JP2020019992A - Thin steel sheet and manufacturing method therefor - Google Patents
Thin steel sheet and manufacturing method therefor Download PDFInfo
- Publication number
- JP2020019992A JP2020019992A JP2018143806A JP2018143806A JP2020019992A JP 2020019992 A JP2020019992 A JP 2020019992A JP 2018143806 A JP2018143806 A JP 2018143806A JP 2018143806 A JP2018143806 A JP 2018143806A JP 2020019992 A JP2020019992 A JP 2020019992A
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel sheet
- area ratio
- water
- martensite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 129
- 239000010959 steel Substances 0.000 title claims abstract description 129
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 40
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 20
- 229910001563 bainite Inorganic materials 0.000 claims abstract description 19
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 18
- 239000000203 mixture Substances 0.000 claims abstract description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 45
- 238000001816 cooling Methods 0.000 claims description 31
- 238000000034 method Methods 0.000 claims description 22
- 238000000137 annealing Methods 0.000 claims description 15
- 238000005098 hot rolling Methods 0.000 claims description 14
- 238000005097 cold rolling Methods 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 11
- 238000010791 quenching Methods 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 10
- 230000000171 quenching effect Effects 0.000 claims description 10
- 239000012535 impurity Substances 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 238000005554 pickling Methods 0.000 claims description 3
- 230000000452 restraining effect Effects 0.000 claims description 3
- 230000000717 retained effect Effects 0.000 abstract description 10
- 238000010586 diagram Methods 0.000 abstract 1
- 238000005096 rolling process Methods 0.000 description 15
- 230000009466 transformation Effects 0.000 description 10
- 238000005452 bending Methods 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 230000002411 adverse Effects 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- 229910001567 cementite Inorganic materials 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 6
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 6
- 238000009864 tensile test Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 238000005498 polishing Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000003303 reheating Methods 0.000 description 3
- 238000003723 Smelting Methods 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- 239000010960 cold rolled steel Substances 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 238000010583 slow cooling Methods 0.000 description 2
- 238000005482 strain hardening Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 230000032683 aging Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000001887 electron backscatter diffraction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000037311 normal skin Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229910001568 polygonal ferrite Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 238000009849 vacuum degassing Methods 0.000 description 1
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Abstract
【課題】引張強さ:780MPa以上を有し、かつ良好な強度均質性と鋼板形状及び表面性状とを兼備する薄鋼板およびその製造方法を提供する。【解決手段】特定の成分組成と、フェライト面積率が0%以上90%以下、ベイナイト面積率が5%以下(0%を含む)、マルテンサイトおよび焼き戻されたマルテンサイト面積率が10%以上(100%を含む)、残留オーステナイト面積率が2.0%以下(0%を含む)である鋼組織と、を有し、幅方向の降伏強さの標準偏差が30MPa以下、長さ1mでせん断した際の板鋼板の最大反り量が10mm以下である薄鋼板とする。【選択図】図1PROBLEM TO BE SOLVED: To provide a thin steel sheet having a tensile strength of 780 MPa or more and having good strength homogeneity, a steel sheet shape and surface properties, and a method for producing the same. SOLUTION: A specific component composition, a ferrite area ratio of 0% or more and 90% or less, a bainite area ratio of 5% or less (including 0%), martensite and a tempered martensite area ratio of 10% or more. It has a steel structure (including 100%) and a retained austenite area ratio of 2.0% or less (including 0%), and has a standard deviation of yield strength in the width direction of 30 MPa or less and a length of 1 m. A thin steel sheet having a maximum warp amount of 10 mm or less when sheared is used. [Selection diagram] Fig. 1
Description
本発明は、薄鋼板およびその製造方法に関する。本発明の薄鋼板は、引張強さ(TS):780MPa以上の強度で、優れた強度均質性、表面性状及び板形状を兼備する。このため、本発明の薄鋼板は、自動車用骨格部材の素材に適する。 The present invention relates to a thin steel sheet and a method for manufacturing the same. The thin steel sheet of the present invention has a tensile strength (TS) of 780 MPa or more and has both excellent strength homogeneity, surface properties, and sheet shape. For this reason, the thin steel sheet of the present invention is suitable for a raw material of an automobile skeleton member.
近年、地球環境保全の観点から、CO2排出量の規制を目的として自動車業界全体で自動車の燃費改善が指向されている。自動車の燃費改善には、使用部品の薄肉化による自動車の軽量化が最も有効であるため、近年、自動車部品用素材としての高強度鋼板の使用量が増加しつつある。 2. Description of the Related Art In recent years, from the viewpoint of global environmental protection, the automobile industry as a whole has been pursuing improvement in fuel efficiency for the purpose of regulating CO 2 emissions. In order to improve the fuel efficiency of automobiles, it is most effective to reduce the weight of automobiles by reducing the thickness of parts used. Therefore, in recent years, the use of high-strength steel sheets as materials for automobile parts has been increasing.
鋼板強度を得るために硬質相であるマルテンサイトを活用した鋼板は多い。一方で、マルテンサイトを生成させる際、変態ひずみによって板形状が悪化する。板形状が悪化すると成形時の寸法精度に悪影響をもたらすため、所望の寸法精度が得られるよう板をレベラー加工やスキンパス圧延(調質圧延)によって矯正されてきた。一方で、これらのレベラー加工やスキンパス圧延によって局所的に塑性変形が加えられるため、加工硬化の不均一を招き、幅方向に対して降伏強さの変動が避けられない。降伏強さは成形時の寸法精度に影響をおよぼすため、均質性に優れた高強度鋼板が望まれている。この均質性を悪化させないためにはマルテンサイト変態時の板形状の劣化を抑制する必要があるのに対し、これまでにも様々な技術が提案されている。 Many steel sheets utilize martensite, which is a hard phase, to obtain steel sheet strength. On the other hand, when forming martensite, the plate shape is deteriorated by transformation strain. Deterioration of the shape of the sheet adversely affects the dimensional accuracy at the time of molding. Therefore, the sheet has been corrected by leveler processing or skin pass rolling (temper rolling) to obtain a desired dimensional accuracy. On the other hand, since plastic deformation is locally applied by the leveler processing and the skin pass rolling, the work hardening becomes non-uniform, and the fluctuation of the yield strength in the width direction is inevitable. Since the yield strength affects the dimensional accuracy at the time of forming, a high-strength steel sheet excellent in homogeneity is desired. In order not to deteriorate the homogeneity, it is necessary to suppress the deterioration of the plate shape during the martensitic transformation, but various techniques have been proposed so far.
例えば、特許文献1では、Ac1〜900℃に加熱後、平均冷却速度30〜500℃/sで(Ms+10℃)〜(Ms+100℃)の温度範囲まで水冷却または気水冷却をおこない、次いで(Ms−30℃)〜(Ms−100℃)の温度範囲まで気体冷却をおこない、続いて、平均冷却速度30〜1000℃/sで、400℃以下に水冷却または気水冷却をおこない、気体冷却中の鋼板を(Ms+10℃)〜(Ms+100℃)の温度に保持した1対以上のロールに接触させることで形状不良を解消する超高強度冷延鋼板が得られるとしている。 For example, Patent Document 1, after heating the A c1 to 900 ° C., subjected to average water cooling or air-water cooling to a temperature range at a cooling rate of 30~500 ℃ / s (Ms + 10 ℃) ~ (Ms + 100 ℃), followed by ( Gas cooling is performed to a temperature range of (Ms-30 ° C.) to (Ms-100 ° C.), and then water or gas-water is cooled to 400 ° C. or less at an average cooling rate of 30 to 1000 ° C./s. It is stated that an ultra-high-strength cold-rolled steel sheet that eliminates shape defects can be obtained by bringing the steel sheet inside into contact with one or more pairs of rolls maintained at a temperature of (Ms + 10 ° C) to (Ms + 100 ° C).
特許文献2では、Ac1変態点以上の温度で焼鈍したのち、650〜750℃から400℃/sec以上の平均冷却速度で急速冷却し、次いで、100〜450℃の温度で、100〜1200sec保持する焼戻処理を行った後、鋼板表面の平均粗さRaが1.4μm以上となるように調質圧延を施すことにより鋼板の形状が良好な鋼板が得られるとしている。 In Patent Document 2, after annealing at transformation point A c1 temperature above rapidly cooled at an average cooling rate of more than 400 ° C. / sec from 650 to 750 ° C., then, at a temperature of 100~450 ℃, 100~1200sec holding It is stated that a temper-rolling process is performed so that the average roughness Ra of the steel sheet surface becomes 1.4 μm or more after the tempering treatment is performed, thereby obtaining a steel sheet having a good steel sheet shape.
特許文献1で提案された技術では、気体冷却中の温度むらを解消することを目的とした加熱ロールに接触させる必要があるが、水冷に比べると冷却速度が著しく小さく、不可避的にベイナイトが生成する。ベイナイトが生成すると所望の鋼板強度が得られなくなるばかりか、強度ばらつきの原因となる。 In the technique proposed in Patent Document 1, it is necessary to contact a heating roll for the purpose of eliminating temperature unevenness during gas cooling, but the cooling rate is remarkably lower than water cooling, and bainite is inevitably generated. I do. The formation of bainite not only makes it impossible to obtain a desired steel sheet strength, but also causes a variation in strength.
特許文献2で提案された技術では、表面粗さRaが5.0〜10.0μmの圧延ロールを板表面に転写させることで所望の表面粗さを得ている。しかしながら、この方法でも局所的な加工硬化の影響は避けられず、強度均質性と鋼板形状とを兼備する鋼板が得られない。 In the technique proposed in Patent Literature 2, a desired surface roughness is obtained by transferring a rolling roll having a surface roughness Ra of 5.0 to 10.0 μm to the plate surface. However, even with this method, the influence of local work hardening cannot be avoided, and a steel sheet having both strength homogeneity and steel sheet shape cannot be obtained.
いずれの特許文献に記載の技術でも強度均質性と鋼板形状及び表面性状とを兼備することはできない。本発明では引張強さ:780MPa以上を有し、かつ良好な強度均質性と鋼板形状及び表面性状とを兼備する薄鋼板およびその製造方法を提供することを目的とする。 Neither technique described in any of the patent documents can combine strength homogeneity with the shape and surface properties of a steel sheet. An object of the present invention is to provide a thin steel sheet having a tensile strength of 780 MPa or more and having both good strength homogeneity and steel sheet shape and surface properties, and a method for producing the same.
本発明者らは上記課題を解決するために、引張強さ780MPa以上かつ鋼板の強度均質性および形状を良好とする薄鋼板の要件について鋭意検討した。本件で対象とする薄鋼板の板厚は、0.4mm以上2.6mm以下である。一般的に、鋼板の高強度化にともない合金元素濃度は上昇し、スポット溶接性に悪影響をおよぼす。そのため、スポット溶接性を考慮して効率良く強度を得ることができるマルテンサイトに着目した。一方で効率良くマルテンサイトを得るには鋼板を水冷することが効果的であるが、水冷中のマルテンサイト変態は急速かつ不均一に生じるため、変態ひずみにより鋼板形状を悪化させる。変態ひずみによる悪影響の軽減について調査した結果、鋼板の表裏面の冷却速度の違いがマルテンサイト変態の不均一を誘発し、鋼板形状を悪化させることが判明した。鋼板の表裏面の冷却速度の差異についてさらに追究した結果、鋼板が水槽に進入する際の板表面に対して法線方向の変動が大きいときに生じることを知見した。そして、板形状が良好である場合、過度の矯正が不要であり、通常のスキンパス圧延(調質圧延)で所望の形状が得られ、均一に加工硬化するため、幅方向に対する降伏強さの変動を抑制できることがわかった。本発明は上記の知見に基づき完成されたものであり、その要旨は次のとおりである。 In order to solve the above-mentioned problems, the present inventors have intensively studied requirements for a thin steel sheet having a tensile strength of 780 MPa or more and good strength uniformity and shape of the steel sheet. The thickness of the thin steel sheet targeted in this case is 0.4 mm or more and 2.6 mm or less. Generally, as the strength of a steel sheet increases, the alloy element concentration increases, which adversely affects spot weldability. Therefore, attention was paid to martensite, which can efficiently obtain strength in consideration of spot weldability. On the other hand, it is effective to water-cool the steel sheet in order to obtain martensite efficiently, but the martensitic transformation during water cooling occurs rapidly and non-uniformly, so that the shape of the steel sheet is deteriorated by transformation strain. As a result of investigating the reduction of the adverse effect due to the transformation strain, it was found that the difference in cooling rate between the front and back surfaces of the steel sheet induces non-uniform martensitic transformation and deteriorates the steel sheet shape. As a result of further investigating the difference between the cooling rates of the front and back surfaces of the steel sheet, it was found that the difference occurs in the case where the fluctuation in the normal direction to the plate surface when the steel sheet enters the water tank is large. If the plate shape is good, excessive straightening is not required, and a desired shape can be obtained by ordinary skin pass rolling (temper rolling), and the work hardens uniformly, so that the yield strength varies in the width direction. Can be suppressed. The present invention has been completed based on the above findings, and the gist is as follows.
[1]質量%で、C:0.05%以上0.35%以下、Si:0.01%以上2.0%以下、Mn:0.8%以上3.2%以下、P:0.05%以下、S:0.005%以下、Al:0.005%以上0.10%以下、N:0.0060%以下、残部がFeおよび不可避的不純物からなる成分組成と、フェライト面積率が0%以上90%以下、ベイナイト面積率が5%以下(0%を含む)、マルテンサイトおよび焼き戻されたマルテンサイト面積率が10%以上(100%を含む)、残留オーステナイト面積率が2.0%以下(0%を含む)である鋼組織と、を有し、幅方向の降伏強さの標準偏差が30MPa以下、長さ1mでせん断した際の板鋼板の最大反り量が10mm以下である薄鋼板。 [1] In mass%, C: 0.05% to 0.35%, Si: 0.01% to 2.0%, Mn: 0.8% to 3.2%, P: 0. 05% or less, S: 0.005% or less, Al: 0.005% or more and 0.10% or less, N: 0.0060% or less, the balance of the component composition of Fe and unavoidable impurities and the ferrite area ratio 0% or more and 90% or less, bainite area ratio is 5% or less (including 0%), martensite and tempered martensite area ratio is 10% or more (including 100%), and retained austenite area ratio is 2. A steel structure of 0% or less (including 0%), the standard deviation of the yield strength in the width direction is 30 MPa or less, and the maximum warpage of the sheet steel when sheared at a length of 1 m is 10 mm or less. Some steel sheets.
[2]前記成分組成は、さらに、質量%で、V:0.001%以上1%以下、Ti:0.001%以上0.3%以下、Nb:0.001%以上0.3%以下、Cr:0.001%以上1.0%以下、Mo:0.001%以上1.0%以下、Ni:0.01%以上1.0%以下、Cu:0.01%以上1.0%以下、B:0.0002%以上0.0050%以下、Sb:0.001%以上0.050%以下、REM:0.0002%以上0.050%以下、Mg:0.0002%以上0.050%以下及びCa:0.0002%以上0.050%以下のいずれか1種または2種以上を含有する[1]に記載の薄鋼板。 [2] The component composition is further represented by mass%, V: 0.001% to 1%, Ti: 0.001% to 0.3%, Nb: 0.001% to 0.3%. , Cr: 0.001% to 1.0%, Mo: 0.001% to 1.0%, Ni: 0.01% to 1.0%, Cu: 0.01% to 1.0% %, B: 0.0002% to 0.0050%, Sb: 0.001% to 0.050%, REM: 0.0002% to 0.050%, Mg: 0.0002% to 0 The thin steel sheet according to [1], containing any one or more of 0.050% or less and Ca: 0.0002% to 0.050%.
[3][1]又は[2]に記載の成分組成を有する鋼素材を、熱間圧延する熱延工程と、前記熱延工程後の鋼板を酸洗し、冷間圧延する冷延工程と、前記冷延工程後の鋼板を、760℃以上で加熱した後、600℃以上で水焼入し、該水焼入において水槽に鋼板が進入する際の鋼板表面の法線方向の変動量が30mm以下となるように100℃以下まで水冷し、100℃以上350℃以下で再度加熱する焼鈍工程と、を有する薄鋼板の製造方法。 [3] A hot rolling step of hot rolling a steel material having the component composition according to [1] or [2], and a cold rolling step of pickling the steel sheet after the hot rolling step and cold rolling. After heating the steel sheet after the cold rolling step at 760 ° C. or more, water quenching is performed at 600 ° C. or more, and the amount of variation in the normal direction of the steel sheet surface when the steel sheet enters the water tank in the water quenching is reduced. An annealing step of water-cooling to 100 ° C. or less so as to be 30 mm or less and heating again at 100 ° C. or more and 350 ° C. or less.
[4]前記焼鈍工程において、前記水槽の水面を基点とした上下1m以内に鋼板拘束用ロールを1対以上設置して前記変動量を調整する[3]に記載の薄鋼板の製造方法。 [4] The method for producing a thin steel sheet according to [3], wherein in the annealing step, one or more pairs of steel sheet restraining rolls are installed within 1 m above and below the water surface of the water tank as a base point to adjust the fluctuation amount.
本発明によると、本発明の薄鋼板は、引張強さ(TS):780MPa以上の高強度と、優れた強度均質性および良好な表面性状及び鋼板形状を兼ね備える。本発明の薄鋼板を自動車部品に適用すれば、自動車部品のさらなる軽量化が実現される。 According to the present invention, the thin steel sheet of the present invention has both high strength of tensile strength (TS): 780 MPa or more, excellent strength homogeneity, good surface properties and steel sheet shape. If the thin steel sheet of the present invention is applied to an automobile part, the weight of the automobile part can be further reduced.
以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。 Hereinafter, embodiments of the present invention will be described. Note that the present invention is not limited to the following embodiments.
先ず、本発明の薄鋼板の成分組成について説明する。以下の説明において、成分の含有量を表す「%」は「質量%」を意味する。 First, the component composition of the steel sheet of the present invention will be described. In the following description, “%” representing the content of a component means “% by mass”.
C:0.05%以上0.35%以下
Cは、マルテンサイトおよび焼き戻しマルテンサイトの硬度に関係し、鋼板の高強度化に寄与する元素である。引張強さ:780MPa以上を得るには、少なくともC含有量を0.05%以上含有させる必要がある。好ましくは0.06%以上である。一方、C含有量が0.35%を上回ると、スポット溶接性等で実用化が極めて困難である。そのため、C含有量を0.35%以下とした。好ましくは0.25%以下である。
C: 0.05% or more and 0.35% or less C is an element that relates to the hardness of martensite and tempered martensite, and contributes to increasing the strength of a steel sheet. In order to obtain a tensile strength of 780 MPa or more, it is necessary to contain at least 0.05% or more of the C content. Preferably it is 0.06% or more. On the other hand, when the C content exceeds 0.35%, practical use is extremely difficult due to spot weldability and the like. Therefore, the C content is set to 0.35% or less. Preferably it is 0.25% or less.
Si:0.01%以上2.0以下
Siは鋼板の伸びを上昇させるために有効な元素である。伸び上昇の観点から、Si含有量を0.01%以上とした。好ましくは0.1%以上である。一方、Si含有量が2.0%を上回ると化成処理性が著しく悪化し、自動車用鋼板として不適となるため、Si含有量を2.0%以下とした。好ましくは1.7%以下である。
Si: 0.01% or more and 2.0 or less Si is an element effective for increasing the elongation of the steel sheet. From the viewpoint of elongation, the Si content is set to 0.01% or more. Preferably it is 0.1% or more. On the other hand, when the Si content exceeds 2.0%, the chemical conversion property deteriorates remarkably, and the steel sheet becomes unsuitable as a steel sheet for automobiles. Preferably it is 1.7% or less.
Mn:0.8%以上3.2%以下
Mnは鋼板の焼入性を上昇させ、マルテンサイトを得るために有効な元素である。Mnが不足すると焼入性不足に起因した幅方向の強度変動が生じる。これを抑制するにはMnは0.8%以上含有させる必要がある。好ましくは1.1%以上である。一方、Mnが過度に含有させても焼入性の効果は飽和するばかりか、鋳造性等で生産性に悪影響をもたらす。以上から、Mn含有量は3.2%以下とした。好ましくは2.9%以下である。曲げ性の変動を抑制するには、Mn含有量を2.3%以下とすることがより好ましい。
Mn: 0.8% or more and 3.2% or less Mn is an element effective for increasing the hardenability of a steel sheet and obtaining martensite. When the amount of Mn is insufficient, the strength in the width direction changes due to insufficient hardenability. To suppress this, Mn must be contained at 0.8% or more. It is preferably at least 1.1%. On the other hand, even when Mn is excessively contained, the effect of hardenability is not only saturated, but also adversely affects productivity such as castability. From the above, the Mn content was set to 3.2% or less. Preferably it is 2.9% or less. In order to suppress the change in the bendability, the Mn content is more preferably set to 2.3% or less.
P:0.05%以下
Pは、低温脆性を発生させたり溶接性を低下させたりする有害元素であるため、極力低減することが好ましい。本発明では、P含有量は0.05%まで許容できる。好ましいP含有量は0.02%以下であるが、より厳しい溶接条件下で使用するには、0.01%以下まで抑制することがより好ましい。一方、製造上、0.002%は不可避的に混入する場合がある。
P: 0.05% or less Since P is a harmful element that causes low-temperature brittleness and lowers weldability, it is preferable to reduce P as much as possible. In the present invention, the P content is acceptable up to 0.05%. The preferred P content is 0.02% or less, but for use under more severe welding conditions, the content is more preferably suppressed to 0.01% or less. On the other hand, 0.002% may be inevitably mixed in production.
S:0.005%以下
Sは、鋼中で粗大な硫化物を形成し、これが熱間圧延時に伸展し楔状の介在物となることで、溶接性に悪影響をもたらす。そのため、Sも有害元素であるため極力低減することが好ましい。本発明では、0.005%まで許容できるため、S含有量を0.005%以下とした。好ましくは、0.003%以下であるが、より厳しい溶接条件下で使用するには、0.001%以下まで抑制することがより好ましい。製造上、0.0002%は不可避的に混入する場合がある。
S: 0.005% or less S forms coarse sulfides in the steel, which expands during hot rolling to become wedge-shaped inclusions, which adversely affects weldability. Therefore, since S is also a harmful element, it is preferable to reduce S as much as possible. In the present invention, the content of S is set to 0.005% or less because it can be allowed up to 0.005%. Preferably, the content is 0.003% or less, but for use under more severe welding conditions, the content is more preferably suppressed to 0.001% or less. In production, 0.0002% may be inevitably mixed.
Al:0.005%以上0.10%以下
Alを製鋼の段階で脱酸剤として添加する場合、Al含有量を0.005%以上含有させる必要がある。一方、Alは溶接性等を悪化させる粗大な酸化物を形成する。そのため、Al含有量上限0.10%とした。好ましくは0.07%以下である。
Al: 0.005% or more and 0.10% or less When Al is added as a deoxidizing agent at the steelmaking stage, the Al content needs to be 0.005% or more. On the other hand, Al forms a coarse oxide that deteriorates weldability and the like. Therefore, the upper limit of the Al content is set to 0.10%. Preferably it is 0.07% or less.
N:0.0060%以下
Nは、常温時効性を悪化させ予期せぬ割れを発生させるため、表面性状に対して悪影響をもたらす有害元素である。そのため、Nは出来る限り低減することが望ましい。本発明では0.0060%まで許容できる。好ましくは0.0050%以下である。N含有量は極力低減する方が望ましいが、製造上、0.0005%は不可避的に混入する場合がある。
N: 0.0060% or less N is a harmful element that has an adverse effect on surface properties because it deteriorates normal-temperature aging and causes unexpected cracking. Therefore, it is desirable to reduce N as much as possible. In the present invention, up to 0.0060% is acceptable. Preferably it is 0.0050% or less. Although it is desirable to reduce the N content as much as possible, 0.0005% may be unavoidably mixed in production.
以上が本発明の薄鋼板の必須成分であるが、さらに、質量%で、V:0.001%以上1%以下、Ti:0.001%以上0.3%以下、Nb:0.001%以上0.3%以下、Cr:0.001%以上1.0%以下、Mo:0.001%以上1.0%以下、Ni:0.01%以上1.0%以下、Cu:0.01%以上1.0%以下、B:0.0002%以上0.0050%以下、Sb:0.001%以上0.050%以下、REM:0.0002%以上0.050%以下、Mg:0.0002%以上0.050%以下、Ca:0.0002%以上0.050%以下の1種または2種以上を任意元素として含有してもよい。これら任意元素は焼入性の確保や、強度調整、介在物制御等に使用される元素であるが、これら任意元素を上記範囲で含有しても本発明の効果は損なわれない。 The above are the essential components of the thin steel sheet of the present invention. Further, in mass%, V: 0.001% to 1%, Ti: 0.001% to 0.3%, Nb: 0.001% Not less than 0.3%, Cr: 0.001% to 1.0%, Mo: 0.001% to 1.0%, Ni: 0.01% to 1.0%, Cu: 0. 01% to 1.0%, B: 0.0002% to 0.0050%, Sb: 0.001% to 0.050%, REM: 0.0002% to 0.050%, Mg: One or two or more of 0.0002% to 0.050% and Ca: 0.0002% to 0.050% may be contained as optional elements. These optional elements are elements used for ensuring hardenability, adjusting strength, controlling inclusions, etc., but the effects of the present invention are not impaired even if these optional elements are contained in the above range.
上記成分以外の成分は、Feおよび不可避的不純物である。なお、任意元素を上記下限値未満で含む場合、下限値未満で含まれる任意元素は不可避的不純物として含まれるものとする。 Components other than the above components are Fe and inevitable impurities. When the optional element is contained below the lower limit, the optional element contained below the lower limit is included as an unavoidable impurity.
続いて、本発明の薄鋼板の鋼組織について説明する。本発明の薄鋼板の鋼組織は、フェライト面積率が0%以下90%以下、ベイナイト面積率が5%以下(0%を含む)、マルテンサイトおよび焼き戻されたマルテンサイト面積率が10%以上(100%含む)、残留オーステナイト面積率が2.0%以下(0%を含む)である。 Next, the steel structure of the thin steel sheet of the present invention will be described. The steel structure of the steel sheet of the present invention has a ferrite area ratio of 0% or less and 90% or less, a bainite area ratio of 5% or less (including 0%), and a martensite and tempered martensite area ratio of 10% or more. (Including 100%), and the retained austenite area ratio is 2.0% or less (including 0%).
フェライト面積率が0%以上90%以下
フェライトは軟質であるため、面積率が90%を上回ると所望の鋼板強度が得られない。そこで、フェライト面積率上限を90%とした。好ましくは80%以下である。また、フェライト面積率は0%であっても本発明の効果は失われない。
Ferrite area ratio is 0% or more and 90% or less Ferrite is soft. If the area ratio exceeds 90%, desired steel sheet strength cannot be obtained. Therefore, the upper limit of the ferrite area ratio is set to 90%. Preferably it is 80% or less. Further, even if the ferrite area ratio is 0%, the effect of the present invention is not lost.
ベイナイト面積率が5%以下(0%を含む)
ベイナイトを生成させるには焼鈍工程の加熱後、徐冷もしくは室温まで冷却させることなく約200℃から400℃までの範囲で等温保持させる必要がある。徐冷することにより鋼板の軟化を招くうえ、幅方向の冷却むらが避けられないため、均一な鋼板強度が得られなくなる。本発明では水冷でマルテンサイトを生成させることを意図しているため、200℃から400℃までの等温保持はできない。一方で、水冷過程でベイナイトは僅かに生成することがあり、本発明では5%を上限(0%を含む)とした。好ましくは3%以下である。
The bainite area ratio is 5% or less (including 0%)
In order to form bainite, it is necessary to maintain isothermally in the range of about 200 ° C. to 400 ° C. without slow cooling or cooling to room temperature after heating in the annealing step. Slow cooling leads to softening of the steel sheet, and inevitable cooling unevenness in the width direction, so that uniform steel sheet strength cannot be obtained. In the present invention, since it is intended to form martensite by water cooling, it is not possible to maintain the isothermal temperature from 200 ° C. to 400 ° C. On the other hand, bainite may be slightly generated during the water cooling process, and the upper limit (including 0%) is set to 5% in the present invention. Preferably it is 3% or less.
なお、本発明で対象とするベイナイトは転位をポリゴナルフェライトよりも含むベイニティックフェライトを含む組織であって、焼き戻しマルテンサイトと走査型電子顕微鏡では判別ができない下部ベイナイトは対象としない。ベイニティックフェライトは1%ナイタールエッチングで腐食現出した後、走査型電子顕微鏡では腐食痕が認められるフェライトである。代表例を図1に示す。 The bainite to be treated in the present invention has a structure containing bainitic ferrite containing dislocations more than polygonal ferrite, and does not cover tempered martensite and lower bainite which cannot be distinguished by a scanning electron microscope. Bainitic ferrite is ferrite that shows corrosion by scanning electron microscope after corrosion appears by 1% nital etching. A representative example is shown in FIG.
マルテンサイトおよび焼き戻されたマルテンサイト面積率が10%以上(100%含む)
本発明ではマルテンサイトおよび焼き戻されたマルテンサイト(焼き戻しマルテンサイト)で所望の強度を得ている。引張強さ780MPa以上を得るには上記組織は合計で10%以上(100%含む)必要である。好ましくは、20%以上である。
Martensite and tempered martensite area ratio is 10% or more (including 100%)
In the present invention, a desired strength is obtained with martensite and tempered martensite (tempered martensite). In order to obtain a tensile strength of 780 MPa or more, the above structure needs to be 10% or more (including 100%) in total. Preferably, it is at least 20%.
残留オーステナイト面積率が2.0%以下(0%を含む)
残留オーステナイト2.0%を超えて生成させるには、本発明の鋼組成ではベイナイト生成や水冷以外の方法での製造が必須である。本発明ではベイナイトの生成や水冷以外の製造方法を意図しないため、残留オーステナイトの面積率上限を2.0%とした。残留オーステナイトが0%であっても本発明は損なわれることはない。
Retained austenite area ratio is 2.0% or less (including 0%)
In order to generate the residual austenite in excess of 2.0%, it is essential for the steel composition of the present invention to use a method other than bainite generation and water cooling. In the present invention, since the production method other than the production of bainite and water cooling is not intended, the upper limit of the area ratio of retained austenite is set to 2.0%. The present invention is not impaired even if the retained austenite is 0%.
なお、上記フェライト、ベイナイト、マルテンサイト、焼き戻しマルテンサイト、残留オーステナイト以外のその他の組織として、パーライト、セメンタイト等が挙げられる。該組織は本発明において焼鈍不足もしくは冷却能力不足を表しており、面積率は1%以下が好ましく、0%とすることがさらに好ましい。セメンタイトはベイナイトや焼き戻しマルテンサイト中に含まれることが多く、これらについてはセメンタイトの面積率として計上しない。フェライト粒内に孤立して残存していた場合は面積率に計上しない。走査電子顕微鏡からはマルテンサイトと判別が困難であるため、EBSD法やTEMの回折像で確認する必要がある。フェライト粒内に孤立して残存しているセメンタイトの面積率は2%以下が好ましく、0%とすることがさらに好ましい。 In addition, as other structures other than the ferrite, bainite, martensite, tempered martensite, and retained austenite, pearlite, cementite, and the like can be given. The structure indicates insufficient annealing or insufficient cooling capacity in the present invention, and the area ratio is preferably 1% or less, more preferably 0%. Cementite is often contained in bainite or tempered martensite, and these are not included in the area ratio of cementite. If they remain isolated within the ferrite grains, they are not counted in the area ratio. Since it is difficult to discriminate it from martensite from a scanning electron microscope, it is necessary to confirm it by an EBSD method or a TEM diffraction image. The area ratio of the cementite which remains isolated in the ferrite grains is preferably 2% or less, more preferably 0%.
次いで、本発明の薄鋼板の特性について説明する。 Next, the characteristics of the thin steel sheet of the present invention will be described.
本発明の薄鋼板は高強度である。具体的には、実施例に記載の方法で測定した引張強度(TS)が780MPa以上である。TSの上限は特に限定されないが、他の特性とのバランスの点から2500MPa以下が好ましい。 The thin steel sheet of the present invention has high strength. Specifically, the tensile strength (TS) measured by the method described in the examples is 780 MPa or more. The upper limit of TS is not particularly limited, but is preferably 2500 MPa or less from the viewpoint of balance with other characteristics.
本発明の薄鋼板は強度均質性を有する。具体的には実施例に記載の方法で測定した、幅方向の降伏強さの標準偏差が30MPa以下である。 The steel sheet of the present invention has strength homogeneity. Specifically, the standard deviation of the yield strength in the width direction measured by the method described in the examples is 30 MPa or less.
本発明の薄鋼板は、優れた表面性状を有する。具体的には、実施例に記載した曲げ性評価におけるRmax−Raveが0.8mm以下である。好ましくは0.7mm以下、より好ましくは0.6mm以下である。 The thin steel sheet of the present invention has excellent surface properties. Specifically, Rmax-Rave in the bendability evaluation described in the examples is 0.8 mm or less. Preferably it is 0.7 mm or less, more preferably 0.6 mm or less.
本発明の薄鋼板は優れた板形状を有する。具体的には、実施例に記載の方法で測定した最大反り量が10mm以下である。 The thin steel sheet of the present invention has an excellent plate shape. Specifically, the maximum amount of warpage measured by the method described in the example is 10 mm or less.
次に、本発明の薄鋼板の製造方法について説明する。本発明の薄鋼板の製造方法は、熱延工程、冷延工程、焼鈍工程を有する。 Next, a method for manufacturing a thin steel sheet according to the present invention will be described. The method for producing a thin steel sheet according to the present invention includes a hot rolling step, a cold rolling step, and an annealing step.
熱延工程とは、上記成分組成を有する鋼素材を、熱間圧延する工程である。 The hot rolling step is a step of hot rolling a steel material having the above component composition.
上記鋼素材の製造のための、溶製方法は特に限定されず、転炉、電気炉等、公知の溶製方法を採用することができる。また、真空脱ガス炉にて2次精錬を行ってもよい。その後、生産性や品質上の問題から連続鋳造法によりスラブ(鋼素材)とするのが好ましい。また、造塊−分塊圧延法、薄スラブ連鋳法等、公知の鋳造方法でスラブとしてもよい。 The smelting method for producing the steel material is not particularly limited, and a known smelting method such as a converter or an electric furnace can be employed. Further, secondary refining may be performed in a vacuum degassing furnace. Thereafter, it is preferable to make the slab (steel material) by a continuous casting method from the viewpoint of productivity and quality. Further, the slab may be formed by a known casting method such as an ingot-bulking rolling method and a thin slab continuous casting method.
また、熱間圧延における熱延条件は適宜設定すればよい。 The hot rolling conditions in the hot rolling may be set as appropriate.
冷間圧延工程とは、上記熱延工程後の鋼板を酸洗し、冷間圧延する工程である。酸洗、冷間圧延の条件は特に限定されず、適宜設定すればよい。 The cold rolling step is a step in which the steel sheet after the hot rolling step is pickled and cold rolled. The conditions for pickling and cold rolling are not particularly limited, and may be set as appropriate.
焼鈍工程とは、冷延工程後の鋼板を、760℃以上で加熱した後、600℃以上で水焼入し、該水焼入において水槽に鋼板が進入する際の鋼板表面の法線方向の変動量が30mm以下となるように100℃以下まで水冷し、100℃以上350℃以下で再度加熱する工程である。焼鈍工程は連続焼鈍ラインで行うことが好ましい。 The annealing step is to heat the steel sheet after the cold-rolling step at 760 ° C. or more, then water-quench at 600 ° C. or more, and in the water quenching, the normal direction of the steel sheet surface when the steel sheet enters the water tank. This is a step of cooling with water to 100 ° C. or less so that the fluctuation amount becomes 30 mm or less, and heating again at 100 ° C. or more and 350 ° C. or less. The annealing step is preferably performed in a continuous annealing line.
760℃以上に加熱
加熱はマルテンサイトの生成に寄与するオーステナイトの生成が目的であり、所望のマルテンサイト面積率を得るには760℃以上に加熱する必要がある。好ましくは780℃以上である。加熱温度の上限はオーステナイト粒が粗大化することで肌荒れの原因となり表面性状を悪化させるため、加熱温度は900℃以下が好ましく、875℃以下がさらに好ましい。
Heating to 760 ° C. or higher Heating is intended to generate austenite which contributes to the formation of martensite, and it is necessary to heat to 760 ° C. or higher to obtain a desired martensite area ratio. Preferably it is 780 ° C or higher. The upper limit of the heating temperature is preferably 900 ° C. or less, more preferably 875 ° C. or less, because coarsening of austenite grains causes rough skin and deteriorates surface properties.
600℃以上で水焼入
水焼入開始までに過度に低温化すると、鋼板温度分布に起因した幅方向の強度変動やフェライトおよびベイナイト生成により所望の鋼板特性が得られなくなる。以上の観点から水焼入開始温度は600℃以上とした。好ましくは640℃以上である。また、水焼入開始温度の上限は特に限定されず、フェライト生成を意図しない場合は高い方が好ましい。実際の製造では焼鈍温度から10℃低下ほど低下した時点で焼入されることが多い。
Water quenching at 600 ° C. or more If the temperature is excessively lowered before the start of water quenching, desired steel sheet properties cannot be obtained due to fluctuations in strength in the width direction due to the steel sheet temperature distribution and formation of ferrite and bainite. From the above viewpoint, the water quenching start temperature was set to 600 ° C. or higher. Preferably it is 640 ° C or higher. The upper limit of the water quenching start temperature is not particularly limited, and is preferably higher when ferrite formation is not intended. In actual production, quenching is often performed when the temperature is lowered by about 10 ° C. from the annealing temperature.
水槽に鋼板が進入する際の鋼板表面の法線方向の変動量が30mm以下に制御
水槽への鋼板進入状態を制御することで水冷時の冷却速度の変動を抑制したことに本発明は特徴がある。鋼板が水槽進入時に板面法線方向に対して鋼板位置の変動が大きい状態であると鋼板表面の水の滞留状態が不均一となり冷却速度の変動をもたらす。この変動を抑制するために、例えば張力を従来よりも高くすることで変動を抑制することも可能であるが、通板時に破断リスクを伴う。板面法線方向に対する鋼板位置の変動量を30mm以下とすることで、この冷却速度の変動を抑制し所望の鋼板形状が得られる。好ましい変動量は20mm以下である。また、上記変動量は小さいほど好ましい。なお、変動量とは、鋼板が直進した場合に対するズレの量であり、図2に変動量を模式的に示した。
The present invention is characterized in that the amount of fluctuation in the normal direction of the steel sheet surface when the steel sheet enters the water tank is controlled to 30 mm or less. By controlling the state of the steel sheet entering the water tank, the fluctuation of the cooling rate during water cooling is suppressed. is there. If the position of the steel sheet is largely fluctuated with respect to the normal direction of the sheet surface when the steel sheet enters the water tank, the water retention state on the steel sheet surface becomes non-uniform and the cooling rate fluctuates. In order to suppress this fluctuation, it is possible to suppress the fluctuation by increasing the tension, for example, as compared with the related art, but there is a risk of breakage during passing. By setting the variation of the position of the steel sheet relative to the normal direction of the sheet surface to 30 mm or less, the fluctuation of the cooling rate is suppressed, and a desired steel sheet shape is obtained. The preferred variation is 20 mm or less. The smaller the fluctuation amount is, the more preferable. Note that the amount of change is the amount of deviation from the case where the steel sheet goes straight, and FIG. 2 schematically shows the amount of change.
板進入時の鋼板の拘束は、例えば水面から1m以内にロールを設置すればよい。この距離は水中および水面上のいずれも含まれる(図2には水面上の場合を図示)。好ましくは500mm以内である。ロールの幅や材質は特に限定されず、例えば幅方向センター部のみを拘束する鋼板の幅よりも狭いものであっても良い。拘束する際、板表面に疵が付かないよう、材質やロール位置、ロール周速を選定する必要がある。そのため、ロールの材質は金属製のものに限定されず、耐熱性を有するゴム、樹脂を含む材質のものであってもよい。ロール位置は鋼板表裏面から拘束する1対のロールであっても良いし、複数あっても良い。また、ロール間距離が離れた対のロールでも良い。ロール距離が離れた対のロールの場合、鋼板に対して過度に押し込むと、すなわち鋼板進路に対して妨げる位置にロールがある場合、形状や表面性状の悪化を招くため、押し込み量は5mm以下とすることが好ましく、さらに好ましくは2mm以下である。 The roll may be installed within 1 m from the water surface, for example, to restrain the steel plate when the plate enters. This distance includes both underwater and on the water surface (FIG. 2 shows the case on the water surface). It is preferably within 500 mm. The width and material of the roll are not particularly limited, and may be, for example, smaller than the width of a steel plate that restricts only the center portion in the width direction. When restraining, it is necessary to select a material, a roll position, and a roll peripheral speed so as not to scratch the plate surface. Therefore, the material of the roll is not limited to a metal material, and may be a material containing a heat-resistant rubber or resin. The roll position may be a pair of rolls constrained from the front and back surfaces of the steel sheet, or a plurality of roll positions. Further, a pair of rolls having a large distance between the rolls may be used. In the case of a pair of rolls separated by a roll distance, if the roll is pushed excessively against the steel sheet, that is, if the roll is located at a position obstructing the course of the steel sheet, the shape and surface properties are deteriorated. Preferably, it is not more than 2 mm.
100℃以下まで水冷
水冷後の温度が100℃を超えると、形状に悪影響をもたらすほどマルテンサイト変態が水冷後に進行する。マルテンサイト変態しない場合には、ベイナイト変態が不均一に進行するため、幅方向に対して強度変動を誘発する。そのため、水槽から出た後の鋼板温度は100℃以下である必要がある。好ましくは80℃以下である。
Water cooling to 100 ° C. or less If the temperature after water cooling exceeds 100 ° C., the martensitic transformation proceeds after water cooling so as to adversely affect the shape. When the martensitic transformation does not occur, the bainite transformation proceeds unevenly, so that a variation in strength is induced in the width direction. Therefore, the temperature of the steel sheet after leaving the water tank needs to be 100 ° C. or less. Preferably it is 80 ° C. or lower.
100℃以上350℃以下で再加熱
水冷後は再加熱し、水冷時に生成したマルテンサイトを焼き戻すことで自動車用成形を可能とする高延性化を図る必要がある。再加熱温度が100℃未満では必要な延性が得られない。一方、350℃超で焼き戻すとマルテンサイトが過度に焼き戻されるため、所望の鋼板強度が得られなくなる。以上から、再加熱温度を100℃以上350℃以下とした。好ましくは、130℃以上260℃以下である。
Reheating at 100 ° C. or more and 350 ° C. or less It is necessary to reheat after water cooling and to temper the martensite generated during water cooling to increase the ductility to enable molding for automobiles. If the reheating temperature is lower than 100 ° C., the required ductility cannot be obtained. On the other hand, if the tempering is performed at a temperature exceeding 350 ° C., the martensite is excessively tempered, so that a desired steel sheet strength cannot be obtained. From the above, the reheating temperature was set to 100 ° C. or more and 350 ° C. or less. Preferably, it is 130 ° C. or more and 260 ° C. or less.
表1に示す成分組成を有する肉厚250mmの鋼素材を表2に示す熱延条件で熱間圧延を施して板厚2.6〜4.4mmの熱延板とし、酸洗した後に、冷間圧延にて板厚1.4mmの冷延板とし、表2に示す条件の焼鈍を連続焼鈍ラインで施し、評価に供する鋼板を製造した。焼鈍後は通常の伸長率0.2%のスキンパス圧延のみを行い、2回以上のスキンパス圧延やレベラー矯正は行わず以下の手法で評価した。なお、水面進入時の板表面法線方向に対する鋼板の変動は水面直上にカメラを設置し、理想的な鋼板進入位置に対する乖離量を調査し、1mあたりの最大乖離量を求めた。水槽進入時の板表面法線方向に対する鋼板変動量は水面上下300mmの位置に鋼板表裏面に対して各1個ずつロールを設置し、押し込み量を変化させることで制御した。 A 250-mm-thick steel material having the composition shown in Table 1 was hot-rolled under hot-rolling conditions shown in Table 2 to obtain a hot-rolled sheet having a sheet thickness of 2.6 to 4.4 mm. A cold-rolled sheet having a thickness of 1.4 mm was formed by cold rolling, and subjected to annealing under the conditions shown in Table 2 in a continuous annealing line to produce a steel sheet for evaluation. After annealing, only normal skin pass rolling at an elongation of 0.2% was performed, and evaluation was performed by the following method without performing skin pass rolling or leveler correction twice or more. The fluctuation of the steel sheet with respect to the normal direction of the sheet surface at the time of entering the water surface was determined by installing a camera directly above the water surface, investigating the amount of deviation from an ideal steel sheet entry position, and calculating the maximum amount of deviation per meter. The amount of change in the steel sheet relative to the normal direction of the sheet surface when entering the water tank was controlled by installing one roll for each of the front and back surfaces of the steel sheet at positions 300 mm above and below the water surface and changing the amount of pushing.
(i)組織観察(鋼組織の面積率)
鋼板から、圧延方向に平行な板厚断面が観察面となるよう切り出し、板厚中心部を1%ナイタールで腐食現出し、走査電子顕微鏡で2000倍に拡大して板厚1/4t部(tは全厚)を10視野分撮影した。フェライトは粒内に腐食痕が観察されない組織であり、焼き戻しマルテンサイトは粒内に配向性を有する多数の500nm以下の微細なセメンタイトおよび腐食痕が認められる組織である。マルテンサイトは走査型電子顕微鏡ではフェライトよりも白いコントラストで観察される組織であり、粒内にセメンタイトの析出が認められない組織である。残留オーステナイトもマルテンサイトと同じ形態で観察されるため、走査型電子顕微鏡で求めたマルテンサイト面積から後述するXRDによる残留オーステナイト分率を差し引いた値をマルテンサイト面積率として計上した。ベイナイト組織は腐食痕を有するベイニティックフェライトを対象とした。
(I) Microstructure observation (area ratio of steel structure)
The steel sheet was cut out from the steel sheet so that the cross section of the sheet thickness parallel to the rolling direction became the observation surface. The center of the sheet thickness was exposed to corrosion with 1% nital, and it was enlarged by 2000 times with a scanning electron microscope to obtain a sheet thickness of 1/4 t portion (t). Was taken for 10 fields of view. Ferrite is a structure in which corrosion marks are not observed in grains, and tempered martensite is a structure in which a large number of fine cementite having a size of 500 nm or less and corrosion marks in grains are observed. Martensite is a structure observed with a scanning electron microscope with a contrast higher than that of ferrite, and is a structure in which precipitation of cementite is not observed in grains. Since retained austenite is also observed in the same form as martensite, the value obtained by subtracting the retained austenite fraction by XRD described later from the martensite area determined by a scanning electron microscope was recorded as the martensite area ratio. The bainite structure was for bainitic ferrite having corrosion marks.
上記組織の面積率は、得られた写真に対して実長さ30μmの水平線および垂直線各20本を格子状となるように引き、交点の組織を同定し、全交点に対する各組織の交点数の比率を各組織の面積率とする、切断法により求めた。 The area ratio of the tissue was determined by drawing 20 horizontal lines and 20 vertical lines each having an actual length of 30 μm on the obtained photograph so as to form a grid, identifying the tissue at the intersection, and determining the number of intersections of each tissue with respect to all the intersections. Was determined by a cutting method, in which the ratio of was used as the area ratio of each tissue.
(ii)XRDによる残留オーステナイト分率測定
鋼板を板厚1/4位置まで研磨後、化学研磨により更に0.1mm研磨した面について、X線回折装置でMoのKα線を用い、fcc鉄(オーステナイト)の(200)面、(220)面、(311)面と、bcc鉄(フェライト)の(200)面、(211)面、(220)面の積分反射強度を測定し、bcc鉄(フェライト)各面からの積分反射強度に対するfcc鉄(オーステナイト)各面からの積分反射強度の強度比から求めたオーステナイトの割合を残留オーステナイト分率とした。
(Ii) Measurement of residual austenite fraction by XRD After polishing a steel sheet to a position having a thickness of 1/4 and further polishing it by 0.1 mm by chemical polishing, fcc iron (austenite) ), (200), (220), and (311) planes, and the (200), (211), and (220) planes of bcc iron (ferrite). ) The ratio of austenite obtained from the intensity ratio of the integrated reflection intensity from each surface to fcc iron (austenite) with respect to the integrated reflection intensity from each surface was defined as the retained austenite fraction.
(iii)引張試験
得られた鋼板から圧延方向に対して垂直方向にJIS5号引張試験片を作製し、JIS Z 2241(2011)の規定に準拠した引張試験を5回行い、平均の降伏強度(YS)、引張強さ(TS)、全伸び(El)を求めた。引張試験のクロスヘッドスピードは10mm/minとした。表3において、引張強さ:780MPa以上を本発明鋼で求める鋼板の機械的性質とした。
(Iii) Tensile test A JIS No. 5 tensile test piece was prepared from the obtained steel sheet in a direction perpendicular to the rolling direction, and a tensile test was performed five times in accordance with the provisions of JIS Z 2241 (2011) to obtain an average yield strength ( YS), tensile strength (TS), and total elongation (El) were determined. The crosshead speed in the tensile test was 10 mm / min. In Table 3, tensile strength: 780 MPa or more was defined as the mechanical properties of the steel sheet required for the steel of the present invention.
また、圧延方向に対して平行方向のJIS5号引張試験片を板幅方向に対して隙間なく連続的に採取した。この際、板幅方向に対して長さが不足し、JIS5号引張試験片が採取できない位置が発生する場合、板幅中央部の板幅0mm超え35mm未満を破棄した。それらの降伏強さを調査し標準偏差を求め、その値が30MPa以下を本発明で求める範囲とした。 In addition, JIS No. 5 tensile test pieces in the direction parallel to the rolling direction were continuously sampled without any gap in the sheet width direction. At this time, when the length was insufficient in the plate width direction and a position where a JIS No. 5 tensile test piece could not be collected occurred, the plate width at the central portion of the plate width exceeding 0 mm and less than 35 mm was discarded. The yield strength was investigated to determine the standard deviation, and a value of 30 MPa or less was defined as the range required in the present invention.
(iv)曲げ性評価
成形部材で曲げ部の割れにより不合格なる場合がある。これは曲げ性の局所的な悪化が原因であり、鋼板表面の亀裂に起因することが多く、鋼板表面の亀裂は形状が劣位の鋼板を2回以上のスキンパス圧延やレベラー加工を適用したときに発生する。本発明では、局所的な曲げ性悪化を招く、形状矯正を不要とするため、この曲げ性の局所的な悪化も抑制することができる。これを評価するため、幅方向センター部から幅100mm、長さ40mmの短冊状サンプルを50枚切り出し、せん断端面を研削加工した後、JISZ2248(1996)の規定に準拠したVブロック法による90°V曲げ試験(曲げ稜線は圧延方向)により曲げ評価用サンプルを作製した。この曲げ頂点部付近を20倍の光学顕微鏡もしくはルーペで観察し、割れ有無を判定した。表3には割れが生じなかった押し付けダイスの最小曲げ半径の平均値(Rave)と50枚評価したうちの最小曲げ半径の最大値(Rmax)を示した。Rmax−Rave=0.8mm以下の水準を本発明での好ましい範囲とした。
(Iv) Evaluation of bendability In some cases, a molded member may be rejected due to a crack in a bent portion. This is due to local deterioration of bendability and is often caused by cracks on the surface of the steel sheet, and the cracks on the surface of the steel sheet can be caused by applying two or more skin pass rollings or leveler processing on a steel sheet of inferior shape. appear. In the present invention, since the shape correction is not required, which locally deteriorates the bending property, the local deterioration of the bending property can also be suppressed. In order to evaluate this, 50 strip-shaped samples having a width of 100 mm and a length of 40 mm were cut out from the center portion in the width direction, and the sheared end faces were ground. After that, 90 ° V by the V block method in accordance with JISZ2248 (1996). A sample for bending evaluation was prepared by a bending test (the bending ridge line is in the rolling direction). The vicinity of the bending apex was observed with a 20-fold optical microscope or loupe to determine the presence or absence of cracks. Table 3 shows the average value (Rave) of the minimum bending radii of the pressing dies that did not crack and the maximum value (Rmax) of the minimum bending radii of the 50 evaluations. The level of Rmax-Rave = 0.8 mm or less was set as a preferable range in the present invention.
(v)鋼板形状評価
幅方向に対しせん断しない冷延鋼板を、長さ方向1mの長さにせん断した板を水平な台に置き、設置した台に対する鋼板の最大高さを“最大反り量”として測定し、その結果を表3に示した。最大反り量が10mm以下を本発明で求める鋼板形状とした。
(V) Evaluation of steel sheet shape A sheet obtained by shearing a cold-rolled steel sheet that does not shear in the width direction to a length of 1 m in the length direction is placed on a horizontal table, and the maximum height of the steel sheet with respect to the installed table is referred to as “maximum warpage”. And the results are shown in Table 3. A steel sheet shape having a maximum warpage of 10 mm or less was determined according to the present invention.
本発明例はいずれも、引張強さTS:780MPa以上であり良好な鋼板強度均質性、表面性状及び鋼板形状が得られたことがわかる。一方、本発明の範囲を外れる比較例は引張強さ780MPaに達していないか、本発明で求める鋼板強度均質性もしくは表面性状もしくは鋼板形状が得られなかった。 In all of the examples of the present invention, the tensile strength TS is 780 MPa or more, and it can be seen that good steel sheet strength uniformity, surface properties and steel sheet shape were obtained. On the other hand, in the comparative examples outside the range of the present invention, the tensile strength did not reach 780 MPa, or the steel sheet strength uniformity, surface properties or steel sheet shape required in the present invention could not be obtained.
Claims (4)
C:0.05%以上0.35%以下、
Si:0.01%以上2.0%以下、
Mn:0.8%以上3.2%以下、
P:0.05%以下、
S:0.005%以下、
Al:0.005%以上0.10%以下、
N:0.0060%以下、
残部がFeおよび不可避的不純物からなる成分組成と、
フェライト面積率が0%以上90%以下、ベイナイト面積率が5%以下(0%を含む)、マルテンサイトおよび焼き戻されたマルテンサイト面積率が10%以上(100%を含む)、残留オーステナイト面積率が2.0%以下(0%を含む)である鋼組織と、を有し、
幅方向の降伏強さの標準偏差が30MPa以下、長さ1mでせん断した際の板鋼板の最大反り量が10mm以下である薄鋼板。 In mass%,
C: 0.05% or more and 0.35% or less,
Si: 0.01% or more and 2.0% or less,
Mn: 0.8% or more and 3.2% or less,
P: 0.05% or less,
S: 0.005% or less,
Al: 0.005% or more and 0.10% or less,
N: 0.0060% or less,
The balance being a component composition comprising Fe and unavoidable impurities,
Ferrite area ratio is 0% or more and 90% or less, bainite area ratio is 5% or less (including 0%), martensite and tempered martensite area ratio is 10% or more (including 100%), residual austenite area A steel structure having a rate of 2.0% or less (including 0%).
A thin steel sheet having a standard deviation of the yield strength in the width direction of 30 MPa or less and a maximum warpage of the sheet steel of 10 mm or less when sheared at a length of 1 m.
V:0.001%以上1%以下、
Ti:0.001%以上0.3%以下、
Nb:0.001%以上0.3%以下、
Cr:0.001%以上1.0%以下、
Mo:0.001%以上1.0%以下、
Ni:0.01%以上1.0%以下、
Cu:0.01%以上1.0%以下、
B:0.0002%以上0.0050%以下、
Sb:0.001%以上0.050%以下、
REM:0.0002%以上0.050%以下、
Mg:0.0002%以上0.050%以下及び
Ca:0.0002%以上0.050%以下のいずれか1種または2種以上を含有する請求項1に記載の薄鋼板。 The component composition further includes, in mass%,
V: 0.001% or more and 1% or less,
Ti: 0.001% or more and 0.3% or less,
Nb: 0.001% or more and 0.3% or less,
Cr: 0.001% or more and 1.0% or less,
Mo: 0.001% or more and 1.0% or less,
Ni: 0.01% or more and 1.0% or less,
Cu: 0.01% or more and 1.0% or less,
B: 0.0002% or more and 0.0050% or less,
Sb: 0.001% to 0.050%,
REM: 0.0002% to 0.050%,
The thin steel sheet according to claim 1, comprising one or more of Mg: 0.0002% to 0.050% and Ca: 0.0002% to 0.050%.
前記熱延工程後の鋼板を酸洗し、冷間圧延する冷延工程と、
前記冷延工程後の鋼板を、760℃以上で加熱した後、600℃以上で水焼入し、該水焼入において水槽に鋼板が進入する際の鋼板表面の法線方向の変動量が30mm以下となるように100℃以下まで水冷し、100℃以上350℃以下で再度加熱する焼鈍工程と、を有する薄鋼板の製造方法。 A hot rolling step of hot rolling a steel material having the component composition according to claim 1 or 2,
Pickling the steel sheet after the hot rolling step, a cold rolling step of cold rolling,
After the steel sheet after the cold rolling step is heated at 760 ° C. or more, water quenching is performed at 600 ° C. or more, and the amount of variation in the normal direction of the steel sheet surface when the steel sheet enters the water tank in the water quenching is 30 mm. A method of producing a thin steel sheet, comprising: an annealing step of water-cooling to 100 ° C or lower and heating again at 100 ° C to 350 ° C so that
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018143806A JP6835046B2 (en) | 2018-07-31 | 2018-07-31 | Thin steel sheet and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018143806A JP6835046B2 (en) | 2018-07-31 | 2018-07-31 | Thin steel sheet and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020019992A true JP2020019992A (en) | 2020-02-06 |
JP6835046B2 JP6835046B2 (en) | 2021-02-24 |
Family
ID=69587473
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018143806A Active JP6835046B2 (en) | 2018-07-31 | 2018-07-31 | Thin steel sheet and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6835046B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2021039776A1 (en) * | 2019-08-30 | 2021-03-04 | ||
WO2021085335A1 (en) * | 2019-10-31 | 2021-05-06 | Jfeスチール株式会社 | Steel plate, member, and method for manufacturing said steel plate and member |
WO2021085336A1 (en) * | 2019-10-31 | 2021-05-06 | Jfeスチール株式会社 | Steel sheet, member, method for producing said steel sheet and method for producing said member |
WO2021230079A1 (en) * | 2020-05-11 | 2021-11-18 | Jfeスチール株式会社 | Steel sheet, member, and method for manufacturing same |
WO2024136344A1 (en) | 2022-12-20 | 2024-06-27 | 주식회사 포스코 | Cold rolled steel sheet and method for manufacturing same |
WO2024136316A1 (en) | 2022-12-20 | 2024-06-27 | 주식회사 포스코 | Cold-rolled steel sheet and method of manufacturing same |
KR20250093731A (en) | 2023-12-15 | 2025-06-25 | 주식회사 포스코 | Cold rolled steel sheet and method of manufacturing the same |
KR20250094763A (en) | 2023-12-18 | 2025-06-26 | 주식회사 포스코 | Cold rolled steel sheet and method of manufacturing the same |
KR20250094793A (en) | 2023-12-18 | 2025-06-26 | 주식회사 포스코 | Cold rolled steel sheet and method of manufacturing the same |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0238532A (en) * | 1988-07-29 | 1990-02-07 | Kobe Steel Ltd | Manufacture of cold rolled high-tensile sheet steel |
JPH11193418A (en) * | 1997-12-29 | 1999-07-21 | Kobe Steel Ltd | Manufacture of high strength cold rolled steel sheet excellent in flatness characteristic |
JP2003277833A (en) * | 2002-03-22 | 2003-10-02 | Jfe Steel Kk | Metal plate manufacturing method and manufacturing apparatus |
JP2011202195A (en) * | 2010-03-24 | 2011-10-13 | Jfe Steel Corp | Ultrahigh strength cold rolled steel sheet and method for producing same |
JP2013177673A (en) * | 2012-01-31 | 2013-09-09 | Jfe Steel Corp | Hot-dip galvanized steel sheet and prodcing method therefor |
JP2013227657A (en) * | 2012-03-29 | 2013-11-07 | Kobe Steel Ltd | Method for producing high-strength cold-rolled steel sheet with excellent steel sheet shape |
WO2016084283A1 (en) * | 2014-11-28 | 2016-06-02 | Jfeスチール株式会社 | Method for manufacturing metal plates and quenching device |
-
2018
- 2018-07-31 JP JP2018143806A patent/JP6835046B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0238532A (en) * | 1988-07-29 | 1990-02-07 | Kobe Steel Ltd | Manufacture of cold rolled high-tensile sheet steel |
JPH11193418A (en) * | 1997-12-29 | 1999-07-21 | Kobe Steel Ltd | Manufacture of high strength cold rolled steel sheet excellent in flatness characteristic |
JP2003277833A (en) * | 2002-03-22 | 2003-10-02 | Jfe Steel Kk | Metal plate manufacturing method and manufacturing apparatus |
JP2011202195A (en) * | 2010-03-24 | 2011-10-13 | Jfe Steel Corp | Ultrahigh strength cold rolled steel sheet and method for producing same |
JP2013177673A (en) * | 2012-01-31 | 2013-09-09 | Jfe Steel Corp | Hot-dip galvanized steel sheet and prodcing method therefor |
JP2013227657A (en) * | 2012-03-29 | 2013-11-07 | Kobe Steel Ltd | Method for producing high-strength cold-rolled steel sheet with excellent steel sheet shape |
WO2016084283A1 (en) * | 2014-11-28 | 2016-06-02 | Jfeスチール株式会社 | Method for manufacturing metal plates and quenching device |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021039776A1 (en) * | 2019-08-30 | 2021-03-04 | Jfeスチール株式会社 | Steel sheet, member, and methods for producing same |
JPWO2021039776A1 (en) * | 2019-08-30 | 2021-03-04 | ||
JP2021181624A (en) * | 2019-08-30 | 2021-11-25 | Jfeスチール株式会社 | Steel sheet, member subject and manufacturing method of them |
US12338505B2 (en) | 2019-08-30 | 2025-06-24 | Jfe Steel Corporation | Steel sheet, member, and methods for producing the same |
JP7666193B2 (en) | 2019-08-30 | 2025-04-22 | Jfeスチール株式会社 | Steel plates, components and their manufacturing methods |
US12146204B2 (en) | 2019-10-31 | 2024-11-19 | Jfe Steel Corporation | Steel sheet, member, and methods for producing the same |
WO2021085335A1 (en) * | 2019-10-31 | 2021-05-06 | Jfeスチール株式会社 | Steel plate, member, and method for manufacturing said steel plate and member |
WO2021085336A1 (en) * | 2019-10-31 | 2021-05-06 | Jfeスチール株式会社 | Steel sheet, member, method for producing said steel sheet and method for producing said member |
WO2021230079A1 (en) * | 2020-05-11 | 2021-11-18 | Jfeスチール株式会社 | Steel sheet, member, and method for manufacturing same |
JP7031795B1 (en) * | 2020-05-11 | 2022-03-08 | Jfeスチール株式会社 | Steel sheets, members and their manufacturing methods |
KR20240097541A (en) | 2022-12-20 | 2024-06-27 | 주식회사 포스코 | Cold rolled steel shhet and method of manufacturing the same |
KR20240098202A (en) | 2022-12-20 | 2024-06-28 | 주식회사 포스코 | Cold rolled steel shhet and method of manufacturing the same |
WO2024136316A1 (en) | 2022-12-20 | 2024-06-27 | 주식회사 포스코 | Cold-rolled steel sheet and method of manufacturing same |
WO2024136344A1 (en) | 2022-12-20 | 2024-06-27 | 주식회사 포스코 | Cold rolled steel sheet and method for manufacturing same |
KR20250093731A (en) | 2023-12-15 | 2025-06-25 | 주식회사 포스코 | Cold rolled steel sheet and method of manufacturing the same |
KR20250094763A (en) | 2023-12-18 | 2025-06-26 | 주식회사 포스코 | Cold rolled steel sheet and method of manufacturing the same |
KR20250094793A (en) | 2023-12-18 | 2025-06-26 | 주식회사 포스코 | Cold rolled steel sheet and method of manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP6835046B2 (en) | 2021-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6835046B2 (en) | Thin steel sheet and its manufacturing method | |
JP6428970B1 (en) | Hot-pressed member and manufacturing method thereof | |
US10570475B2 (en) | High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet | |
US10329638B2 (en) | High strength galvanized steel sheet and production method therefor | |
KR101706485B1 (en) | High-strength cold-rolled steel sheet and method for producing the same | |
KR102433938B1 (en) | High-strength cold-rolled steel sheet, high-strength plated steel sheet and manufacturing method thereof | |
JP6052473B1 (en) | High-strength cold-rolled steel sheet, high-strength plated steel sheet, and production methods thereof | |
JP6928112B2 (en) | Thin steel plate | |
US10260133B2 (en) | High-strength steel sheet and method for producing the same | |
JP5958669B1 (en) | High strength steel plate and manufacturing method thereof | |
JP6947329B2 (en) | Steel sheets, members and their manufacturing methods | |
JP2021181626A (en) | Steel sheet, member subject and manufacturing method of them | |
JP7031795B1 (en) | Steel sheets, members and their manufacturing methods | |
JP7666193B2 (en) | Steel plates, components and their manufacturing methods | |
JP2015145521A (en) | High strength cold rolled steel sheet and method for producing the same | |
US12331379B2 (en) | Cold-rolled steel sheet and manufacturing method thereof | |
JP7549277B2 (en) | Steel sheets for hot stamping and hot stamped products | |
US20250215538A1 (en) | Hot-stamp formed body | |
CN113544301B (en) | Steel plate | |
US20250215545A1 (en) | Cold-rolled steel sheet | |
JP2016074965A (en) | High-strength cold-rolled steel sheet, high-strength plated steel sheet, and production methods thereof | |
KR20240155909A (en) | Sheet steel for hot stamping and hot stamping molded parts | |
WO2024195680A1 (en) | Steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20190327 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200220 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200923 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201020 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201211 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210105 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210118 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6835046 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |