セサモール型ベンゾトリアゾール系化合物として、3.4gの2−[2−(6−ヒドロキシベンゾ[1,3]ジオキソール−5−イル)−2H−ベンゾトリアゾール−5−イル]エチルメタクリレートを得た。
3-2. UV absorbing layer 2-4
(Adjustment of Composition 1 for Resin Layer)
A 200 mL four-necked flask was equipped with a ball condenser, a mercury thermometer, and a stirrer, and 6- [5- (2-hydroxyethyl) -2H-benzotriazol-2-yl] benzo [1,3] dioxole-5 was added. 4.0 g (0.013 mol) of all, 40 mL of toluene, 1.8 g (0.021 mol) of methacrylic acid, and 0.4 g (0.004 mol) of methanesulfonic acid were added thereto at 110 to 115 ° C. for 4 hours. It was dehydrated under reflux. Next, 30 mL of water and 0.6 g (0.006 mol) of sodium carbonate were added, and the mixture was allowed to stand, and the lower aqueous layer was separated and removed, and 0.2 g of activated carbon was added. Then, after filtration, 40 mL of toluene was recovered from the filtrate under reduced pressure, 100 mL of isopropyl alcohol was added, and the precipitated crystals were filtered, washed with 40 mL of isopropyl alcohol, and dried at 40 ° C. under reduced pressure to remove yellow crystals. 0.2 g was obtained. 4.2 g of the yellow crystals were repulped and washed with isopropyl alcohol, and dried at 40 ° C. under reduced pressure to obtain 3.4 g of 2- [2- (6-hydroxybenzo [1,3]) as a sesamol-type benzotriazole compound. Dioxol-5-yl) -2H-benzotriazol-5-yl] ethyl methacrylate was obtained.
次いで、四つ口フラスコにジムロート冷却器、水銀温時計、窒素ガス吹き込み管、攪拌装置を取り付け、合成した2−[2−(6−ヒドロキシベンゾ[1,3]ジオキソール−5−イル)−2H−ベンゾトリアゾール−5−イル]エチルメタクリレートを8質量部、他の単量体としてのメチルメタクリレート(MMA)を32質量部、溶媒としてのトルエン20質量部、メチルエチルケトン20質量部、および、重合開始剤としての1,1’−アゾビス(シクロヘキサン−1−カルボニトリル)0.6質量部を入れて、攪拌しながら窒素ガス流量10mL/minで1時間フラスコ内を窒素置換後に、反応液温度90〜96℃で10時間還流状態にて重合反応を行った。 Then, a four-necked flask was equipped with a Dimroth condenser, a mercury temperature clock, a nitrogen gas blowing tube, and a stirrer, and the synthesized 2- [2- (6-hydroxybenzo [1,3] dioxol-5-yl) -2H was synthesized. -Benzotriazol-5-yl] ethyl methacrylate (8 parts by mass), methyl methacrylate (MMA) as another monomer 32 parts by mass, toluene 20 parts by mass, methyl ethyl ketone 20 parts by mass, and a polymerization initiator 0.6 parts by mass of 1,1′-azobis (cyclohexane-1-carbonitrile) was added, and while stirring, the inside of the flask was replaced with nitrogen at a nitrogen gas flow rate of 10 mL / min for 1 hour. The polymerization reaction was carried out at a temperature of 100 ° C. for 10 hours under reflux.
重合反応終了後、トルエン10質量部、メチルエチルケトン(MEK)10質量部を追加し、セサモール型ベンゾトリアゾール系化合物がMMAに反応結合されたアクリルポリマー1(光吸収剤1)を含む溶液100.6質量部を得た。 After completion of the polymerization reaction, 10 parts by mass of toluene and 10 parts by mass of methyl ethyl ketone (MEK) were added, and 100.6 parts by mass of a solution containing acrylic polymer 1 (light absorber 1) in which a sesamol-type benzotriazole-based compound was reactively bonded to MMA Got a part.
