[go: up one dir, main page]

JP2020032873A - Automated operation method - Google Patents

Automated operation method Download PDF

Info

Publication number
JP2020032873A
JP2020032873A JP2018161185A JP2018161185A JP2020032873A JP 2020032873 A JP2020032873 A JP 2020032873A JP 2018161185 A JP2018161185 A JP 2018161185A JP 2018161185 A JP2018161185 A JP 2018161185A JP 2020032873 A JP2020032873 A JP 2020032873A
Authority
JP
Japan
Prior art keywords
vehicle
imu
gps
operation method
inertial measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018161185A
Other languages
Japanese (ja)
Other versions
JP6978177B2 (en
Inventor
賢治 江尻
Kenji Ejiri
賢治 江尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Smart Mobility Co Ltd
Original Assignee
Advanced Smart Mobility Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Smart Mobility Co Ltd filed Critical Advanced Smart Mobility Co Ltd
Priority to JP2018161185A priority Critical patent/JP6978177B2/en
Publication of JP2020032873A publication Critical patent/JP2020032873A/en
Priority to JP2021175672A priority patent/JP7240472B2/en
Application granted granted Critical
Publication of JP6978177B2 publication Critical patent/JP6978177B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)
  • Navigation (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

To provide an automated operation method that enables an automated operation to be continued without any change, even when the accuracy of a position detected by a GPS signal is decreased.SOLUTION: A GPS signal is received during traveling, and a position of a driver's own vehicle is acquired in real time. The vehicle travels by correcting the acquired position of the driver's own vehicle so that it can correspond to a predetermined target locus. In this case, when reliability of positional accuracy of the driver's own vehicle detected by the GPS signal is decreased, the vehicle travels by shifting to traveling using an Inertial Measurement Unit (IMU) comprising a gyro and an acceleration meter.SELECTED DRAWING: Figure 5

Description

本発明はGPS信号を利用した自動運行方法に関する。   The present invention relates to an automatic operation method using a GPS signal.

バスなどの決められた経路を自動運行する方法として、予め目標軌跡を作成し、この目標軌跡に沿って車両を走行させるために、GPS信号を受信して自車両の位置をリアルタイムで取得し、この取得した自車両の位置が目標軌跡上にあるか否かを判断し、目標軌跡を辿るように位置修正して走行することが行われている。   As a method of automatically operating a predetermined route such as a bus, a target trajectory is created in advance, a GPS signal is received, and the position of the own vehicle is acquired in real time to make the vehicle travel along this target trajectory, It is determined whether or not the acquired position of the host vehicle is on the target locus, and the vehicle is traveled with the position corrected so as to follow the target locus.

特許文献1には、自動運転ではなくドライバーによる運転中に、GPS信号に基づく位置情報と慣性計測装置(IMU:Inertial Measurement Unit)に基づく位置情報とを比較し、その差が大きくなった場合に、GPS信号の受信状態が劣化する遮蔽領域(トンネルなど)を走行していると判断し、遮蔽領域に入ったことをドライバーに早期に知らせることが記載されている。   Patent Literature 1 discloses that when driving is performed not by automatic driving but by a driver, positional information based on a GPS signal is compared with positional information based on an inertial measurement unit (IMU: Inertial Measurement Unit). It describes that it is determined that the vehicle is traveling in a shielded area (such as a tunnel) in which the reception state of the GPS signal is deteriorated, and that the driver is notified early that the vehicle has entered the shielded area.

特許文献2には、MEMS慣性センサからの3軸角速度信号及び3軸加速度信号を慣性航法計算部で受け、この慣性航法計算部からの各出力とGPSセンサとタイヤ速度センサとステアリング角センサからの各出力とを減算して誤差を推定して補正することが記載されている。   In Patent Document 2, a three-axis angular velocity signal and a three-axis acceleration signal from a MEMS inertial sensor are received by an inertial navigation calculation unit, and each output from the inertial navigation calculation unit is output from a GPS sensor, a tire speed sensor, and a steering angle sensor. It is described that each output is subtracted to estimate and correct an error.

特許文献3には、車載カメラが取得した画像データから路面画像を生成し、また道路情報から疑似路面画像を生成し、これら路面画像と疑似路面画像との相関値が一定以上になった場合(ズレが大きくなったと判断した場合)には、GPS信号に基づく自動運転からドライバーによるマニュアル運転に切り替えることが記載されている。
同じく特許文献4にもGPS信号に基づく自動運転とドライバーによるマニュアル運転との切替えについて記載されている。
Patent Literature 3 discloses a method in which a road surface image is generated from image data acquired by a vehicle-mounted camera and a pseudo road surface image is generated from road information, and a correlation value between the road surface image and the pseudo road surface image is equal to or more than a certain value ( If it is determined that the deviation has increased), switching from automatic driving based on a GPS signal to manual driving by a driver is described.
Similarly, Patent Document 4 describes switching between automatic driving based on a GPS signal and manual driving by a driver.

非特許文献1及び非特許文献2には、車両がRTK(Real Time Kinematics)−GPSで走行する内容の説明がされている。   Non-Patent Document 1 and Non-Patent Document 2 describe the contents of a vehicle traveling by RTK (Real Time Kinematics) -GPS.

特開2016−038379号公報JP-A-2006-38379 特開2016−017796号公報JP-A-2017-017796 特開2018−077771号公報JP 2018-077771 A 特開2016−124542号公報JP-A-2006-124542

「RTK−GPSの原理と応用」浪江宏宗http://www.nda.ac.jp/~nami/research/pdf/CGSIC2001.pdf"Principles and Applications of RTK-GPS" Hiromune Namie http://www.nda.ac.jp/~nami/research/pdf/CGSIC2001.pdf 「RTK−GPSのデータ交換に関する研究」佐田達典ほか 土木情報システム論文集 Vol.8 1999.p57-64"Research on Data Exchange of RTK-GPS" Tatsunori Sada et al. Civil Engineering Information Systems Vol.8 1999.p57-64

GPS信号によって特定される位置(絶対位置)は、現在では誤差が数cmまで向上している。しかしながら、高精度に位置が特定されるのはGPS信号を高感度で受信できることが前提条件である。   At present, the position (absolute position) specified by the GPS signal has an error improved to several cm. However, the position is specified with high accuracy on the precondition that the GPS signal can be received with high sensitivity.

GPSシステムには障害物(建物、樹木、電線など)の影響でマルチパスと呼ばれるエラーが生じる。このマルチパスが発生すると、位置を高精度に特定できない。 人間が運転している場合には、自車両の位置情報に誤差が生じても運転自体には特に支障がない。このため特許文献1及び2ではその旨をドライバーに知らせるに止まる。   An error called multipath occurs in the GPS system due to an obstacle (a building, a tree, an electric wire, or the like). When this multipath occurs, the position cannot be specified with high accuracy. When a human is driving, even if an error occurs in the position information of the own vehicle, the driving itself is not particularly hindered. For this reason, in Patent Literatures 1 and 2, the driver is notified only to that effect.

しかしながらGPS信号に基づいて自動運転している場合は、GPS信号によって特定される位置誤差が直接運転に反映されてしまう。誤差を認識しない状態で運転を継続することは事故につながる。   However, when the vehicle is automatically driven based on the GPS signal, the position error specified by the GPS signal is directly reflected on the driving. Continuing driving without recognizing the error leads to an accident.

また、従来技術においても慣性センサ(IMU)に基づく位置情報との比較によってGPS信号に基づく位置情報の信頼性が分かるので、信頼性が低下した時点で自動運転を停止し、信号強度が回復するまで待つことも考えられる。しかしながら、これでは自動運転車両が信号や渋滞以外の理由で頻繁に停止し、周囲の車両との運転の調和がとれず、却って渋滞や事故の原因にもつながる。   Also in the related art, the reliability of the position information based on the GPS signal can be found by comparing the position information based on the inertial sensor (IMU) with the position information based on the GPS signal. When the reliability decreases, the automatic operation is stopped and the signal strength is restored. It is possible to wait until. However, in this case, the self-driving vehicle frequently stops for reasons other than traffic lights and traffic jams, and the driving with the surrounding vehicles cannot be coordinated, which may lead to traffic jams and accidents.

特許文献3には自動運転からマニュアル運転に切り替えることが記載されているので停止による交通の混乱は避けられるが、常にドライバーが同乗することが要求されるので完全な自動運転にはならない。   Patent Literature 3 describes switching from automatic driving to manual driving, so that traffic confusion due to stopping can be avoided. However, since the driver is always required to ride on the vehicle, completely automatic driving is not achieved.

非特許文献1、2には、ネットワーク型(RTK: Real Time Kinematics)GPSについての記載があるが、自動運転中にGPS信号の感度が低下した場合の対処については何ら示唆していない。   Non-Patent Documents 1 and 2 describe a network type (RTK: Real Time Kinematics) GPS, but do not suggest any measures to be taken when the sensitivity of a GPS signal is reduced during automatic driving.

上記の課題を解決するため、本発明に係る自動運行方法は、走行中にGPS信号を受信してリアルタイムで自車両の位置を取得し、取得した自車両の位置を予め定めた目標軌跡に沿って走行するにあたり、前記GPS信号によって検出される自車両の位置精度の信頼性が低下したことを感知した場合に、ジャイロと加速度計によって構成される慣性計測装置(IMU:Inertial Measurement Unit)による走行に切り換え、この慣性計測装置(IMU)による走行では、GPSシステムによる座標及び方位角と慣性計測装置(IMU)による座標及び方位角とを整合させて走行するようにした。
前記慣性計測装置(IMU)による座標及び方位角を得るために必要な車体横滑り角を、車両モデルから導出される式またはモデル同定実験式を用いて算出する。
In order to solve the above-mentioned problems, the automatic operation method according to the present invention receives a GPS signal during traveling, acquires the position of the own vehicle in real time, and moves the acquired position of the own vehicle along a predetermined target trajectory. When the vehicle detects that the reliability of the position accuracy of the vehicle detected by the GPS signal has deteriorated, the vehicle travels using an inertial measurement unit (IMU) including a gyro and an accelerometer. In the traveling by the inertial measurement device (IMU), the vehicle travels while matching the coordinates and the azimuth angle of the GPS system with the coordinates and the azimuth angle of the inertial measurement device (IMU).
The vehicle body slip angle required for obtaining the coordinates and the azimuth angle by the inertial measurement device (IMU) is calculated using an equation derived from a vehicle model or a model identification experimental equation.

前記慣性計測装置(IMU)に切り替えた走行では、慣性計測装置(IMU)にて取得した自車両の位置と目標軌跡上の点とをクロソイド曲線などで曲線補間し、この補間した曲線に沿って走行し目標軌跡に乗る。   When the vehicle is switched to the inertial measurement device (IMU), the position of the vehicle acquired by the inertial measurement device (IMU) and a point on the target trajectory are curve-interpolated with a clothoid curve or the like, and along the interpolated curve. Run and get on the target track.

慣性計測装置に切り換えた後の走行速度はGPS走行と同じでもよいが、一般的に慣性計測装置による位置精度はGPSによる位置精度よりも低いため、慣性計測装置に切り替えた走行では、安全走行が確認できる速度まで速度を落として走行するのが好ましい。
また、GPS信号によって検出される位置精度に信頼性があるか否かの判断は、例えば、NMEA(National Marine Electronic Association)0183の位置特定品質を基準として判断する。
The traveling speed after switching to the inertial measurement device may be the same as that for GPS traveling. However, since the position accuracy by the inertial measurement device is generally lower than the positional accuracy by GPS, safe traveling can be achieved by switching to the inertial measurement device. It is preferable to run at a reduced speed to a speed that can be confirmed.
The determination as to whether or not the position accuracy detected by the GPS signal is reliable is made based on, for example, the position identification quality of NMEA (National Marine Electronic Association) 0183.

目標軌跡から外れた自車位置から目標軌跡に戻るには、慣性計測装置(IMU)によって検出される偏揺角速度(ヨーレイト)、車体横すべり角、及び車速を計算式に代入して取得される。
即ち、自車位置から目標軌跡に向かい目標軌跡を辿るところで、自車の位置および姿勢変化をリアルタイムで把握し予測する計算をIMUが行う。即ち、前記ヨーレイトと車体横すべり角及び車速を、車両モデル式ないしスタビリティファクタを用いる式に代入して行われる。ここで、スタビリティファクタとは、車両モデルから算出ないし実験によって得られ、経路の曲率に対して必要な操舵角を得ることができる数値である。
In order to return to the target trajectory from the position of the own vehicle deviating from the target trajectory, the yaw rate, the vehicle body slip angle, and the vehicle speed detected by the inertial measurement device (IMU) are substituted into a calculation formula and acquired.
In other words, the IMU performs a calculation for grasping and estimating a change in the position and the posture of the own vehicle in real time when the target trajectory is traced from the own vehicle position to the target trajectory. That is, the yaw rate, the vehicle body slip angle and the vehicle speed are substituted into a vehicle model formula or a formula using a stability factor. Here, the stability factor is a numerical value that can be obtained from a vehicle model by calculation or experiment and that can obtain a required steering angle with respect to the curvature of the route.

本発明に係る自動運行方法によれば、GPS信号による検出位置精度が低下した場合でも、そのまま自動運行を継続することができ、ドライバーの同乗を必要としない完全な自動運行が可能となる。   According to the automatic operation method according to the present invention, even when the detection position accuracy based on the GPS signal is reduced, the automatic operation can be continued as it is, and the completely automatic operation without the driver's riding is possible.

また、本発明に係る自動運行方法は、GPS信号による検出位置精度が低下した場合でも、基本的には車両を停止しないため、周囲の車両との調和がとれ、渋滞や事故の原因を誘発しない。   In addition, the automatic operation method according to the present invention basically does not stop the vehicle even when the detection position accuracy based on the GPS signal is reduced, so that the vehicle can be in harmony with the surrounding vehicles and does not cause a traffic jam or an accident. .

GPSデータから作成した目標軌跡の説明図Illustration of target trajectory created from GPS data VRS−GPSの概念の説明図Illustration of the concept of VRS-GPS GPSデータ(NMEA0183sentences)の構成の説明図Illustration of the structure of GPS data (NMEA0183sentences) 目標軌跡の曲率から実舵角を求める方法を説明した図Diagram explaining how to obtain the actual steering angle from the curvature of the target trajectory 制御フローチャートControl flowchart GPS走行と慣性計測装置(IMU)走行の切替説明図Illustration of switching between GPS driving and inertial measurement device (IMU) driving 表示器の説明図Illustration of display

先ず、本発明においては予め目標軌跡を作成しておく。目標軌跡の作成は図1に示すように、運行を予定する経路を手動運転で走行してGPSデータを取得する。取得したデータに基づき、経路始点から終点までの複数のポイント(N点)の緯度と経度と方位角を取得し、各ポイントにID番号をつけて経路軌跡を作成し、これを目標軌跡とし目標速度で走行する。   First, in the present invention, a target trajectory is created in advance. As shown in FIG. 1, the target trajectory is created by manually driving a route to be operated and acquiring GPS data. Based on the acquired data, the latitude, longitude, and azimuth of a plurality of points (points N) from the start point to the end point of the route are obtained, an ID number is assigned to each point, and a route locus is created. Drive at speed.

上記の目標軌跡に沿って走行が開始されると、VRS(Virtual Reference Station)−GPSによって、リアルタイムで自車両の位置を測定する。
ここで、VRS−GPSは図2に示すように、予め設置した基準点(基準局)で観測を行い、VRSセンターに観測データを送る。観測データが送られてきたVRSセンターでは基準局で囲まれた△abc内での補正データを作成する。一方、車両(移動局)は搭載されたRTK−GPSからVRSセンターを呼び出して現在位置を単独測位でVRSセンターに教える。VRSセンターは単独測位した位置が基準局となるように補正データを車両に送り返す。これで単独測位した位置が既知局(仮想基準位置)となり、車両はこれを基準にRTK−GPSで走行する。
When the vehicle starts traveling along the above-mentioned target locus, the position of the own vehicle is measured in real time by VRS (Virtual Reference Station) -GPS.
Here, as shown in FIG. 2, the VRS-GPS performs observation at a reference point (reference station) installed in advance and sends observation data to the VRS center. The VRS center to which the observation data has been sent creates correction data within $ abc surrounded by the reference station. On the other hand, the vehicle (mobile station) calls the VRS center from the mounted RTK-GPS and informs the VRS center of the current position by single positioning. The VRS center sends the correction data back to the vehicle such that the position determined independently becomes the reference station. With this, the position measured independently becomes a known station (virtual reference position), and the vehicle runs on RTK-GPS based on this position.

本実施例の場合、車両が取得するGPSデータはNMEA0183sentencesフォーマットで取得する。NMEA0183には、もともと音波探知機やソナー、風速計、ジャイロコンパスなどの電子装置をつなぐためのインターフェイスとして規格化されたもので、位置情報のみでなく誤差に関する情報も含まれている。   In the case of this embodiment, the GPS data acquired by the vehicle is acquired in the NMEA0183 sentences format. NMEA0183 was originally standardized as an interface for connecting electronic devices such as an acoustic detector, a sonar, an anemometer, and a gyrocompass, and includes not only positional information but also information on errors.

図3に示すように、GPSデータ(NMEA0183 sentences)は25種のセンテンス(図3の左側)で構成されている。各センテンスは、「$」で始まり「*」で終わる。「*」の後の16進数はエラーの有無を確認するものである。   As shown in FIG. 3, the GPS data (NMEA0183 sentences) is composed of 25 types of sentences (left side in FIG. 3). Each sentence starts with “$” and ends with “*”. The hexadecimal number after “*” confirms the presence or absence of an error.

25種のセンテンスのうち「CGA」に、時間、位置及び位置決定関連データが入っている。協定世界時での時刻、経度、北緯、経度、東経と続きその次に「数字:が並ぶ。この数字は位置特定品質が悪い順に、0、1、2、3、4である。
また「GST」に位置誤差統計データがあり、誤差楕円長軸、短軸、緯度、経度、高度の誤差が1シグマ(メートル単位)で表示される。即ち、「GGA」又は「GST」から誤差の大きさを知ることができる。
本実施例は、「GGA」の位置データを目標軌跡生成に使用し、「GGA」の誤差数字が閾値よりも小さく(3未満)になった場合に、GPS走行からIMU走行に切り換え、同時にIMU走行でも支障がない速度まで速度を下げる。「GGA」の誤差数値に代えて「GST」を用いてもよい。
“CGA” of the 25 sentences contains time, position, and position determination related data. The time in Coordinated Universal Time, longitude, north latitude, longitude, east longitude, and so on are followed by “numbers. These numbers are 0, 1, 2, 3, and 4 in the order of the poorest location quality.
Further, there is position error statistical data in “GST”, and the error of the major axis, minor axis, latitude, longitude and altitude of the error ellipse is displayed in one sigma (meter unit). That is, the magnitude of the error can be known from “GGA” or “GST”.
In the present embodiment, the position data of “GGA” is used for generating the target trajectory, and when the error number of “GGA” becomes smaller than the threshold value (less than 3), the driving is switched from the GPS driving to the IMU driving, and at the same time, the IMU driving is performed. Reduce the speed to a speed that will not interfere with running. “GST” may be used instead of the error value of “GGA”.

外れた位置から目標軌跡に合流して目標軌跡に沿って走行するには、目標軌跡の曲率から実舵角を求める。図4の左部分(定常円旋回)に示すように、旋回する円の中心まわりの公転運動と車両重心点まわりの自転運動をする。公転速度と自転速度の和が偏揺角速度(ヨーレイト、γ)になる。車両速度の二乗及び車両質量に比例する遠心力が生じ、その遠心力につり合う求心力をタイヤが発生して旋回する。   In order to join the target locus from the deviated position and travel along the target locus, an actual steering angle is obtained from the curvature of the target locus. As shown in the left part of FIG. 4 (steady circular turning), revolving motion around the center of the turning circle and rotational motion around the center of gravity of the vehicle are performed. The sum of the revolution speed and the rotation speed becomes the yaw angular speed (yaw rate, γ). A centrifugal force is generated that is proportional to the square of the vehicle speed and the vehicle mass, and the tire generates a centripetal force that balances the centrifugal force and turns.

タイヤが発生する求心力はタイヤ横すべり角に比例する摩擦力(コーナリングフォース)による。タイヤ横すべり角(β)は前輪実舵角によって制御されるが、後輪タイヤには操舵機構の備えがないので車体が横すべりすることによって後輪横すべり角を生じさせる。この状態でハンドルを固定して車速を徐々に上昇させていくと回転半径が増加し、車体横すべり角がマイナス側からプラス側へ変化する。その関係のグラフを図の中央に示す。   The centripetal force generated by the tire is based on a frictional force (corner force) proportional to the tire slip angle. Although the tire side slip angle (β) is controlled by the front wheel actual steering angle, the rear wheel tire has no steering mechanism, so that the body slips to generate the rear wheel side slip angle. In this state, when the steering wheel is fixed and the vehicle speed is gradually increased, the turning radius increases, and the vehicle body side slip angle changes from the minus side to the plus side. A graph of the relationship is shown in the center of the figure.

車速の二乗に対する回転半径の変化勾配をスタビリティファクタ(KSF)と称し、車体横すべり角の変化を横すべり係数(KβO)と称する。車両の自車位置変化、速度変化はGPSで捉えることができ、車載するIMUのジャイロ及び加速度計の出力値から自車位置、車両横すべり角(β)が計算把握される。 The change gradient of the turning radius with respect to the square of the vehicle speed is referred to as a stability factor (K SF ), and the change in the vehicle body side slip angle is referred to as a side slip coefficient (K βO ). Changes in the position and speed of the vehicle can be detected by GPS, and the position and the vehicle slip angle (β) of the vehicle can be calculated from the output values of the gyro and the accelerometer of the IMU mounted on the vehicle.

GPSによって得られる車両速度は、図に示す絶対速度(v)が求められるのに対してIMUから求められる速度は、前後加速度の積分値としての前後速度(v)と横加速度の積分値としての横速度(v)になる。前後速度(v)と横速度(v)を合成して絶対速度(v)を得、v/vの比から車体横すべり角(β)を得る。 As for the vehicle speed obtained by GPS, the absolute speed (v) shown in the figure is obtained, whereas the speed obtained from the IMU is obtained by integrating the longitudinal speed (v x ) as the integral value of the longitudinal acceleration and the integral value of the lateral acceleration. Lateral velocity (v y ). The absolute velocity (v) is obtained by combining the longitudinal velocity (v y ) and the lateral velocity (v x ), and the vehicle side slip angle (β) is obtained from the ratio of v y / v x .

IMUの場合は計算によって絶対速度(v)を求めるため精度はGPSに劣るが、GPSは車体横すべり角を求めることができないので両者長短がある。GPSとIMUを組み合わせることで長短補い合って精度が向上する。図の右側に極低速時の回転半径(RО)、横すべり角(βО)と実舵角δの関係を示す。 In the case of the IMU, the accuracy is inferior to GPS because the absolute speed (v) is obtained by calculation, but the GPS has both advantages and disadvantages because the vehicle body slip angle cannot be obtained. By combining the GPS and the IMU, accuracy is improved by compensating for the length. The relationship between the turning radius (R О ), the slip angle (β ) and the actual steering angle δ at an extremely low speed is shown on the right side of the figure.

図5は本発明に係る自動運行方法のフローチャートである。先ずステップ1で制御が開始され、ステップ2で慣性計測装置(IMU)のキャリブレーションを実施して、GPSとIMUとの整合のための調整項を決めてステップ3へ進む。   FIG. 5 is a flowchart of the automatic operation method according to the present invention. First, control is started in step 1, calibration of the inertial measurement device (IMU) is performed in step 2, an adjustment item for matching between the GPS and the IMU is determined, and the process proceeds to step 3.

ステップ3ではGPSデータ(NMEA0183 sentences)のクオリティを確認し位置特定品質が“3以上”であれば、ステップ4へ進みGPSで既定の速度で走行し、ステップ5からステップ6の停止まで走行する。   In step 3, the quality of the GPS data (NMEA0183 sentences) is checked, and if the position specifying quality is "3 or more", the flow proceeds to step 4 and the vehicle travels at a predetermined speed by GPS, and travels from step 5 to stop of step 6.

一方、位置特定品質が“3未満”の場合には、ステップ7に進みGPS走行からIMU走行へ切替えて既定目標車速(減速)を維持してステップ8へ進む。ステップ8でクオリティが“3以上”に回復していれば、ステップ9にてIMU走行からGPS走行に切替えて前記ステップ4へ戻る。   On the other hand, if the position specifying quality is “less than 3”, the process proceeds to step 7, switches from GPS traveling to IMU traveling, maintains the default target vehicle speed (deceleration), and proceeds to step 8. If the quality has recovered to “3 or more” in step 8, the mode is switched from IMU traveling to GPS traveling in step 9 and the process returns to step 4.

ステップ8でクオリティが“3以上”に回復していない場合には、ステップ10へ進みIMU走行の距離が所定距離を超えているかを確認して、超えていない場合にはであれば車速を低くしてIMU走行を継続し、更にステップ12でクオリティを確認し“3以上”に回復していればステップ4へ戻る。   If the quality has not recovered to "3 or more" in step 8, the process proceeds to step 10 to check whether the distance of the IMU traveling exceeds a predetermined distance. If not, the vehicle speed is lowered. Then, the IMU traveling is continued, and the quality is further confirmed in step 12.

クオリティを確認し“3以上”に回復していなければ、ステップ13にて停車してステップ3へ戻りGPSクオリティの回復を待ち、回復したら、上述の工程を繰り返す。   If the quality has been confirmed and has not recovered to "3 or more", the vehicle stops at step 13 and returns to step 3 to wait for the recovery of the GPS quality.

図6は、GPS走行と慣性計測装置(IMU)による走行の切替説明図である。図の上側にGPSによる走行を示し、下側に慣性計測装置(IMU)による走行を示す。 (1)のGPS目標軌跡(目標軌跡)のところでは、予め手動運転を実施して経路GPSデータを取得してオフラインで目標軌跡(Xo、Yo、φo)を作成する。(2)のGPS制御データのところで、GPSデータを測位精度と共に取得して、リアルタイムで自車位置(Xn、Yn、φn)を確認しつつ目標軌跡を辿る。   FIG. 6 is an explanatory diagram of switching between GPS traveling and traveling by an inertial measurement device (IMU). The upper part of the drawing shows traveling by GPS, and the lower part shows traveling by an inertial measurement device (IMU). At the (1) GPS target trajectory (target trajectory), manual operation is performed in advance to acquire the route GPS data, and the target trajectory (Xo, Yo, φo) is created offline. At the GPS control data of (2), the GPS data is acquired together with the positioning accuracy, and the target locus is traced while confirming the own vehicle position (Xn, Yn, φn) in real time.

目標軌跡追跡の仕方を(3)に示す。自車両は、Pn点に居て、目標軌跡上のPv点に乗ろうとしている。Pn点における姿勢角φnが分かり、Pv点における姿勢角φ0が分かっているのでPn−Pv間の曲線補間が出来る。曲線補間はクロソイド曲線が好ましいが、限定はしない。 (3) shows how to track the target trajectory. The host vehicle is at the point Pn and is about to get on the point Pv on the target locus. See attitude angle φn in Pn point, because it has been found attitude angle φ 0 in Pv point can curve interpolation between Pn-Pv. The curve interpolation is preferably, but not limited to, a clothoid curve.

GPSの測位精度が低下するとPn点の座標(Xn,Yn)が分からなくなり、Pn点での方位角、即ち速度ベクトル方向が分からなくなるので、慣性計測装置(IMU)によるPn点の座標(Xs,Ys)及び姿勢角φsを用いて走行する。   When the positioning accuracy of the GPS decreases, the coordinates (Xn, Yn) of the Pn point are not known, and the azimuth angle at the Pn point, that is, the velocity vector direction is not known. Therefore, the coordinates (Xs, Xs, Ys) and travel using the attitude angle φs.

図6の(10)にて座標(Xn,Yn)と(Xs,Ys)の切替、姿勢角φ0とφsの切替を行うが、その切替は不用意には行えない。実運行に入る試運行の段階でGPSの測位精度が正しく受信できる運行経路上の場所を把握して、その場所における座標(Xn,Yn)と(Xs,Ys)及び姿勢角φ0とφsとの差分を経路IDに対応づけて把握して、その差分を調整項として、IMUデータ値に加えた調整値を用いて切替える。 Switching of coordinates (Xn, Yn) at (10) in FIG. 6 and (Xs, Ys), performs the switching of the attitude angle phi 0 and .phi.s, the switching is not possible inadvertently to the. Actual GPS positioning precision at the stage of commissioning line entering the operation is to know where on the service route can be received correctly, the coordinates at that location (Xn, Yn) and (Xs, Ys) and an attitude angle phi 0 and φs Is grasped in association with the path ID, and the difference is used as an adjustment term to switch using the adjustment value added to the IMU data value.

図6の(4)にてGPSの測位精度、(5)にてGPSによる車速が取り込まれる。この車速は(4)の測位精度と共に車速調整マップに入り測位精度に順じて調整される。   The positioning accuracy of the GPS is taken in (4) of FIG. 6, and the vehicle speed by GPS is taken in (5). This vehicle speed enters the vehicle speed adjustment map together with the positioning accuracy of (4) and is adjusted according to the positioning accuracy.

図5で述べた様に測位精度が「3」に満たない場合は、GPSからIMUに切替えて所定距離継続走行する。その間に測位精度が回復しない場合は減速する。
また(6)の慣性計測装置(IMU)は前記したように加速度計と車輪速とジャイロによるヨーレイトによって自車位置(X、Y、φ)を算出する。
When the positioning accuracy is less than “3” as described in FIG. 5, the vehicle switches from GPS to IMU and continues traveling for a predetermined distance. If the positioning accuracy does not recover during that time, the vehicle decelerates.
Further, the inertial measurement device (IMU) of (6) calculates the own vehicle position (X S , Y S , φ S ) by the accelerometer, the wheel speed, and the yaw rate by the gyro as described above.

測位精度が低下している条件下では、GPSによる絶対車速vは得られないので、車輪速から得られる前後速度vに車体横すべり角βの余弦cosβでで除算して絶対車速vを求める。そのβは、(8)による横加速度を前後加速度で除算から得る。又は、(9)の近似式によるβも求めて備えとする。(8)によるβを用いるか(9)によるβ(式1)を用いるかは試運行を繰返し判断して定める。 Under conditions where the positioning accuracy is reduced, the vehicle speed v is not obtained absolute by GPS, the absolute vehicle speed v is divided by the cosine cosβ of the vehicle body slip angle β in the longitudinal velocity v x obtained from the wheel speed. The β is obtained by dividing the lateral acceleration by (8) by the longitudinal acceleration. Alternatively, β by the approximate expression of (9) is also obtained and prepared. Whether to use β according to (8) or β (Equation 1) according to (9) is determined by repeatedly determining the trial operation.

Figure 2020032873
Figure 2020032873

(11)にβの切替スイッチを備えて、(7)にてGPSによる絶対車速vをモデル式に代入して求めるβ(式2)と、加速度計または近似式(式1)から求めるβとを、GPS測位精度にもとづき切替える。 (11) is provided with a changeover switch for β, and in (7) β (formula 2) obtained by substituting the absolute vehicle speed v by GPS into the model formula, and β obtained from the accelerometer or the approximate formula (formula 1). Is switched based on the GPS positioning accuracy.

Figure 2020032873
Figure 2020032873

(12)のジャイロによって検出されるヨーレイトrを積分してヨー角ψを求め、(13)にて(11)のβと合算するとその合算値は方位角φになる。φの余弦に車速を乗じて(14)の慣性計測装置(IMU)による現在位置X、φの正弦に車速を乗じて(15)の慣性計測装置(IMU)による現在位置Yを得る。GPSによるX、Y、φと慣性計測装置(IMU)によるX、Y、φの整合が理想であるが、現実には上述の調整項が必要になる。その調整項として前述の(10)を設ける。(3)においてX、Y、φによる制御がX、Y、φに行われる。 The yaw rate 検 出 detected by the gyro in (12) is integrated to determine the yaw angle 、, and when the sum is added to β in (11) in (13), the sum becomes the azimuth angle φ s . The cosine of φ s is multiplied by the vehicle speed, and the current position X S by the inertial measurement device (IMU) of (14) is multiplied by the vehicle speed by the sine of φ S to obtain the current position Y S by the inertial measurement device (IMU) of (15). obtain. Ideally, X n , Y n , φ n by GPS and X S , Y S , φ S by an inertial measurement unit (IMU) are matched, but in reality, the above-mentioned adjustment terms are required. The above item (10) is provided as an adjustment item. In (3) X S, Y S , control by phi S is X n, Y n, is performed to phi n.

図7は、表示器の概念の説明図である。GPSとIMUの状態を表示する。状態が良ければ緑、機能低下すると黄色、機能不全であれば赤を表示する。


FIG. 7 is an explanatory diagram of the concept of the display. Displays GPS and IMU status. Green when the condition is good, yellow when the function is low, and red when the function is low.


Claims (4)

予め定めた目標軌跡に沿って車両を走行させる自動運行方法であって、走行中にGPS信号を受信してリアルタイムで自車両の位置を取得し、取得した自車両の位置を前記目標軌跡に乗るように修正して走行するにあたり、前記GPS信号によって検出される自車両の位置精度の信頼性が低下したことを感知した場合に、慣性計測装置(IMU)による走行に切り換え、この慣性計測装置(IMU)による走行では、GPSシステムによる座標及び方位角と慣性計測装置(IMU)による座標及び方位角とを整合させて走行することを特徴とする自動運行方法。   An automatic driving method for driving a vehicle along a predetermined target trajectory, wherein a GPS signal is received during driving to obtain the position of the own vehicle in real time, and the obtained position of the own vehicle is placed on the target trajectory. When the vehicle travels with such correction, when it is detected that the reliability of the position accuracy of the vehicle detected by the GPS signal has decreased, the vehicle is switched to traveling by an inertial measurement device (IMU). An automatic operation method in which traveling by an IMU is performed by matching the coordinates and the azimuth of the GPS system with the coordinates and the azimuth of the inertial measurement device (IMU). 請求項1に記載の自動運行方法において、前記慣性計測装置(IMU)による座標及び方位角を得るために必要な車体横滑り角を、車両モデルから導出される式またはモデル同定実験式を用いて算出することを特徴とする自動運行方法。   2. The automatic operation method according to claim 1, wherein a vehicle body slip angle required for obtaining coordinates and an azimuth angle by the inertial measurement device (IMU) is calculated using an equation derived from a vehicle model or a model identification experimental equation. Automatic operation method characterized by performing. 請求項1に記載の自動運行方法において、前記慣性計測装置(IMU)に切り替えた走行では、慣性計測装置(IMU)にて取得した自車両の位置と目標軌跡上の点とをクロソイド曲線などで曲線補間して走行することを特徴とする自動運行方法。   2. In the automatic operation method according to claim 1, in a travel switched to the inertial measurement device (IMU), the position of the own vehicle acquired by the inertial measurement device (IMU) and a point on a target locus are represented by a clothoid curve or the like. An automatic operation method characterized by running with curve interpolation. 請求項1に記載の自動運行方法において、前記前記GPS信号によって検出される自車両の位置精度の信頼性はNMEA(National Marine Electronic Association)0183に示されている位置特定品質を基準として判断することを特徴とする自動運行方法。
2. The automatic operation method according to claim 1, wherein the reliability of the position accuracy of the vehicle detected by the GPS signal is determined based on a position specifying quality indicated by NMEA (National Marine Electronic Association) 0183. Automatic operation method characterized by the following.
JP2018161185A 2018-08-30 2018-08-30 Automatic operation method Active JP6978177B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018161185A JP6978177B2 (en) 2018-08-30 2018-08-30 Automatic operation method
JP2021175672A JP7240472B2 (en) 2018-08-30 2021-10-27 Automatic operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018161185A JP6978177B2 (en) 2018-08-30 2018-08-30 Automatic operation method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021175672A Division JP7240472B2 (en) 2018-08-30 2021-10-27 Automatic operation method

Publications (2)

Publication Number Publication Date
JP2020032873A true JP2020032873A (en) 2020-03-05
JP6978177B2 JP6978177B2 (en) 2021-12-08

Family

ID=69666829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018161185A Active JP6978177B2 (en) 2018-08-30 2018-08-30 Automatic operation method

Country Status (1)

Country Link
JP (1) JP6978177B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113252077A (en) * 2021-05-24 2021-08-13 深圳市商汤科技有限公司 Calibration method, system, device, electronic equipment and storage medium
JP2021133054A (en) * 2020-02-28 2021-09-13 株式会社大一商会 Game machine
JP2021133057A (en) * 2020-02-28 2021-09-13 株式会社大一商会 Pachinko machine
JP2021133059A (en) * 2020-02-28 2021-09-13 株式会社大一商会 Pachinko machine
JP2021133056A (en) * 2020-02-28 2021-09-13 株式会社大一商会 Pachinko machine
JP2021133053A (en) * 2020-02-28 2021-09-13 株式会社大一商会 Game machine
JP2021133055A (en) * 2020-02-28 2021-09-13 株式会社大一商会 Game machine
WO2022004042A1 (en) * 2020-06-29 2022-01-06 日立Astemo株式会社 Vehicle control device and vehicle control system
US20220203989A1 (en) * 2020-12-28 2022-06-30 Honda Motor Co., Ltd. Vehicle control device, vehicle control method, and storage medium
JP2022171712A (en) * 2020-12-28 2022-11-11 株式会社ブロードリーフ Vehicle control device, vehicle control method and vehicle control program
JP2023039452A (en) * 2021-08-26 2023-03-22 三菱電機株式会社 Positioning device
JP2023086431A (en) * 2021-12-10 2023-06-22 株式会社豊田自動織機 Map data creation device and map data creation method
CN117968940A (en) * 2024-03-29 2024-05-03 长城汽车股份有限公司 Inertial parameter synthesis method, device, terminal equipment and storage medium
WO2024181169A1 (en) * 2023-02-27 2024-09-06 愛知製鋼株式会社 Position estimation system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004125544A (en) * 2002-10-01 2004-04-22 Seiko Epson Corp Navigation device, electronic device and program
JP2004264182A (en) * 2003-03-03 2004-09-24 Kawasaki Heavy Ind Ltd Method and apparatus for measuring position of moving object
JP2016210255A (en) * 2015-05-01 2016-12-15 トヨタ自動車株式会社 Vehicle travel control device
JP2017065454A (en) * 2015-09-30 2017-04-06 先進モビリティ株式会社 Vehicle stop system
WO2017130419A1 (en) * 2016-01-29 2017-08-03 株式会社小松製作所 Work machine management system, work machine, and work machine management method
JP2017161479A (en) * 2016-03-11 2017-09-14 株式会社東芝 Wireless device, communication method, and program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004125544A (en) * 2002-10-01 2004-04-22 Seiko Epson Corp Navigation device, electronic device and program
JP2004264182A (en) * 2003-03-03 2004-09-24 Kawasaki Heavy Ind Ltd Method and apparatus for measuring position of moving object
JP2016210255A (en) * 2015-05-01 2016-12-15 トヨタ自動車株式会社 Vehicle travel control device
JP2017065454A (en) * 2015-09-30 2017-04-06 先進モビリティ株式会社 Vehicle stop system
WO2017130419A1 (en) * 2016-01-29 2017-08-03 株式会社小松製作所 Work machine management system, work machine, and work machine management method
JP2017161479A (en) * 2016-03-11 2017-09-14 株式会社東芝 Wireless device, communication method, and program

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021133054A (en) * 2020-02-28 2021-09-13 株式会社大一商会 Game machine
JP2021133057A (en) * 2020-02-28 2021-09-13 株式会社大一商会 Pachinko machine
JP2021133059A (en) * 2020-02-28 2021-09-13 株式会社大一商会 Pachinko machine
JP2021133056A (en) * 2020-02-28 2021-09-13 株式会社大一商会 Pachinko machine
JP2021133053A (en) * 2020-02-28 2021-09-13 株式会社大一商会 Game machine
JP2021133055A (en) * 2020-02-28 2021-09-13 株式会社大一商会 Game machine
JP7377359B2 (en) 2020-06-29 2023-11-09 日立Astemo株式会社 Vehicle control device and vehicle control system
WO2022004042A1 (en) * 2020-06-29 2022-01-06 日立Astemo株式会社 Vehicle control device and vehicle control system
JPWO2022004042A1 (en) * 2020-06-29 2022-01-06
JP2022171712A (en) * 2020-12-28 2022-11-11 株式会社ブロードリーフ Vehicle control device, vehicle control method and vehicle control program
US20220203989A1 (en) * 2020-12-28 2022-06-30 Honda Motor Co., Ltd. Vehicle control device, vehicle control method, and storage medium
JP2022103723A (en) * 2020-12-28 2022-07-08 本田技研工業株式会社 Vehicle control device, vehicle control method, and program
JP7703728B2 (en) 2020-12-28 2025-07-07 株式会社ブロードリーフ Vehicle control device, vehicle control method, and vehicle control program
JP7186210B2 (en) 2020-12-28 2022-12-08 本田技研工業株式会社 VEHICLE CONTROL DEVICE, VEHICLE CONTROL METHOD, AND PROGRAM
JP2024097784A (en) * 2020-12-28 2024-07-19 株式会社ブロードリーフ Vehicle control device, vehicle control method, and vehicle control program
JP2024096156A (en) * 2020-12-28 2024-07-12 株式会社ブロードリーフ Vehicle control device, vehicle control method, and vehicle control program
CN114684187A (en) * 2020-12-28 2022-07-01 本田技研工业株式会社 Vehicle control device, vehicle control method, and storage medium
JP7476263B2 (en) 2020-12-28 2024-04-30 株式会社ブロードリーフ Vehicle control device, vehicle control method, and vehicle control program
CN113252077B (en) * 2021-05-24 2024-05-17 深圳市商汤科技有限公司 Calibration method, system, device, electronic equipment and storage medium
CN113252077A (en) * 2021-05-24 2021-08-13 深圳市商汤科技有限公司 Calibration method, system, device, electronic equipment and storage medium
JP2023039452A (en) * 2021-08-26 2023-03-22 三菱電機株式会社 Positioning device
JP2023086431A (en) * 2021-12-10 2023-06-22 株式会社豊田自動織機 Map data creation device and map data creation method
JP7655213B2 (en) 2021-12-10 2025-04-02 株式会社豊田自動織機 Map data creation device and map data creation method
WO2024181169A1 (en) * 2023-02-27 2024-09-06 愛知製鋼株式会社 Position estimation system
CN117968940A (en) * 2024-03-29 2024-05-03 长城汽车股份有限公司 Inertial parameter synthesis method, device, terminal equipment and storage medium

Also Published As

Publication number Publication date
JP6978177B2 (en) 2021-12-08

Similar Documents

Publication Publication Date Title
JP2020032873A (en) Automated operation method
CN106289275B (en) Unit and method for improving positioning accuracy
KR101477436B1 (en) Apparatus and methods for calibrating dynamic parameters of a vehicle navigation system
CN107560612B (en) Method and device for determining the angular position of a vehicle
KR101454153B1 (en) Navigation system for unmanned ground vehicle by sensor fusion with virtual lane
JP4370869B2 (en) Map data updating method and map data updating apparatus
JP5602070B2 (en) POSITIONING DEVICE, POSITIONING METHOD OF POSITIONING DEVICE, AND POSITIONING PROGRAM
CN111854740A (en) Inertial navigation systems capable of dead reckoning in vehicles
JP2018169319A (en) Vehicle travel lane estimation device
JP6916705B2 (en) Self-driving vehicle position detector
JP2020098566A (en) Automatic driving system
JP6996882B2 (en) Map data structure of data for autonomous driving support system, autonomous driving support method, and autonomous driving
JP2004138605A (en) Method and apparatus for deciding float angle of vehicle
JP7240472B2 (en) Automatic operation method
JP4848931B2 (en) Signal correction device for angular velocity sensor
WO2017039000A1 (en) Moving body travel trajectory measuring system, moving body, and measuring program
JP6080998B1 (en) Vehicle control information generation apparatus and vehicle control information generation method
KR102715626B1 (en) Agricuktural machinery autonomous driving device and same method
KR101987413B1 (en) System and method for positioning
KR20180003728A (en) Gyro sensor correction apparatus and method for improving accuracy location of car navigation system
JP2018167735A (en) Steering support device of vehicle
KR20130074131A (en) Method and device for assisting vehicle
JP2007257305A (en) Outside vehicle recognition device
JP6921168B2 (en) How to run in a platoon based on wheel pulse signals
JP2020003458A (en) Own vehicle position detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211110

R150 Certificate of patent or registration of utility model

Ref document number: 6978177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250