[go: up one dir, main page]

JP2020012768A - Reactor cooling system and operation method thereof - Google Patents

Reactor cooling system and operation method thereof Download PDF

Info

Publication number
JP2020012768A
JP2020012768A JP2018136242A JP2018136242A JP2020012768A JP 2020012768 A JP2020012768 A JP 2020012768A JP 2018136242 A JP2018136242 A JP 2018136242A JP 2018136242 A JP2018136242 A JP 2018136242A JP 2020012768 A JP2020012768 A JP 2020012768A
Authority
JP
Japan
Prior art keywords
steam
pump
reactor
water pump
cooling system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018136242A
Other languages
Japanese (ja)
Inventor
政隆 日高
Masataka Hidaka
政隆 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2018136242A priority Critical patent/JP2020012768A/en
Publication of JP2020012768A publication Critical patent/JP2020012768A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

To provide a reactor cooling system capable of diversifying means of injecting high-pressure water into a pressure container and means of removing heat, and an operation method thereof.SOLUTION: A reactor cooling system comprises: a reactor pressure container 1; a main steam pipe 2; a main steam isolation valve 3; power generation turbines 4, 5; a condenser 7; a water supply pipe 10a; a water supply pump 16; a water supply pump driving steam turbine 14; a first piping route B; a second piping route A; a third piping route D; a driving steam switching valve 17 to which the first piping route B and the second piping route A are connected, and which switches the steam used by the water supply pump driving steam turbine 14 to the steam from the first piping route B or the second piping route A; and a controller 27 that closes the main steam isolation valve 3 when the reactor is shut down, and drives the water supply pump driving steam turbine 14 with steam from the second piping route A.SELECTED DRAWING: Figure 2

Description

本発明は、原子炉冷却システム及びその運転方法に関する。   The present invention relates to a reactor cooling system and a method of operating the same.

従来、原子力発電プラントにおいて、原子炉は、核燃料が装荷される炉心と炉心を内包する密閉構造の原子炉圧力容器(以下、圧力容器と称す)、圧力容器を内包する密閉構造の原子炉格納容器(以下、格納容器と称す)から構成されている。   2. Description of the Related Art Conventionally, in a nuclear power plant, a nuclear reactor includes a reactor in which a nuclear fuel is loaded, a reactor pressure vessel having a hermetically sealed structure (hereinafter, referred to as a pressure vessel), and a reactor containment vessel having a hermetically sealed structure including the pressure vessel. (Hereinafter, referred to as a containment vessel).

圧力容器内の核燃料の熱で発生した蒸気は、圧力容器から主蒸気管を通って発電用タービンに送られ、発電用タービンを駆動する。その後、蒸気は循環水ポンプで海水や河川水が二次冷却水として供給される復水器で熱交換され凝縮する。   Steam generated by the heat of the nuclear fuel in the pressure vessel is sent from the pressure vessel to the power generation turbine through the main steam pipe, and drives the power generation turbine. Thereafter, the steam is condensed by heat exchange in a condenser in which seawater or river water is supplied as secondary cooling water by a circulating water pump.

凝縮水は、復水ポンプでタービンの抽気を熱源とする給水加熱器に送水されタービンの抽気との熱交換で加温され、蒸気タービン駆動、または電動機駆動の給水ポンプで加圧されて圧力容器内に戻る。蒸気タービン駆動の給水ポンプの排蒸気は、復水器に戻され給水の一部となる。この循環ループは原子炉冷却系と呼ばれる。   The condensed water is sent to a feed water heater using the condensate pump as a heat source using the bleed air of the turbine as a heat source, heated by heat exchange with the bleed air of the turbine, and pressurized by a water pump driven by a steam turbine or an electric motor to be pressurized. Return inside. Exhaust steam from a steam turbine driven feedwater pump is returned to the condenser and becomes part of the feedwater. This circulation loop is called the reactor cooling system.

原子炉停止時には、原子炉冷却系は主蒸気隔離弁を閉じて隔離され、炉心で発生する崩壊熱は、圧力容器内の冷却水を熱交換器を介して補機冷却系から送水する水で冷却する残留熱除去系(停止時冷却モード)で除去される。補機冷却系が送水する冷却水は、熱交換器を介して海水、あるいは河川水を二次冷却水とする熱交換器にポンプで循環させて冷却される。   When the reactor is shut down, the reactor cooling system is isolated by closing the main steam isolation valve, and the decay heat generated in the reactor core is the water that flows from the auxiliary cooling system through the heat exchanger through the cooling water in the pressure vessel. It is removed by the residual heat removal system (cooling mode when stopped) for cooling. The cooling water sent from the auxiliary cooling system is cooled by circulating a pump through a heat exchanger that uses seawater or river water as secondary cooling water via a heat exchanger.

また、補機冷却系は、残留熱除去系や、蒸気タービン駆動給水ポンプで圧力容器に冷却水を送水する原子炉隔離時冷却系と電動ポンプを用いる低圧注水系の空調系への冷却水供給、及び上記冷却・注水系を含めた設備の冷却と各種ポンプ軸受の冷却を行う。   In addition, the auxiliary equipment cooling system supplies cooling water to the residual heat removal system, the cooling system at the time of reactor isolation that sends cooling water to the pressure vessel with a steam turbine driven water supply pump, and the low pressure injection system that uses an electric pump. And cooling of equipment including the above-mentioned cooling / water injection system and cooling of various pump bearings.

例えば、原子炉冷却系の配管破断等の事故時に炉心を冷却する場合は、炉心で発生した蒸気が格納容器内の圧力抑制プールに散気されて凝縮し、圧力抑制プール水の温度が上昇する。しかし、圧力抑制プール水を前記残留熱除去系(圧力抑制室プール水冷却モード)と補機冷却系を用いてヒートシンクの海水や河川水に放熱できる。   For example, when cooling the reactor core during an accident such as a pipe break in the reactor cooling system, the steam generated in the reactor core is diffused and condensed into the suppression pool in the containment vessel, and the temperature of the suppression pool water rises. . However, the pressure suppression pool water can be radiated to the seawater or river water of the heat sink by using the residual heat removal system (pressure suppression room pool water cooling mode) and the auxiliary cooling system.

原子炉の設計では,原子炉の異常発生防止、異常拡大防止、事故影響緩和の観点から5層の深層防護の概念で対策が採られている。
深層防護第1層は異常状態や故障等の発生防止、第2層は異常状態や故障の検知と異常運転の制御、第3層は設計基準事故に対応した異常状態の防止、第4層は炉心溶融に至るようなシビアアクシデントの防止とその影響緩和、第5層は放射性物質または放射線の異常放出に対する周辺住民への防災対策である。
In the design of a nuclear reactor, measures are taken based on the concept of five layers of deep protection from the viewpoint of preventing occurrence of abnormalities, preventing abnormal expansion, and mitigating the effects of accidents.
Deep protection First layer is for prevention of occurrence of abnormal state or failure, second layer is for detection of abnormal state or failure and control of abnormal operation, third layer is for prevention of abnormal state corresponding to design standard accident, and fourth layer is for The fifth layer is for prevention of severe accidents such as core melting and mitigation of the effects. The fifth layer is disaster prevention measures for the surrounding residents against abnormal release of radioactive materials or radiation.

この中で第3層では、残留熱除去系の機能が失われる長期の全電源喪失事象に対して、多様、多重の設備による注水冷却とヒートシンクによる原子炉の冷却が、深層防護充実のための要件とされている。   In the third layer, in the event of a long-term total power loss event in which the function of the residual heat removal system is lost, water injection cooling with various and multiple facilities and cooling of the reactor with heat sinks are used to enhance deep protection. It is a requirement.

その対策として、設計ベースでは多様性のある高圧注水手段の追加、設計拡張状態では原子炉隔離時冷却系の電源(直流)の強化が採り上げられた。ここで、原子炉隔離時冷却系とは、原子炉の停止時に圧力容器炉心で発生した蒸気でタービンポンプを回し、原子炉冷却系の復水補給水や圧力抑制プール水を圧力容器に注水する設備である。   As measures against this, various high-pressure water injection means were added on a design basis, and the power supply (DC) of the cooling system during reactor isolation was strengthened when the design was expanded. Here, the cooling system at the time of reactor isolation means that the turbine pump is turned by steam generated in the pressure vessel core when the reactor is stopped, and the condensate makeup water and the pressure suppression pool water of the reactor cooling system are injected into the pressure vessel. Equipment.

また、原子炉隔離時冷却系の電源を強化する従来技術として、特許文献1に示す原子炉隔離時冷却系の注水ポンプを駆動する蒸気タービンに発電機を取り付けて直流電源の蓄電池に充電し、直流電源の放電時間を延長する方法が開示されている。   Further, as a conventional technique for strengthening the power supply of the reactor isolation cooling system, a generator is attached to a steam turbine that drives a water injection pump of the reactor isolation cooling system shown in Patent Document 1, and a storage battery of a DC power supply is charged. A method for extending the discharge time of a DC power supply is disclosed.

特開平10−260294号公報JP-A-10-260294

ところで、深層防護第3層では多様、多重の設備による注水冷却とヒートシンクによる原子炉の冷却が必要とされている。その対策には、従来技術に加えて新たな冷却手段の構築や従来の冷却手段の活用が有効である。
これに対して、特許文献1では、圧力容器に圧力抑制プールの冷却水を注水し、炉心で発生した蒸気を主蒸気管の逃し弁から圧力抑制プール水中に散気して凝縮させることによって循環冷却できる。
By the way, in the third layer of deep protection, it is necessary to cool water by using various and multiple facilities and to cool the reactor by using a heat sink. As a countermeasure, it is effective to construct a new cooling means and use a conventional cooling means in addition to the conventional technology.
On the other hand, in Patent Literature 1, the cooling water of the suppression pool is injected into the pressure vessel, and the steam generated in the core is diffused from the relief valve of the main steam pipe into the suppression pool water to be condensed and circulated. Can be cooled.

しかしながら、全電源喪失時においては残留熱除去系(圧力抑制室プール水冷却モード)と補機冷却系の機能喪失で圧力抑制プール水が冷却されず、プール水温度が上昇して、長期的に圧力抑制プールでの蒸気凝縮が困難になる課題がある。   However, when the entire power supply is lost, the pressure suppression pool water is not cooled due to the loss of the functions of the residual heat removal system (pressure suppression room pool water cooling mode) and auxiliary equipment cooling system, and the pool water temperature rises. There is a problem that vapor condensation in the suppression pool becomes difficult.

この課題を解決するためには、ヒートシンクとしての海水や河川水に熱を除去する前記した代替熱交換器車が用いられる。同様に、代替高圧注水設備にも放熱のために代替熱交換器車が用いられるが,炉心の冷却手段多様化の観点から,車両を使った可搬装置だけでなく,ヒートシンクへの除熱手段の選択肢の増加や非常用設備の電源強化も必要である。
原子炉隔離時冷却系を始め、常用・非常用の原子炉冷却設備の計装制御は直流電源が用いられており、特許文献1はタービンに取り付けた発電機で直流電源を供給するものである。
In order to solve this problem, the above-described alternative heat exchanger vehicle that removes heat from seawater or river water as a heat sink is used. Similarly, alternative heat exchanger vehicles are used for alternative high-pressure water injection equipment for heat dissipation. However, from the viewpoint of diversification of core cooling means, not only portable equipment using vehicles but also heat removal means for heat sinks It is also necessary to increase the number of options and strengthen the power supply of emergency equipment.
A DC power supply is used for instrumentation control of a commercial / emergency reactor cooling system, including a reactor isolation cooling system, and Patent Document 1 supplies DC power using a generator attached to a turbine. .