多官能モノマー(製品名「KAYARAD PET−30」、日本化薬株式会社製)および上記アクリルポリマー1を固形分質量比20:80で混ぜ合わせ、固形分25%まで溶剤(メチルエチルケトンおよびトルエンの質量比80:20)にて希釈して樹脂組成物を調製した。 A polyfunctional monomer (product name “KAYARAD PET-30”, manufactured by Nippon Kayaku Co., Ltd.) and the above-mentioned acrylic polymer 1 are mixed at a solid content mass ratio of 20:80, and the solvent (methyl ethyl ketone and toluene mass ratio up to 25% solid content) 80:20) to prepare a resin composition.
次いで、得られた樹脂組成物160質量部に対し、重合開始剤(IGM Resins B.V.社製のOmnirad184およびOmnirad819の質量比50:50)4質量部と、レベリング剤(製品名「F568」、DIC株式会社製)0.2質量部とを混ぜ合わせ、よく攪拌することで、樹脂層用組成物1を調製した。 Next, 4 parts by mass of a polymerization initiator (a mass ratio of 50:50 of Omnirad 184 and Omnirad 819 manufactured by IGM Resins BV) to 160 parts by mass of the obtained resin composition, and a leveling agent (product name “F568”) And DIC Co., Ltd.) in an amount of 0.2 part by mass, and the mixture was thoroughly stirred to prepare a composition 1 for a resin layer.
(樹脂層用組成物2の調整)
多官能モノマー(製品名「KAYARAD PET−30」、日本化薬株式会社製)を、固形分50%まで溶剤(メチルエチルケトンおよびメチルイソブチルケトン、質量比50:50)にて希釈して樹脂組成物を調整した。
(Preparation of composition 2 for resin layer)
A polyfunctional monomer (product name “KAYARAD PET-30”, manufactured by Nippon Kayaku Co., Ltd.) is diluted with a solvent (methyl ethyl ketone and methyl isobutyl ketone, mass ratio 50:50) to a solid content of 50% to obtain a resin composition. It was adjusted.
次いで、得られた樹脂組成物200質量部に対し、重合開始剤(IGM Resins B.V.社製のOmnirad184)4質量部と、レベリング剤(製品名「F568」、DIC株式会社製)0.2質量部とを混ぜ合わせ、よく攪拌することで、樹脂層用組成物2を調製した。 Next, based on 200 parts by mass of the obtained resin composition, 4 parts by mass of a polymerization initiator (Omnirad 184 manufactured by IGM Resins BV) and a leveling agent (product name “F568”, manufactured by DIC Corporation) were added. The mixture was mixed with 2 parts by mass, and the mixture was sufficiently stirred to prepare a composition 2 for a resin layer.
得られた樹脂層用組成物1を、ミヤバーにて厚みが25μmのトリアセチルセルロース基材(製品名「TJ25UL」、富士フイルム株式会社製)の表面に塗布して、塗膜を形成した。次いで、形成した塗膜に対して、0.5m/sの流速で70℃の乾燥空気を30秒間流通させることにより塗膜中の溶剤を蒸発させ、紫外線を積算光量が200mJ/cm2になるように照射して塗膜を硬化させることにより、膜厚が2μmの第1の樹脂層を形成した。 The obtained composition 1 for a resin layer was applied to the surface of a 25 μm-thick triacetylcellulose substrate (product name “TJ25UL”, manufactured by FUJIFILM Corporation) with a Miya bar to form a coating film. Next, the solvent in the coating film is evaporated by flowing dry air at 70 ° C. for 30 seconds at a flow rate of 0.5 m / s to the formed coating film, and the integrated amount of ultraviolet light becomes 200 mJ / cm 2 . By irradiating as described above to cure the coating film, a first resin layer having a thickness of 2 μm was formed.
第1の樹脂層を形成した後、メイヤーバーにて第1の樹脂層の表面に樹脂層用組成物2を塗布して、塗膜を形成した。次いで、形成した塗膜に対して、0.5m/sの流速で70℃の乾燥空気を30秒間流通させることにより塗膜中の溶剤を蒸発させ、紫外線を積算光量が200mJ/cm2になるように照射して塗膜を硬化させることにより、膜厚が4μmの第2の樹脂層を形成した。これにより、TACフィルムと、紫外線吸収剤を含む樹脂層(第1の樹脂層)と、第2の樹脂層との積層構造からなる紫外線吸収層(C)[紫外線吸収層2]を得た。
また、第1の樹脂層の膜厚を3μmに変更した以外は、上記と同様にして、TACフィルムと、紫外線吸収剤を含む樹脂層(第1の樹脂層)と、第2の樹脂層との積層構造からなる紫外線吸収層(C)[紫外線吸収層3]を得た。
また、第1の樹脂層の膜厚を4μmに変更した以外は、上記と同様にして、TACフィルムと、紫外線吸収剤を含む樹脂層(第1の樹脂層)と、第2の樹脂層との積層構造からなる紫外線吸収層(C)[紫外線吸収層4]を得た。
After forming the first resin layer, the resin layer composition 2 was applied to the surface of the first resin layer using a Meyer bar to form a coating film. Next, the solvent in the coating film is evaporated by flowing dry air at 70 ° C. for 30 seconds at a flow rate of 0.5 m / s to the formed coating film, and the integrated amount of ultraviolet light becomes 200 mJ / cm 2 . By irradiating as described above to cure the coating film, a second resin layer having a thickness of 4 μm was formed. Thus, an ultraviolet absorbing layer (C) [ultraviolet absorbing layer 2] having a laminated structure of the TAC film, the resin layer containing the ultraviolet absorbing agent (first resin layer), and the second resin layer was obtained.
Further, in the same manner as above, except that the thickness of the first resin layer was changed to 3 μm, the TAC film, the resin layer containing the ultraviolet absorbent (first resin layer), and the second resin layer (C) [Ultraviolet absorbing layer 3] having the following laminated structure.
Further, in the same manner as described above, except that the thickness of the first resin layer was changed to 4 μm, the TAC film, the resin layer containing the ultraviolet absorber (first resin layer), and the second resin layer (C) [Ultraviolet absorbing layer 4] having the above laminated structure.
4.位相差フィルムと紫外線吸収層(C)とのラミネート
上記「2」の位相差フィルム1〜8の位相差層(B)側の面と、上記「3」の紫外線吸収層1〜4のTACフィルム側とを、光学的等方性を有するアクリル系粘着剤層(厚み25μm)を介してラミネートし、積層体を得た。位相差フィルム1〜8と紫外線吸収層1〜4とは、表3及び4のようにして組み合わせた。
4. Lamination of retardation film and ultraviolet absorbing layer (C) The surface of retardation film (B) side of retardation films 1 to 8 of "2" and the TAC film of ultraviolet absorption layers 1 to 4 of "3" The two sides were laminated via an acrylic pressure-sensitive adhesive layer (thickness: 25 μm) having optical isotropy to obtain a laminate. The retardation films 1 to 8 and the ultraviolet absorbing layers 1 to 4 were combined as shown in Tables 3 and 4.
5.表示パネルの作製
市販の有機EL表示装置の有機EL素子上に配置されていた光学部材を取り出した。該有機EL素子上に、位相差フィルム及び紫外線吸収フィルムを表3及び4の組み合わせでラミネートした積層体を配置し、さらに、該積層体の紫外線吸収層上に偏光板を配置して、実施例及び比較例の表示パネル及び表示装置を得た。なお、偏光板の偏光子の吸収軸と、位相差フィルムの位相差層の遅相軸との成す角度が45度となるように配置した。
5. Preparation of Display Panel An optical member disposed on an organic EL element of a commercially available organic EL display device was taken out. A laminate was prepared by laminating a retardation film and an ultraviolet absorbing film in the combination shown in Tables 3 and 4 on the organic EL element, and a polarizing plate was further arranged on the ultraviolet absorbing layer of the laminate. And the display panel and the display device of the comparative example were obtained. In addition, it was arranged so that the angle formed between the absorption axis of the polarizer of the polarizing plate and the slow axis of the retardation layer of the retardation film was 45 degrees.
表1〜4から明らかなように、条件1〜3を満たす表示パネルは、位相差層の経時的な光劣化を大幅に抑制することができ、表示品質の経時的な低下を抑制し得るものであることが確認できる。 As is clear from Tables 1 to 4, the display panel satisfying the conditions 1 to 3 can significantly suppress the temporal deterioration of the retardation layer and can suppress the temporal deterioration of the display quality. Can be confirmed.
