[go: up one dir, main page]

JP2020030111A5 - Abnormality sign detection system - Google Patents

Abnormality sign detection system Download PDF

Info

Publication number
JP2020030111A5
JP2020030111A5 JP2018155915A JP2018155915A JP2020030111A5 JP 2020030111 A5 JP2020030111 A5 JP 2020030111A5 JP 2018155915 A JP2018155915 A JP 2018155915A JP 2018155915 A JP2018155915 A JP 2018155915A JP 2020030111 A5 JP2020030111 A5 JP 2020030111A5
Authority
JP
Japan
Prior art keywords
abnormality
error
detection system
normal
sign detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018155915A
Other languages
Japanese (ja)
Other versions
JP7056465B2 (en
JP2020030111A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2018155915A priority Critical patent/JP7056465B2/en
Priority claimed from JP2018155915A external-priority patent/JP7056465B2/en
Publication of JP2020030111A publication Critical patent/JP2020030111A/en
Priority to JP2021098709A priority patent/JP7196954B2/en
Publication of JP2020030111A5 publication Critical patent/JP2020030111A5/en
Application granted granted Critical
Publication of JP7056465B2 publication Critical patent/JP7056465B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (4)

対象設備の振動波形データに基づき異常予兆を検出する異常予兆検出システムであって、
事前に前記対象設備の正常時に収集された前記振動波形データに基づき多次元特徴量を生成する多次元特徴量算出部と、
前記多次元特徴量を正常データとして学習することで入力を出力として再現する正常モデルを生成する正常モデル作成部と、
前記対象設備の前記振動波形データに基づき生成された多次元特徴量を診断データとし、前記診断データを前記正常モデルに入力したときの入出力の誤差分布を求める再構築誤差算出部と、
前記診断データの誤差分布が前記正常データの誤差分布を逸脱していれば、前記異常予兆を判定する異常判定部と、
前記診断データの周波数毎の誤差を算出し、算出された誤差の評価に応じて前記対象設備の異常要因を推定する異常要因推定部と、
を備えることを特徴とする異常予兆検出システム。
An abnormality sign detection system that detects anomaly signs based on the vibration waveform data of the target equipment.
A multidimensional feature calculation unit that generates multidimensional features based on the vibration waveform data collected in advance when the target equipment is normal, and a multidimensional feature calculation unit.
A normal model creation unit that generates a normal model that reproduces the input as an output by learning the multidimensional features as normal data.
A reconstruction error calculation unit that uses a multidimensional feature amount generated based on the vibration waveform data of the target equipment as diagnostic data and obtains an input / output error distribution when the diagnostic data is input to the normal model.
If the error distribution of the diagnostic data deviates from the error distribution of the normal data, the abnormality determination unit for determining the abnormality sign and the abnormality determination unit
An abnormality factor estimation unit that calculates an error for each frequency of the diagnostic data and estimates an abnormality factor of the target equipment according to the evaluation of the calculated error.
An abnormality sign detection system characterized by being equipped with.
前記正常モデル作成部は、ニューラルネットワークを使用した次元圧縮型のオートエンコーダにより前記正常モデルを作成する
ことを特徴とする請求項1記載の異常予兆検出システム。
The abnormality sign detection system according to claim 1, wherein the normal model creating unit creates the normal model by a dimension compression type autoencoder using a neural network.
前記異常判定部は、
前記診断データの誤差分布が事前設定の閾値を越えれば、前記正常データの誤差分布を逸脱していると判断する
ことを特徴とする請求項1または2記載の異常予兆検出システム。
The abnormality determination unit
The abnormality sign detection system according to claim 1 or 2, wherein if the error distribution of the diagnostic data exceeds a preset threshold value, it is determined that the error distribution of the normal data deviates from the error distribution.
前記異常要因推定部は、前記診断データの前記誤差が事前設定の閾値を越えていれば、
前記誤差を高評価とすることを特徴とする請求項1〜3のいずれかに記載の異常予兆検出システム。
If the error of the diagnostic data exceeds the preset threshold value, the abnormality factor estimation unit will be used.
The abnormality sign detection system according to any one of claims 1 to 3, wherein the error is highly evaluated.
JP2018155915A 2018-08-23 2018-08-23 Abnormality sign detection system Active JP7056465B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018155915A JP7056465B2 (en) 2018-08-23 2018-08-23 Abnormality sign detection system
JP2021098709A JP7196954B2 (en) 2018-08-23 2021-06-14 Anomaly sign detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018155915A JP7056465B2 (en) 2018-08-23 2018-08-23 Abnormality sign detection system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021098709A Division JP7196954B2 (en) 2018-08-23 2021-06-14 Anomaly sign detection method

Publications (3)

Publication Number Publication Date
JP2020030111A JP2020030111A (en) 2020-02-27
JP2020030111A5 true JP2020030111A5 (en) 2021-07-26
JP7056465B2 JP7056465B2 (en) 2022-04-19

Family

ID=69624230

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018155915A Active JP7056465B2 (en) 2018-08-23 2018-08-23 Abnormality sign detection system
JP2021098709A Active JP7196954B2 (en) 2018-08-23 2021-06-14 Anomaly sign detection method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021098709A Active JP7196954B2 (en) 2018-08-23 2021-06-14 Anomaly sign detection method

Country Status (1)

Country Link
JP (2) JP7056465B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7438805B2 (en) * 2020-03-24 2024-02-27 大阪瓦斯株式会社 Abnormality analysis device and abnormality analysis method
JP7381390B2 (en) * 2020-04-13 2023-11-15 株式会社日立製作所 Abnormality diagnosis device and maintenance management system
JP2021197158A (en) * 2020-06-15 2021-12-27 三菱パワー株式会社 Predictive judgment device, Predictive judgment system, Predictive judgment method and program
JP7499132B2 (en) 2020-09-18 2024-06-13 Biprogy株式会社 COMPUTER PROGRAM, ABNORMALITY DETECTION METHOD, AND ABNORMALITY DETECTION DEVICE
WO2022064590A1 (en) * 2020-09-24 2022-03-31 Siシナジーテクノロジー株式会社 Trained autoencoder, trained autoencoder generation method, non-stationary vibration detection method, non-stationary vibration detection device, and computer program
JP7647138B2 (en) * 2021-02-08 2025-03-18 株式会社明電舎 Abnormality diagnosis system and abnormality diagnosis method, frequency fluctuation correction processing device and correction processing method, abnormality diagnosis program, and frequency fluctuation correction processing program
CN113572539B (en) * 2021-06-24 2022-08-26 西安电子科技大学 Storage-enhanced unsupervised spectrum anomaly detection method, system, device and medium
JP7580658B2 (en) 2022-03-17 2024-11-11 三菱電機株式会社 Equipment diagnostic device and equipment diagnostic system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06167385A (en) * 1992-11-30 1994-06-14 Hitachi Ltd Acoustic diagnosis method
JP2000162035A (en) * 1998-11-30 2000-06-16 Kanegafuchi Chem Ind Co Ltd Method and device for determining abnormality in rotating equipment
JP2005121639A (en) * 2003-09-22 2005-05-12 Omron Corp Inspection method, inspection apparatus and diagnostic apparatus for facility
JP4744826B2 (en) * 2004-08-18 2011-08-10 東芝エレベータ株式会社 Elevator abnormality diagnosis device
JP2006292734A (en) * 2005-03-15 2006-10-26 Omron Corp Determination model producing support device for test device and test device, and endurance test device and endurance test method
JP6402541B2 (en) * 2014-08-26 2018-10-10 株式会社豊田中央研究所 Abnormality diagnosis apparatus and program
WO2016132468A1 (en) * 2015-02-18 2016-08-25 株式会社日立製作所 Data evaluation method and device, and breakdown diagnosis method and device
EP3385889A4 (en) * 2015-12-01 2019-07-10 Preferred Networks, Inc. Abnormality detection system, abnormality detection method, abnormality detection program, and method for generating learned model
JP2017142153A (en) * 2016-02-10 2017-08-17 セイコーエプソン株式会社 Life prediction method, life prediction device, and life prediction system
JP6450738B2 (en) * 2016-12-14 2019-01-09 ファナック株式会社 Machine learning device, CNC device, and machine learning method for detecting sign of occurrence of tool vibration in machine tool
JP6896432B2 (en) * 2017-01-11 2021-06-30 株式会社Ye Digital Failure prediction method, failure prediction device and failure prediction program
JP6751168B2 (en) * 2017-02-02 2020-09-02 日本電信電話株式会社 Abnormal factor estimation device, abnormal factor estimation method and program
EP3584573B1 (en) * 2017-02-15 2023-01-04 Nippon Telegraph and Telephone Corporation Abnormal sound detection training device and method and program therefor

Similar Documents

Publication Publication Date Title
JP2020030111A5 (en) Abnormality sign detection system
Schubert et al. Evaluating the model fit of diffusion models with the root mean square error of approximation
Cara et al. Modal contribution and state space order selection in operational modal analysis
JP2015062010A5 (en)
JP2014032671A5 (en)
Li et al. A nonlinear Wiener process degradation model with autoregressive errors
Zhu et al. 2-dimension linguistic computational model with 2-tuples for multi-attribute group decision making
JP2015210750A5 (en)
WO2015128740A3 (en) Systems for predicting hypoglycemia and methods of use thereof
JP2011131040A5 (en)
JP2013045433A5 (en)
CA2797267A1 (en) Probability density function estimator
JP2018185634A5 (en)
JP2018013446A5 (en)
JP2016097228A5 (en)
EP2930579A3 (en) State monitoring system, state monitoring method and state monitoring program
EP2853972A3 (en) Device and method for detection and/or diagnosis of faults in a process, equipment and sensors
JP2015185021A5 (en)
MX2017012118A (en) Machine protection and diagnostic systems and methods.
KR102760150B1 (en) Server, method and computer program for controlling environment in building
Zhou et al. Source code size estimation approaches for object-oriented systems from UML class diagrams: A comparative study
JP2015032001A5 (en)
MY199081A (en) Power flow characteristics
RU2015117382A (en) JOINT VEHICLE SYSTEM AND METHOD OF OPERATION
JP2016047207A5 (en)