一方、原子炉隔離時冷却系や残留熱除去系、及び高圧注水手段を連続運転する場合は、補機冷却系を運転して空調や軸受の冷却を行う必要がある。
本発明は上記実状に鑑み創案されたものであり、深層防護第3層で想定される長期の全電源喪失事象において、圧力容器への高圧注水手段とヒートシンクへの除熱手段を多様化する原子炉冷却システム及びその運転方法の提供を目的とする。
On the other hand, when the cooling system at the time of reactor isolation, the residual heat removal system, and the high-pressure water injection means are operated continuously, it is necessary to operate the auxiliary cooling system to perform air conditioning and cooling of bearings.
The present invention has been made in view of the above situation, and in the case of a long-term total power loss event assumed in the third layer of deep protection, an atom that diversifies the high pressure water injection means to the pressure vessel and the heat removal means to the heat sink. An object of the present invention is to provide a furnace cooling system and an operation method thereof.

前記課題を解決するため、第1の本発明の原子炉冷却システムは、燃料集合体を装荷する炉心を内包する原子炉圧力容器と、前記原子炉圧力容器に接続され炉心で発生した蒸気を流通する主蒸気管と、前記主蒸気管に設けられた主蒸気隔離弁と、前記主蒸気管で送られた蒸気が供給される発電用タービンと、前記発電用タービンを通過した蒸気を熱交換器で凝縮する復水器と、前記復水器で凝縮された冷却水を前記原子炉圧力容器に給水する給水管と、前記給水管に設けられ冷却水を前記原子炉圧力容器に給水する給水ポンプと、前記給水ポンプを駆動する給水ポンプ駆動用蒸気タービンと、前記発電用タービンからの抽気蒸気を前記給水ポンプ駆動用蒸気タービンに導いて駆動させる第1の配管経路と、前記主蒸気管の主蒸気弁よりも上流側で前記主蒸気管から分岐して前記炉心で発生した蒸気を前記給水ポンプ駆動用蒸気タービンに導いて駆動させる第2の配管経路と、前記給水ポンプ駆動用蒸気タービンからの排蒸気を前記復水器に導く第3の配管経路と、前記第1の配管経路と前記第2の配管経路が接続されて、前記給水ポンプ駆動用蒸気タービンの使用蒸気を、前記第1の配管経路からの抽気蒸気と前記第2の配管経路からの蒸気とに切り替える駆動蒸気切替弁と、原子炉の停止時に、前記主蒸気隔離弁を閉止するとともに、前記駆動蒸気切替弁を前記第2の配管経路側に切り替えて、前記前記第2の配管経路を介して供給される蒸気によって、前記給水ポンプ駆動用蒸気タービンを駆動する制御装置を備えている。   In order to solve the above-described problems, a reactor cooling system according to a first aspect of the present invention includes a reactor pressure vessel containing a core for loading a fuel assembly, and a steam connected to the reactor pressure vessel and generated in the reactor core. A main steam pipe, a main steam isolation valve provided in the main steam pipe, a power generation turbine to which the steam sent by the main steam pipe is supplied, and a heat exchanger for passing the steam passing through the power generation turbine. A condenser condensed in the condenser, a water supply pipe for supplying cooling water condensed in the condenser to the reactor pressure vessel, and a water supply pump provided in the water supply pipe for supplying cooling water to the reactor pressure vessel A steam turbine for driving a feed water pump that drives the feed water pump; a first piping path that guides and drives the extracted steam from the turbine for power generation to the steam turbine for driving the feed water pump; Upstream from the steam valve A second piping path for branching off the main steam pipe and guiding the steam generated in the core to the feed water pump driving steam turbine, and driving the steam discharged from the feed water pump driving steam turbine. A third piping route leading to the vessel, the first piping route and the second piping route being connected, and a steam used by the feed water pump driving steam turbine being extracted steam from the first piping route. And a driving steam switching valve for switching to steam from the second piping route, and when the reactor is stopped, the main steam isolation valve is closed and the driving steam switching valve is switched to the second piping route side. And a control device for driving the feed water pump driving steam turbine by the steam supplied through the second pipe route.

第2の本発明の原子炉冷却システムの運転方法は、第1の本発明の原子炉冷却システムの運転方法であって、原子炉の炉心冷却機能喪失時や全電源装置喪失時において、前記制御装置によって、前記主蒸気隔離弁が閉じられた後に、前記非常用蒸気供給管の前記開閉弁を開き、前記駆動蒸気切替弁を非常用蒸気供給管側に切り替えて主蒸気で前記給水ポンプ駆動用蒸気タービンを駆動している   A method for operating a reactor cooling system according to a second aspect of the present invention is the method for operating a reactor cooling system according to the first aspect of the present invention, wherein the control is performed when the core cooling function of the reactor is lost or when all power supply devices are lost. After the main steam isolation valve is closed by the device, the on-off valve of the emergency steam supply pipe is opened, and the drive steam switching valve is switched to the emergency steam supply pipe side to drive the feed pump with main steam. Driving a steam turbine

本発明によれば、深層防護第3層で想定される長期の全電源喪失事象において、圧力容器への高圧注水手段とヒートシンクへの除熱手段の多様化を実現できる原子炉冷却システム及びその運転方法を提供できる。   Advantageous Effects of Invention According to the present invention, a reactor cooling system capable of realizing diversification of high-pressure water injection means to a pressure vessel and heat removal means to a heat sink in a long-term total power loss event assumed in the third layer of deep protection and its operation We can provide a method.

本発明の実施形態1に係る原子炉冷却系の通常運転時の動作を表す系統図。FIG. 2 is a system diagram illustrating an operation during a normal operation of the reactor cooling system according to the first embodiment of the present invention. 本発明の実施形態1における全電源喪失時の動作を表す系統図。FIG. 3 is a system diagram illustrating an operation when all power is lost according to the first embodiment of the present invention. 実施形態2における全電源喪失時の動作を表す系統図。FIG. 10 is a system diagram illustrating an operation when all power is lost according to the second embodiment. 実施形態2の変形例の原子炉冷却系の全電源喪失時の動作を表す系統図。FIG. 9 is a system diagram illustrating an operation of the reactor cooling system according to a modification of the second embodiment when all power is lost. 実施形態3の原子炉冷却系における全電源喪失時の動作を表す系統図。FIG. 10 is a system diagram illustrating an operation of the reactor cooling system according to the third embodiment when all power is lost.

以下、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。
本発明は、原子力発電プラントの電源設備と原子炉冷却設備に係る。詳細には、本発明は、蒸気タービン駆動で冷却水の注水と電源の供給を行い、全交流電源喪失時においても原子炉の熱を外部に除去可能な原子炉冷却システム及びその運転方法に関する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.
The present invention relates to a power supply facility and a reactor cooling facility of a nuclear power plant. More specifically, the present invention relates to a reactor cooling system capable of injecting cooling water and supplying power by driving a steam turbine and removing heat of the reactor to the outside even when all AC power is lost, and a method for operating the reactor cooling system.

全交流電源喪失時の炉心の冷却手段確保の観点で、車両を使った可搬装置だけでなく非常用設備の電源強化や事故収束手段の選択肢の増加も必要である。
また、災害や事故時の最終放熱手段を確保するためにはヒートシンクの多様化も重要である。
From the viewpoint of securing core cooling means when all AC power is lost, it is necessary to strengthen the power supply of emergency equipment as well as portable equipment using vehicles, and to increase the options for accident convergence measures.
In addition, diversification of heat sinks is also important in order to secure final heat radiation means in the event of a disaster or accident.

さらに、補機冷却系のポンプ駆動には動力電源が必要であるため、動力電源の供給手段の多様化も災害や事故時の安全性向上に有効となる。
そこで、本発明の冷却手段の多様化、多重化の対象は、原子炉スクラム後に長期の全電源喪失事象が生じた場合に対する電源の強化、高圧注水手段の追加、ヒートシンクへの除熱手段の追加である。
Further, since a motive power supply is required for driving the pump of the auxiliary cooling system, diversification of the means for supplying the motive power is also effective for improving safety in the event of a disaster or accident.
Therefore, diversification and multiplexing of the cooling means of the present invention are intended to enhance the power supply when a long-term total power loss event occurs after the reactor scram, add high pressure water injection means, and add heat removal means to the heat sink. It is.

以下説明する本発明の実施形態に係る原子炉冷却系は、沸騰水型原子炉(BWR:boiling water reactor)、加圧水型原子炉(PWR:pressurized water reactor)等の軽水炉の他に、高速増殖炉、及び新型転換炉等の各種原子炉に適用可能である。   A reactor cooling system according to an embodiment of the present invention described below includes a fast breeder reactor in addition to a light water reactor such as a boiling water reactor (BWR) and a pressurized water reactor (PWR). And various types of nuclear reactors such as a new conversion reactor.

以下では、代表例としてBWRに本発明の原子炉冷却系を適用する例を説明するが、本発明の要点を変更しない限りにおいて、上記各種炉型の原子炉冷却系への修正適用が可能である。   In the following, an example in which the reactor cooling system of the present invention is applied to a BWR as a representative example will be described. However, as long as the gist of the present invention is not changed, it is possible to apply a modification to the reactor cooling system of the above various reactor types. is there.

<<実施形態1>>
図1に、本発明の実施形態1に係る原子炉冷却系R1の通常運転時の動作を表す系統図を示す。
<< First Embodiment >>
FIG. 1 is a system diagram illustrating an operation during a normal operation of the reactor cooling system R1 according to the first embodiment of the present invention.

図1〜後記の図5における各弁の状態を表1に示し、三方弁の蒸気源切替弁(駆動蒸気切替弁)17、37の状態を表2に示す。

Figure 2020012768
Table 1 shows the states of the respective valves in FIG. 1 to FIG. 5 described later, and Table 2 shows the states of the steam source switching valves (driving steam switching valves) 17 and 37 of the three-way valve.
Figure 2020012768

Figure 2020012768
Figure 2020012768

表3に、図1〜図5で使用される符号を示す。

Figure 2020012768
Table 3 shows reference numerals used in FIGS.
Figure 2020012768

図1〜図5の符号81、82は逆止弁である。   Reference numerals 81 and 82 in FIGS. 1 to 5 denote check valves.

図1に図示しない格納容器内部に、核燃料が装荷される炉心を内包する圧力容器1が設置されている。
原子炉冷却系R1は、主に、圧力容器1と、発電用タービンの高圧タービン4および低圧タービン5と、発電機6と、復水器7とを備えて構成されている。
A pressure vessel 1 containing a core loaded with nuclear fuel is installed inside a containment vessel not shown in FIG.
The reactor cooling system R <b> 1 mainly includes a pressure vessel 1, a high-pressure turbine 4 and a low-pressure turbine 5 of a power generation turbine, a generator 6, and a condenser 7.

圧力容器1には、図示しない燃料集合体を装荷する炉心を内包する炉心があり、冷却水を沸騰させて高温高圧の蒸気を作る。
高圧タービン4および低圧タービン5は、圧力容器1からの蒸気により回転駆動される。
The pressure vessel 1 has a core containing a core for loading a fuel assembly (not shown), and boil cooling water to produce high-temperature and high-pressure steam.
The high-pressure turbine 4 and the low-pressure turbine 5 are driven to rotate by steam from the pressure vessel 1.

発電機6は、高圧タービン4、低圧タービン5により回転駆動されて発電する。発電機6で発電した電力は、電力の消費地に送電される。
復水器7では、高圧タービン4、低圧タービン5を通った蒸気を復水器7の熱交換器20で冷却し、凝縮させて冷却水に戻す。復水器7には、蒸気を冷却する海水や河川水等の二次冷却水W2が二次冷却水流路8aを通って熱交換器20に供給されている。
The generator 6 is rotated and driven by the high-pressure turbine 4 and the low-pressure turbine 5 to generate power. The power generated by the generator 6 is transmitted to a power consuming area.
In the condenser 7, the steam that has passed through the high-pressure turbine 4 and the low-pressure turbine 5 is cooled by the heat exchanger 20 of the condenser 7, condensed, and returned to the cooling water. In the condenser 7, secondary cooling water W2 such as seawater or river water for cooling steam is supplied to the heat exchanger 20 through the secondary cooling water passage 8a.

復水器7で凝縮された水は、給水流路(給水管)10aを通って圧力容器1に戻される。
循環水ポンプ9は一般に大容量で、ヒートシンク近傍の循環水ポンプ建屋に設置されるが、原子炉事故時では崩壊熱のみを除去できればよく、必要循環流量は少ない。
The water condensed in the condenser 7 is returned to the pressure vessel 1 through a water supply flow path (water supply pipe) 10a.
The circulating water pump 9 generally has a large capacity and is installed in a circulating water pump building near a heat sink. However, at the time of a nuclear reactor accident, only the decay heat needs to be removed, and the required circulating flow rate is small.

そこで、ヒートシンク近傍から二次冷却水W2を送水する循環水ポンプ9と別に、タービン建屋内に設置される復水器7の近傍に、自吸式で高揚程型の補助循環水ポンプ19を設けてもよい。補助循環水ポンプ19を設けることで、原子炉事故時に必要循環流量に対して効率の良い補助循環水ポンプ19を設けることで、事故時の電力消費を削減できる。また,津波等の水害を想定した場合,ヒートシンク近傍の循環水ポンプ建屋が損傷しても,タービン建屋内に健全なポンプを確保できる。そのため、原子炉の炉心冷却機能喪失時や全電源装置喪失時の原子炉安全設備の信頼性が向上する。   Therefore, apart from the circulating water pump 9 for sending the secondary cooling water W2 from near the heat sink, a self-priming, high-lift auxiliary circulating water pump 19 is provided near the condenser 7 installed in the turbine building. You may. By providing the auxiliary circulating water pump 19, it is possible to reduce the power consumption at the time of the accident by providing the auxiliary circulating water pump 19 that is efficient with respect to the required circulation flow rate at the time of a nuclear reactor accident. In addition, in the event of a tsunami or other flood, even if the circulating water pump building near the heat sink is damaged, a healthy pump can be secured inside the turbine building. Therefore, the reliability of the reactor safety equipment when the core cooling function of the reactor is lost or when all the power supply devices are lost is improved.

また、図示しないがタービン建屋内,あるいはタービン建屋近傍の屋外に補助循環水ポンプ19用の給水槽を設け,例えば消防ポンプ等で給水槽に冷却水を送水して水源を確保しても良い。
或いは、小容量の電動機駆動の補助循環水ポンプ19を、循環水ポンプ9と並列に二次冷却水流路8aに取り付けて、動力電源PE(図2)で駆動してもよい。補助循環水ポンプ19を循環水ポンプ建屋に据え付ける場合は、津波等を考慮して防水仕様のポンプを用いてもよい。例えば、補助循環水ポンプ19に防水カバーが設けられ、補助循環水ポンプ19の配線に防水ケーブルと防水コネクタが用いられる。これにより、補助循環水ポンプ19の水害による運転停止や運転阻害を抑制できる。
Although not shown, a water supply tank for the auxiliary circulating water pump 19 may be provided inside the turbine building or outdoors near the turbine building, and the cooling water may be supplied to the water supply tank by a fire pump or the like to secure a water source.
Alternatively, a small-capacity motor-driven auxiliary circulating water pump 19 may be attached to the secondary cooling water flow passage 8a in parallel with the circulating water pump 9 and driven by the power source PE (FIG. 2). When the auxiliary circulating water pump 19 is installed in the circulating water pump building, a pump of a waterproof specification may be used in consideration of a tsunami or the like. For example, a waterproof cover is provided on the auxiliary circulating water pump 19, and a waterproof cable and a waterproof connector are used for wiring of the auxiliary circulating water pump 19. Thereby, it is possible to suppress the operation stop and the operation inhibition due to the flood of the auxiliary circulating water pump 19.

<原子炉冷却系R1の通常運転>
原子炉冷却系R1の通常運転を説明する。図1〜図5中の符号Mは電動機(モータ)を表し、Gは発電機(ジェネレータ)を表す。
圧力容器1の炉心で発生した蒸気S1は、主蒸気隔離弁3を備えた主蒸気管2を通って、発電用タービンの高圧タービン4と低圧タービン5に送られる。そして、蒸気S1の熱エネルギーで発電用タービンの高圧タービン4と低圧タービン5が回転駆動される。
<Normal operation of reactor cooling system R1>
The normal operation of the reactor cooling system R1 will be described. 1 to FIG. 5 represents an electric motor (motor), and G represents a generator (generator).
Steam S1 generated in the core of the pressure vessel 1 passes through a main steam pipe 2 provided with a main steam isolation valve 3 and is sent to a high-pressure turbine 4 and a low-pressure turbine 5 of a power generation turbine. Then, the high-pressure turbine 4 and the low-pressure turbine 5 of the power generation turbine are rotationally driven by the heat energy of the steam S1.

発電用タービンの動力によって発電機6で発電が行われる。低圧タービン5を出た蒸気は、復水器7に入り、1台以上の循環水ポンプ9によって熱交換器20に流通する二次冷却水W2によって冷却されて凝縮される。
ここで、二次冷却水W2には、前記のように海水や河川水等が用いられる。海水や河川水は炉心で発生した核燃料の熱のうちタービンで仕事をしたものを除いた排熱を除去する。海や河川は、原子炉にとってのヒートシンク(熱源に対する除熱源)に相当する。
Power is generated by the generator 6 by the power of the power generation turbine. The steam exiting the low-pressure turbine 5 enters the condenser 7 and is cooled and condensed by the secondary cooling water W2 flowing through the heat exchanger 20 by one or more circulating water pumps 9.
Here, seawater, river water, or the like is used as the secondary cooling water W2 as described above. Seawater and river water remove the waste heat excluding the nuclear fuel heat generated in the reactor core, excluding the work done by the turbine. The seas and rivers correspond to heat sinks (removal sources for heat sources) for the nuclear reactor.

復水器7で凝縮した一次冷却水W1は、復水器7に接続される給水管10aを通り、復水ポンプ11によって給水加熱器12a、12bに送水される。そして、給水加熱器12a,12bで加熱された一次冷却水W1は、給水ポンプ16または給水ポンプ31によって加圧されて給水管10bを通って圧力容器1に給水される。   The primary cooling water W1 condensed in the condenser 7 passes through a water supply pipe 10a connected to the condenser 7 and is sent by a condenser pump 11 to feedwater heaters 12a and 12b. Then, the primary cooling water W1 heated by the feedwater heaters 12a and 12b is pressurized by the feedwater pump 16 or the feedwater pump 31 and supplied to the pressure vessel 1 through the feedwater pipe 10b.

ここで、給水加熱器12a、12bは炉心での熱効率を向上するため給水温度を高める目的で設置される。給水加熱器12a、12bでの給水の加熱には、発電用タービン(4、5)から抽気された蒸気S2、S3(図1の経路(B)、(C))が用いられる。   Here, the feed water heaters 12a and 12b are installed for the purpose of raising the feed water temperature in order to improve the thermal efficiency in the core. Steam S2 and S3 (paths (B) and (C) in FIG. 1) extracted from the power generation turbines (4 and 5) are used for heating the feedwater in the feedwater heaters 12a and 12b.

給水加熱器12a,12bでそれぞれ蒸気S3、S2が凝縮したドレン水は、凝縮水ドレン流路13、送水流路22を通って、給水加熱器ドレンポンプ21で復水器7に送水される。給水加熱器12a、12bは、タービン(4、5)の抽気蒸気の温度に対応して熱効率を高めるため、給水管10aに沿って複数段で設けられる。また、図示しないが蒸気タービン駆動給水ポンプ16,または給水ポンプ31の後段の給水管10bに高圧給水加熱器が設けられることもある。   The drain water in which the steams S3 and S2 are condensed in the feed water heaters 12a and 12b respectively passes through the condensed water drain passage 13 and the water supply passage 22, and is sent to the condenser 7 by the feed water heater drain pump 21. The feedwater heaters 12a and 12b are provided in a plurality of stages along the feedwater pipe 10a in order to increase the thermal efficiency corresponding to the temperature of the extracted steam of the turbine (4, 5). Although not shown, a high-pressure feed water heater may be provided in the feed pipe 10b at the subsequent stage of the steam turbine drive feed pump 16 or the feed pump 31.

常用の給水ポンプは、大型炉では蒸気タービン駆動型が用いられ、小型炉では電動機駆動型が用いられるが、保安上の必要から両型式を組み合わせて複数台使用することも一般的である。
以下本文中では、蒸気タービン駆動給水ポンプ16や電動機駆動給水ポンプ31を、適宜、給水ポンプ16や給水ポンプ31と省略することがある。
A steam pump driven type is used for a large furnace and an electric motor driven type is used for a small furnace, but a plurality of units are generally used in combination of both types for safety reasons.
Hereinafter, the steam turbine drive water supply pump 16 and the electric motor drive water supply pump 31 may be abbreviated to the water supply pump 16 and the water supply pump 31 as appropriate.

図1に示す給水ポンプ16は、高圧タービン4の抽気蒸気S2(図1の経路(B))を用いて蒸気タービン14で駆動される。蒸気タービン14を駆動した後の排蒸気は、復水器7に導かれる(図1の経路(D))。なお、「第1の配管経路」は経路(B)に相当し、「第2の配管経路」は後記の経路(A)に相当し、「第3の配管経路」は経路(D)に相当する。また、給水ポンプ駆動用蒸気タービン14は、適宜、蒸気タービン14と省略する。   The feed water pump 16 shown in FIG. 1 is driven by the steam turbine 14 using the extracted steam S2 of the high-pressure turbine 4 (path (B) in FIG. 1). The exhaust steam after driving the steam turbine 14 is guided to the condenser 7 (path (D) in FIG. 1). The “first piping route” corresponds to the route (B), the “second piping route” corresponds to the route (A) described below, and the “third piping route” corresponds to the route (D). I do. In addition, the feed water pump driving steam turbine 14 is appropriately abbreviated as the steam turbine 14.

<全電源喪失時等のための非常用の構成>
図2は、本発明の実施形態1における全電源喪失時の動作を表す系統図である。
実施形態1の原子炉冷却系R1は、上述の原子炉冷却系の構成に加え、全電源喪失時のための非常用の構成として、下記の構成を設けている。
<Emergency configuration for when all power is lost>
FIG. 2 is a system diagram illustrating an operation when all power is lost according to the first embodiment of the present invention.
The reactor cooling system R1 of the first embodiment has the following configuration as an emergency configuration for when all power is lost in addition to the configuration of the reactor cooling system described above.

蒸気タービン駆動給水ポンプ16の蒸気タービン14に発電機15を設けている。そして、インバータ25を設け、インバータ25は、発電機15の発電電力を調整して復水ポンプ11と循環水ポンプ9と電動機駆動給水ポンプ31に交流の動力電源PE(図2参照)を供給する。また、直流電源26を設け、直流電源26は、インバータ25の電力の一部を取り出して整流するとともに一次電池が並列に接続されて直流電力を供給する。即ち、直流電源26は、コンバータと一次電池が設けられており、インバータ25の交流電力の一部をコンバータで整流し、これを一次電池に蓄電するように構成されている。   A generator 15 is provided in the steam turbine 14 of the steam turbine drive water supply pump 16. Then, an inverter 25 is provided, and the inverter 25 adjusts the generated power of the generator 15 and supplies an AC power supply PE (see FIG. 2) to the condensate pump 11, the circulating water pump 9, and the electric motor drive water supply pump 31. . In addition, a DC power supply 26 is provided. The DC power supply 26 extracts a part of the power of the inverter 25, rectifies the power, and supplies DC power by connecting a primary battery in parallel. That is, the DC power supply 26 is provided with a converter and a primary battery, and is configured to rectify a part of the AC power of the inverter 25 by the converter and store the rectified power in the primary battery.

主蒸気管2の主蒸気隔離弁3より上流に非常用蒸気供給管59を設けている。そして、非常用蒸気供給管59の開閉弁23を介して原子炉圧力容器1の蒸気を抽出する。
また、蒸気タービン14の使用蒸気を、発電用タービン(4)の抽気(経路(B))と非常用蒸気供給管59の蒸気(経路(A))とに選択的に切り替える蒸気源切替弁17を設けている。そして、蒸気源切替弁17を蒸気タービン駆動給水ポンプ16を駆動する蒸気タービン14に連通させる。蒸気タービン14の排蒸気は、流路(経路(D))を通って復水器7に導かれる。
全電源喪失時等の非常時は、図示を省略するが、炉心には全ての制御棒が挿入される。しかし、その状態でも定格出力の10%程度の崩壊熱が炉心から発生する。本実施形態では、全電源喪失時にもこの熱を確実に除熱して原子炉を冷温停止に導く。
An emergency steam supply pipe 59 is provided upstream of the main steam isolation valve 3 of the main steam pipe 2. Then, the steam in the reactor pressure vessel 1 is extracted through the on-off valve 23 of the emergency steam supply pipe 59.
Further, a steam source switching valve 17 for selectively switching the steam used by the steam turbine 14 between the bleed air (path (B)) of the power generation turbine (4) and the steam (path (A)) of the emergency steam supply pipe 59. Is provided. Then, the steam source switching valve 17 is connected to the steam turbine 14 that drives the steam turbine drive water supply pump 16. The exhaust steam of the steam turbine 14 is guided to the condenser 7 through a flow path (path (D)).
In an emergency such as when all power is lost, although not shown, all control rods are inserted into the core. However, even in that state, decay heat of about 10% of the rated output is generated from the core. In the present embodiment, even when the entire power supply is lost, this heat is surely removed and the reactor is brought to a cold shutdown.

また、制御装置として、開閉弁23の開閉と、蒸気源切替弁17の切り替えと、復水ポンプ11と補助循環水ポンプ19の起動停止制御と、該ポンプ(11、19)の電源を既設動力電源とインバータ25の動力電源とに選択的に切り替える制御を行う制御装置27を設けている。   In addition, as a control device, the on-off valve 23 is opened and closed, the steam source switching valve 17 is switched, the condensate pump 11 and the auxiliary circulating water pump 19 are started and stopped, and the power of the pumps (11, 19) is set to an existing power source. A control device 27 is provided for performing control for selectively switching between a power supply and a power supply for the inverter 25.

<全電源装置喪失時の動作>
蒸気隔離弁3が閉じられた後、全電源装置喪失時に至った時に、常用の制御装置によって,あるいは常用の制御装置が機能を失った場合には制御装置27によって非常用蒸気供給管59の開閉弁23を開く。そして、蒸気源切替弁17を非常用蒸気供給管(経路(A))側に切り替えて主蒸気で蒸気タービン14を駆動する。蒸気タービン14の回転で、蒸気タービン14に取り付けた発電機15が発電する。これによって、インバータ25を介して復水ポンプ11と補助循環水ポンプ19に動力電源が供給され、蒸気タービン駆動給水ポンプ16と復水ポンプ11と補助循環水ポンプ19が運転される。なお、蒸気タービン駆動給水ポンプ16は、蒸気タービン14によって駆動される。
<Operation when all power supply units are lost>
After the steam isolation valve 3 is closed, when the entire power supply device is lost, the emergency steam supply pipe 59 is opened and closed by the normal control device or by the control device 27 when the normal control device loses its function. The valve 23 is opened. Then, the steam source switching valve 17 is switched to the emergency steam supply pipe (path (A)) to drive the steam turbine 14 with the main steam. By the rotation of the steam turbine 14, the generator 15 attached to the steam turbine 14 generates electric power. As a result, power is supplied to the condensate pump 11 and the auxiliary circulating water pump 19 via the inverter 25, and the steam turbine drive water supply pump 16, the condensate pump 11, and the auxiliary circulating water pump 19 are operated. The steam turbine drive water supply pump 16 is driven by the steam turbine 14.

蒸気タービン14の排蒸気(経路(D))は復水器7で凝縮される。凝縮水は給水管10a、復水ポンプ11、蒸気タービン駆動給水ポンプ16、給水管10bを通って圧力容器1に注水される。これによって、炉心を冷却する一次冷却水W1の循環冷却系が確立される。即ち、外部からの水の供給を特に必要としない。   The exhaust steam (path (D)) of the steam turbine 14 is condensed in the condenser 7. The condensed water is injected into the pressure vessel 1 through a water supply pipe 10a, a condensate pump 11, a steam turbine drive water supply pump 16, and a water supply pipe 10b. As a result, a circulating cooling system for the primary cooling water W1 for cooling the core is established. That is, there is no particular need for external water supply.

一方、復水器7で蒸気の凝縮によって一次冷却水W1から奪われた熱は、補助循環水ポンプ19でヒートシンクから復水器7の熱交換器20に送水された二次冷却水W2に伝達される。二次冷却水W2が海や河川,あるいはタービン建屋外に放流されることによって、炉心で発生した熱が一次冷却水W1から二次冷却水W2、さらにヒートシンクに移動して炉心の冷却が確立される。   On the other hand, the heat deprived from the primary cooling water W1 by the condensation of steam in the condenser 7 is transmitted to the secondary cooling water W2 sent from the heat sink to the heat exchanger 20 of the condenser 7 by the auxiliary circulating water pump 19. Is done. When the secondary cooling water W2 is discharged to the sea, a river, or the outside of the turbine building, heat generated in the core moves from the primary cooling water W1, to the secondary cooling water W2, and further to the heat sink, and cooling of the core is established. You.

制御装置27は、蒸気タービン14の回転を制御する図示しないサーボ装置の設定値や電動機駆動給水ポンプ31、復水ポンプ11、循環水ポンプ9、補助循環水ポンプ19の動力を制御する制御信号CSを出力する。
ここで、上記ポンプ(31、11、9、19、21等)の制御は、原子炉の上位制御信号CS0(図1)が得られる間は上位制御信号CS0を優先し、制御装置27を通して上位制御信号CS0を制御信号CSに変換したものを用いている。このように、原子炉の上位制御信号CS0が得られる場合、制御装置27は、中継器として機能する。
The control device 27 controls a set value of a servo device (not shown) for controlling the rotation of the steam turbine 14 and a control signal CS for controlling the power of the electric motor-driven water supply pump 31, the condensate pump 11, the circulating water pump 9, and the auxiliary circulating water pump 19. Is output.
Here, the control of the pumps (31, 11, 9, 19, 21, etc.) takes precedence over the higher-level control signal CS0 while the higher-level control signal CS0 (FIG. 1) of the reactor is obtained, and the higher-level control through the controller 27. A signal obtained by converting the control signal CS0 into the control signal CS is used. As described above, when the upper control signal CS0 of the nuclear reactor is obtained, the control device 27 functions as a repeater.

余剰の発電電力はインバータ25によって原子炉内の動力電源に併入する(図2のPE)ことができる。
また、インバータ25の出力の一部は、直流電源装置26に送電され整流されて直流電力を生成する。この直流電力は、直流電源装置26に内包される図示しない蓄電池に蓄えられるとともに、制御装置27の計装制御に用いる直流電源DE1として供給される。また、直流電源装置26の余剰の直流電力は、前記した非常用炉心冷却系を含む原子炉内の直流電源に併入される(図2のDE2)。
The surplus generated power can be supplied to the power source in the reactor by the inverter 25 (PE in FIG. 2).
A part of the output of the inverter 25 is transmitted to the DC power supply 26 and rectified to generate DC power. This DC power is stored in a storage battery (not shown) included in the DC power supply device 26, and is supplied as a DC power supply DE1 used for instrumentation control of the control device 27. The surplus DC power of the DC power supply 26 is fed into the DC power supply in the reactor including the above-mentioned emergency core cooling system (DE2 in FIG. 2).

制御装置27は、上位制御装置に直流電源が供給され制御機能が保たれている間は、図1に示すように、上位制御信号CS0を受けて蒸気タービン14や補助循環水ポンプ19を始め、原子炉冷却系のポンプ類、自動弁類に制御信号CSを中継する。   While DC power is supplied to the host controller and the control function is maintained, the controller 27 receives the host control signal CS0 and starts the steam turbine 14 and the auxiliary circulating water pump 19, as shown in FIG. The control signal CS is relayed to pumps and automatic valves of the reactor cooling system.

しかし、蓄電池の放電等で上位制御装置が停止して上位制御信号CS0が絶たれた場合は、制御装置27は独立して作動して、蒸気タービン14、電動機駆動給水ポンプ31、復水ポンプ11、補助循環水ポンプ19の運転を制御する。   However, when the higher-level control device is stopped due to discharge of the storage battery and the higher-level control signal CS0 is cut off, the control device 27 operates independently to operate the steam turbine 14, the motor-driven water supply pump 31, and the condensate pump 11 The operation of the auxiliary circulating water pump 19 is controlled.

本実施形態1では、循環水ポンプ9,およびその送水流路が健全であれば二次冷却水W2の送水に補助循環水ポンプ19の代わりに循環水ポンプ9を用いてもよいが、二次冷却水W2の流量や吸い込み圧力が異なるため、ポンプの流量・揚程特性が最適点を外れ効率が低下することを把握する必要がある。   In the first embodiment, the circulating water pump 9 and the circulating water pump 9 may be used instead of the auxiliary circulating water pump 19 to supply the secondary cooling water W2 if the water supply passage is sound. Since the flow rate and suction pressure of the cooling water W2 are different, it is necessary to understand that the flow rate / head characteristics of the pump deviate from the optimum points and the efficiency is reduced.

上述以外の構成として、主蒸気管2の主蒸気隔離弁3より上流から開閉弁24と流量調整弁33aを介して圧力容器1の蒸気を抽出する第2の非常用蒸気供給管28を設け、第2の非常用蒸気供給管28を復水器7の一次側に連通する。原子炉事故において主蒸気隔離弁3が閉じられた後に炉心での蒸気発生量が過大な場合は、制御装置25によって開閉弁24を開くとともに流量調整弁33aの開度を調整し、蒸気タービン14駆動のための必要量を越える蒸気を復水器7の一次側に散気して凝縮させてもよい。これにより、蒸気タービン14の効率がよい運転が可能になる。   As a configuration other than the above, a second emergency steam supply pipe 28 for extracting steam in the pressure vessel 1 from the upstream of the main steam isolation valve 3 of the main steam pipe 2 via the on-off valve 24 and the flow control valve 33a is provided. The second emergency steam supply pipe 28 communicates with the primary side of the condenser 7. If the amount of steam generated in the reactor core is excessive after the main steam isolation valve 3 is closed in a nuclear reactor accident, the control device 25 opens the on-off valve 24 and adjusts the opening of the flow control valve 33 a to adjust the steam turbine 14. Steam exceeding a necessary amount for driving may be diffused to the primary side of the condenser 7 and condensed. This allows efficient operation of the steam turbine 14.

また、主蒸気管2の主蒸気隔離弁3より上流から開閉弁24aと流量調整弁33bを介して主蒸気管2に連通させる。そして、原子炉事故において主蒸気隔離弁3が閉じられた後に炉心での蒸気発生量が過大な場合は、制御装置27によって開閉弁24aを開くとともに流量調整弁33bの開度を調整し、蒸気タービン14駆動のための必要量を越える蒸気を主蒸気管2に流してもよい。
好ましくは、蒸気タービン駆動給水ポンプ16と蒸気タービン14とを、クラッチ機構を介して接合または接続し、蒸気タービン14と発電機15とを、クラッチ機構を介して接合または接続する。これによって、蒸気タービン14を、蒸気タービン駆動給水ポンプ16の駆動専用、発電機15による発電専用、及び蒸気タービン駆動給水ポンプ16の駆動と発電機15による発電併用の3モードの何れかのモードを選択して使用できる。
In addition, the main steam pipe 2 is communicated with the main steam pipe 2 from the upstream side of the main steam isolation valve 3 via the on-off valve 24a and the flow control valve 33b. If the amount of steam generated in the reactor core is excessive after the main steam isolation valve 3 is closed in a nuclear reactor accident, the control device 27 opens the on-off valve 24a and adjusts the opening of the flow control valve 33b to adjust the steam. Steam exceeding a necessary amount for driving the turbine 14 may be passed through the main steam pipe 2.
Preferably, steam turbine drive feedwater pump 16 and steam turbine 14 are joined or connected via a clutch mechanism, and steam turbine 14 and generator 15 are joined or connected via a clutch mechanism. Thereby, the steam turbine 14 is set to any one of three modes, namely, a mode dedicated to driving the steam turbine drive water supply pump 16, a mode dedicated to power generation by the generator 15, and a mode combining drive of the steam turbine drive water supply pump 16 and power generation by the generator 15. You can select and use.

実施形態1によれば、原子炉の主蒸気を動力に、これまで事故や重要機器の故障時に遮断されていた復水器7や停止していた蒸気タービン駆動給水ポンプ16、復水ポンプ11、及び補助循環水ポンプ19を用いて、海水や河川水のヒートシンクに炉心の熱を除去できる。   According to the first embodiment, using the main steam of the nuclear reactor as a power, the condenser 7 which has been shut down in the event of an accident or a failure of important equipment, the steam turbine driven feed pump 16, the condensate pump 11 which has been stopped, By using the auxiliary circulating water pump 19, the heat of the core can be removed to the heat sink of seawater or river water.

特に、原子力発電所の全電源喪失時において、炉心の熱をヒートシンクに除去する手段を増やせる。従って、全電源喪失事象に対して炉心の熱を外部のヒートシンクに放熱する経路を多様化できる。
そのため、原子炉の炉心冷却機能喪失時や全電源装置喪失時(SBO)において、原子炉冷却系R1のポンプ(31、11、9、19、21等)や補機冷却系を駆動する動力電源と計装制御必要な直流電源の供給手段、及び圧力容器1への注水手段とヒートシンクへの除熱手段を多様化して、炉心の損傷を抑制できる。
In particular, it is possible to increase the means for removing heat from the core to the heat sink when all power supply of the nuclear power plant is lost. Therefore, it is possible to diversify a path for radiating the heat of the core to the external heat sink in the event of a total power loss.
Therefore, when the core cooling function of the reactor is lost or when all the power supply units are lost (SBO), the power supply for driving the pumps (31, 11, 9, 19, 21, etc.) and the auxiliary cooling system of the reactor cooling system R1 is used. In addition, the means for supplying DC power required for instrumentation control, the means for injecting water into the pressure vessel 1 and the means for removing heat to the heat sink can be diversified, and damage to the core can be suppressed.

従って、原子炉安全設備の信頼性が向上し、原子炉の安全性が向上する。
また、上位制御装置の機能が失われた場合においても、独立した冷却ループを構成して炉心を冷却できるとともに、蒸気タービン14による発電電力が原子炉の動力電源と直流電源26に併入され原子炉の電源容量を増加させるので、原子炉安全設備の信頼性が向上し、原子炉の安全性がさらに向上する。
Therefore, the reliability of the reactor safety equipment is improved, and the safety of the reactor is improved.
Further, even when the function of the higher-level control device is lost, the core can be cooled by forming an independent cooling loop, and the power generated by the steam turbine 14 is input to the power source of the reactor and the DC power source 26 and Since the power capacity of the reactor is increased, the reliability of the reactor safety equipment is improved, and the safety of the reactor is further improved.

<<実施形態2>>
本発明の実施形態2について、図3と図4を参照して詳細に説明する。図3は実施形態2における全電源喪失時の動作を表す系統図である。
実施形態2の原子炉冷却系R2は、実施形態1の原子炉冷却系R1において、給水管10aに新たに蒸気タービン36で駆動する復水ポンプ34を設け、その駆動軸に発電機35が取り付けられる。発電機35の発電電力は、インバータ25に接続する。
<< Embodiment 2 >>
Embodiment 2 of the present invention will be described in detail with reference to FIGS. FIG. 3 is a system diagram illustrating an operation when all power is lost according to the second embodiment.
The reactor cooling system R2 of the second embodiment is different from the reactor cooling system R1 of the first embodiment in that a condensate pump 34 that is newly driven by a steam turbine 36 is provided in the water supply pipe 10a, and a generator 35 is attached to the drive shaft. Can be The power generated by the generator 35 is connected to the inverter 25.

図3では、給水加熱器12a、12bから給水ポンプ(31、16)への送水に、電動機駆動の復水ポンプ11と蒸気タービン36駆動の復水ポンプ34が並列に使用される例を表しているが、原子炉冷却系R2の通常運転時は、復水ポンプ11のみを使用し、全電源喪失時に復水ポンプ34を起動してもよい。或いは、通常運転時に蒸気源切替弁37を経路(B)に設定し、経路(B)からの高圧タービン4の抽気蒸気S2を用いて蒸気タービン36を駆動して復水ポンプ34を常時運転してもよい。   FIG. 3 illustrates an example in which a condensate pump 11 driven by an electric motor and a condensate pump 34 driven by a steam turbine 36 are used in parallel to feed water from the feedwater heaters 12a and 12b to the feedwater pumps (31 and 16). However, during normal operation of the reactor cooling system R2, only the condensate pump 11 may be used, and the condensate pump 34 may be activated when all power is lost. Alternatively, during normal operation, the steam source switching valve 37 is set to the path (B), the steam turbine 36 is driven using the extracted steam S2 of the high-pressure turbine 4 from the path (B), and the condensate pump 34 is constantly operated. You may.

また、復水ポンプ34と蒸気タービン36を、クラッチ機構を介して接合し、蒸気タービン36と発電機35を、クラッチ機構を介して接合する。これによって、蒸気タービン36を復水ポンプ34の駆動専用、発電機35の発電専用、及び復水ポンプ34の駆動と発電機35の発電併用の3モードの何れかのモードを選択して使用できる。   Further, the condensing pump 34 and the steam turbine 36 are joined via a clutch mechanism, and the steam turbine 36 and the generator 35 are joined via a clutch mechanism. Thus, the steam turbine 36 can be used by selecting any one of three modes, that is, the exclusive mode for driving the condensate pump 34, the exclusive mode for power generation of the generator 35, and the combined mode of driving the condensate pump 34 and power generation of the generator 35. .

主蒸気管2の主蒸気隔離弁3の閉止後に、全電源が喪失した場合、非常用蒸気供給管59の開閉弁23を開く。また、蒸気源切替弁17と蒸気源切替弁37を経路(A)に切り替える。
そして、蒸気タービン駆動給水ポンプ16は実施形態1に示した操作で冷却水を圧力容器1に加圧送水する。また、復水器7で凝縮した冷却水を、復水ポンプ34が給水加熱器12a、12bから蒸気タービン駆動給水ポンプ16に送水する。復水ポンプ34は、蒸気源切替弁37の経路(A)、減圧弁38を通過した蒸気で稼動する蒸気タービン36によって駆動される。
When the entire power supply is lost after closing the main steam isolation valve 3 of the main steam pipe 2, the on-off valve 23 of the emergency steam supply pipe 59 is opened. Further, the steam source switching valve 17 and the steam source switching valve 37 are switched to the path (A).
Then, the steam turbine drive water supply pump 16 pressurizes and sends the cooling water to the pressure vessel 1 by the operation shown in the first embodiment. In addition, the condensate pump 34 sends the cooling water condensed in the condenser 7 from the feed water heaters 12 a and 12 b to the steam turbine drive feed pump 16. The condensate pump 34 is driven by a steam turbine 36 operated by steam passing through the path (A) of the steam source switching valve 37 and the pressure reducing valve 38.

また、発電機35の発電電力はインバータ25に送られて動力電源PEに変換される。動力電源PEは、補助循環水ポンプ19、電動機駆動給水ポンプ31、復水ポンプ11に供給される。   Further, the power generated by the generator 35 is sent to the inverter 25 and converted into a power source PE. The power source PE is supplied to the auxiliary circulating water pump 19, the electric motor driven water supply pump 31, and the condensate pump 11.

本実施形態2では、全電源喪失時に蒸気タービン駆動給水ポンプ16と復水ポンプ34を主蒸気S1で運転できる。また、蒸気タービン14と蒸気タービン36の2台で発電できる。そのため、補助循環水ポンプ19を始め、その他の電動機駆動のポンプ(31、11、19等)を駆動する電源の容量を増加することができる。また、蒸気タービン14が故障した場合に、その他の電動機駆動のポンプ(31、11、19等)を駆動する電源をバックアップできる。   In the second embodiment, the steam turbine drive water supply pump 16 and the condensate pump 34 can be operated by the main steam S1 when the total power supply is lost. Further, power can be generated by the two steam turbines 14 and 36. Therefore, it is possible to increase the capacity of the power source for driving the auxiliary circulating water pump 19 and other electric motor driven pumps (31, 11, 19, etc.). Further, when the steam turbine 14 breaks down, a power supply for driving other electric motor driven pumps (31, 11, 19, etc.) can be backed up.

<実施形態2の変形例>
図4は実施形態2の変形例の原子炉冷却系R21の全電源喪失時の動作を表す系統図である。
変形例の原子炉冷却系R21では、復水器7からの給水管10aに蒸気タービン36で駆動する復水ポンプ34を設け、復水ポンプ34の駆動軸には、電動発電機60が取り付けられる。これにより、電動機駆動の復水ポンプ11を削除している。
<Modification of Second Embodiment>
FIG. 4 is a system diagram showing the operation of the reactor cooling system R21 according to the modification of the second embodiment when all power is lost.
In the reactor cooling system R21 of the modified example, a condensate pump 34 driven by a steam turbine 36 is provided in a water supply pipe 10a from the condenser 7, and a motor generator 60 is attached to a drive shaft of the condensate pump 34. . Thereby, the condensate pump 11 driven by the electric motor is omitted.

蒸気タービン36と電動発電機60は、クラッチ機構を介してまたは接続されている。
通常運転時は、蒸気タービン36を停止させてクラッチを切り、電動発電機60を電動機として用いて復水ポンプ34を駆動する。
The steam turbine 36 and the motor generator 60 are connected via a clutch mechanism or connected.
During normal operation, the steam turbine 36 is stopped to disengage the clutch, and the condensate pump 34 is driven using the motor generator 60 as an electric motor.

主蒸気管2の主蒸気隔離弁3を閉止後に、全電源を喪失した場合は、非常用蒸気供給管59の開閉弁23を開く。すると、経路(A)から減圧弁38を介して蒸気タービン36に蒸気が供給される。蒸気タービン36を、クラッチを接続して電動発電機60と復水ポンプ34に接続する。これによって、復水ポンプ34を主蒸気で駆動できるとともに、電動発電機60を発電機として用い,その発電電力がインバータ25に送電される。本変形例では、クラッチの接続と切断で1台の復水ポンプ34を通常運転時の電動機駆動ポンプと全電源喪失時の蒸気タービン駆動ポンプに併用できる。   If the entire power supply is lost after closing the main steam isolation valve 3 of the main steam pipe 2, the on-off valve 23 of the emergency steam supply pipe 59 is opened. Then, steam is supplied from the path (A) to the steam turbine 36 via the pressure reducing valve 38. The steam turbine 36 is connected to the motor generator 60 and the condensate pump 34 by connecting a clutch. Thus, the condensate pump 34 can be driven by the main steam, and the generated power is transmitted to the inverter 25 using the motor generator 60 as a generator. In this modification, one condensing pump 34 can be used for both the electric motor drive pump during normal operation and the steam turbine drive pump when all power is lost by connecting and disconnecting the clutch.

上記構成によれば、蒸気タービン駆動給水ポンプ16と復水ポンプ34のどちらか一方の蒸気タービン(14、36)が故障した場合においても,他方の蒸気タービンで発電し、インバータ25からの動力電源PEで電動機駆動給水ポンプ31、電動機駆動の復水ポンプ11と循環水ポンプ9を駆動することが可能である。また、電動機駆動の復水ポンプ11を減らせるので、原子炉の設置に関する経済性を確保できる。   According to the above configuration, even when one of the steam turbines (14, 36) of the steam turbine drive feed water pump 16 and the condensate pump 34 fails, the other steam turbine generates power, and the power supply from the inverter 25. The PE can drive the motor drive water supply pump 31, the motor drive condensate pump 11, and the circulating water pump 9. Further, since the number of the motor driven condensate pumps 11 can be reduced, the economical efficiency of the installation of the nuclear reactor can be secured.

本実施形態2、変形例では、全電源喪失事象に対して使用できる動力電源の容量が発電機35や電動発電機60により増加する。そのため、原子炉安全設備の信頼性が向上し、原子炉の安全性が向上する。   In the second embodiment and the modified example, the capacity of the motive power source that can be used for the total power loss event is increased by the generator 35 and the motor generator 60. Therefore, the reliability of the reactor safety equipment is improved, and the safety of the reactor is improved.

<<実施形態3>>
本発明の実施形態3の原子炉冷却系R3について、図5を参照して詳細に説明する。図5は実施形態3の原子炉冷却系R3における全電源喪失時の動作を表す系統図である。
実施形態3の原子炉冷却系R3は、ヒートシンク近傍から二次冷却水W2を送水する循環水ポンプ9と別にタービン建屋内に設置される復水器7近傍に、主蒸気S1(経路(A))を使用する蒸気タービン56で駆動される補助循環水ポンプ19を設けている。
<< Embodiment 3 >>
The reactor cooling system R3 according to the third embodiment of the present invention will be described in detail with reference to FIG. FIG. 5 is a system diagram illustrating an operation of the reactor cooling system R3 according to the third embodiment when all power is lost.
The reactor cooling system R3 according to the third embodiment includes a main steam S1 (path (A)) near the condenser 7 installed in the turbine building separately from the circulating water pump 9 that sends the secondary cooling water W2 from near the heat sink. ) Is provided with the auxiliary circulating water pump 19 driven by the steam turbine 56 which uses the steam turbine 56.

蒸気タービン56の駆動軸に電動発電機55が取り付けられる。蒸気タービン56は、経路(A)を介して、非常用蒸気供給管59に接続されている。   A motor generator 55 is attached to a drive shaft of the steam turbine 56. The steam turbine 56 is connected to the emergency steam supply pipe 59 via the path (A).

原子炉冷却系R3では、蒸気タービン56に圧力容器1からの放射能を帯びた一次冷却水W1の蒸気を用いるため、タービン建屋等の放射線防護区画内に補助循環水ポンプ19を設置する必要がある。また、タービン(4、5)建屋のように循環水ポンプ(9)建屋と比較して高所に設置する場合は、自吸式高有効吸い込みヘッド仕様とする。   In the reactor cooling system R3, since the steam of the radioactive primary cooling water W1 from the pressure vessel 1 is used for the steam turbine 56, it is necessary to install the auxiliary circulating water pump 19 in a radiation protection section such as a turbine building. is there. In addition, when installed at a higher place than the circulating water pump (9) building such as the turbine (4, 5) building, a self-priming high effective suction head specification is used.

原子炉冷却系R3では、主蒸気管2の主蒸気隔離弁3を閉止した後に全電源が喪失した場合,非常用蒸気供給管59の開閉弁23を開く。そして、蒸気タービン14に接続される蒸気源切替弁17と蒸気タービン36に接続される蒸気源切替弁37を、経路(A)に切り替える。蒸気タービン56は,経路(A)に連通しており,蒸気源切替弁は不要である。   In the reactor cooling system R3, when all power is lost after closing the main steam isolation valve 3 of the main steam pipe 2, the on-off valve 23 of the emergency steam supply pipe 59 is opened. Then, the steam source switching valve 17 connected to the steam turbine 14 and the steam source switching valve 37 connected to the steam turbine 36 are switched to the path (A). The steam turbine 56 communicates with the path (A), and does not require a steam source switching valve.

実施形態3の原子炉冷却系R3は、給水ポンプ16が実施形態1に示した操作で、冷却水を圧力容器1に加圧送水するとともに、復水ポンプ34が実施形態2に示した操作で、復水器7で凝縮した冷却水を給水加熱器12a、12bから蒸気タービン駆動給水ポンプ16に送水する。   In the reactor cooling system R3 of the third embodiment, the water supply pump 16 pressurizes and sends cooling water to the pressure vessel 1 by the operation shown in the first embodiment, and the condensate pump 34 performs the operation shown in the second embodiment. The cooling water condensed in the condenser 7 is supplied from the feed water heaters 12a and 12b to the steam turbine drive feed pump 16.

また、電動発電機55の発電電力は、インバータ25に送られて交流の動力電源PEに変換され、電動機駆動給水ポンプ31、復水ポンプ11に供給される。
本実施形態3では、全電源喪失時に蒸気タービン駆動給水ポンプ16と復水ポンプ34と補助循環水ポンプ19を主蒸気で運転できる。また、蒸気タービン14、蒸気タービン36及び蒸気タービン56の3台で発電できる。そのため、その他の電動機駆動のポンプ(31、11、19等)を駆動する電源の容量を増加することができる。また、蒸気タービン14と蒸気タービン36の何れか、あるいは両方が故障した場合に、その他の電動機駆動のポンプ(31、11、19等)を駆動する電源をバックアップできる。
The electric power generated by the motor generator 55 is sent to the inverter 25, converted into an AC power supply PE, and supplied to the motor drive water supply pump 31 and the condensate pump 11.
In the third embodiment, the steam turbine drive water supply pump 16, the condensate pump 34, and the auxiliary circulating water pump 19 can be operated by the main steam when all power is lost. Further, power can be generated by the three units of the steam turbine 14, the steam turbine 36, and the steam turbine 56. Therefore, it is possible to increase the capacity of a power supply for driving other electric motor driven pumps (31, 11, 19, etc.). Further, when one or both of the steam turbine 14 and the steam turbine 36 fails, a power supply for driving other electric motor driven pumps (31, 11, 19, etc.) can be backed up.

一方、蒸気タービン56が故障した場合は、蒸気タービン14と発電機15の組み合わせ,蒸気タービン36と発電機35の組み合わせの何れか、あるいは両方による発電による動力電源で電動発電機55を電動機として使用する。これにより、二次冷却水W2の循環を維持できる。或いは、補助循環水ポンプ19と並列に、電動機駆動の第2の補助循環水ポンプを設けてもよく、循環水ポンプ9に動力電源を供給してもよい。   On the other hand, when the steam turbine 56 fails, the motor generator 55 is used as a motor with a power source generated by power generation by either the combination of the steam turbine 14 and the generator 15 or the combination of the steam turbine 36 and the generator 35 or both. I do. Thereby, circulation of the secondary cooling water W2 can be maintained. Alternatively, a second auxiliary circulating water pump driven by an electric motor may be provided in parallel with the auxiliary circulating water pump 19, and motive power may be supplied to the circulating water pump 9.

本実施形態3によれば、全電源喪失事象に対して使用できる動力電源の容量が、発電機15、35と電動発電機55とにさらに増加する。そのため、原子炉安全設備の信頼性が向上し、原子炉の安全性が向上する。
また、蒸気タービン駆動給水ポンプ16と復水ポンプ34が故障した場合に、その他の電動機駆動のポンプ(31、11、19等)を駆動する電源をバックアップできる。
According to the third embodiment, the capacity of the motive power source that can be used for the total power loss event is further increased for the generators 15, 35 and the motor generator 55. Therefore, the reliability of the reactor safety equipment is improved, and the safety of the reactor is improved.
Further, when the steam turbine drive water supply pump 16 and the condensate pump 34 are out of order, the power supply for driving other electric motor drive pumps (31, 11, 19, etc.) can be backed up.

そのため、原子炉安全設備の信頼性が向上し、原子炉の安全性が向上する。   Therefore, the reliability of the reactor safety equipment is improved, and the safety of the reactor is improved.

<<その他の実施形態>>
1.前記実施形態等では、様々な構成を説明したが、これらの構成を適宜組み合わせて構成してもよい。
<< Other embodiments >>
1. Although various configurations have been described in the embodiments and the like, these configurations may be appropriately combined.

2.前記実施形態等で説明した構成は、一例を示したものであり、特許請求の範囲内で様々な形態、変形形態が可能である。 2. The configurations described in the above embodiments and the like are merely examples, and various forms and modifications are possible within the scope of the claims.

1 圧力容器(原子炉圧力容器)
2 主蒸気管
3 主蒸気隔離弁
4 高圧タービン(発電用タービン)
5 低圧タービン(発電用タービン)
6 発電機
7 復水器
9 循環水ポンプ
10a 給水管
11 復水ポンプ
14 蒸気タービン(給水ポンプ駆動用蒸気タービン)
15 発電機
16 蒸気タービン駆動給水ポンプ(給水ポンプ)
17 蒸気源切替弁(駆動蒸気切替弁)
18 減圧弁
19 補助循環水ポンプ
20 熱交換器
23 開閉弁
24 開閉弁
25 インバータ
26 直流電源装置
27 制御装置
28 バイパス流路(非常用蒸気供給管)
31 電動機駆動給水ポンプ(給水ポンプ)
33a 流量調整弁
34 復水ポンプ
35 発電機
36 蒸気タービン
37 蒸気源切替弁(駆動蒸気切替弁)
55 電動発電機
56 蒸気タービン
59 非常用蒸気供給管(第2の配管経路)
60 電動発電機
R1、R2、R21、R3 原子炉冷却系(原子炉冷却システム)
A 経路(第2の配管経路)
B 経路(第1の配管経路)
D 経路(第3の配管経路)
1 pressure vessel (reactor pressure vessel)
2 Main steam pipe 3 Main steam isolation valve 4 High pressure turbine (turbine for power generation)
5 Low-pressure turbine (power generation turbine)
Reference Signs List 6 generator 7 condenser 9 circulating water pump 10a water supply pipe 11 condensing pump 14 steam turbine (steam turbine for driving feedwater pump)
15 Generator 16 Steam turbine driven feedwater pump (feedwater pump)
17 Steam source switching valve (drive steam switching valve)
Reference Signs List 18 Pressure reducing valve 19 Auxiliary circulating water pump 20 Heat exchanger 23 On-off valve 24 On-off valve 25 Inverter 26 DC power supply 27 Control device 28 Bypass flow path (emergency steam supply pipe)
31 Electric motor driven water supply pump (water supply pump)
33a Flow control valve 34 Condensate pump 35 Generator 36 Steam turbine 37 Steam source switching valve (drive steam switching valve)
55 Motor generator 56 Steam turbine 59 Emergency steam supply pipe (second piping route)
60 Motor generator R1, R2, R21, R3 Reactor cooling system (reactor cooling system)
Route A (second piping route)
Route B (first piping route)
D route (third piping route)

Claims (15)

燃料集合体を装荷する炉心を内包する原子炉圧力容器と、
前記原子炉圧力容器に接続され炉心で発生した蒸気を流通する主蒸気管と、
前記主蒸気管に設けられた主蒸気隔離弁と、
前記主蒸気管で送られた蒸気が供給される発電用タービンと、
前記発電用タービンを通過した蒸気を熱交換器で凝縮する復水器と、
前記復水器で凝縮された冷却水を前記原子炉圧力容器に給水する給水管と、
前記給水管に設けられ冷却水を前記原子炉圧力容器に給水する給水ポンプと、
前記給水ポンプを駆動する給水ポンプ駆動用蒸気タービンと、
前記発電用タービンからの抽気蒸気を前記給水ポンプ駆動用蒸気タービンに導いて駆動させる第1の配管経路と、
前記主蒸気管の主蒸気弁よりも上流側で前記主蒸気管から分岐して前記炉心で発生した蒸気を前記給水ポンプ駆動用蒸気タービンに導いて駆動させる第2の配管経路と、
前記給水ポンプ駆動用蒸気タービンからの排蒸気を前記復水器に導く第3の配管経路と、
前記第1の配管経路と前記第2の配管経路が接続されて、前記給水ポンプ駆動用蒸気タービンの使用蒸気を、前記第1の配管経路からの抽気蒸気と前記第2の配管経路からの蒸気とに切り替える駆動蒸気切替弁と、
原子炉の停止時に、前記主蒸気隔離弁を閉止するとともに、前記駆動蒸気切替弁を前記第2の配管経路側に切り替えて、前記第2の配管経路を介して供給される蒸気によって、前記給水ポンプ駆動用蒸気タービンを駆動する制御装置を備える
ことを特徴とする原子炉冷却システム。
A reactor pressure vessel containing a core for loading the fuel assemblies;
A main steam pipe connected to the reactor pressure vessel and flowing steam generated in the reactor core,
A main steam isolation valve provided in the main steam pipe,
A power generation turbine to which steam sent by the main steam pipe is supplied;
A condenser that condenses the steam that has passed through the power generation turbine in a heat exchanger,
A water supply pipe for supplying cooling water condensed by the condenser to the reactor pressure vessel,
A feed pump provided in the feed pipe to feed cooling water to the reactor pressure vessel,
A feed water pump drive steam turbine that drives the feed water pump,
A first piping path that guides and drives the extracted steam from the power generation turbine to the feed water pump drive steam turbine,
A second piping path that branches from the main steam pipe upstream of the main steam valve of the main steam pipe and guides and drives steam generated in the core to the feed water pump driving steam turbine;
A third piping path for guiding exhaust steam from the feedwater pump drive steam turbine to the condenser;
The first piping route and the second piping route are connected, and the steam used for the feed water pump driving steam turbine is extracted from the first piping route and the steam from the second piping route. A driving steam switching valve for switching to and
When the reactor is stopped, the main steam isolation valve is closed, and the drive steam switching valve is switched to the second pipe route side, so that the water is supplied by steam supplied through the second pipe route. A reactor cooling system comprising a control device for driving a pump driving steam turbine.
請求項1に記載の原子炉冷却システムにおいて、
前記給水管に設けられ冷却水を送水する復水ポンプと、
前記熱交換器に蒸気凝縮用の二次冷却水を供給する循環水ポンプと、
前記給水ポンプ駆動用蒸気タービンに取り付けられる発電機と、
前記発電機の発電電力が入力され、前記復水ポンプと前記循環水ポンプと電動機駆動給水ポンプとに動力電源を供給するインバータと、
前記インバータの電力の一部を取り出して整流するとともに一次電池を並列に接続して直流電力を供給する直流電源とを備え、
前記給水ポンプは、前記給水ポンプ駆動用蒸気タービンまたは電動機を駆動源として冷却水を前記原子炉圧力容器に給水し、
前記制御装置は、前記第2の配管経路の開閉弁の開閉と、前記復水ポンプと前記循環水ポンプの起動停止と、前記復水ポンプおよび前記循環水ポンプの各電源を既設の動力電源と前記インバータからの動力電源との切り替えとの制御を行う
ことを特徴とする原子炉冷却システム。
The reactor cooling system according to claim 1,
A condensate pump provided in the water supply pipe to supply cooling water,
A circulating water pump for supplying secondary cooling water for steam condensation to the heat exchanger,
A generator attached to the feed water pump drive steam turbine,
An inverter to which power generated by the generator is input and supplies power to the condensate pump, the circulating water pump, and the motor-driven water supply pump,
A DC power supply that supplies DC power by connecting a primary battery in parallel while taking out and rectifying a part of the power of the inverter,
The feedwater pump supplies cooling water to the reactor pressure vessel using the feedwater pump drive steam turbine or an electric motor as a drive source,
The control device opens and closes an on-off valve of the second piping path, starts and stops the condensate pump and the circulating water pump, and sets each power supply of the condensate pump and the circulating water pump to an existing power source. A reactor cooling system for controlling switching to a power supply from the inverter.
請求項2に記載の原子炉冷却システムにおいて、
前記給水管に、前記発電用タービンからの抽気蒸気で回転する復水ポンプ駆動用蒸気タービンで駆動される復水ポンプと、
前記復水ポンプ駆動用蒸気タービンに取り付けられる発電機と、
前記復水ポンプ駆動用蒸気タービンの使用蒸気を、前記発電用タービンの抽気と前記第2の配管経路の蒸気とに切り替える駆動蒸気切替弁とを備え、
前記発電機の発電電力線は前記インバータに接続され、前記インバータからの動力電源は前記電動機駆動給水ポンプに接続されている
ことを特徴とする原子炉冷却システム。
The reactor cooling system according to claim 2,
A condensate pump driven by a condensate pump drive steam turbine that rotates with extracted steam from the power generation turbine,
A generator attached to the condensate pump drive steam turbine,
A drive steam switching valve for switching steam used by the condensate pump drive steam turbine to extraction of the power generation turbine and steam in the second piping path;
A reactor cooling system, wherein a power generation line of the generator is connected to the inverter, and a motive power from the inverter is connected to the motor-driven water supply pump.
請求項2に記載の原子炉冷却システムにおいて,
前記給水ポンプと前記給水ポンプ駆動用蒸気タービンとがクラッチ機構を介して接続され、前記給水ポンプ駆動用蒸気タービンと前記発電機とがクラッチ機構を介して接続され、前記給水ポンプ駆動用蒸気タービンは、ポンプ駆動専用、発電専用、及びポンプ駆動と発電併用の3モードの何れかを選択して使用される
ことを特徴とする原子炉冷却システム。
The reactor cooling system according to claim 2,
The feedwater pump and the feedwater pump drive steam turbine are connected via a clutch mechanism, the feedwater pump drive steam turbine and the generator are connected via a clutch mechanism, and the feedwater pump drive steam turbine is A reactor cooling system characterized in that the reactor cooling system is used by selecting any one of three modes, pump driving only, power generation only, and pump driving and power generation combined use.
請求項2に記載の原子炉冷却システムにおいて,
前記循環水ポンプの吐出側流路に並列に二次冷却水を前記熱交換器に送水する電動機駆動の補助循環水ポンプを備える
ことを特徴とする原子炉冷却システム。
The reactor cooling system according to claim 2,
A reactor cooling system comprising: a motor-driven auxiliary circulating water pump that supplies secondary cooling water to the heat exchanger in parallel with a discharge-side flow path of the circulating water pump.
請求項2に記載の原子炉冷却システムにおいて,
前記循環水ポンプの吐出側流路に並列に二次冷却水を前記熱交換器に送水する蒸気タービン駆動の補助循環水ポンプを備える
ことを特徴とする原子炉冷却システム。
The reactor cooling system according to claim 2,
A reactor cooling system, comprising: a steam turbine-driven auxiliary circulating water pump that supplies secondary cooling water to the heat exchanger in parallel with a discharge-side flow path of the circulating water pump.
請求項2に記載の原子炉冷却システムにおいて,
前記主蒸気管の前記主蒸気隔離弁より上流から開閉弁と流量調整弁を介して前記原子炉圧力容器の蒸気を抽出する非常用蒸気供給管を備え、
前記非常用蒸気供給管を前記復水器の一次側に連通している
ことを特徴とする原子炉冷却システム。
The reactor cooling system according to claim 2,
An emergency steam supply pipe that extracts steam from the reactor pressure vessel via an on-off valve and a flow control valve from upstream of the main steam isolation valve of the main steam pipe,
A reactor cooling system, wherein the emergency steam supply pipe communicates with a primary side of the condenser.
請求項2に記載の原子炉冷却システムにおいて,
前記循環水ポンプの吐出側流路に並列に二次冷却水を前記熱交換器に送水する電動機駆動の補助循環水ポンプを備え、
前記補助循環水ポンプに防水カバーが設けられ、前記補助循環水ポンプの配線に防水ケーブルと防水コネクタが用いられている
ことを特徴とする原子炉冷却システム。
The reactor cooling system according to claim 2,
An electric motor-driven auxiliary circulating water pump that supplies secondary cooling water to the heat exchanger in parallel with the discharge-side flow path of the circulating water pump,
A reactor cooling system, wherein a waterproof cover is provided on the auxiliary circulating water pump, and a waterproof cable and a waterproof connector are used for wiring of the auxiliary circulating water pump.
請求項2に記載の原子炉冷却システムにおいて,
前記循環水ポンプの吐出側流路に並列に二次冷却水を前記熱交換器に送水する電動機駆動の補助循環水ポンプを備え、
前記補助循環水ポンプは、自吸式高有効吸い込みヘッド型である
ことを特徴とする原子炉冷却システム。
The reactor cooling system according to claim 2,
An electric motor-driven auxiliary circulating water pump that supplies secondary cooling water to the heat exchanger in parallel with the discharge-side flow path of the circulating water pump,
The reactor cooling system, wherein the auxiliary circulating water pump is a self-priming high effective suction head type.
燃料集合体を装荷する炉心を内包する原子炉圧力容器と、
前記原子炉圧力容器に接続され炉心で発生した蒸気を流通する主蒸気管と、
前記主蒸気管に設けられた主蒸気隔離弁と、
前記主蒸気管で送られた蒸気が供給される発電用タービンと、
前記発電用タービンを通過した蒸気を熱交換器で凝縮する復水器と、
前記復水器で凝縮された冷却水を前記原子炉圧力容器に給水する給水管と、
前記給水管に設けられ冷却水を前記原子炉圧力容器に給水する給水ポンプと、
前記給水ポンプを駆動する給水ポンプ駆動用蒸気タービンと、
前記発電用タービンからの抽気蒸気を前記給水ポンプ駆動用蒸気タービンに導いて駆動させる第1の配管経路と、
前記主蒸気管の主蒸気弁よりも上流側で前記主蒸気管から分岐して前記炉心で発生した蒸気を前記給水ポンプ駆動用蒸気タービンに導いて駆動させる第2の配管経路と、
前記給水ポンプ駆動用蒸気タービンからの排蒸気を前記復水器に導く第3の配管経路と、
前記第1の配管経路と前記第2の配管経路が接続されて、前記給水ポンプ駆動用蒸気タービンの使用蒸気を、前記第1の配管経路からの抽気蒸気と前記第2の配管経路からの蒸気とに切り替える駆動蒸気切替弁と、
原子炉の停止時に、前記主蒸気隔離弁を閉止するとともに、前記駆動蒸気切替弁を前記第2の配管経路側に切り替えて、前記前記第2の配管経路を介して供給される蒸気によって、前記給水ポンプ駆動用蒸気タービンを駆動する制御装置とを備える原子炉冷却システムの運転方法であって、
原子炉の炉心冷却機能喪失時や全電源装置喪失時において、前記制御装置によって、前記主蒸気隔離弁が閉じられた後に、開閉弁を開き、前記駆動蒸気切替弁を第2の配管経路側に切り替えて主蒸気で前記給水ポンプ駆動用蒸気タービンを駆動する
ことを特徴とする原子炉冷却システムの運転方法。
A reactor pressure vessel containing a core for loading the fuel assemblies;
A main steam pipe connected to the reactor pressure vessel and flowing steam generated in the reactor core,
A main steam isolation valve provided in the main steam pipe,
A power generation turbine to which steam sent by the main steam pipe is supplied;
A condenser that condenses the steam that has passed through the power generation turbine in a heat exchanger,
A water supply pipe for supplying cooling water condensed by the condenser to the reactor pressure vessel,
A feed pump provided in the feed pipe to feed cooling water to the reactor pressure vessel,
A feed water pump drive steam turbine that drives the feed water pump,
A first piping path that guides and drives the extracted steam from the power generation turbine to the feed water pump drive steam turbine,
A second piping path that branches from the main steam pipe upstream of the main steam valve of the main steam pipe and guides and drives steam generated in the core to the feed water pump driving steam turbine;
A third piping path for guiding exhaust steam from the feedwater pump drive steam turbine to the condenser;
The first piping route and the second piping route are connected, and the steam used for the feed water pump driving steam turbine is extracted from the first piping route and the steam from the second piping route. A driving steam switching valve for switching to and
When the reactor is stopped, the main steam isolation valve is closed, and the drive steam switching valve is switched to the second pipe route side, and the steam supplied through the second pipe route causes A control device for driving a feed water pump drive steam turbine, comprising:
When the core cooling function of the reactor is lost or when all the power supply units are lost, the control device closes the main steam isolation valve, then opens the on-off valve, and moves the drive steam switching valve to the second piping path side. A method for operating a nuclear reactor cooling system, comprising switching the main steam to drive the feed water pump driving steam turbine.
請求項10に記載の原子炉冷却システムの運転方法において,
前記原子炉冷却システムは、
前記給水管に設けられ冷却水を送水する復水ポンプと、
前記熱交換器に蒸気凝縮用の二次冷却水を供給する循環水ポンプと、
前記給水ポンプ駆動用蒸気タービンに取り付けられる発電機と、
前記発電機の発電電力が入力され、前記復水ポンプと前記循環水ポンプと電動機駆動給水ポンプとに動力電源を供給するインバータと、
前記インバータの電力の一部を取り出して整流するとともに一次電池を並列に接続して直流電力を供給する直流電源とを備え、
前記給水ポンプは、前記給水ポンプ駆動用蒸気タービンまたは電動機を駆動源として冷却水を前記原子炉圧力容器に給水し、
前記給水ポンプ駆動用蒸気タービンで発電して前記インバータから前記復水ポンプと前記循環水ポンプに動力電源を供給して前記復水ポンプと前記循環水ポンプを運転する
ことを特徴とする原子炉冷却システムの運転方法。
The method for operating a reactor cooling system according to claim 10,
The reactor cooling system comprises:
A condensate pump provided in the water supply pipe to supply cooling water,
A circulating water pump for supplying secondary cooling water for steam condensation to the heat exchanger,
A generator attached to the feed water pump drive steam turbine,
An inverter to which power generated by the generator is input and supplies power to the condensate pump, the circulating water pump, and the motor-driven water supply pump,
A DC power supply that supplies DC power by connecting a primary battery in parallel while taking out and rectifying a part of the power of the inverter,
The feedwater pump supplies cooling water to the reactor pressure vessel using the feedwater pump drive steam turbine or an electric motor as a drive source,
Reactor cooling by supplying power from the inverter to the condensate pump and the circulating water pump from the inverter to supply power to the condensate pump and the circulating water pump. How the system operates.
請求項11に記載の原子炉冷却システムの運転方法において,
前記給水管に、前記発電用タービンからの抽気蒸気で回転する復水ポンプ駆動用蒸気タービンで駆動される復水ポンプと、
前記復水ポンプ駆動用蒸気タービンに取り付けられる発電機と、
前記復水ポンプ駆動用蒸気タービンの使用蒸気を、前記発電用タービンの抽気と前記第2の配管経路の蒸気とに切り替える駆動蒸気切替弁とを備え、
原子炉の炉心冷却機能喪失時や全電源装置喪失時において、
前記主蒸気隔離弁が閉じられた後に,前記制御装置によって前記第2の配管経路の開閉弁を開き、蒸気タービン駆動復水ポンプの前記駆動蒸気切替弁を第2の配管経路側に切り替えて主蒸気で前記復水ポンプ駆動用蒸気タービンを駆動し、前記復水ポンプ駆動用蒸気タービンで発電して前記インバータから前記電動機駆動給水ポンプと前記循環水ポンプに動力電源を供給して運転する
ことを特徴とする原子炉冷却システムの運転方法。
The method for operating a reactor cooling system according to claim 11,
A condensate pump driven by a condensate pump drive steam turbine that rotates with extracted steam from the power generation turbine,
A generator attached to the condensate pump drive steam turbine,
A drive steam switching valve for switching steam used by the condensate pump drive steam turbine to extraction of the power generation turbine and steam in the second piping path;
When the core cooling function of the reactor is lost or when all power supply units are lost,
After the main steam isolation valve is closed, the control device opens the on-off valve of the second piping route, and switches the driving steam switching valve of the steam turbine driven condensate pump to the second piping route side to switch the main steam isolation valve. Driving the steam turbine for driving the condensate pump with steam, generating power with the steam turbine for driving the condensate pump, and supplying power from the inverter to the motor-driven water supply pump and the circulating water pump for operation. Characteristic method of operating the reactor cooling system.
請求項11に記載の原子炉冷却システムにおいて,
前記循環水ポンプの吐出側流路に並列に二次冷却水を前記熱交換器に送水する電動機駆動の補助循環水ポンプを備え、
前記給水ポンプ駆動用蒸気タービンと前記発電機とで発電し前記インバータで調整した動力電源を前記補助循環水ポンプに供給し、前記給水ポンプと前記循環水ポンプを運転する
ことを特徴とする原子炉冷却システムの運転方法。
The reactor cooling system according to claim 11,
An electric motor-driven auxiliary circulating water pump that supplies secondary cooling water to the heat exchanger in parallel with the discharge-side flow path of the circulating water pump,
A power generator that generates power with the feed water pump driving steam turbine and the generator, supplies power power adjusted by the inverter to the auxiliary circulating water pump, and operates the feed water pump and the circulating water pump. How to operate the cooling system.
請求項11に記載の原子炉冷却システムの運転方法において,
前記循環水ポンプの吐出側流路に並列に二次冷却水を前記熱交換器に送水する蒸気タービン駆動の補助循環水ポンプを備え、
前記給水ポンプ駆動用蒸気タービンと前記発電機とで発電し、前記インバータで調整した動力電源を前記補助循環水ポンプに供給し、復水ポンプ駆動用蒸気タービンの使用蒸気を開閉弁を介して主蒸気管の主蒸気弁よりも上流側から供給する
ことを特徴とする原子炉冷却システムの運転方法。
The method for operating a reactor cooling system according to claim 11,
An auxiliary circulating water pump driven by a steam turbine that supplies secondary cooling water to the heat exchanger in parallel with the discharge-side flow path of the circulating water pump,
The steam generator for driving the feed water pump and the generator generate electric power, the power supply adjusted by the inverter is supplied to the auxiliary circulating water pump, and the steam used for the steam turbine for driving the condensate pump is mainly supplied via an on-off valve. A method for operating a reactor cooling system, characterized in that the steam is supplied from an upstream side of a main steam valve of a steam pipe.
請求項11に記載の原子炉冷却システムの運転方法において,
前記主蒸気管の前記主蒸気隔離弁より上流から開閉弁と流量調整弁を介して前記原子炉圧力容器の蒸気を抽出する非常用蒸気供給管を備え、
前記非常用蒸気供給管を前記復水器の一次側に連通し、
前記主蒸気隔離弁が閉じられた後に前記制御装置によって前記流量調整弁の開度を調整し、前記給水ポンプ駆動用蒸気タービンを駆動する必要量を越える蒸気を前記復水器で凝縮する
ことを特徴とする原子炉冷却システムの運転方法。
The method for operating a reactor cooling system according to claim 11,
An emergency steam supply pipe that extracts steam from the reactor pressure vessel via an on-off valve and a flow control valve from upstream of the main steam isolation valve of the main steam pipe,
The emergency steam supply pipe communicates with the primary side of the condenser,
After the main steam isolation valve is closed, the control device adjusts the opening of the flow rate control valve, and condenses in the condenser more steam than necessary to drive the feed water pump drive steam turbine. Characteristic method of operating the reactor cooling system.
JP2018136242A 2018-07-19 2018-07-19 Reactor cooling system and operation method thereof Pending JP2020012768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018136242A JP2020012768A (en) 2018-07-19 2018-07-19 Reactor cooling system and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018136242A JP2020012768A (en) 2018-07-19 2018-07-19 Reactor cooling system and operation method thereof

Publications (1)

Publication Number Publication Date
JP2020012768A true JP2020012768A (en) 2020-01-23

Family

ID=69170956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018136242A Pending JP2020012768A (en) 2018-07-19 2018-07-19 Reactor cooling system and operation method thereof

Country Status (1)

Country Link
JP (1) JP2020012768A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021167761A (en) * 2020-04-10 2021-10-21 株式会社東芝 Water supply equipment for nuclear power plants

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021167761A (en) * 2020-04-10 2021-10-21 株式会社東芝 Water supply equipment for nuclear power plants
JP7408470B2 (en) 2020-04-10 2024-01-05 株式会社東芝 Nuclear plant water supply equipment

Similar Documents

Publication Publication Date Title
US10529457B2 (en) Defense in depth safety paradigm for nuclear reactor
US4818475A (en) Turbine-generator shaft-coupled auxiliary generators supplying short-duration electrical loads for an emergency coolant injection system
US9536629B2 (en) Passive power production during a nuclear station blackout
KR20140054266A (en) Backup nuclear reactor auxiliary power using decay heat
EP2839479B1 (en) System for decay heat removal in a nuclear reactor system comprising an auxiliary condenser and corresponding method
US5343507A (en) Shutdown cooling system for operation during lapse of power
TWI482174B (en) Emergency furnace heart cooling system and boiling water type atomic energy unit
US5790619A (en) Drain system for a nuclear power plant
US5428652A (en) Secondary-side residual-heat removal system for pressurized-water nuclear reactors
JP4960178B2 (en) Nuclear plant safety system
RU2550504C2 (en) Apparatus for generating energy based on gas-cooled fast reactor
JP2020012768A (en) Reactor cooling system and operation method thereof
KR102214119B1 (en) Coolant recirculation system of nuclear power plant
JP5586213B2 (en) Emergency core cooling system
JP3982419B2 (en) Reactor safety equipment
Wu et al. Study on passive pulse cooling method of secondary side in PWR nuclear power plant
JP2012230069A (en) Auxiliary power supply of nuclear installation
KR100448876B1 (en) Emergency feed water system in nuclear power plant
JP2015014261A (en) Steam turbine plant and method of operating the same
JP3985024B2 (en) Fusion power generation system
JP2023102727A (en) Equipment for easing pressure rise in containment vessel
JP2014092396A (en) Nuclear power plant
JP2012233724A (en) Reactor core isolation cooling system
JP3068288B2 (en) Auxiliary cooling water system for nuclear power plants
US20190145285A1 (en) Steam turbine plant