10:表示素子(A)
20:位相差層(B)
30:紫外線吸収層(C)
100:表示パネル
10: Display element (A)
20: retardation layer (B)
30: UV absorbing layer (C)
100: Display panel
Claims (9)
前記位相差層(B)が液晶化合物を含み、前記位相差層(B)の面内において屈折率が最も大きい方向である遅相軸方向の屈折率をnx、前記位相差層(B)の面内において前記遅相軸方向と直交する方向である進相軸方向の屈折率をny、前記位相差層(B)の厚み方向の屈折率をnzとした際に、下記条件1〜3を満たす、表示パネル。
<条件1>
nx>ny≒nz または nx≒nz>ny
<条件2>
前記位相差層(B)の面に対して垂直な方向から、振動方向が前記位相差層(B)の遅相軸の方向と平行な直線偏光1を入射し、前記位相差層(B)を透過した直線偏光1の分光透過スペクトルをt1とする。直線偏光1は水平偏光又は垂直偏光とする。
また、前記位相差層(B)の面に対して垂直な方向から、振動方向が前記位相差層(B)の遅相軸の方向と垂直な直線偏光2を入射し、前記位相差層(B)を透過した直線偏光2の分光透過スペクトルをt2とする。直線偏光1が水平偏光の場合、直線偏光2は垂直偏光として、直線偏光1が垂直偏光の場合、直線偏光2は水平偏光とする。
t1及びt2は波長300〜450nmの領域に、波長が短くなる側に向けて透過率が減少する吸収スペクトルを有し、t1の透過開始波長をa1(nm)、t2の透過開始波長をa2(nm)とした際に、a1≠a2の関係を満たす。
<条件3>
前記紫外線吸収層(C)の面に対して垂直な方向から、偏光していない光を入射し、前記紫外線吸収層(C)を透過した光の分光透過スペクトルt3に基づく透過開始波長をa3(nm)とした際に、下記式(1)〜(3)を満たす。
a1<a3 (1)
a2<a3 (2)
a3≦420nm (3) A display having a display element (A), a retardation layer (B) arranged on the light emitting surface side of the display element, and an ultraviolet absorbing layer (C) arranged on the light emitting surface side of the retardation layer. A panel,
The retardation layer (B) comprises a liquid crystal compound, the retardation layer refractive index in the slow axis direction refractive index is largest and the direction in the plane n x of (B), the retardation layer (B) When the refractive index in the fast axis direction, which is the direction orthogonal to the slow axis direction, is ny and the refractive index in the thickness direction of the retardation layer (B) is nz , the following condition 1 is satisfied . A display panel that satisfies ~ 3.
<Condition 1>
n x> n y ≒ n z, or n x ≒ n z> n y
<Condition 2>
Linearly polarized light 1 whose vibration direction is parallel to the direction of the slow axis of the phase difference layer (B) is incident from a direction perpendicular to the plane of the phase difference layer (B), and the phase difference layer (B) Let t 1 be the spectral transmission spectrum of the linearly polarized light 1 transmitted through. The linearly polarized light 1 is horizontal polarized light or vertical polarized light.
Also, linearly polarized light 2 whose vibration direction is perpendicular to the direction of the slow axis of the phase difference layer (B) is incident from a direction perpendicular to the plane of the phase difference layer (B), B) transmitted through the spectral transmission spectrum of the linearly polarized light 2 and t 2. When the linearly polarized light 1 is horizontal polarized light, the linearly polarized light 2 is vertical polarized light, and when the linearly polarized light 1 is vertical polarized light, the linearly polarized light 2 is horizontal polarized light.
t 1 and t 2 each have an absorption spectrum in which the transmittance decreases in the wavelength range of 300 to 450 nm toward the shorter wavelength, and the transmission start wavelength of t 1 is a 1 (nm) and the transmission of t 2 When the starting wavelength is a 2 (nm), the relationship a 1 ≠ a 2 is satisfied.
<Condition 3>
From a direction perpendicular to the plane of the ultraviolet absorbing layer (C), incident unpolarized light, a transmission start wavelength based on the spectral transmission spectrum t 3 of the light transmitted the ultraviolet absorbing layer (C) a 3 (nm), the following expressions (1) to (3) are satisfied.
a 1 <a 3 (1)
a 2 <a 3 (2)
a 3 ≦ 420 nm (3)
<条件4>
a1とa2のうちの波長が大きいものと、a3との差が2nm以上 The display panel according to claim 1, further satisfying the following condition 4:
<Condition 4>
as the wavelength of a 1 and a 2 is large, the difference between a 3 or more 2nm
Re(450)<Re(550)<Re(650) (i) The in-plane retardation of the retardation layer (B) at a wavelength of 450 nm is Re (450), the in-plane retardation of the retardation layer (B) at a wavelength of 550 nm is Re (550), and the in-plane retardation of the retardation layer (B) is The display panel according to claim 1, wherein the following formula (i) is satisfied when the in-plane retardation at a wavelength of 650 nm is Re (650).
Re (450) <Re (550) <Re (650) (i)
0.75≦Re(450)/Re(550)≦0.98 (ii) The display panel according to claim 3, further satisfying the following expression (ii).
0.75 ≦ Re (450) / Re (550) ≦ 0.98 (ii)
80nm≦Re(550)≦220nm (iii) The display panel according to any one of claims 1 to 4, wherein the retardation layer (B) satisfies the following expression (iii).
80 nm ≦ Re (550) ≦ 220 nm (iii)
前記位相差層(B)が液晶化合物を含み、前記位相差層(B)の面内において屈折率が最も大きい方向である遅相軸方向の屈折率をnx、前記位相差層(B)の面内において前記遅相軸方向と直交する方向である進相軸方向の屈折率をny、前記位相差層(B)の厚み方向の屈折率をnzとした際に、
下記条件1’〜2’を満たすように、紫外線吸収層(C)を選別する、表示パネルの紫外線吸収層の選別方法。
<条件1’>
nx>ny≒nz または nx≒nz>ny
<条件2’>
前記位相差層(B)の面に対して垂直な方向から、振動方向が前記位相差層(B)の遅相軸の方向と平行な直線偏光1を入射し、前記位相差層(B)を透過した直線偏光1の分光透過スペクトルをt1とする。直線偏光1は水平偏光又は垂直偏光とする。
また、前記位相差層(B)の面に対して垂直な方向から、振動方向が前記位相差層(B)の遅相軸の方向と垂直な直線偏光2を入射し、前記位相差層(B)を透過した直線偏光2の分光透過スペクトルをt2とする。直線偏光1が水平偏光の場合、直線偏光2は垂直偏光として、直線偏光1が垂直偏光の場合、直線偏光2は水平偏光とする。
t1及びt2は波長300〜450nmの領域に、波長が短くなる側に向けて透過率が減少する吸収スペクトルを有し、t1の透過開始波長をa1(nm)、t2の透過開始波長をa2(nm)とする。また、前記紫外線吸収層(C)の面に対して垂直な方向から、偏光していない光を入射し、前記紫外線吸収層(C)を透過した光の分光透過スペクトルt3に基づく透過開始波長をa3(nm)とする。
上記前提条件において、下記式(1’)及び(2’)を満たす。
a1≠a2<a3 (1’)
a3≦420nm (2’) A display having a display element (A), a retardation layer (B) arranged on the light emitting surface side of the display element, and an ultraviolet absorbing layer (C) arranged on the light emitting surface side of the retardation layer. In the panel,
The retardation layer (B) comprises a liquid crystal compound, the retardation layer refractive index in the slow axis direction refractive index is largest and the direction in the plane n x of (B), the retardation layer (B) the refractive index n y in the fast axis direction is a direction perpendicular to the slow axis direction in the plane, the refractive index in the thickness direction of the retardation layer (B) upon the n z of
A method for selecting an ultraviolet absorbing layer of a display panel, wherein the ultraviolet absorbing layer (C) is selected so as to satisfy the following conditions 1 ′ to 2 ′.
<Condition 1 '>
n x> n y ≒ n z, or n x ≒ n z> n y
<Condition 2 '>
Linearly polarized light 1 whose vibration direction is parallel to the direction of the slow axis of the phase difference layer (B) is incident from a direction perpendicular to the plane of the phase difference layer (B), and the phase difference layer (B) Let t 1 be the spectral transmission spectrum of the linearly polarized light 1 transmitted through. The linearly polarized light 1 is horizontal polarized light or vertical polarized light.
Also, linearly polarized light 2 whose vibration direction is perpendicular to the direction of the slow axis of the phase difference layer (B) is incident from a direction perpendicular to the plane of the phase difference layer (B), B) transmitted through the spectral transmission spectrum of the linearly polarized light 2 and t 2. When the linearly polarized light 1 is horizontal polarized light, the linearly polarized light 2 is vertical polarized light, and when the linearly polarized light 1 is vertical polarized light, the linearly polarized light 2 is horizontal polarized light.
t 1 and t 2 each have an absorption spectrum in which the transmittance decreases in the wavelength range of 300 to 450 nm toward the shorter wavelength, and the transmission start wavelength of t 1 is a 1 (nm) and the transmission of t 2 The starting wavelength is a 2 (nm). Further, from the direction perpendicular to the plane of the ultraviolet absorbing layer (C), incident unpolarized light, transmission start wavelength based on the spectral transmission spectrum t 3 of the light transmitted the ultraviolet absorbing layer (C) Is a 3 (nm).
Under the above preconditions, the following expressions (1 ′) and (2 ′) are satisfied.
a 1 ≠ a 2 <a 3 (1 ′)
a 3 ≦ 420 nm (2 ′)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018163311A JP7259232B2 (en) | 2018-08-31 | 2018-08-31 | Display panel, image display device, and method for selecting ultraviolet absorption layer of display panel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018163311A JP7259232B2 (en) | 2018-08-31 | 2018-08-31 | Display panel, image display device, and method for selecting ultraviolet absorption layer of display panel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020034858A true JP2020034858A (en) | 2020-03-05 |
JP7259232B2 JP7259232B2 (en) | 2023-04-18 |
Family
ID=69668021
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018163311A Active JP7259232B2 (en) | 2018-08-31 | 2018-08-31 | Display panel, image display device, and method for selecting ultraviolet absorption layer of display panel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7259232B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112838113A (en) * | 2021-01-22 | 2021-05-25 | 武汉华星光电半导体显示技术有限公司 | Display device |
JP2021189224A (en) * | 2020-05-26 | 2021-12-13 | 大日本印刷株式会社 | An optical laminate, and a polarizing plate, a display panel, and an image display device using the same. |
JP2021189251A (en) * | 2020-05-27 | 2021-12-13 | 日本板硝子株式会社 | Light absorber, light absorber article, imaging device and light absorptive composition |
KR20240112908A (en) | 2021-11-29 | 2024-07-19 | 닛산 가가쿠 가부시키가이샤 | Polymer compositions and single layer phase contrast materials |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008070742A (en) * | 2006-09-15 | 2008-03-27 | Nitto Denko Corp | Retardation film, optical laminate, liquid crystal panel and liquid crystal display |
WO2011040541A1 (en) * | 2009-09-30 | 2011-04-07 | 大日本印刷株式会社 | Optical laminate and method for producing optical laminate |
JP2013079995A (en) * | 2011-09-30 | 2013-05-02 | Fujifilm Corp | Surface film for image display apparatus, polarizing plate, and image display apparatus |
CN103163584A (en) * | 2011-12-12 | 2013-06-19 | 第一毛织株式会社 | Polarizing plate for organic light-emitting display and display device including the same |
JP2016071229A (en) * | 2014-09-30 | 2016-05-09 | 大日本印刷株式会社 | Optical film and manufacturing method of optical film, and image display device |
CN105885872A (en) * | 2016-04-07 | 2016-08-24 | 深圳市华星光电技术有限公司 | Liquid crystal material, liquid crystal display panel and method for manufacturing liquid crystal display panel |
JP2017210552A (en) * | 2016-05-25 | 2017-11-30 | 住友化学株式会社 | Light absorbing composition |
-
2018
- 2018-08-31 JP JP2018163311A patent/JP7259232B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008070742A (en) * | 2006-09-15 | 2008-03-27 | Nitto Denko Corp | Retardation film, optical laminate, liquid crystal panel and liquid crystal display |
WO2011040541A1 (en) * | 2009-09-30 | 2011-04-07 | 大日本印刷株式会社 | Optical laminate and method for producing optical laminate |
JP2013079995A (en) * | 2011-09-30 | 2013-05-02 | Fujifilm Corp | Surface film for image display apparatus, polarizing plate, and image display apparatus |
CN103163584A (en) * | 2011-12-12 | 2013-06-19 | 第一毛织株式会社 | Polarizing plate for organic light-emitting display and display device including the same |
JP2016071229A (en) * | 2014-09-30 | 2016-05-09 | 大日本印刷株式会社 | Optical film and manufacturing method of optical film, and image display device |
CN105885872A (en) * | 2016-04-07 | 2016-08-24 | 深圳市华星光电技术有限公司 | Liquid crystal material, liquid crystal display panel and method for manufacturing liquid crystal display panel |
JP2017210552A (en) * | 2016-05-25 | 2017-11-30 | 住友化学株式会社 | Light absorbing composition |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021189224A (en) * | 2020-05-26 | 2021-12-13 | 大日本印刷株式会社 | An optical laminate, and a polarizing plate, a display panel, and an image display device using the same. |
JP2021189251A (en) * | 2020-05-27 | 2021-12-13 | 日本板硝子株式会社 | Light absorber, light absorber article, imaging device and light absorptive composition |
JP7510278B2 (en) | 2020-05-27 | 2024-07-03 | 日本板硝子株式会社 | Light absorber, article with light absorber, imaging device, and light absorbing composition |
CN112838113A (en) * | 2021-01-22 | 2021-05-25 | 武汉华星光电半导体显示技术有限公司 | Display device |
KR20240112908A (en) | 2021-11-29 | 2024-07-19 | 닛산 가가쿠 가부시키가이샤 | Polymer compositions and single layer phase contrast materials |
Also Published As
Publication number | Publication date |
---|---|
JP7259232B2 (en) | 2023-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10935836B2 (en) | Organic electroluminescent display device, phase difference film, and circularly polarizing plate | |
JP5688333B2 (en) | Polymer film, retardation film, polarizing plate, liquid crystal display device, Rth enhancer and merocyanine compound | |
JP4708287B2 (en) | Manufacturing method of optical film, optical film, polarizing plate, transfer material, liquid crystal display device, and polarized ultraviolet exposure device | |
JP5250082B2 (en) | Polymer film, retardation film, polarizing plate, liquid crystal display device and ultraviolet absorber | |
JP7553474B2 (en) | Light-absorbing anisotropic layer, laminate, optical film, image display device, backlight module | |
WO2021246286A1 (en) | Optical element, image display device, virtual reality display device, electronic finder, and method for manufacturing polarizer | |
JPWO2020045216A1 (en) | Laminate and image display device | |
JP5723077B1 (en) | Retardation plate, elliptically polarizing plate and display device using the same | |
JP7259232B2 (en) | Display panel, image display device, and method for selecting ultraviolet absorption layer of display panel | |
WO2021111861A1 (en) | Layered body, optical device, and display device | |
US20190288240A1 (en) | Circularly polarizing plate, and organic electroluminescent display device | |
US20220213384A1 (en) | Polymerizable liquid crystal composition, cured product, optical film, polarizing plate, and image display device | |
WO2019124347A1 (en) | Optical laminate, display panel, and display device | |
US20210165148A1 (en) | Laminate and image display device | |
WO2019167926A1 (en) | Multilayer body, organic electroluminescent device and liquid crystal display device | |
KR102140552B1 (en) | Optical element, manufacturing method of optical element and liquid crystal display device | |
US11487055B2 (en) | Laminate | |
KR102454820B1 (en) | Polarizing plate, circular polarizing plate, display device | |
JP7553552B2 (en) | Viewing angle control system and image display device | |
WO2025074904A1 (en) | Film, optical member, optical device, and head-mounted display | |
US20230204838A1 (en) | Optical film, circularly polarizing plate, and organic electroluminescent display device | |
WO2022181414A1 (en) | Laminate, antireflection system, and image display device | |
JP7398187B2 (en) | Optical laminate, circularly polarizing plate and display panel using the same | |
JP2009199070A (en) | Polarizing plate and liquid crystal display apparatus | |
WO2024070691A1 (en) | Laminate, image display device, optical device, and head-mounted display |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20200827 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210622 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220426 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220427 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220613 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221004 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221102 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230307 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230320 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7259232 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |