JP2020008497A - Gallium nitride crystal substrate and crystal evaluation method thereof - Google Patents
Gallium nitride crystal substrate and crystal evaluation method thereof Download PDFInfo
- Publication number
- JP2020008497A JP2020008497A JP2018131735A JP2018131735A JP2020008497A JP 2020008497 A JP2020008497 A JP 2020008497A JP 2018131735 A JP2018131735 A JP 2018131735A JP 2018131735 A JP2018131735 A JP 2018131735A JP 2020008497 A JP2020008497 A JP 2020008497A
- Authority
- JP
- Japan
- Prior art keywords
- region
- plane
- angle
- ray
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 490
- 229910002601 GaN Inorganic materials 0.000 title claims abstract description 292
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 title claims abstract description 292
- 239000000758 substrate Substances 0.000 title claims abstract description 284
- 238000011156 evaluation Methods 0.000 title claims abstract description 47
- 238000005259 measurement Methods 0.000 claims abstract description 74
- 238000002441 X-ray diffraction Methods 0.000 claims abstract description 38
- 238000000034 method Methods 0.000 claims description 39
- 238000010586 diagram Methods 0.000 abstract description 6
- 239000010410 layer Substances 0.000 description 28
- 238000004519 manufacturing process Methods 0.000 description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- 229910002804 graphite Inorganic materials 0.000 description 9
- 239000010439 graphite Substances 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 229910016523 CuKa Inorganic materials 0.000 description 8
- 150000004767 nitrides Chemical class 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 239000007789 gas Substances 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 5
- 239000002344 surface layer Substances 0.000 description 5
- 125000004429 atom Chemical group 0.000 description 4
- 238000002017 high-resolution X-ray diffraction Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 125000004433 nitrogen atom Chemical group N* 0.000 description 4
- 238000005424 photoluminescence Methods 0.000 description 3
- 230000010349 pulsation Effects 0.000 description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- XOYLJNJLGBYDTH-UHFFFAOYSA-M chlorogallium Chemical compound [Ga]Cl XOYLJNJLGBYDTH-UHFFFAOYSA-M 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
【課題】結晶品質の高い窒化ガリウム結晶基板およびその結晶品質を詳細に評価することができる窒化ガリウム結晶基板の結晶評価方法を提供する。
【解決手段】窒化ガリウム結晶基板は、少なくとも1つの主面を有し、主面が(0001)からのオフ角が0°以上2°以下の面であり、小発散角入射X線を用いたX線回折測定において、<0001>とφ軸とが一致するように調整し、0001対称禁制ブラッグ反射についての入射角ωおよび回折角2θにおけるφ軸を回転軸としたφスキャンパターン測定において、バックグランド強度に対する少なくとも(1−100)および(−1101)に由来する第1基準X線多重回折ピークの強度の比が500以上であり、第1基準X線多重回折ピークの強度に対する少なくとも(02−21)および(0−220)に由来する第2基準多重回折ピークの強度の比が0.18以上である。
【選択図】図6A gallium nitride crystal substrate having high crystal quality and a crystal evaluation method for the gallium nitride crystal substrate capable of evaluating the crystal quality thereof in detail are provided.
The gallium nitride crystal substrate has at least one main surface, and the main surface is a surface having an off angle from (0001) of 0 ° or more and 2 ° or less, and uses a small divergence angle incident X-ray. In the X-ray diffraction measurement, <0001> and the φ axis are adjusted so as to coincide with each other, and in the φ scan pattern measurement using the φ axis as the rotation axis at the incident angle ω and the diffraction angle 2θ for the 0001 symmetric forbidden Bragg reflection, The ratio of the intensity of the first reference X-ray multiple diffraction peak derived from at least (1-100) and (-1101) to the ground intensity is 500 or more, and at least (02- 21) and the ratio of the intensities of the second reference multiple diffraction peaks derived from (0-220) is 0.18 or more.
[Selection diagram] FIG.
Description
本発明は、窒化ガリウム結晶基板およびその結晶評価方法に関する。 The present invention relates to a gallium nitride crystal substrate and a crystal evaluation method thereof.
特開2013−203653号公報(特許文献1)は、反りが小さくクラックが抑えられている高品質なIII族窒化物結晶の製造方法として、III族窒化物結晶からなる単結晶に1000℃以上で熱処理を行なうことによりIII族窒化物種基板を得る工程と、III族窒化物種基板上にIII族窒化物結晶膜を形成してIII族窒化物結晶を得る工程とを含むIII族窒化物結晶の製造方法を開示する。 Japanese Patent Application Laid-Open No. 2013-203653 (Patent Document 1) discloses a method for producing a high-quality group III nitride crystal in which warpage is small and cracks are suppressed. Production of a group III nitride crystal including a step of obtaining a group III nitride seed substrate by performing a heat treatment and a step of forming a group III nitride crystal film on the group III nitride seed substrate to obtain a group III nitride crystal A method is disclosed.
また、特開2006−071354号公報(特許文献2)は、III族窒化物結晶の表面層における結晶品質の評価方法として、X線回折法を用いて、結晶の表面から深さ方向への結晶性の変化を評価することにより、結晶表面層の結晶性を評価する方法であって、上記結晶の一つの結晶格子面に対する回折条件(ブラッグ反射による回折条件)を満たすように、連続的にX線侵入深さを変えて上記結晶にX線を照射して、結晶格子面についての回折プロファイルにおける面間隔および回折ピークの半価幅ならびにロッキングカーブにおける半価幅のうち少なくともいずれかの変化量を評価する結晶表面層の結晶性評価方法を開示する。 Japanese Patent Application Laid-Open No. 2006-071354 (Patent Literature 2) discloses a method of evaluating the crystal quality of a surface layer of a group III nitride crystal by using an X-ray diffraction method in a direction from a crystal surface to a depth direction. This is a method for evaluating the crystallinity of the crystal surface layer by evaluating the change in the crystallinity, wherein X is continuously adjusted so as to satisfy a diffraction condition (a diffraction condition by Bragg reflection) with respect to one crystal lattice plane of the crystal. By irradiating the crystal with X-rays while changing the line penetration depth, at least one of the variation of the half-width of the plane spacing and the half-width of the diffraction peak in the diffraction profile of the crystal lattice plane and the half-width of the rocking curve is measured. A method for evaluating the crystallinity of a crystal surface layer to be evaluated is disclosed.
また、稲葉克彦、「高分解能X線回折法によるGaN材料の評価」、リガクジャーナル、44(2),2013年、7−15頁(非特許文献1)は、サファイア基板上に成長させたGaN薄膜についての高分解能X線回折のω−2θスキャンにおいて、表面に平行でない格子面の多重反射に由来すると思われる禁制反射が観測されることを開示する。さらに、J. Blasing and A. Krost, “X-ray multiple diffraction (Umweganregung) in wurtzite-type GaN and ZnO epitaxial layers”, phys. stat. sol., (a)201, No.4, 2004, pp.R17-R20(非特許文献2)は、シリコン基板上に成長させたGaN薄膜についてのX線回折の禁制(0001)反射のω−2θにおけるφスキャンにおいて、回折ピークが観測されることを開示する。 In addition, Katsuhiko Inaba, "Evaluation of GaN material by high-resolution X-ray diffraction method", Rigaku Journal, 44 (2), 2013, pp. 7-15 (Non-Patent Document 1) discloses GaN grown on a sapphire substrate. It discloses that forbidden reflection, which is considered to be derived from multiple reflection of a lattice plane that is not parallel to the surface, is observed in a high resolution X-ray diffraction ω-2θ scan of a thin film. Furthermore, J. Blasing and A. Krost, “X-ray multiple diffraction (Umweganregung) in wurtzite-type GaN and ZnO epitaxial layers”, phys.stat.sol., (A) 201, No. 4, 2004, pp. R17-R20 (Non-Patent Document 2) discloses that a diffraction peak is observed in a φ scan at ω-2θ of forbidden (0001) reflection of X-ray diffraction for a GaN thin film grown on a silicon substrate. .
特開2013−203653号公報(特許文献1)に開示されたIII族窒化物結晶の製造方法により得られた窒化ガリウム結晶であっても、窒化ガリウム結晶基板に加工する際に、結晶品質を低下させる問題がある。また、業界では、さらに高特性の半導体デバイスを製造するために、さらに結晶品質の高い窒化ガリウム結晶基板の開発が求められている。 Even if the gallium nitride crystal obtained by the method for manufacturing a group III nitride crystal disclosed in Japanese Patent Application Laid-Open No. 2013-203653 (Patent Document 1), the crystal quality is deteriorated when processing into a gallium nitride crystal substrate. There is a problem. Further, in the industry, in order to manufacture a semiconductor device with higher characteristics, development of a gallium nitride crystal substrate having higher crystal quality is required.
また、特開2006−071354号公報(特許文献2)に開示された結晶表面層の結晶性評価方法は、窒化ガリウム結晶の表面層における均一歪み、不均一歪み、および面方位ずれなどの結晶品質を評価する指標として有用なものである。しかしながら、業界では、結晶品質の高い窒化ガリウム結晶基板の結晶品質をさらに詳細に評価するための評価方法の開発が望まれている。 Further, a method for evaluating the crystallinity of a crystal surface layer disclosed in Japanese Patent Application Laid-Open No. 2006-071354 (Patent Document 2) discloses a method of evaluating crystal quality such as uniform distortion, non-uniform distortion, and plane misorientation in a surface layer of a gallium nitride crystal. It is useful as an index for evaluating. However, there is a demand in the industry for the development of an evaluation method for evaluating the crystal quality of a gallium nitride crystal substrate having high crystal quality in more detail.
また、稲葉克彦、「高分解能X線回折法によるGaN材料の評価」、リガクジャーナル、44(2),2013年、7−15頁(非特許文献1)およびJ. Blasing and A. Krost, “X-ray multiple diffraction (Umweganregung) in wurtzite-type GaN and ZnO epitaxial layers”, phys. stat. sol., (a)201, No.4, 2004, pp.R17-R20(非特許文献2)に開示されたX線回折におけるω―2θスキャンおよびφスキャンに現われる回折ピークは、窒化ガリウム結晶基板の結晶品質の詳細な評価に結び付けられていない。 Also, Katsuhiko Inaba, "Evaluation of GaN material by high-resolution X-ray diffraction method", Rigaku Journal, 44 (2), 2013, pp. 7-15 (Non-Patent Document 1), and J. Blasing and A. Krost, " X-ray multiple diffraction (Umweganregung) in wurtzite-type GaN and ZnO epitaxial layers ”, phys.stat.sol., (A) 201, No.4, 2004, pp.R17-R20 (Non-Patent Document 2) The diffraction peaks appearing in the ω-2θ scan and the φ scan in the obtained X-ray diffraction are not linked to a detailed evaluation of the crystal quality of the gallium nitride crystal substrate.
そこで、上記の状況を鑑みて、結晶品質の高い窒化ガリウム結晶基板およびその結晶品質を詳細に評価することができる窒化ガリウム結晶基板の結晶評価方法を提供することを目的とする。 In view of the above situation, an object of the present invention is to provide a gallium nitride crystal substrate having a high crystal quality and a crystal evaluation method for a gallium nitride crystal substrate capable of evaluating the crystal quality in detail.
本発明の一態様にかかる窒化ガリウム結晶基板は、少なくとも1つの主面を有する窒化ガリウム結晶基板であって、主面が(0001)面からのオフ角が0°以上2°以下の面であり、小発散角入射X線平行ビームを用いたX線回折測定において、2軸傾斜試料台上に主面が露出するように窒化ガリウム結晶基板を配置し、(0001)面の法線である<0001>軸とφ軸とが一致し、かつ、[1−100]方向をφ=0°の方向とするように調整し、0001対称禁制ブラッグ反射についての入射角ωおよび回折角2θにおけるφ軸を回転軸としたφスキャンパターン測定におけるφが−180°から180°までの測定において、結晶内におけるX線の多重回折により現われるX線多重回折パターンは、φが−180°から−60°まで、−60°から60°まで、および60°から180°までの120°毎に繰り返す3回回転対称性を有する3つの120°回転対称ピーク領域を備え、各120°回転対称ピーク領域は、その領域のφの範囲の中央のφの角度を示す線および<0001>軸を含む面を鏡映面として互いに鏡映対称性を有する−領域と+領域とを備え、各−領域は、その領域のφの範囲の中央のφの角度を示す線および<0001>軸の交点を中心として互いに回反対称性を有する−L領域と−R領域とを備え、各+領域は、その領域のφの範囲の中央のφの角度を示す線および<0001>軸の交点を中心として互いに回反対称性を有する+L領域と+R領域とを備え、各−L領域、各−R領域、各+L領域、および各+R領域の少なくとも1領域において、バックグランド強度に対する少なくとも(1−100)および(−1101)に由来する第1基準X線多重回折ピークの強度の比である第1基準ピーク強度比が500以上であり、第1基準X線多重回折ピークの強度に対する少なくとも(02−21)および(0−220)に由来する第2基準多重回折ピークの強度の比である第2基準ピーク強度比が0.18以上である。 A gallium nitride crystal substrate according to one embodiment of the present invention is a gallium nitride crystal substrate having at least one main surface, wherein the main surface is a surface having an off angle from a (0001) plane of 0 ° or more and 2 ° or less. In an X-ray diffraction measurement using a small divergence incident X-ray parallel beam, a gallium nitride crystal substrate is arranged so that a main surface is exposed on a biaxially tilted sample table, and the normal to the (0001) plane is < The 0001> axis and the φ axis coincide with each other, and the [1-100] direction is adjusted to be the direction of φ = 0 °, and the φ axis at the incident angle ω and the diffraction angle 2θ for the 0001 symmetric forbidden Bragg reflection is adjusted. In the measurement of φ from −180 ° to 180 ° in the φ scan pattern measurement with the rotation axis as, the X-ray multiple diffraction pattern appearing by the multiple diffraction of X-rays in the crystal has φ from −180 ° to −60 °. , -60 And three 120 ° rotationally symmetric peak regions having a three-fold rotational symmetry that repeats every 120 ° from 90 ° to 60 ° and from 60 ° to 180 °, each 120 ° rotationally symmetric peak region being the φ of that region A region including the line indicating the angle of φ at the center of the range and the plane including the <0001> axis are mirrored surfaces, and have − and + regions that have mirror symmetry with respect to each other. And the -L region and the -R region having anti-symmetry with respect to the line indicating the angle of φ at the center and the intersection of the <0001> axis, and each + region is located at the center of the range of φ of that region. And a + L region and a + R region having a reciprocal symmetry with respect to a line indicating the angle of φ and the intersection of the <0001> axes. Each of the -L region, each -R region, each + L region, and each + R region Background in at least one of the regions The first reference peak intensity ratio, which is the ratio of the intensity of the first reference X-ray multiple diffraction peaks derived from at least (1-100) and (-1101) to the intensity, is 500 or more, and the first reference X-ray multiple diffraction peak is The second reference peak intensity ratio, which is the ratio of the intensity of the second reference multiple diffraction peaks derived from at least (02-21) and (0-220) with respect to the intensity of, is 0.18 or more.
本発明の一態様にかかる窒化ガリウム結晶基板は、少なくとも1つの主面を有する窒化ガリウム結晶基板であって、主面が(000−1)面からのオフ角が0°以上2°以下の面であり、小発散角入射X線平行ビームを用いたX線回折測定において、2軸傾斜試料台上に主面が露出するように窒化ガリウム結晶基板を配置し、(000−1)面の法線である<0001>軸とφ軸とが一致し、かつ、[1−100]方向をφ=0°の方向とするように調整し、000−1対称禁制ブラッグ反射についての入射角ωおよび回折角2θにおけるφ軸を回転軸としたφスキャンパターン測定におけるφが−180°から180°までの測定において、結晶内におけるX線の多重回折により現われるX線多重回折パターンは、φが−180°から−60°まで、−60°から60°まで、および60°から180°までの120°毎に繰り返す3回回転対称性を有する3つの120°回転対称ピーク領域を備え、各120°回転対称ピーク領域は、その領域のφの範囲の中央のφの角度を示す線および<0001>軸を含む面を鏡映面として互いに鏡映対称性を有する−領域と+領域とを備え、各−領域は、その領域のφの範囲の中央のφの角度を示す線および<0001>軸の交点を中心として互いに回反対称性を有する−L領域と−R領域とを備え、各+領域は、その領域のφの範囲の中央のφの角度を示す線および<0001>軸の交点を中心として互いに回反対称性を有する+L領域と+R領域とを備え、各−L領域、各−R領域、各+L領域、および各+R領域の少なくとも1領域において、バックグランド強度に対する少なくとも(1−100)および(−1101)に由来する第1基準X線多重回折ピークの強度の比である第1基準ピーク強度比が750以上であり、第1基準X線多重回折ピークの強度に対する少なくとも(02−21)および(0−220)に由来する第2基準多重回折ピークの強度の比である第2基準ピーク強度比が0.18未満である。 A gallium nitride crystal substrate according to one embodiment of the present invention is a gallium nitride crystal substrate having at least one main surface, wherein the main surface has an off angle of 0 ° or more and 2 ° or less from a (000-1) plane. In an X-ray diffraction measurement using a small-divergence incident X-ray parallel beam, a gallium nitride crystal substrate is arranged such that a main surface is exposed on a biaxially tilted sample table, and a (000-1) plane method is used. The <0001> axis which is a line coincides with the φ axis, and the [1-100] direction is adjusted to be the direction of φ = 0 °, and the incident angles ω and 000 for the 000-1 symmetric forbidden Bragg reflection are adjusted. In the measurement of φ from −180 ° to 180 ° in the φ scan pattern measurement using the φ axis as the rotation axis at the diffraction angle 2θ, the X-ray multiple diffraction pattern appearing by the multiple diffraction of X-rays in the crystal has φ of −180. ° to -60 ° Comprising three 120 ° rotationally symmetric peak regions having a threefold rotational symmetry that repeats every 120 ° from 60 ° to 60 ° and from 60 ° to 180 °, each 120 ° rotational symmetric peak region being A plane including the line indicating the angle of φ in the center of the range of φ and the plane including the <0001> axis is a mirror plane, and has − and + areas having mirror symmetry with respect to each other. A line indicating the angle of φ in the center of the range and a -L region and a -R region having a reciprocal symmetry with respect to the intersection of the <0001> axis, and each + region has a range of φ of the region. And a + L region and a + R region having a reciprocal symmetry with respect to a line indicating the angle of φ at the center and the intersection of the <0001> axes, and each -L region, each -R region, each + L region, and In at least one region of each + R region, The first reference peak intensity ratio, which is the ratio of the intensity of the first reference X-ray multiple diffraction peaks derived from at least (1-100) and (-1101) to the land intensity, is 750 or more; The second reference peak intensity ratio, which is the ratio of the intensity of the second reference multiple diffraction peaks derived from at least (02-21) and (0-220) to the peak intensity, is less than 0.18.
本発明の一態様にかかる窒化ガリウム結晶基板は、2つの主面を有する窒化ガリウム結晶基板であって、1つの主面が(0001)面からのオフ角が0°以上2°以下の面であり、他の主面が(000−1)面からのオフ角が0°以上2°以下の面であり、各主面についての小発散角入射X線平行ビームを用いたX線回折測定において、2軸傾斜試料台上に各主面が露出するように窒化ガリウム結晶基板を配置し、(0001)面および(000−1)面の法線である<0001>軸とφ軸とが一致し、かつ、[1−100]方向をφ=0°の方向とするように調整し、主面が(0001)面からのオフ角が0°以上2°以下の面のときは0001対称禁制ブラッグ反射について、主面が(000−1)面からのオフ角が0°以上2°以下の面のときは000−1対称禁制ブラッグ反射についての入射角ωおよび回折角2θにおけるφ軸を回転軸としたφスキャンパターン測定におけるφが−180°から180°までの測定において、結晶内におけるX線の多重回折により現われるX線多重回折パターンは、φが−180°から−60°まで、−60°から60°まで、および60°から180°までの120°毎に繰り返す3回回転対称性を有する3つの120°回転対称ピーク領域を備え、各120°回転対称ピーク領域は、その領域のφの範囲の中央のφの角度を示す線および<0001>軸を含む面を鏡映面として互いに鏡映対称性を有する−領域と+領域とを備え、各−領域は、その領域のφの範囲の中央のφの角度を示す線および<0001>軸の交点を中心として互いに回反対称性を有する−L領域と−R領域とを備え、各+領域は、その領域のφの範囲の中央のφの角度を示す線および<0001>軸の交点を中心として互いに回反対称性を有する+L領域と+R領域とを備え、各−L領域、各−R領域、各+L領域、および各+R領域の少なくとも1領域において、2つの主面における少なくとも(1−100)および(−1101)に由来する第1基準X線多重回折ピークの強度に対する少なくとも(02−21)および(0−220)に由来する第2基準多重回折ピークの強度の比である第2基準ピーク強度比の値は互いに異なり、より大きな第2基準ピーク強度比を与える主面が(0001)面からのオフ角が0°以上2°以下の面である。 A gallium nitride crystal substrate according to one embodiment of the present invention is a gallium nitride crystal substrate having two main surfaces, wherein one main surface has an off angle of 0 ° or more and 2 ° or less from a (0001) plane. And the other main surface is a surface having an off angle from the (000-1) plane of 0 ° or more and 2 ° or less, and in the X-ray diffraction measurement using a small divergence angle incident X-ray parallel beam for each main surface. A gallium nitride crystal substrate is arranged on the biaxially tilted sample stage such that each main surface is exposed, and the <0001> axis, which is the normal to the (0001) plane and the (000-1) plane, and the φ axis are aligned with each other. And the [1-100] direction is adjusted so that φ = 0 °. When the main surface is a surface whose off angle from the (0001) plane is 0 ° or more and 2 ° or less, 0001 symmetry forbidden. For Bragg reflection, when the main surface is a surface whose off angle from the (000-1) plane is 0 ° or more and 2 ° or less. Is the multiplexing of X-rays in the crystal in the φ scan pattern measurement from -180 ° to 180 ° with the φ axis as the rotation axis at the incident angle ω and the diffraction angle 2θ for the 000-1 symmetric forbidden Bragg reflection. The X-ray multiple diffraction pattern appearing by diffraction has a three-fold rotational symmetry where φ repeats every 120 ° from −180 ° to −60 °, from −60 ° to 60 °, and from 60 ° to 180 °. Two 120 ° rotationally symmetric peak regions, each 120 ° rotationally symmetric peak region being mirrored to each other with a plane including the line indicating the angle of φ in the center of the range of φ and the <0001> axis as the mirror plane. A-region and a + region having symmetry are provided. Each-region has a reciprocal symmetry with respect to an intersection of a line indicating the angle of φ in the center of the range of φ of the region and the <0001> axis. You A + L region having a -L region and a -R region, each + region having a reciprocal symmetry with respect to an intersection of a line indicating an angle of φ at the center of a range of φ of the region and an <0001> axis. And a + R region, in at least one of each of the -L region, each of the -R region, each of the + L region, and each of the + R region, being derived from at least (1-100) and (-1101) on two main surfaces. The value of the second reference peak intensity ratio, which is the ratio of the intensity of the second reference multiple diffraction peak derived from at least (02-21) and (0-220) to the intensity of the first reference X-ray multiple diffraction peak, is different from each other; The principal surface giving a larger second reference peak intensity ratio is a surface having an off angle from the (0001) plane of 0 ° or more and 2 ° or less.
本発明の一態様にかかる窒化ガリウム結晶基板の結晶評価方法は、少なくとも1つの主面を有し、主面が(0001)面および(000−1)面の少なくともいずれかからのオフ角が0°以上2°以下の面である窒化ガリウム結晶基板の結晶を、小発散角入射X線平行ビームを用いたX線回折測定により評価する方法であって、2軸傾斜試料台上に主面が露出するように窒化ガリウム結晶基板を配置し、(0001)面および(000−1)面の法線である<0001>軸とφ軸とが一致し、かつ、[1−100]方向をφ=0°の方向とするように調整する工程と、主面が(0001)面からのオフ角が0°以上2°以下の面のときは0001対称禁制ブラッグ反射について、主面が(000−1)面からのオフ角が0°以上2°以下の面のときは000−1対称禁制ブラッグ反射についての入射角ωおよび回折角2θにおいて、φ軸を回転軸としたφスキャンパターン測定を行なう工程と、を含み、φスキャンパターン測定から得られるX線多重回折ピークの対称性の高さおよびバックグランド強度に対する少なくとも(1−100)および(−1101)に由来する第1基準X線多重回折ピークの強度の比である第1基準ピーク強度比の大きさから、窒化ガリウム結晶基板の結晶の品質を評価する。 The crystal evaluation method for a gallium nitride crystal substrate according to one embodiment of the present invention has at least one main surface, and the main surface has an off angle of at least one of a (0001) plane and a (000-1) plane of 0. A method for evaluating a crystal of a gallium nitride crystal substrate having a surface of not less than 2 ° and not more than 2 ° by X-ray diffraction measurement using a small-divergence incident X-ray parallel beam, wherein a main surface is placed on a biaxially inclined sample stage. The gallium nitride crystal substrate is arranged so as to be exposed, the <0001> axis, which is the normal to the (0001) plane and the (000-1) plane, matches the φ axis, and the [1-100] direction is φ. = 0 °, and when the main surface is a surface whose off angle from the (0001) plane is 0 ° or more and 2 ° or less, the main surface is (000- 1) When the off angle from the surface is 0 ° or more and 2 ° or less Performing a φ scan pattern measurement with the φ axis as a rotation axis at an incident angle ω and a diffraction angle 2θ for the 000-1 symmetric forbidden Bragg reflection, the X-ray multiple diffraction peak obtained from the φ scan pattern measurement. From the magnitude of the first reference peak intensity ratio, which is the ratio of the intensity of the first reference X-ray multiple diffraction peaks derived from at least (1-100) and (-1101) to the height of symmetry and the background intensity, Evaluate the crystal quality of the gallium crystal substrate.
上記によれば、結晶品質の高い窒化ガリウム結晶基板およびその結晶品質を詳細に評価することができる窒化ガリウム結晶基板の結晶評価方法を提供することができる。 According to the above, it is possible to provide a gallium nitride crystal substrate having a high crystal quality and a crystal evaluation method for the gallium nitride crystal substrate capable of evaluating the crystal quality in detail.
[本発明の実施形態の説明]
最初に本発明の実施態様を列記して説明する。
[Description of Embodiment of the Present Invention]
First, embodiments of the present invention will be listed and described.
[1]本発明のある実施形態にかかる窒化ガリウム結晶基板は、少なくとも1つの主面を有する窒化ガリウム結晶基板であって、主面が(0001)面からのオフ角が0°以上2°以下の面であり、小発散角入射X線平行ビームを用いたX線回折測定において、2軸傾斜試料台上に主面が露出するように窒化ガリウム結晶基板を配置し、(0001)面の法線である<0001>軸とφ軸とが一致し、かつ、[1−100]方向をφ=0°の方向とするように調整し、0001対称禁制ブラッグ反射についての入射角ωおよび回折角2θにおけるφ軸を回転軸としたφスキャンパターン測定におけるφが−180°から180°までの測定において、結晶内におけるX線の多重回折により現われるX線多重回折パターンは、φが−180°から−60°まで、−60°から60°まで、および60°から180°までの120°毎に繰り返す3回回転対称性を有する3つの120°回転対称ピーク領域を備え、各120°回転対称ピーク領域は、その領域のφの範囲の中央のφの角度を示す線および<0001>軸を含む面を鏡映面として互いに鏡映対称性を有する−領域と+領域とを備え、各−領域は、その領域のφの範囲の中央のφの角度を示す線および<0001>軸の交点を中心として互いに回反対称性を有する−L領域と−R領域とを備え、各+領域は、その領域のφの範囲の中央のφの角度を示す線および<0001>軸の交点を中心として互いに回反対称性を有する+L領域と+R領域とを備え、各−L領域、各−R領域、各+L領域、および各+R領域の少なくとも1領域において、バックグランド強度に対する少なくとも(1−100)および(−1101)に由来する第1基準X線多重回折ピークの強度の比である第1基準ピーク強度比が500以上であり、第1基準X線多重回折ピークの強度に対する少なくとも(02−21)および(0−220)に由来する第2基準多重回折ピークの強度の比である第2基準ピーク強度比が0.18以上である。本実施形態の窒化ガリウム結晶基板は、(0001)面(Ga面)からのオフ角が0°以上2°以下の面を主面とするX線多重回折パターンにおいて、従来の窒化ガリウム結晶基板に比べて、高い対称性と大きな第1基準ピーク強度比とを有しているため、結晶品質が高い。 [1] A gallium nitride crystal substrate according to an embodiment of the present invention is a gallium nitride crystal substrate having at least one main surface, wherein the main surface has an off angle from the (0001) plane of 0 ° or more and 2 ° or less. In the X-ray diffraction measurement using a small-divergence incident X-ray parallel beam, a gallium nitride crystal substrate is arranged so that the main surface is exposed on a biaxially inclined sample stage, and the method of (0001) plane The <0001> axis which is a line coincides with the φ axis, and the [1-100] direction is adjusted to be the direction of φ = 0 °, and the incident angle ω and the diffraction angle for the 0001 symmetric forbidden Bragg reflection are adjusted. In the measurement from φ of −180 ° to 180 ° in the φ scan pattern measurement using the φ axis as the rotation axis at 2θ, the X-ray multiple diffraction pattern that appears due to the multiple diffraction of X-rays in the crystal has a φ of −180 °. -60 ° With three 120 ° rotationally symmetric peak regions having a three-fold rotational symmetry that repeats every 120 ° from −60 ° to 60 ° and from 60 ° to 180 °, each 120 ° rotationally symmetric peak region comprising: The region including a line indicating the angle of φ in the center of the range of φ in the region and the plane including the <0001> axis is a mirror surface, and has − and + regions that have mirror symmetry with respect to each other. A line indicating the angle of φ at the center of the range of φ of the region and a -L region and a -R region having anti-rotational symmetry with respect to the intersection of the <0001> axis are provided. A line indicating the angle of φ at the center of the range of φ and a + L region and a + R region having a reciprocal symmetry with respect to an intersection of the <0001> axis are provided, each of -L region, each -R region, and each + L region. Region and at least one of the + R regions. The first reference peak intensity ratio, which is the ratio of the intensity of the first reference X-ray multiple diffraction peaks derived from at least (1-100) and (-1101) to the background intensity, is 500 or more; The second reference peak intensity ratio, which is the ratio of the intensity of the second reference multiple diffraction peaks derived from at least (02-21) and (0-220) to the peak intensity, is 0.18 or more. The gallium nitride crystal substrate of the present embodiment is different from a conventional gallium nitride crystal substrate in an X-ray multiple diffraction pattern having a main surface whose off angle from the (0001) plane (Ga plane) is 0 ° or more and 2 ° or less. In comparison, the crystal quality is high because it has high symmetry and a large first reference peak intensity ratio.
[2]本発明の一実施形態にかかる窒化ガリウム結晶基板は、少なくとも1つの主面を有する窒化ガリウム結晶基板であって、主面が(000−1)面からのオフ角が0°以上2°以下の面であり、小発散角入射X線平行ビームを用いたX線回折測定において、2軸傾斜試料台上に主面が露出するように窒化ガリウム結晶基板を配置し、主面の法線である<0001>軸とφ軸とが一致し、かつ、[1−100]方向をφ=0°の方向とするように調整し、000−1対称禁制ブラッグ反射についての入射角ωおよび回折角2θにおけるφ軸を回転軸としたφスキャンパターン測定におけるφが−180°から180°までの測定において、結晶内におけるX線の多重回折により現われるX線多重回折パターンは、φが−180°から−60°まで、−60°から60°まで、および60°から180°までの120°毎に繰り返す3回回転対称性を有する3つの120°回転対称ピーク領域を備え、各120°回転対称ピーク領域は、その領域のφの範囲の中央のφの角度を示す線および<0001>軸を含む面を鏡映面として互いに鏡映対称性を有する−領域と+領域とを備え、各−領域は、その領域のφの範囲の中央のφの角度を示す線および<0001>軸の交点を中心として互いに回反対称性を有する−L領域と−R領域とを備え、各+領域は、その領域のφの範囲の中央のφの角度を示す線および<0001>軸の交点を中心として互いに回反対称性を有する+L領域と+R領域とを備え、各−L領域、各−R領域、各+L領域、および各+R領域の少なくとも1領域において、バックグランド強度に対する少なくとも(1−100)および(−1101)に由来する第1基準X線多重回折ピークの強度の比である第1基準ピーク強度比が750以上であり、第1基準X線多重回折ピークの強度に対する少なくとも(02−21)および(0−220)に由来する第2基準多重回折ピークの強度の比である第2基準ピーク強度比が0.18未満である。本実施形態の窒化ガリウム結晶基板は、(000−1)面(N面)からのオフ角が0°以上2°以下の面を主面とするX線多重回折パターンにおいて、従来の窒化ガリウム結晶基板に比べて、高い対称性と大きな第1基準ピーク強度比とを有しているため、結晶品質が高い。 [2] A gallium nitride crystal substrate according to an embodiment of the present invention is a gallium nitride crystal substrate having at least one main surface, wherein the main surface has an off angle of 0 ° or more from the (000-1) plane. ° or less, and in X-ray diffraction measurement using a small divergence angle incident X-ray parallel beam, the gallium nitride crystal substrate is arranged so that the main surface is exposed on the biaxially tilted sample stage, and the method of the main surface The <0001> axis which is a line coincides with the φ axis, and the [1-100] direction is adjusted to be the direction of φ = 0 °, and the incident angles ω and 000 for the 000-1 symmetric forbidden Bragg reflection are adjusted. In the measurement of φ from −180 ° to 180 ° in the φ scan pattern measurement using the φ axis as the rotation axis at the diffraction angle 2θ, the X-ray multiple diffraction pattern appearing by the multiple diffraction of X-rays in the crystal has φ of −180. ° to −60 °, − Comprising three 120 ° rotationally symmetric peak regions having a threefold rotational symmetry that repeats every 120 ° from 0 ° to 60 ° and from 60 ° to 180 °, each 120 ° rotationally symmetric peak region being A plane including the line indicating the angle of φ in the center of the range of φ and the plane including the <0001> axis is a mirror plane, and has − and + areas having mirror symmetry with respect to each other. A line indicating the angle of φ in the center of the range and a -L region and a -R region having a reciprocal symmetry with respect to the intersection of the <0001> axis, and each + region has a range of φ of the region. And a + L region and a + R region having a reciprocal symmetry with respect to a line indicating the angle of φ at the center and the intersection of the <0001> axes, and each -L region, each -R region, each + L region, and In at least one region of each + R region, The first reference peak intensity ratio, which is the ratio of the intensity of the first reference X-ray multiple diffraction peaks derived from at least (1-100) and (-1101) to the laser beam intensity, is 750 or more; The second reference peak intensity ratio, which is the ratio of the intensity of the second reference multiple diffraction peaks derived from at least (02-21) and (0-220) to the peak intensity, is less than 0.18. The gallium nitride crystal substrate of the present embodiment has a conventional gallium nitride crystal in an X-ray multiple diffraction pattern having a main surface whose off angle from the (000-1) plane (N plane) is 0 ° or more and 2 ° or less. Compared with the substrate, the crystal quality is high because it has high symmetry and a large first reference peak intensity ratio.
[3]本発明の一実施形態にかかる窒化ガリウム結晶基板は、2つの主面を有する窒化ガリウム結晶基板であって、1つの主面が(0001)面からのオフ角が0°以上2°以下の面であり、他の主面が(000−1)面からのオフ角が0°以上2°以下の面であり、各主面についての小発散角入射X線平行ビームを用いたX線回折測定において、2軸傾斜試料台上に各主面が露出するように窒化ガリウム結晶基板を配置し、(0001)面および(000−1)面の法線である<0001>軸とφ軸とが一致し、かつ、[1−100]方向をφ=0°の方向とするように調整し、主面が(0001)面からのオフ角が0°以上2°以下の面のときは0001対称禁制ブラッグ反射について、主面が(000−1)面からのオフ角が0°以上2°以下の面のときは000−1対称禁制ブラッグ反射についての入射角ωおよび回折角2θにおける前記φ軸を回転軸としたφスキャンパターン測定におけるφが−180°から180°までの測定において、結晶内におけるX線の多重回折により現われるX線多重回折パターンは、φが−180°から−60°まで、−60°から60°まで、および60°から180°までの120°毎に繰り返す3回回転対称性を有する3つの120°回転対称ピーク領域を備え、各120°回転対称ピーク領域は、その領域のφの範囲の中央のφの角度を示す線および<0001>軸を含む面を鏡映面として互いに鏡映対称性を有する−領域と+領域とを備え、各−領域は、その領域のφの範囲の中央のφの角度を示す線および<0001>軸の交点を中心として互いに回反対称性を有する−L領域と−R領域とを備え、各+領域は、その領域のφの範囲の中央のφの角度を示す線および<0001>軸の交点を中心として互いに回反対称性を有する+L領域と+R領域とを備え、各−L領域、各−R領域、各+L領域、および各+R領域の少なくとも1領域において、2つの主面における少なくとも(1−100)および(−1101)に由来する第1基準X線多重回折ピークの強度に対する少なくとも(02−21)および(0−220)に由来する第2基準多重回折ピークの強度の比である第2基準ピーク強度比の値は互いに異なり、より大きな第2基準ピーク強度比を与える主面が(0001)面からのオフ角が0°以上2°以下の面である。本実施形態の窒化ガリウム結晶基板は、(0001)面(Ga面)からのオフ角が0°以上2°以下の面を主面とするX線多重回折パターンおよび(000−1)面(N面)からのオフ角が0°以上2°以下の面を主面とするX線多重回折パターンのいずれにおいても、従来の窒化ガリウム結晶基板に比べて、高い対称性を有しているため、結晶品質が高い。また、本実施形態の窒化ガリウム結晶基板は、上記2つの主面についてのX線多重回折パターンからそれぞれ得られる2つの第2基準ピーク強度比の大小から(0001)面(Ga面)からのオフ角が0°以上2°以下の面である主面が判別されるため、当該窒化ガリウム結晶基板を破壊しなくても極性が判別される。 [3] A gallium nitride crystal substrate according to one embodiment of the present invention is a gallium nitride crystal substrate having two main surfaces, wherein one main surface has an off angle of 0 ° or more and 2 ° from a (0001) plane. And the other main surface is a surface having an off angle from the (000-1) plane of 0 ° or more and 2 ° or less, and X using a small divergence angle incident X-ray parallel beam for each main surface. In the X-ray diffraction measurement, a gallium nitride crystal substrate was placed on a biaxially tilted sample stage such that each main surface was exposed. The <0001> axis, which is the normal to the (0001) plane and the (000-1) plane, and φ When the axis is aligned and the [1-100] direction is adjusted so that φ = 0 °, and the main surface is a surface whose off angle from the (0001) plane is 0 ° or more and 2 ° or less. Is the 0001 symmetric forbidden Bragg reflection, with the main surface having an off angle from the (000-1) plane of 0 ° or more and 2 ° or less In the case of the surface of に お け る, in the measurement of φ from −180 ° to 180 ° in the φ scan pattern measurement using the φ axis as the rotation axis at the incident angle ω and the diffraction angle 2θ for the 000-1 symmetric forbidden Bragg reflection, The X-ray multiple diffraction pattern appearing by the multiple diffraction of X-rays at 3 rotations every 120 ° from φ of −180 ° to −60 °, −60 ° to 60 °, and 60 ° to 180 ° It comprises three 120 ° rotationally symmetric peak regions with symmetry, each 120 ° rotationally symmetric peak region reflecting a plane containing a line indicating the central φ angle of the range of φ of the region and the <0001> axis. The surface includes a-region and a + region having mirror symmetry with respect to each other, and each-region rotates with respect to each other about an intersection of a line indicating the angle of φ in the center of the range of φ of the region and the <0001> axis. It has a -L region and a -R region having symmetry, and each + region has a reciprocal symmetry with respect to an intersection of a line indicating an angle of φ at the center of a range of φ of the region and the <0001> axis. And at least one of the -L region, the -R region, the + L region, and the + R region, at least (1-100) and (-1101) on the two main surfaces. )), A value of a second reference peak intensity ratio, which is a ratio of at least the intensity of the second reference multiple diffraction peak derived from (02-21) and (0-220) to the intensity of the first reference X-ray multiple diffraction peak. Are different from each other, and the main surface giving a larger second reference peak intensity ratio is a surface having an off angle from the (0001) plane of 0 ° or more and 2 ° or less. The gallium nitride crystal substrate of the present embodiment has an X-ray multiple diffraction pattern having a main surface whose off angle from the (0001) plane (Ga plane) is 0 ° or more and 2 ° or less and the (000-1) plane (N In any of the X-ray multiple diffraction patterns having a main surface having an off angle of 0 ° or more and 2 ° or less from (surface), since the X-ray multiple diffraction pattern has higher symmetry than a conventional gallium nitride crystal substrate, High crystal quality. In addition, the gallium nitride crystal substrate of the present embodiment has an off-state from the (0001) plane (Ga plane) based on the magnitude of the two second reference peak intensity ratios obtained from the X-ray multiple diffraction patterns of the two main planes. Since the principal surface whose angle is 0 ° or more and 2 ° or less is determined, the polarity can be determined without breaking the gallium nitride crystal substrate.
[4]本発明の一実施形態にかかる窒化ガリウム結晶基板の結晶評価方法は、少なくとも1つの主面を有し、主面が(0001)面および(000−1)面の少なくともいずれかからのオフ角が0°以上2°以下の面である窒化ガリウム結晶基板の結晶を、小発散角入射X線平行ビームを用いたX線回折測定により評価する方法であって、2軸傾斜試料台上に主面が露出するように窒化ガリウム結晶基板を配置し、(0001)面および(000−1)面の法線である[0001]軸とφ軸とが一致し、かつ、[1−100]方向をφ=0°の方向とするように調整する工程と、主面が(0001)面からのオフ角が0°以上2°以下の面のときは0001対称禁制ブラッグ反射について、主面が(000−1)面からのオフ角が0°以上2°以下の面のときは000−1対称禁制ブラッグ反射についての入射角ωおよび回折角2θにおいて、φ軸を回転軸としたφスキャンパターン測定を行なう工程と、を含み、φスキャンパターン測定から得られるX線多重回折ピークの対称性の高さおよびバックグランド強度に対する少なくとも(1−100)および(−1101)に由来する第1基準X線多重回折ピークの強度の比である第1基準ピーク強度比の大きさから、窒化ガリウム結晶基板の結晶の品質を評価する。本実施形態の窒化ガリウム結晶基板の結晶評価方法は、小発散角入射X線平行ビームを用いたX線回折測定において、上記φスキャンパターン測定から得られるX線多重回折ピークの対称性が高いほど、また上記第1基準ピーク強度比が大きいほど、窒化ガリウム結晶基板の結晶品質が高く、窒化ガリウム結晶基板の結晶の品質を詳細に評価することができる。 [4] The crystal evaluation method for a gallium nitride crystal substrate according to one embodiment of the present invention has at least one main surface, and the main surface is formed from at least one of a (0001) plane and a (000-1) plane. A method for evaluating a crystal of a gallium nitride crystal substrate having an off angle of 0 ° or more and 2 ° or less by X-ray diffraction measurement using a small divergence angle incident X-ray parallel beam, comprising: The gallium nitride crystal substrate is arranged such that the main surface is exposed to the substrate, the [0001] axis, which is the normal to the (0001) plane and the (000-1) plane, and the φ axis coincide with each other, and [1-100 Adjusting the direction so that the direction is φ = 0 °, and, when the main surface is a surface whose off angle from the (0001) plane is 0 ° or more and 2 ° or less, the 0001 symmetric forbidden Bragg reflection is applied to the main surface. Has an off angle from the (000-1) plane of 0 ° or more and 2 ° or less Performing a φ scan pattern measurement with the φ axis as a rotation axis at an incident angle ω and a diffraction angle 2θ for a 000-1 symmetric forbidden Bragg reflection in the case of a surface, The magnitude of the first reference peak intensity ratio, which is the ratio of the intensity of the first reference X-ray multiple diffraction peak derived from at least (1-100) and (-1101) to the height of symmetry and background intensity of the multiple diffraction peaks. Therefore, the quality of the crystal of the gallium nitride crystal substrate is evaluated. In the method for evaluating a gallium nitride crystal substrate according to the present embodiment, in the X-ray diffraction measurement using a small divergence incident X-ray parallel beam, the higher the symmetry of the X-ray multiple diffraction peak obtained from the φ scan pattern measurement, the higher the symmetry. Also, as the first reference peak intensity ratio is larger, the crystal quality of the gallium nitride crystal substrate is higher, and the crystal quality of the gallium nitride crystal substrate can be evaluated in detail.
[5]上記窒化ガリウム結晶基板の結晶評価方法において、主面における第1基準X線多重回折ピークの強度に対する少なくとも(02−21)および(0−220)に由来する第2基準多重回折ピークの強度の比である第2基準ピーク強度比の大きさから、窒化ガリウム結晶基板の結晶の極性を評価できる。かかる窒化ガリウム結晶基板の結晶評価方法は、上記主面についてのX線多重回折パターンから得られる第2基準ピーク強度比の大きさにより、当該窒化ガリウム結晶基板を破壊しなくてもその極性を判別できる。 [5] In the method for evaluating a crystal of a gallium nitride crystal substrate, at least the (02-21) and (0-220) of the second reference multiple diffraction peak with respect to the intensity of the first reference X-ray multiple diffraction peak on the main surface. The polarity of the crystal of the gallium nitride crystal substrate can be evaluated from the magnitude of the second reference peak intensity ratio, which is the intensity ratio. Such a crystal evaluation method for a gallium nitride crystal substrate determines the polarity of the gallium nitride crystal substrate without destroying the gallium nitride crystal substrate based on the magnitude of the second reference peak intensity ratio obtained from the X-ray multiple diffraction pattern of the main surface. it can.
[6]上記窒化ガリウム結晶基板の結晶評価方法において、主面における第2基準ピーク強度比が0.18以上となるときの主面を(0001)面からのオフ角が0°以上2°以下の面と評価し、主面における第2基準ピーク強度比が0.18未満となるときの主面を(000−1)面からのオフ角が0°以上2°以下の面と評価できる。かかる窒化ガリウム結晶基板の結晶評価方法は、具体的には、上記主面についてのX線多重回折パターンから得られる第2基準ピーク強度比が0.18以上のときその主面を(0001)面からのオフ角が0°以上2°以下の面(極性面)と評価し、上記主面についてのX線多重回折パターンから得られる第2基準ピーク強度比が0.18未満のときその主面を(000−1)面からのオフ角が0°以上2°以下の面(極性面)と評価することにより、当該窒化ガリウム結晶基板を破壊しなくてもその極性を判別できる。 [6] In the above-described method for evaluating a crystal of a gallium nitride crystal substrate, the off-angle from the (0001) plane of the main surface when the second reference peak intensity ratio on the main surface is 0.18 or more is 0 ° or more and 2 ° or less. The main surface when the second reference peak intensity ratio on the main surface is less than 0.18 can be evaluated as a surface having an off angle from the (000-1) plane of 0 ° or more and 2 ° or less. Specifically, such a crystal evaluation method for a gallium nitride crystal substrate includes a method in which, when the second reference peak intensity ratio obtained from the X-ray multiple diffraction pattern of the main surface is 0.18 or more, the main surface is set to the (0001) plane. Is evaluated as a plane (polar plane) having an off angle from 0 ° to 2 °, and when the second reference peak intensity ratio obtained from the X-ray multiple diffraction pattern of the main plane is less than 0.18, the main plane Is evaluated as a plane (polar plane) having an off angle from the (000-1) plane of 0 ° or more and 2 ° or less, whereby the polarity can be determined without breaking the gallium nitride crystal substrate.
[7]上記窒化ガリウム結晶基板の結晶評価方法において、窒化ガリウム結晶基板は2つの主面を有し、2つの主面における第1基準X線多重回折ピークの強度に対する少なくとも(02−21)および(0−220)に由来する第2基準多重回折ピークの強度の比である第2基準ピーク強度比の値は互いに異なり、より大きな第2基準ピーク強度比を与える主面を(0001)面からのオフ角が0°以上2°以下の面と評価することができる。かかる窒化ガリウム結晶基板の結晶評価方法は、上記2つの主面についてそれぞれ得られる2つの第2基準ピーク強度比の大小から(0001)面からのオフ角が0°以上2°以下の面(極性面)である主面を判別できるため、当該窒化ガリウム結晶基板を破壊しなくても極性が判別できる。 [7] In the method for evaluating a crystal of a gallium nitride crystal substrate, the gallium nitride crystal substrate has two main surfaces, and at least (02-21) and the intensity of the first reference X-ray multiple diffraction peak on the two main surfaces. The values of the second reference peak intensity ratios, which are the ratios of the intensities of the second reference multiple diffraction peaks derived from (0-220), are different from each other, and the main surface giving the larger second reference peak intensity ratio is shifted from the (0001) plane. Can be evaluated as a surface having an off angle of 0 ° or more and 2 ° or less. According to such a crystal evaluation method for a gallium nitride crystal substrate, the plane (polarity) whose off angle from the (0001) plane is 0 ° or more and 2 ° or less is determined based on the magnitude of the two second reference peak intensity ratios obtained for the two principal planes. Since the main surface (plane) can be determined, the polarity can be determined without breaking the gallium nitride crystal substrate.
[本発明の実施形態の詳細]
図面に基づいて、以下に本発明の実施形態を詳細に説明する。まず、GaN(窒化ガリウム)結晶基板の結晶評価方法について説明し、次いで、かかる結晶評価方法により評価される結晶品質が高く極性を有するGaN結晶基板について説明する。本願の明細書、特許請求の範囲および図面において、六方晶系結晶であるGaN結晶について、ある特定の結晶面を(hkil)で表し、結晶の対称性から等価な結晶面の組を{hkil}で表す。また、ある特定の方向を[hkil]で表し、結晶の対称性から等価な方向の組を<hkil>で表す。ここで、h、k、i、およびlは、ミラー指数である。ここで、i=−(h+k)の関係が有る。通常、ミラー指数は、0、自然数、および自然数の上にバーを付した数で示すが、本明細書および図面においては、バーを付した自然数は、その自然数の前にマイナス符号をつけて表す。たとえば、(11−20)の表記は、「イチ・イチ・ニ/バー・ゼロ」の結晶面と読み、[1−100]の表記は、「イチ・イチ/バー・ゼロ・ゼロ」の方向と読む。
[Details of Embodiment of the Present Invention]
Embodiments of the present invention will be described below in detail with reference to the drawings. First, a crystal evaluation method for a GaN (gallium nitride) crystal substrate will be described, and then a GaN crystal substrate having a high crystal quality and a high polarity evaluated by the crystal evaluation method will be described. In the specification, the claims and the drawings of the present application, for a GaN crystal that is a hexagonal crystal, a specific crystal plane is represented by (hkil), and a set of equivalent crystal planes is defined as {hkil} based on crystal symmetry. Expressed by Also, a specific direction is represented by [hkill], and a set of equivalent directions is represented by <hkill> from the symmetry of the crystal. Here, h, k, i, and 1 are Miller indices. Here, there is a relationship of i = − (h + k). Usually, the Miller index is represented by 0, a natural number, and a number with a bar above the natural number. In the present specification and the drawings, a natural number with a bar is represented by adding a minus sign before the natural number. . For example, the notation of (11-20) is read as a crystal plane of "Ichi Ichi ni / Bar Zero", and the notation of [1-100] is expressed in the direction of "Ichi Ichi / Bar Zero Zero". Read.
<実施形態1:GaN結晶基板の結晶評価方法>
図1〜図3を参照して、本実施形態のGaN結晶基板の結晶評価方法は、少なくとも1つの主面を有し、主面が(0001)面および(000−1)面の少なくともいずれかからのオフ角が0°以上2°以下の面(以下、「略(0001)面および略(000−1)面の少なくともいずれかの面」という)であるGaN結晶基板の結晶を、入射側にX線キャピラリーレンズ(発散角0.3°)を使用して0.5mm×0.5mm、0.8mm×0.8mm、1.5mm×0.8mm、および3.0mm×0.8mmのクロススリットにより照射面積を変えることによりX線強度を変化させたCuKα1単色X線の小発散角入射X線平行ビームを用い、受光側に反射率測定用の0.27°スリットを付けた0.27°のコリメータおよびグラファイト平板モノクロメータを用いたX線回折測定により評価する方法である。X線多重回折ピークの測定には、X線の強度を増すために、受光側の0.27°スリットを除いて行う場合もある。
<Embodiment 1: Crystal evaluation method of GaN crystal substrate>
Referring to FIGS. 1 to 3, the crystal evaluation method for a GaN crystal substrate of the present embodiment has at least one main surface, and the main surface is at least one of a (0001) plane and a (000-1) plane. A crystal of a GaN crystal substrate having an off angle of 0 ° or more and 2 ° or less (hereinafter, referred to as “at least one of a (0001) plane and a (000-1) plane”) from the incident side 0.5 mm x 0.5 mm, 0.8 mm x 0.8 mm, 1.5 mm x 0.8 mm, and 3.0 mm x 0.8 mm using an X-ray capillary lens (divergence angle 0.3 °) Using a small divergence incident X-ray parallel beam of CuKα 1 monochromatic X-rays whose X-ray intensity was changed by changing the irradiation area by a cross slit, a 0.27 ° slit for reflectance measurement was provided on the light receiving side. .27 ° collimator and graphite flat This is a method of evaluating by X-ray diffraction measurement using a plate monochromator. In some cases, the measurement of the X-ray multiple diffraction peak is performed by removing the 0.27 ° slit on the light receiving side in order to increase the intensity of X-rays.
図4〜図10、図12および図13を参照して、2軸傾斜試料台上に主面が露出するようにGaN結晶基板を配置し、(0001)面および(000−1)面の法線である<0001>軸とφ軸とが一致し、かつ、[1−100]方向をφ=0°の方向とするように調整する工程と、主面が(0001)面からのオフ角が0°以上2°以下の面(以下、「略(0001)面」という)のときは0001対称禁制ブラッグ反射について、主面が(000−1)面からのオフ角が0°以上2°以下の面(以下、「略(000−1)面」という)のときは000−1対称禁制ブラッグ反射についての入射角ωおよび回折角2θにおいて、φ軸を回転軸としたφスキャンパターン測定を行なう工程と、を含む。さらに、図13〜図18を参照して、φスキャンパターン測定から得られるX線多重回折ピークの対称性の高さおよびバックグランド強度に対する少なくとも(1−100)および(−1101)に由来する第1基準X線多重回折ピークの強度の比である第1基準ピーク強度比の大きさから、GaN結晶基板の結晶の品質を評価する。 Referring to FIGS. 4 to 10, 12 and 13, the GaN crystal substrate is arranged on the biaxially tilted sample stage such that the main surface is exposed, and the (0001) plane and the (000-1) plane are measured. A step of adjusting the <0001> axis, which is a line, to coincide with the φ axis, and adjusting the [1-100] direction to the direction of φ = 0 °, and setting the main surface to an off angle from the (0001) plane. Is 0 ° or more and 2 ° or less (hereinafter referred to as “substantially (0001) plane”), the off angle of the main surface from the (000-1) plane is 0 ° or more and 2 ° with respect to 0001 symmetric forbidden Bragg reflection. In the following planes (hereinafter referred to as “substantially (000-1) plane”), the φ scan pattern measurement using the φ axis as a rotation axis at the incident angle ω and the diffraction angle 2θ for the 000-1 symmetric forbidden Bragg reflection is performed. Performing the steps. Further, referring to FIGS. 13 to 18, the X-ray multiple diffraction peak obtained from the φ scan pattern measurement has at least the (1-100) and (−1101) derived from (1-100) with respect to the height of symmetry and background intensity. The quality of the crystal of the GaN crystal substrate is evaluated from the magnitude of the first reference peak intensity ratio, which is the ratio of the intensity of the one reference X-ray multiple diffraction peak.
本実施形態のGaN結晶基板の結晶評価方法は、本実施形態のGaN結晶基板の結晶評価方法は、小発散角入射X線平行ビームを用いたX線回折測定において、上記φスキャンパターン測定から得られるX線多重回折ピークの対称性が高いほど、また上記第1基準ピーク強度比が大きいほど、GaN結晶基板の結晶品質が高く、GaN結晶基板の結晶の品質を詳細に評価することができる。 The crystal evaluation method for a GaN crystal substrate according to the present embodiment is the same as the crystal evaluation method for a GaN crystal substrate according to the embodiment, except that the X-ray diffraction measurement using a small-divergence incident X-ray parallel beam is performed from the φ scan pattern measurement. The higher the symmetry of the obtained X-ray multiple diffraction peak and the higher the first reference peak intensity ratio, the higher the crystal quality of the GaN crystal substrate, and the more the quality of the crystal of the GaN crystal substrate can be evaluated.
本実施形態のGaN結晶基板の結晶品質の評価方法は、少なくとも1つの主面を有し、主面が略(0001)面および略(000−1)面の少なくともいずれかの面であるGaN結晶基板のX線回折測定において、0002対称ブラッグ反射または000−2対称ブラッグ反射による大きな回折ピーク以外に、消滅則から示される構造因子から定められる0001対称禁制ブラッグ反射および000−1対称禁制ブラッグ反射の少なくともいずれかの反射の位置に観測される回折ピークを利用するものである。かかる回折は、結晶表面に平行でない結晶内部2つ以上の回折強度の強い結晶面における多重回折であり、Umweganregung(遠回り)回折とも呼ばれる。かかる多重回折は、特に、単結晶が完全結晶に近づくほど、よく観察される。また、単結晶材料の結晶構造の原子が理論計算における剛体球モデルでなく、原子結合の方向に延びる形状の原子雲を有していることから、構造因子がゼロではないことが、バックグランドが観測される原因と考えられる。かかるバックグランドの領域は、上記のX線の多重回折が生じていない領域である。かかる多重回折の測定においては、GaN結晶基板の<0001>軸とGaN結晶基板の回転軸であるφ軸とを一致させるために、2軸傾斜試料台を用いたGaN結晶基板の軸立てが必要である。 In the method for evaluating the crystal quality of a GaN crystal substrate according to the present embodiment, a GaN crystal having at least one main surface and at least one of a substantially (0001) plane and a substantially (000-1) plane is used. In the X-ray diffraction measurement of the substrate, in addition to the large diffraction peak due to the 0002 symmetric Bragg reflection or the 000-2 symmetric Bragg reflection, the 0001 symmetric forbidden Bragg reflection and the 000-1 symmetric forbidden Bragg reflection determined from the structure factor indicated by the annihilation law This utilizes a diffraction peak observed at least at one of the reflection positions. Such diffraction is multiple diffraction on two or more strong crystal planes inside the crystal that are not parallel to the crystal surface, and is also referred to as Umweganregung (detour) diffraction. Such multiple diffraction is particularly well observed as the single crystal approaches a perfect crystal. Also, since the atoms of the crystal structure of the single crystal material are not a rigid sphere model in the theoretical calculation but have an atomic cloud extending in the direction of atomic bonding, the fact that the structural factor is not zero means that the background is Probable cause. Such a background area is an area where the above-mentioned multiple diffraction of X-rays has not occurred. In such multiple diffraction measurement, it is necessary to set the GaN crystal substrate using a biaxially tilted sample stage in order to match the <0001> axis of the GaN crystal substrate with the φ axis which is the rotation axis of the GaN crystal substrate. It is.
本発明者らは、小発散角入射X線平行ビームを用いた0001対称禁制ブラッグ反射または000−1対称禁制ブラッグ反射の入射角ωおよび回折角2θにおける[0001]軸を回転軸としたφスキャンパターン測定において、結晶表面近傍内部の結晶の表面に平行でない結晶面におけるX線の多重回折により観察されるX線多重回折ピークを利用して、GaN結晶基板の主面近傍内部の結晶品質を非破壊的に評価する本実施形態のGaN結晶基板の結晶評価方法を完成させた。 The present inventors have proposed a φ scan with the [0001] axis as the rotation axis at the incident angle ω and the diffraction angle 2θ of 0001 symmetric forbidden Bragg reflection or 000-1 symmetric forbidden Bragg reflection using a small-divergence incident X-ray parallel beam. In the pattern measurement, the crystal quality inside the vicinity of the main surface of the GaN crystal substrate is measured by using the X-ray multiple diffraction peak observed by the multiple diffraction of X-rays on the crystal plane not parallel to the surface of the crystal inside the vicinity of the crystal surface. The crystal evaluation method of the GaN crystal substrate of the present embodiment for destructive evaluation has been completed.
本実施形態のGaN結晶基板の結晶評価方法は、<0001>軸を回転軸としたφスキャンの回転角φに依存して結晶表面近傍の内部の結晶面でのX線の多重回折が生じるため、結晶基板表面近傍における結晶面内の均一性の評価に適している。 According to the method for evaluating a crystal of a GaN crystal substrate of the present embodiment, multiple diffraction of X-rays occurs on an internal crystal plane near the crystal surface depending on the rotation angle φ of φ scan with the <0001> axis as the rotation axis. It is suitable for evaluating uniformity in the crystal plane near the surface of the crystal substrate.
従来のGaN結晶基板の結晶品質の評価方法である、ω−2θ測定におけるωロッキングカーブの0002対称ブラッグ反射による回折ピークの半値幅を利用した評価方法においては、主面からの深さ方向の結晶構造に注目した場合、0002対称ブラッグ反射の入射角ωが17.2833°である。これに対し、本実施形態のGaN結晶基板の結晶評価方法においては、0001対称禁制ブラッグ反射の入射角ωは8.5428°であり、0002対称ブラッグ反射の入射角の略半分以下の入射角であることから、主面でのX線の試料透過厚さは略半分となり、主面(すなわち結晶表面)に近い結晶品質の評価が可能となり、電子・光デバイスのエピタキシャル結晶基板の評価として、より好ましいと考えられる。さらに、入射X線がポイントフォーカスの平行ビームで0.5mm×0.5mm、0.8mm×0.8mm、1.5mm×0.8mm、または3.0mm×0.8mmの点状であるため、測定場所を面内で動かすことにより、主面近傍面内の結晶構造の面内の均一性などを非破壊で評価可能である。 In a conventional evaluation method of the crystal quality of a GaN crystal substrate, which uses the half-width of the diffraction peak due to 0002 symmetric Bragg reflection of the ω rocking curve in the ω-2θ measurement, the crystal in the depth direction from the main surface is used. Focusing on the structure, the incident angle ω of the 0002 symmetric Bragg reflection is 17.2833 °. On the other hand, in the crystal evaluation method of the GaN crystal substrate of the present embodiment, the incident angle ω of the 0001 symmetric forbidden Bragg reflection is 8.5428 °, and the incident angle is approximately half or less of the incident angle of the 0002 symmetric Bragg reflection. Because of this, the sample transmission thickness of X-rays on the main surface is reduced to approximately half, and the evaluation of crystal quality close to the main surface (that is, the crystal surface) becomes possible. It is considered preferable. Further, since the incident X-ray is a point-focused parallel beam having a dot shape of 0.5 mm × 0.5 mm, 0.8 mm × 0.8 mm, 1.5 mm × 0.8 mm, or 3.0 mm × 0.8 mm. By moving the measurement location in the plane, the in-plane uniformity and the like of the crystal structure in the plane near the main surface can be evaluated nondestructively.
(X線回折装置の構造設定)
X線回折装置は、モノクロメータにより単色X線を検出することができ、発散角の小さい平行ビームを利用すること以外は特に制限はないが、操作性および作業性が高い観点から、4軸のゴニオメータ方式の採用が好ましい。X線の光軸は固定で、入射角ω、回折角(反射角)2θ、GaN結晶基板位置の座標x、y、z、GaN結晶基板の回転角φ、GaN結晶基板の煽り角χなどが設定される。
(Structure setting of X-ray diffractometer)
The X-ray diffractometer can detect monochromatic X-rays with a monochromator, and is not particularly limited except that a parallel beam with a small divergence angle is used. It is preferable to use a goniometer method. The optical axis of the X-ray is fixed, and the incident angle ω, the diffraction angle (reflection angle) 2θ, the coordinates x, y, z of the GaN crystal substrate position, the rotation angle φ of the GaN crystal substrate, the tilt angle χ of the GaN crystal substrate, etc. Is set.
(小発散角入射X線平行ビームの使用)
本実施形態のGaN結晶基板の結晶評価方法においては、0001対称禁制ブラッグ反射および000−1対称禁制ブラッグ反射の少なくともいずれかの反射の[0001]軸を回転軸としたφスキャンパターン測定のために、X線回折装置の入射X線の発散角を小さくする必要があることから、図1に示すような平行ビーム法を用いる。
(Use of small divergence angle incident X-ray parallel beam)
In the crystal evaluation method of the GaN crystal substrate of the present embodiment, the φ scan pattern measurement with the [0001] axis of at least one of 0001 symmetric forbidden Bragg reflection and 000-1 symmetric forbidden Bragg reflection as a rotation axis is performed. Since it is necessary to reduce the divergence angle of the incident X-rays of the X-ray diffraction apparatus, a parallel beam method as shown in FIG. 1 is used.
(X線回折装置の入射側設定)
図1および図2を参照して、平行ビーム法において、X線の平行ビームを得るために、X線管球に加えて、X線キャピラリーレンズおよびモノキャピラリーの少なくともいずれかを用いる。X線キャピラリーレンズを用いた平行ビーム法では角0.3mm×0.3mmのビーム径が得られ、モノキャピラリーを用いた平行ビーム法では直径0.1mmのビーム径が得られる。X線キャピラリーレンズを用いてもモノキャピラリーを用いてもX線の発散角は同じであり、モノキャピラリーを用いるとX線の強度が低下するため、X線キャピラリーレンズを用いた平行ビーム法が好ましい。本実施形態においては、X線管球として、ポイントフォーカスCuX線管球を電圧45kVおよび電流40mAで作動させる。さらに、X線キャピラリーレンズを使用して0.5mm×0.5mm、0.8mm×0.8mm、1.5mm×0.8mm、および3.0mm×0.8mmのクロススリットにより照射面積を変えることによりX線強度を変化させた小発散角入射X線平行ビームを得る。ここで、クロススリットの開きには幅Wと高さHとが有り、幅Wは試料表面横方向のX線の照射長さに対応し、高さHは試料表面縦方向のX線の広がりを意味しX線の発散角の量に対応し、クロススリットの開き面積W×HはX線の照射面積に対応する。X線キャピラリーレンズは、モノキャピラリーレンズを束ねて構成されているため、照射面積が変化してもX線の平行ビームの発散角が同一であり、多重回折には影響しない。なお、本実施形態においては、受光側にグラファイト平板モノクロメータ(CuKα1単色X線選択用の分光器)を配置してCuKα1単色X線としているが、入射側にCuKα1単色X線選択用の分光器を配置することも可能である。
(Setting of the incident side of the X-ray diffractometer)
Referring to FIGS. 1 and 2, in the parallel beam method, in order to obtain a parallel beam of X-rays, at least one of an X-ray capillary lens and a monocapillary is used in addition to the X-ray tube. In the parallel beam method using an X-ray capillary lens, a beam diameter of 0.3 mm × 0.3 mm is obtained, and in the parallel beam method using a monocapillary, a beam diameter of 0.1 mm is obtained. The divergence angle of X-rays is the same regardless of whether an X-ray capillary lens or a monocapillary is used, and the intensity of X-rays decreases when a monocapillary is used. Therefore, a parallel beam method using an X-ray capillary lens is preferable. . In the present embodiment, a point-focus Cu X-ray tube is operated at a voltage of 45 kV and a current of 40 mA as the X-ray tube. Further, the irradiation area is changed using a cross slit of 0.5 mm × 0.5 mm, 0.8 mm × 0.8 mm, 1.5 mm × 0.8 mm, and 3.0 mm × 0.8 mm using an X-ray capillary lens. As a result, a small divergence angle incident X-ray parallel beam whose X-ray intensity is changed is obtained. Here, there are a width W and a height H in the opening of the cross slit, the width W corresponds to the irradiation length of the X-ray in the lateral direction of the sample surface, and the height H is the spread of the X-ray in the vertical direction of the sample surface. And the open area W × H of the cross slit corresponds to the X-ray irradiation area. Since the X-ray capillary lens is formed by bundling mono-capillary lenses, the divergence angle of the parallel X-ray beam is the same even if the irradiation area changes, and does not affect the multiple diffraction. In the present embodiment, although a CuKa 1 monochromatic X-ray by placing a graphite flat monochromator (CuKa 1 monochromatic X-ray spectrometer for selection) on the light receiving side, CuKa 1 monochromatic X-rays for selection on the incident side Can also be arranged.
なお、多重回折ピークが生じるφの値は、X線の波長と0001対称禁制ブラッグ反射または000−1対称禁制ブラッグ反射の反射面とに依存するため、X線の線源としては、本実施形態で用いるCuKα1(波長:1.54Å)以外に、Niフィルタを除いた場合のCuKβ(波長:1.39Å)を用いることもできる。 The value of φ at which multiple diffraction peaks occur depends on the wavelength of X-rays and the reflecting surface of 0001 symmetric forbidden Bragg reflection or 000-1 symmetric forbidden Bragg reflection. In addition to CuKα 1 (wavelength: 1.54 °), CuKβ (wavelength: 1.39 °) without a Ni filter can also be used.
(X線回折装置の受光部側設定)
図1および図3を参照して、入射X線の発散角の小さい回折X線を検出するため、受光側においても0.27°コリメータと反射率測定用の0.27°スリットを利用する。GaN結晶基板の軸立てには上記スリットは必要であるが、X線多重回折ピークの測定にはX線強度を強くする目的で上記スリットは取り除いてもよい。また、CuKα1単色X線を選択する必要があることから、CuKα1単色X線選択用の平行板グラファイトモノクロメータを使用する。コリメータの後方に上記スリットを入れて、横方向に広がったX線をカットすることにより、受光部で検出されるX線の強度は小さくなる。上記スリットを入れることにより、検出されるX線は、強度が小さくなるが、散乱X線の混入が防止される。なお、入射側にCuKα1単色X線選択用の分光器を配置する場合は、CuKα1単色X線選択用の平行板グラファイトモノクロメータを省略できる場合がある。
(Setting on the light receiving part side of the X-ray diffractometer)
Referring to FIGS. 1 and 3, in order to detect a diffracted X-ray having a small divergence angle of the incident X-ray, a 0.27 ° collimator and a 0.27 ° slit for reflectance measurement are also used on the light receiving side. Although the above-mentioned slit is necessary for axially setting the GaN crystal substrate, the above-mentioned slit may be removed for the purpose of increasing the X-ray intensity for measuring the X-ray multiple diffraction peak. Further, since it is necessary to select a CuKa 1 monochromatic X-rays, using a parallel plate graphite monochromator CuKa 1 monochromatic X-ray for selection. By inserting the slits behind the collimator and cutting the X-rays spread in the horizontal direction, the intensity of the X-rays detected by the light receiving unit is reduced. By inserting the slit, the intensity of the X-ray to be detected is reduced, but mixing of the scattered X-ray is prevented. In the case of placing a CuKa 1 monochromatic X-ray spectrometer for selection on the incident side may be omitted parallel plate graphite monochromator CuKa 1 monochromatic X-ray for selection.
なお、X線の線源としてCuKβを用いる場合には、受光側にはモノクロメータを使用しない電荷結合素子(CCD)型の高速半導体アレイ検出器(X’Celerator)が用いられる。 When CuKβ is used as the X-ray source, a charge-coupled device (CCD) type high-speed semiconductor array detector (X′Celerator) that does not use a monochromator is used on the light receiving side.
(X線回折装置の試料台設定)
試料台として、2軸傾斜試料台を用いる。図4Aおよび図4Bを参照して、2軸傾斜試料台とは、試料台の一部が2層構造になり、上層部下側の中央を支点にしてx軸とy軸方向の傾斜角を調整できるようにx軸およびy軸の各負側にSx、Syなるネジを、x軸およびy軸の各正側下部にバネ付き固定点を取り付けて、試料台の上層部表面の法線方向を調整できるようになっている試料台をいう。GaN結晶基板は、GaN結晶からの切り出しにより、主面((0001)面または(000−1)面からのオフ角が0°以上2°以下の面)の法線方向と結晶面である(0001)面または(000−1)面の法線方向とは必ずしも一致しておらず、試料台の回転軸であるφ軸と、試料台の上層部に貼り付けられたGaN結晶基板の(0001)面および(000−1)面)の法線である<0001>軸とが必ずしも一致していない。しかし、上記のSxおよびSyのネジを利用してx軸方向とy軸方向の上層部の2軸傾斜を調節すること(GaN結晶基板の軸立てともいう、以下同じ)により、2軸傾斜試料台のφ軸と、2軸傾斜試料台の上層部に貼り付けられたGaN結晶基板の(0001)面および(000−1)面の法線である<0001>軸と、を一致させることができる。
(Sample stage setting of X-ray diffractometer)
A biaxially inclined sample stage is used as the sample stage. Referring to FIGS. 4A and 4B, the biaxially tilted sample stage is such that a part of the sample stage has a two-layer structure, and the tilt angles in the x-axis and y-axis directions are adjusted with the center at the lower side of the upper layer as a fulcrum. Screws of Sx and Sy are attached to each negative side of the x-axis and y-axis, and a fixed point with a spring is attached to the lower part of each positive side of the x-axis and the y-axis so that the normal direction of the upper surface of the sample table can be adjusted. A sample stage that can be adjusted. The GaN crystal substrate is cut out from a GaN crystal to have a normal direction and a crystal plane of a main surface (a surface having an off angle of 0 ° or more and 2 ° or less from a (0001) plane or a (000-1) plane) ( The normal direction of the (0001) plane or the (000-1) plane does not always match, and the φ axis, which is the rotation axis of the sample stage, and the (0001) of the GaN crystal substrate attached to the upper layer of the sample stage. ) Plane and (000-1) plane) do not necessarily coincide with the <0001> axis. However, by adjusting the biaxial inclination of the upper layer portion in the x-axis direction and the y-axis direction using the above-mentioned Sx and Sy screws (also referred to as “axis setting of the GaN crystal substrate”, the same applies hereinafter), The φ axis of the table and the <0001> axis, which is the normal to the (0001) plane and the (000-1) plane of the GaN crystal substrate attached to the upper layer of the biaxially inclined sample table, can be matched. it can.
(2軸傾斜試料台にGaN結晶基板を配置して調整する工程)
まず、2軸傾斜試料台にGaN結晶基板を配置する工程は、2軸傾斜試料台の上層部上に、GaN結晶基板を、その主面が露出するように、配置する。
(Step of arranging and adjusting a GaN crystal substrate on a biaxially inclined sample stage)
First, in the step of arranging the GaN crystal substrate on the biaxially inclined sample stage, the GaN crystal substrate is arranged on the upper layer of the biaxially inclined sample stage so that its main surface is exposed.
2軸傾斜試料台の上層部上に主面が露出するように配置されたGaN結晶基板を、(0001)面および(000−1)面の法線である<0001>軸とφ軸とが一致し、かつ、[1−100]方向をφ=0°の方向とするように調整する工程は、特に制限はないが、効率的に調整する観点から、以下の工程が好ましい。 The GaN crystal substrate arranged so that the main surface is exposed on the upper layer portion of the biaxially tilted sample stage is moved along the <0001> axis and the φ axis which are the normals of the (0001) plane and the (000-1) plane. There is no particular limitation on the step of adjusting the orientation so that it is the same and the [1-100] direction is set to the direction of φ = 0 °, but the following steps are preferred from the viewpoint of efficient adjustment.
まず、少なくとも1つの主面を有し、主面が略(0001)面および略(000−1)面の少なくともいずれかの面であるGaN結晶基板の0002対称ブラッグ反射および000−2対称ブラッグ反射の少なくともいずれかの反射の回折位置(入射角ωが17.2833°、回折角2θが34.5666°、GaN結晶基板の煽り角χが0.0°)に検出器を設置して、z軸の値をあらかじめ定め、x軸方向調整のためにφ=0°において0002対称ブラッグ反射または000−2対称ブラッグ反射の入射角ωを変化させるωロッキングカーブを測定し、その最大ピークの位置ωmax0を記録する。 First, 0002 symmetric Bragg reflection and 000-2 symmetric Bragg reflection of a GaN crystal substrate having at least one main surface and the main surface being at least one of a substantially (0001) plane and a substantially (000-1) plane The detector is installed at at least one of the diffraction positions of the reflection (the incident angle ω is 17.2833 °, the diffraction angle 2θ is 34.5666 °, and the tilt angle の of the GaN crystal substrate is 0.0 °). The value of the axis is determined in advance, the ω rocking curve that changes the incident angle ω of the 0002 symmetric Bragg reflection or the 000-2 symmetric Bragg reflection at φ = 0 ° for adjustment in the x-axis direction is measured, and the maximum peak position ω Record max0 .
次いで、φ=180°において、上記と同様に0002対称ブラッグ反射または000−2対称ブラッグ反射のωロッキングカーブを測定し、その最大ピークの位置ωmax180を記録する。両者の差Δωx=ωmax0−ωmax180が0.001°以下の値になるようにSxを調整する(x軸の調整)。z軸スキャンを行いピーク位置で正確なz軸の値を決める(z軸の調整)。 Next, at φ = 180 °, the ω rocking curve of the 0002 symmetric Bragg reflection or the 000-2 symmetric Bragg reflection is measured in the same manner as described above, and the maximum peak position ω max180 is recorded. Sx is adjusted so that the difference Δω x = ω max0 −ω max180 becomes a value of 0.001 ° or less (adjustment of the x-axis). A z-axis scan is performed to determine an accurate z-axis value at the peak position (adjustment of the z-axis).
次いで、y軸方向調整のために、上記と同様に、φ=90°とφ=270°とにおいて、0002対称ブラッグ反射または000−2対称ブラッグ反射のωロッキングカーブを測定し、最大ピークの位置ωmax90とωmax270との差Δωy=ωmax90−ωmax270が0.001°以下の値になるようにSyを調整する(y軸の調整)。z軸スキャンを行いピーク位置で正確なz軸の値を決める(z軸の調整:z値の変更)。 Then, for adjustment in the y-axis direction, the ω rocking curve of the 0002 symmetric Bragg reflection or the 000-2 symmetric Bragg reflection was measured at φ = 90 ° and φ = 270 ° in the same manner as described above, and the position of the maximum peak was measured. the difference Δω y = ω max90 -ω max270 between omega Max90 and omega Max270 to adjust the Sy so that the value of 0.001 ° or less (the adjustment of y-axis). An accurate z-axis value is determined at the peak position by performing z-axis scanning (adjustment of z-axis: change of z-value).
上記のように、x軸およびz軸の調整と、y軸およびz軸の調整とを数回切り返して行い、2軸傾斜試料台上層部に貼り付けられたGaN結晶基板の結晶面(たとえば、(0001)面または(000−1)面)の法線方向とφ軸とを一致させる。このときにωの値が0002対称ブラッグ反射または000−2対称ブラッグ反射の2θ角に対応するようにωのオフセット値を求める。この状態で、2軸傾斜試料台の煽り角χ(Chi)の最適化を行うためにχスキャンを行い、χのオフセット値を定める。 As described above, the adjustment of the x-axis and the z-axis and the adjustment of the y-axis and the z-axis are repeated several times, and the crystal plane of the GaN crystal substrate (for example, The normal direction of the (0001) plane or the (000-1) plane) is made to coincide with the φ axis. At this time, the offset value of ω is determined so that the value of ω corresponds to the 2θ angle of 0002 symmetric Bragg reflection or 000-2 symmetric Bragg reflection. In this state, in order to optimize the tilt angle χ (Chi) of the biaxially tilted sample stage, χ scan is performed, and the offset value of χ is determined.
次いでφ軸の回転角φと<0001>軸の方位角とを一致させるために、10−11非対称ブラッグ反射の回折位置(入射角ωが18.4370°、回折角2θが36.8740、煽り角χが61.96°)に検出器を設置してφスキャンを行い、[1−100]方向のときに生じるピークの位置をφ=0°としてφのオフセット値を定める。 Next, in order to make the rotation angle φ of the φ axis coincide with the azimuth of the <0001> axis, the diffraction position of the 10-11 asymmetric Bragg reflection (incident angle ω is 18.4370 °, diffraction angle 2θ is 36.8740, The detector is set at an angle 61 of 61.96 °), φ scan is performed, and the position of the peak generated in the [1-100] direction is set to φ = 0 ° to determine the offset value of φ.
上記のようにして調整される<0001>軸とφ軸との一致は、以下のようにして確認できる。すなわち、図11を参照して、GaN結晶基板の0002対称ブラッグ反射の回折角2θのピーク位置で、−180°から180°までの360°に亘ってφスキャンを行う。また、GaN結晶基板の000−2対称ブラッグ反射の回折角2θのピーク位置で、−180°から180°までの360°に亘ってφスキャンを行う。これらのφスキャンの理想の結果は、ピーク強度がφに対して一様であることである。しかし、実際には、<0001>軸とφ軸との一致の調整の精度により脈動が生じる。かかる脈動の幅(最大値に対する最小値の幅)は、GaN結晶基板の上記軸立てを行った後でも、主面近傍の結晶構造により生じるため、この脈動幅が小さいこと(たとえば、最大値に対して、25%以下、好ましくは20%以下、より好ましくは15%以下)は、GaN結晶基板の結晶の一様性を示すものとなる。 The coincidence between the <0001> axis and the φ axis adjusted as described above can be confirmed as follows. That is, referring to FIG. 11, φ scan is performed over 360 ° from −180 ° to 180 ° at the peak position of diffraction angle 2θ of 0002 symmetric Bragg reflection of the GaN crystal substrate. At the peak position of the diffraction angle 2θ of the 000-2 symmetric Bragg reflection of the GaN crystal substrate, φ scan is performed over 360 ° from -180 ° to 180 °. The ideal result of these φ scans is that the peak intensity is uniform with φ. However, actually, pulsation occurs due to the accuracy of adjusting the coincidence between the <0001> axis and the φ axis. Since the width of the pulsation (the width of the minimum value with respect to the maximum value) is caused by the crystal structure near the main surface even after the above-described axis setting of the GaN crystal substrate, the pulsation width should be small (for example, the maximum value). On the other hand, 25% or less, preferably 20% or less, more preferably 15% or less) indicates the uniformity of the crystal of the GaN crystal substrate.
(禁制ブラッグ反射の測定)
図6を参照して、0001対称禁制ブラッグ反射の<0001>軸を回転軸としたφスキャンパターン測定を行なう工程において、GaN結晶基板の回転角φを−180°から180°までスキャンさせると、対称性の高い回折パターンが現れる(図12および図13を参照)。図5および図6を対比すると、0002対称ブラッグ反射測定における入射角ωが17.2833°であるのに対して、0001対称禁制ブラッグ反射測定における入射角ωは8.5428°と略半分となっているため、結晶表面近傍の結晶品質を詳細に知ることができる。
(Measurement of forbidden Bragg reflection)
Referring to FIG. 6, in the step of performing the φ scan pattern measurement using the <0001> axis of the 0001 symmetric forbidden Bragg reflection as the rotation axis, when the rotation angle φ of the GaN crystal substrate is scanned from −180 ° to 180 °, A highly symmetric diffraction pattern appears (see FIGS. 12 and 13). 5 and FIG. 6, the incident angle ω in the 0002 symmetric Bragg reflection measurement is 17.2833 °, whereas the incident angle ω in the 0001 symmetric forbidden Bragg reflection measurement is 8.5428 °, which is almost half. Therefore, the crystal quality near the crystal surface can be known in detail.
なお、図5は(0002)面における0002対称ブラッグ反射についての入射角ω、回折角2θ、およびφ軸の関係を記述するが、(0002)面の反対側の(000−2)面における000−2対称ブラッグ反射についての入射角ω、回折角2θ、およびφ軸も同様の関係が有る。GaN結晶基板の結晶が一様で均一の場合は、図11に示す様に、000−2対称ブラッグ反射は0002対称ブラッグ反射に比べて大きく、前者の最大強度は37344cpsであり後者の最大強度35714cpsに比べて大きい。 FIG. 5 describes the relationship between the incident angle ω, the diffraction angle 2θ, and the φ axis with respect to the 0002 symmetric Bragg reflection on the (0002) plane, but 000 in the (000-2) plane on the opposite side of the (0002) plane. The incident angle ω, the diffraction angle 2θ, and the φ axis for the -2 symmetric Bragg reflection have the same relationship. When the crystal of the GaN crystal substrate is uniform and uniform, as shown in FIG. 11, the 000-2 symmetric Bragg reflection is larger than the 0002 symmetric Bragg reflection, the former has a maximum intensity of 37344 cps, and the latter has a maximum intensity of 35714 cps. Larger than.
図6は(0001)面における0001対称禁制ブラッグ反射についての入射角ω、回折角2θ、およびφ軸の関係を記述するが、(0001)面の反対側の(000−1)面における000−1対称禁制ブラッグ反射についての入射角ω、回折角2θ、およびφ軸も同様の関係が有る。 FIG. 6 describes the relationship between the incident angle ω, the diffraction angle 2θ, and the φ-axis for the 0001 symmetric forbidden Bragg reflection on the (0001) plane, and 000− in the (000-1) plane on the opposite side of the (0001) plane. The incident angle ω, the diffraction angle 2θ, and the φ axis for one symmetric forbidden Bragg reflection have a similar relationship.
(GaN結晶基板の結晶品質の評価)
結晶表面である主面の近傍の結晶品質は、φスキャンパターン測定から得られるX線多重回折ピークの対称性およびバックグランド強度に対する少なくとも(1−100)および(−1100)に由来する第1基準多重回折ピーク強度の比である第1基準ピーク強度比の大きさから評価する。ここで、結晶品質の高いGaN結晶基板ほど、X線多重回折ピークの対称性が高くかつ第1基準ピーク強度比が高くなることから、X線多重回折ピークの対称性が高くかつ第1基準ピーク強度比が高いほどGaN結晶基板の結晶品質が高いと評価する。
(Evaluation of crystal quality of GaN crystal substrate)
The crystal quality near the main surface, which is the crystal surface, is determined based on at least (1-100) and (-1100) relative to the symmetry and background intensity of the X-ray multiple diffraction peak obtained from the φ scan pattern measurement. Evaluation is made from the magnitude of the first reference peak intensity ratio, which is the ratio of the multiple diffraction peak intensities. Here, a GaN crystal substrate having a higher crystal quality has a higher symmetry of the X-ray multiple diffraction peak and a higher first reference peak intensity ratio. Therefore, the symmetry of the X-ray multiple diffraction peak is higher and the first reference peak is higher. It is evaluated that the higher the intensity ratio, the higher the crystal quality of the GaN crystal substrate.
(禁制ブラッグ反射の測定とGaN結晶基板の結晶構造との関係)
0001対称禁制ブラッグ反射または000−1対称禁制ブラッグ反射の[0001]軸を回転軸としたφスキャンパターン測定とGaN結晶基板の結晶構造との関係について、以下に説明する。
(Relationship between forbidden Bragg reflection measurement and crystal structure of GaN crystal substrate)
The relationship between the φ scan pattern measurement using the [0001] axis of the 0001 symmetric forbidden Bragg reflection or the 000-1 symmetric forbidden Bragg reflection as the rotation axis and the crystal structure of the GaN crystal substrate will be described below.
(1)GaN結晶基板の結晶構造
GaN結晶基板を形成するGaN結晶は、六方晶系のウルツ鉱型の結晶構造を有する。格子定数は、a(a1=a2=a3)が0.31891nm、cが0.51855nmである。結晶面として、図7に示す(0001)面および(000−1)面(両者を合わせて{0001}面(c面)という)、図8に示す(0002)面および(000−2)面(両者を合わせて{0002}面((c/2)面という)などがある。図8は、結晶格子におけるGa原子およびN原子の配置を示す。図6〜図8を参照して、GaN結晶基板は、その結晶構造とGa原子およびN原子の配置とから、<0001>軸(c軸)方向に極性を有する。(0001)面はGa原子により構成されるGa面であり、(000−1)面はN原子により構成されるN面である。
(1) Crystal Structure of GaN Crystal Substrate The GaN crystal forming the GaN crystal substrate has a hexagonal wurtzite crystal structure. As for the lattice constants, a (a 1 = a 2 = a 3 ) is 0.31891 nm and c is 0.51855 nm. The (0001) plane and (000-1) plane shown in FIG. 7 (together, the {0001} plane (c plane)) shown in FIG. 7 and the (0002) plane and (000-2) plane shown in FIG. (They include the {0002} plane (referred to as (c / 2) plane).) Fig. 8 shows the arrangement of Ga atoms and N atoms in the crystal lattice. The crystal substrate has a polarity in the <0001> axis (c-axis) direction based on the crystal structure and the arrangement of Ga atoms and N atoms, where the (0001) plane is a Ga plane composed of Ga atoms and (000). -1) The plane is an N plane composed of N atoms.
(2)GaN結晶基板におけるX線の入射方位と結晶方位との関係
GaN結晶基板を形成するGaN結晶は、六方晶系のウルツ鉱型の結晶構造を有し、空間群No.186のP63mcの6回回反対称性を有するが、c軸に垂直な平面においては3回回転対称性を有する。そこで、GaN結晶基板は、その[1−100]方向をφ=0°の方向と一致させるとき、図10に示す結晶方位を有し、c軸に垂直な結晶面を、3回回転対称であるA領域(φが−60°から60°までの領域)、B領域(φが60°から180°までの領域)およびC領域(φが−180°から−60°までの領域)の3領域に分ける。
(2) Relationship between X-ray incident direction and crystal orientation on GaN crystal substrate The GaN crystal forming the GaN crystal substrate has a hexagonal wurtzite-type crystal structure, and has a space group no. It has a six-fold antisymmetry of 186 P6 3 mc, but has three-fold rotational symmetry in a plane perpendicular to the c-axis. Therefore, when the [1-100] direction is made to coincide with the direction of φ = 0 °, the GaN crystal substrate has a crystal orientation shown in FIG. A region A (a region where φ is −60 ° to 60 °), a B region (a region where φ is 60 ° to 180 °) and a C region (a region where φ is −180 ° to −60 °) Divide into regions.
A領域は、φ=0°を示す線および<0001>軸を含む面を鏡映面として互いに鏡映対称性を有するA-領域(φが−60°から0°までの領域)とA+領域(φが0°から60°までの領域)に分ける。B領域は、φ=120°を示す線および<0001>軸を含む面を鏡映面として互いに鏡映対称性を有するB-領域(φが60°から120°までの領域)とB+領域(φが120°から180°までの領域)に分ける。C領域は、φ=−120°を示す線および<0001>軸を含む面を鏡映面として互いに鏡映対称性を有するC-領域(φが−180°から−120°までの領域)とC+領域(φが−120°から−60°までの領域)に分ける。 The A region is an A - region (a region where φ is from −60 ° to 0 °) and A + which have a mirror symmetry with respect to a plane including a line indicating φ = 0 ° and a plane including the <0001> axis. It is divided into regions (regions where φ is from 0 ° to 60 °). The B region is a B − region (a region where φ is from 60 ° to 120 °) and a B + region having a mirror symmetry with respect to each other with a plane including a line indicating φ = 120 ° and a plane including the <0001> axis as a mirror plane. (Region where φ is from 120 ° to 180 °). The C region is a C - region (a region in which φ is from −180 ° to −120 °) having a mirror symmetry with respect to a plane including a line indicating φ = −120 ° and a plane including the <0001> axis as a mirror plane. C + region (region where φ is from −120 ° to −60 °).
A-領域は、さらに、φ=−30°を示す線および<0001>軸の交点を中心として互いに回反対称性を有するA-L領域(φが−60°から−30°までの領域)とA-R領域(φが−30°から0°まで)とに分ける。A+領域は、φ=30°を示す線および<0001>軸の交点を中心として互いに回反対称性を有するA+L領域(φが0°から30°までの領域)とA+R領域(φが30°から60°まで)とに分ける。B-領域は、さらに、φ=90°を示す線および<0001>軸の交点を中心として互いに回反対称性を有するB-L領域(φが60°から90°までの領域)とB-R領域(φが90°から120°まで)とに分ける。B+領域は、さらに、φ=150°を示す線および<0001>軸の交点を中心として互いに回反対称性を有するB+L領域(φが120°から150°までの領域)とB+R領域(φが150°から180°まで)とに分ける。C-領域は、さらに、φ=−150°を示す線および<0001>軸の交点を中心として互いに回反対称性を有するC-L領域(φが−180°から−150°までの領域)とC-R領域(φが−150°から−120°まで)とに分ける。C+領域は、さらに、φ=−90°を示す線および<0001>軸の交点を中心として互いに回反対称性を有するC+L領域(φが−120°から−90°までの領域)とC+R領域(φが−90°から−30°まで)とに分ける。このようにして、c軸に垂直な結晶面は、φが−180°から180°まで、C-L領域、C-R領域、C+L領域、C+R領域、A-L領域、A-R領域、A+L領域、A+R領域、B-L領域、B-R領域、B+L領域、およびB+R領域の12の区分領域に分ける。 The A - region further includes an A- L region (a region where φ is from -60 ° to -30 °) which has anti-symmetry with respect to the intersection of the line indicating φ = −30 ° and the <0001> axis. And an AR region (φ is from −30 ° to 0 °). The A + region includes an A + L region (a region where φ is from 0 ° to 30 °) and an A + R region having anti-rotational symmetry with respect to the line indicating φ = 30 ° and the intersection of the <0001> axis. (Φ is from 30 ° to 60 °). B - area further, phi = 90 ° line and shows the <0001> and B -L regions having mutually times antisymmetry around the intersection of the axis (region from phi is 60 ° to 90 °) B - R region (φ is from 90 ° to 120 °). B + area further, phi = 150 ° line and shows the <0001> B + L region having mutually times antisymmetry around the intersection of the axis (phi a region to 150 ° from 120 °) and B + R region (φ is from 150 ° to 180 °). The C - region further has a C- L region (a region in which φ is from -180 ° to -150 °) having anti-symmetry with respect to a line indicating φ = −150 ° and an intersection of the <0001> axis. And a CR region (φ is from −150 ° to −120 °). The C + region is further a C + L region (a region where φ is from -120 ° to -90 °) having anti-symmetry with respect to a line indicating φ = −90 ° and an intersection of the <0001> axis. And a C + R region (φ is from −90 ° to −30 °). In this manner, the crystal plane perpendicular to the c-axis has a φ of −180 ° to 180 °, a C −L region, a C −R region, a C + L region, a C + R region, an A −L region, and an A region. The region is divided into twelve divided regions: a -R region, an A + L region, an A + R region, a B -L region, a B -R region, a B + L region, and a B + R region.
φスキャンパターン測定において、φが−180°から−150°までのC-L領域、−150°から−120°までのC-R領域、−120°から−90°までのC+L領域、−90°から−60°までのC+R領域、−60°から−30°までのA-L領域、−30°から0°までのA-R領域、0°から30°までのA+L領域、30°から60°までのA+R領域、60°から90°までのB-L領域、90°から120°までのB-R領域、120°から150°までのB+L領域、および150°から180°までのB+R領域の30°毎の12の区分領域に分けるとき、各区分領域の少なくとも2つの領域において、任意に特定される所定の複数の結晶面に由来する基準X線多重回折ピーク(たとえば、少なくとも(1−100)および(−1101)に由来する第1基準X線多重回折ピーク)のピーク強度に対する基準ピーク以外に任意に特定される別の所定の複数の結晶面に由来する対比X線多重回折ピーク(たとえば、第1基準X線多重回折ピーク以外のX線多重回折ピーク)のピーク強度の比である対比ピーク強度比のばらつきの小ささから、GaN結晶基板の結晶品質を評価することが好ましい。ここで、対比ピーク強度比のばらつきとは、各区分領域の少なくとも2つの領域において対応する対比ピーク強度比の分散、標準偏差、および範囲(最大値と最小値との差)のいずれかの統計値とすることができる。かかるGaN結晶基板の結晶評価方法は、対比ピーク強度比のばらつきが小さいほどGaN結晶基板の結晶品質がより高く、GaN結晶基板の結晶品質をより詳細に評価することができる。 In the φ scan pattern measurement, φ is a C- L region from −180 ° to −150 °, a C− R region from −150 ° to −120 °, a C + L region from −120 ° to −90 °, C + R region from −90 ° to −60 °, A −L region from −60 ° to −30 °, A −R region from −30 ° to 0 °, A + from 0 ° to 30 ° L region, A + R region from 30 ° to 60 °, B -L region from 60 ° to 90 °, B -R region from 90 ° to 120 °, B + L region from 120 ° to 150 ° , And when divided into 12 segmented regions of 30 ° from the B + R region from 150 ° to 180 °, at least two regions of each segmented region are derived from a predetermined plurality of crystal planes arbitrarily specified. Reference X-ray multiple diffraction peaks (eg, a first reference derived from at least (1-100) and (-1101)) X-ray multiple diffraction peaks derived from another predetermined plurality of crystal planes arbitrarily specified other than the reference peak for the peak intensity of the X-ray multiple diffraction peak (for example, X-rays other than the first reference X-ray multiple diffraction peak) It is preferable to evaluate the crystal quality of the GaN crystal substrate from the small variation in the contrast peak intensity ratio, which is the ratio of the peak intensities (multiple diffraction peaks). Here, the variation of the contrast peak intensity ratio refers to any one of the variance, the standard deviation, and the range (difference between the maximum value and the minimum value) of the corresponding contrast peak intensity ratio in at least two regions of each of the divided regions. It can be a value. According to such a method for evaluating a crystal of a GaN crystal substrate, the smaller the variation in the relative peak intensity ratio, the higher the crystal quality of the GaN crystal substrate, and the more detailed the crystal quality of the GaN crystal substrate can be evaluated.
図12〜図14を参照して、主面が略(0001)面または略(000−1)面のGaN結晶基板についてX線入射方向のφが−180°から180°までの測定において現われる具体的なX線多重回折パターンは、φが−180°から−60°まで、−60°から60°まで、および60°から180°までの120°毎に繰り返す3回回転対称性を有する3つの120°回転対称ピーク領域(A領域、B領域、およびC領域)を備える。各120°回転対称ピーク領域(A領域、B領域、またはC領域)は、その領域のφの範囲の中央のφの角度(φ=0°、φ=120°、またはφ=−120°)を示す線および[0001]軸を含む面を鏡映面として互いに鏡映対称性を有する−領域(A-領域、B-領域、またはC-領域)と+領域(A+領域、B+領域、またはC+領域)とを備える。各−領域(A-領域、B-領域、またはC-領域)は、その領域のφの範囲の中央のφの角度(φ=−30°、φ=90°、またはφ=−150°)を示す線および[0001]軸の交点を中心として互いに回反対称性を有する−L領域(A-L領域、B-L領域、またはC-L領域)と−R領域(A-R領域、B-R領域、またはC-R領域)とを備える。各+領域(A+領域、B+領域、またはC+領域)は、その領域のφの範囲の中央のφの角度(φ=30°、φ=150°、またはφ=−90°)を示す線および[0001]軸の交点を中心として互いに回反対称性を有する+L領域(A+L領域、B+L領域、またはC+L領域)と+R領域(A+R領域、B+R領域、またはC+R領域)とを備える。ここで、X線多重回折パターンの対称性および鏡映対称関係における「対称」とは、バックグランド領域(X線の多重回折が生じない領域)およびX線多重回折ピーク領域の位置が対称の位置にあることを意味するものであり、X線多重回折ピーク領域における各X線多重回折ピークの本数および強度が対称であることを意味するものではない。 Referring to FIGS. 12 to 14, a GaN crystal substrate having a substantially (0001) plane or a substantially (000-1) plane as a main surface appears in a measurement where φ in the X-ray incident direction is from −180 ° to 180 °. A typical X-ray multiple diffraction pattern has three rotation symmetries that repeat every 120 ° from φ from −180 ° to −60 °, from −60 ° to 60 °, and from 60 ° to 180 °. It has a 120 ° rotationally symmetric peak region (A region, B region, and C region). Each 120 ° rotationally symmetric peak region (A region, B region, or C region) is the angle of φ (φ = 0 °, φ = 120 °, or φ = −120 °) at the center of the range of φ in that region. Area (A - area, B - area, or C - area) and + area (A + area, B + area) having mirror symmetry with respect to each other, with the plane including , Or C + region). Each -region (A - region, B - region, or C - region) is the central φ angle (φ = −30 °, φ = 90 °, or φ = −150 °) of the range of φ in that region. -L region (A- L region, B- L region, or C- L region) and -R region (A- R region, B -R region or C -R region). Each + region (A + region, B + region, or C + region) has a central φ angle (φ = 30 °, φ = 150 °, or φ = −90 °) of the range of φ of the region. The + L region (A + L region, B + L region, or C + L region) and the + R region (A + R region, B + R ) which have anti-symmetry with respect to the intersection of the line shown and the [0001] axis. Region or C + R region). Here, “symmetry” in the symmetry and the mirror symmetry relationship of the X-ray multiple diffraction pattern refers to a position where the positions of the background region (region where X-ray multiple diffraction does not occur) and the X-ray multiple diffraction peak region are symmetric. , And does not mean that the number and intensity of each X-ray multiple diffraction peak in the X-ray multiple diffraction peak region are symmetric.
図12および図13は、主面が略(0001)面のGaN結晶基板の0001対称禁制ブラッグ反射についてのφが−180°から180°までのφスキャンにおけるX線多重回折パターンを示す。ここで、図12は、縦軸の強度を対数目盛で表示し、図13は縦軸の強度を平方根目盛で表示したものである。図14は、主面が略(000−1)面のGaN結晶基板の000−1対称禁制ブラッグ反射についてのφが−180°から180°までのφスキャンにおけるX線多重回折パターンを、縦軸の強度を平方根目盛で示す。図12〜図14を参照して、GaN結晶基板の主面が略(0001)面および略(000−1)面のいずれの場合であっても、φが−180°から180°までのφスキャンにおけるX線多重回折パターンのバックグランドの強度は一様である。このことから、2軸傾斜試料台を用いることにより、GaN結晶基板の<0001>軸とGaN結晶基板の回転軸であるφ軸とを高い精度で一致させることができ、GaN結晶基板の精密な結晶評価が可能となっていることがわかる。 FIG. 12 and FIG. 13 show X-ray multiple diffraction patterns in φ scan of φ from −180 ° to 180 ° for 0001 symmetric forbidden Bragg reflection of a GaN crystal substrate having a substantially (0001) main surface. Here, FIG. 12 shows the intensity on the vertical axis on a logarithmic scale, and FIG. 13 shows the intensity on the vertical axis on a square root scale. FIG. 14 shows an X-ray multiple diffraction pattern in a φ scan from −180 ° to 180 ° for 000-1 symmetric forbidden Bragg reflection of a GaN crystal substrate having a substantially (000-1) principal plane, and the vertical axis represents the vertical axis. Are shown on a square root scale. Referring to FIGS. 12 to 14, regardless of whether the main surface of the GaN crystal substrate is substantially the (0001) plane or the substantially (000-1) plane, φ is from −180 ° to 180 °. The background intensity of the X-ray multiple diffraction pattern in the scan is uniform. Thus, by using the biaxially inclined sample stage, the <0001> axis of the GaN crystal substrate can be made to coincide with the φ axis, which is the rotation axis of the GaN crystal substrate, with high accuracy, and the precision of the GaN crystal substrate can be improved. It can be seen that crystal evaluation is possible.
図13〜図18を参照して、図18に示すA+R領域を基本区分領域とすると、図17に示すA+L領域はA+R領域と回反対称の関係にある回反基本区分領域であり、図16に示すA-R領域はA+L領域と鏡映対称の関係にある回反鏡映基本区分領域であり、図15に示すA-L領域はA+R領域と鏡映対称の関係にある鏡映基本区分領域である。このような対称性を考慮して、A+R領域(図18)に存在する2つのX線多重回折ピーク群をmp1およびmp2と表すと、A+L領域(図17)に存在する2つのX線多重回折ピーク群は、mp1およびmp2に回反対称を示す「'」記号を付して、mp1'およびmp2'と表すことができる。A-R領域(図16)に存在する2つの多重ピーク群は、mp1'およびmp2'に鏡映対称を示す「()m」記号を付して、(mp1')mおよび(mp2')mと表すことができる。A-L領域(図15)に存在する2つのX線多重回折ピーク群は、mp1およびmp2に鏡映対称を示す「()m」記号を付して、(mp1)mおよび(mp2)mと表すことができる。 Referring to FIGS. 13 to 18, when the A + R region shown in FIG. 18 the basic division area, A + L area shown in FIG. 17 is anti-basic division times in the relationship A + R region and times antisymmetric an area, a -R area shown in FIG. 16 is a basic partitioned area movies with times anti mirrors symmetrical relationship mirroring and a + L region, a -L region shown in FIG. 15 a + R region and mirror This is a reflection basic division area having a reflection symmetry relationship. Considering such symmetry, the two X-ray multiple diffraction peak groups present in the A + R region (FIG. 18) are represented as mp1 and mp2, and the two X-ray diffraction peak groups existing in the A + L region (FIG. 17) The group of X-ray multiple diffraction peaks can be represented as mp1 ′ and mp2 ′ by attaching a “′” symbol indicating anti-symmetry to mp1 and mp2. A -R area two multiple peaks present in the (FIG. 16) is assigned the "() m" symbol showing the mirror-symmetrical to mp1 'and mp2', (mp1 ') m and (mp2') It can be expressed as m. The two X-ray multiple diffraction peak groups present in the A- L region (FIG. 15) are marked with "() m" indicating the reflection symmetry of mp1 and mp2, and have (mp1) m and (mp2) m It can be expressed as.
図15〜図18を参照して、主面が略(0001)面のGaN結晶基板および主面が略(000−1)面のGa結晶基板についての上記の各区分領域について、mp1およびそれに上記対称関係において対応するX線多重回折ピーク群に最大6本のX線多重回折ピーク、mp2およびそれに上記対称関係において対応するX線多重回折ピーク群に最大8本のX線多重回折ピーク、合計で最大14つのX線多重回折ピークが見られる。このことから、現実のGaN結晶基板のX線多重回折測定においては、一部のX線多重回折ピークの重なりまたは欠損により、X線多重回折ピークの本数の減少が考えられるが、完全結晶(結晶構造により理論的に導かれる欠陥のない結晶)においては、14本のX線多重回折ピークが存在するものと考えられる。 Referring to FIG. 15 to FIG. 18, for each of the above-described divided regions of the GaN crystal substrate having a substantially (0001) main surface and the Ga crystal substrate having a substantially (000-1) main surface, mp1 and the above A maximum of six X-ray multiple diffraction peaks in the group of X-ray multiple diffraction peaks corresponding to the symmetry relationship, and a maximum of eight X-ray multiple diffraction peaks in the group of multiple X-ray diffraction peaks corresponding to the above-mentioned symmetry relationship, in total Up to 14 X-ray multiple diffraction peaks are seen. From this fact, in the actual X-ray multiple diffraction measurement of a GaN crystal substrate, it is conceivable that the number of X-ray multiple diffraction peaks may decrease due to the overlap or lack of some X-ray multiple diffraction peaks. In the case of a crystal having no defect theoretically derived from the structure), it is considered that 14 X-ray multiple diffraction peaks exist.
図15〜図18を参照して、主面が略(0001)面のGaN結晶基板および主面が略(000−1)面のGa結晶基板について、上記の基本区分領域のそれぞれのX線多重回折ピーク群の位置がよく一致している。ここで、それぞれのX線多重回折ピーク群の位置がよく一致するとは、対称関係にあるそれぞれのX線多重回折ピーク群のピークの本数の差異が2本以下であること、および、対称関係にあるそれぞれのX線多重回折ピーク群のピークの位置の差異が2°を超えるものが2本以下であることをいう。ここで、それぞれのX線多重回折ピーク群の位置がよく一致することは、GaN結晶基板の対称性が高いことを意味する。すなわち、GaN結晶基板の対称性は、GaN結晶基板のそれぞれのX線多重回折ピーク群の位置の一致の程度で評価され、GaN結晶基板のそれぞれのX線多重回折ピーク群の一致の程度が大きい程、GaN結晶基板の対称性が高く結晶品質が高いと評価される。 Referring to FIGS. 15 to 18, for a GaN crystal substrate having a substantially (0001) main surface and a Ga crystal substrate having a substantially (000-1) main surface, respective X-ray multiplexing in the above-described basic division region is performed. The positions of the diffraction peak groups are in good agreement. Here, that the positions of the respective X-ray multiple diffraction peak groups are in good agreement means that the difference in the number of peaks of each of the X-ray multiple diffraction peak groups having a symmetrical relationship is two or less, and It means that the difference between the positions of the peaks in a certain X-ray multiple diffraction peak group exceeds 2 ° and two or less. Here, the fact that the positions of the respective X-ray multiple diffraction peak groups are in good agreement means that the GaN crystal substrate has high symmetry. That is, the symmetry of the GaN crystal substrate is evaluated by the degree of coincidence of the positions of the respective X-ray multiple diffraction peak groups of the GaN crystal substrate, and the degree of coincidence of the respective X-ray multiple diffraction peak groups of the GaN crystal substrate is large. As the GaN crystal substrate becomes higher, the symmetry is higher and the crystal quality is higher.
主面が略(0001)面のGaN結晶基板のA+R領域におけるmp1およびmp2のX線多重回折ピークの指数付け、位置、ピーク強度比、および多重回折タイプ(多重回折に関与する少なくとも2つの回折面)を表1に示す。なお、X線多重回折ピークの指数付けおよび多重回折タイプの特定には、J. Blasing and A. Krost, “X-ray multiple diffraction (Umweganregung) in wurtzite-type GaN and ZnO epitaxial layers”, phys. stat. sol., (a)201, No.4, 2004, pp.R17-R20(非特許文献2)を参照した。表1における指数付けピーク欄のP1〜P3およびP5〜P10は、上記文献に示された指数付けピークを示す。上記文献において、指数付けピークには、それぞれX線多重回折に関与する少なくとも2つの回折面を示す多重回折タイプが帰属されている。 Indexing of X-ray multiple diffraction peaks of mp1 and mp2 in the A + R region of a GaN crystal substrate having a substantially (0001) plane as a main surface, the position, peak intensity ratio, and multiple diffraction types (at least two The diffraction surface is shown in Table 1. For indexing of X-ray multiple diffraction peaks and identification of multiple diffraction types, see J. Blasing and A. Krost, “X-ray multiple diffraction (Umweganregung) in wurtzite-type GaN and ZnO epitaxial layers”, phys. sol., (a) 201, No. 4, 2004, pp. R17-R20 (Non-Patent Document 2). P1 to P3 and P5 to P10 in the indexing peak column in Table 1 indicate the indexing peaks shown in the above literature. In the above-mentioned document, a multiple diffraction type indicating at least two diffraction planes each participating in X-ray multiple diffraction is assigned to the indexing peak.
なお、上記文献においては、本実施形態のGaN結晶基板において、360°スキャンの範囲において多くの場合に最大ピーク強度を有する少なくとも(1−100)および(−1101)に由来するピークNo.8のX線多重回折ピークはP6と指数付けされている。また、本実施形態のGaN結晶基板においては現在のところ見い出せていない指数付けピークP4も記載されている。かかる指数付けピークP4は、φが指数付けピークP5とほぼ同じであり(P5に比べてφが0.002°小さく)、多重回折タイプは(02−22)/(0−22−1)とされている。ここで、φが30°の範囲において、上記文献においては10本のX線多重回折ピークが得られているに過ぎないが、本実施形態においては14本のX線多重回折ピークを見い出している。上記文献においては、多重反射が生じる2つの結晶面からのブラッグ反射により計算されたが、実際の多重反射は2つ以上の結晶面により生じる場合が有り、新しいピークは2つ以上の結晶面により生じる場合と考えられる。 In the above document, in the GaN crystal substrate of the present embodiment, the peak No. derived from at least (1-100) and (-1101) having the maximum peak intensity in the range of 360 ° scan in many cases. The X-ray multiple diffraction peak of 8 is indexed as P6. Further, in the GaN crystal substrate of the present embodiment, an indexing peak P4 not found at present is also described. In the indexing peak P4, φ is almost the same as the indexing peak P5 (φ is smaller than P5 by 0.002 °), and the multiple diffraction type is (02-22) / (0-22-1). Have been. Here, in the range of φ of 30 °, only 10 X-ray multiple diffraction peaks are obtained in the above-mentioned document, but in the present embodiment, 14 X-ray multiple diffraction peaks are found. . In the above document, multiple reflections were calculated by Bragg reflection from two crystal planes. However, actual multiple reflections may be caused by two or more crystal planes, and a new peak is generated by two or more crystal planes. It is considered to occur.
表1に示す上記の少なくとも(1−100)および(−1101)に由来するピークNo.8のX線多重回折ピークは、多くの場合に最大ピーク強度となるため、GaN結晶基板の結晶品質の評価に最も有効なピークと考えて、第1基準X線多重回折ピーク(S1)と呼ぶ。GaN結晶基板の結晶品質はバックグランド(BG)強度に対する第1基準X線多重回折ピーク(S1)の強度の比である第1基準ピーク強度比(S1/BG比)の大きさによりGaN結晶基板の結晶品質が評価され、第1基準ピーク強度比が大きい程結晶品質が高いと評価される。 The peak No. derived from at least the above (1-100) and (-1101) shown in Table 1. Since the X-ray multiple diffraction peak of No. 8 has the maximum peak intensity in many cases, it is considered to be the most effective peak for evaluating the crystal quality of the GaN crystal substrate, and is referred to as a first reference X-ray multiple diffraction peak (S1). . The crystal quality of the GaN crystal substrate depends on the magnitude of the first reference peak intensity ratio (S1 / BG ratio), which is the ratio of the intensity of the first reference X-ray multiple diffraction peak (S1) to the background (BG) intensity. Is evaluated, and the higher the first reference peak intensity ratio, the higher the crystal quality.
ここで、X線多重回折ピークの強度は当該ピークの頂点の強度値を読み取る。すなわち、第1基準X線多重回折ピーク(S1)の強度は当該ピークの頂点の強度値であり、後述の第2標準X線多重回折ピーク(S2)の強度は当該ピークの頂点の強度値である。X線多重回折ピークの強度は、φが0.02°のステップ毎の計測時間が1秒から50秒の範囲ではほとんど変わらないため、X線多重回折ピークの測定は測定時間を短縮する目的でたとえば3秒とする。 Here, as for the intensity of the X-ray multiple diffraction peak, the intensity value at the peak of the peak is read. That is, the intensity of the first standard X-ray multiple diffraction peak (S1) is the intensity value of the peak of the peak, and the intensity of the second standard X-ray multiple diffraction peak (S2) described later is the intensity value of the peak of the peak. is there. The intensity of the X-ray multiple diffraction peak is hardly changed in the range of 1 second to 50 seconds for the measurement time for each step of φ of 0.02 °, and the measurement of the X-ray multiple diffraction peak is intended to shorten the measurement time. For example, 3 seconds.
バックグランド強度は、第1基準X線多重回折ピーク(S1)と第2基準X線多重回折ピーク(S2)との間の平坦な部分のステップ毎の計測時間を増して2ケタ以上の精度のある強度の値を読み取る(具体的には、複数の点の平均値をとる)。バックグランド強度の測定の精度を2ケタ以上とするために、第1基準X線多重回折ピーク(S1)と第2基準X線多重回折ピーク(S2)との間の範囲をステップ毎の測定時間を10秒以上(好ましくは15秒から50秒の範囲)として、バックグランド(BG)強度の測定を行うことが好適である。 The background intensity is measured with an accuracy of 2 digits or more by increasing the measurement time for each step of a flat portion between the first reference X-ray multiple diffraction peak (S1) and the second reference X-ray multiple diffraction peak (S2). A value of a certain intensity is read (specifically, an average value of a plurality of points is taken). In order to set the accuracy of the background intensity measurement to two digits or more, the range between the first reference X-ray multiple diffraction peak (S1) and the second reference X-ray multiple diffraction peak (S2) is measured for each step. Is set to 10 seconds or more (preferably in the range of 15 seconds to 50 seconds) to measure the background (BG) intensity.
(GaN結晶基板の極性の評価)
図15〜図18を参照して、各基本区分領域において、GaN結晶基板の略(0001)の主面における14本のX線多重回折ピークの強度と、同じGaN結晶基板の略(000−1)の主面における14本のX線多重回折ピークの強度との差は、対応する対称関係を有するX線多重回折ピークの間で異なる。たとえば、比較的強度の高いX線多重回折ピークのうち、ピークNo.8の第1基準X線多重回折ピーク(S1)では略(0001)面(すなわち略Ga面;Ga面からのオフ角が0°以上2°以下の面、以下同じ)に比べて略(000−1)面(すなわち略N面;N面からのオフ角が0°以上2°以下の面、以下同じ)のピーク強度が極めて高くなるのに対して、ピークNo.7のX線多重回折ピークは略(0001)面におけるピーク強度と略(000−1)面におけるピーク強度とが略同じである。このため、表1に示す少なくとも(02−21)および(0−220)に由来するピークNo.7のX線多重回折ピークを第2基準X線多重回折ピーク(S2)とするとき、GaN結晶基板の極性は、第1基準X線多重回折ピーク(S1)の強度に対する第2基準X線多重回折ピーク(S2)の強度の比である第2基準ピーク強度比(S2/S1比)の大きさにより評価される。具体的には、第2基準ピーク強度比が0.18以上となるとき、好ましくは0.20以上になるとき、そのときの主面は略(0001)面(すなわち略Ga面)と評価される。第2基準ピーク強度比が0.18未満となるとき、好ましくは0.16以下となるとき、そのときの主面は略(000−1)面(すなわち略N面)と評価される。
(Evaluation of polarity of GaN crystal substrate)
Referring to FIGS. 15 to 18, in each of the basic divided regions, the intensity of 14 X-ray multiple diffraction peaks on the substantially (0001) main surface of the GaN crystal substrate is substantially the same as that of the same GaN crystal substrate (000-1). The differences from the intensities of the 14 X-ray multiple diffraction peaks on the main surface of ()) differ between the X-ray multiple diffraction peaks having the corresponding symmetry. For example, among X-ray multiple diffraction peaks having relatively high intensity, peak No. 8, the first reference X-ray multiple diffraction peak (S1) is substantially (000) in comparison with a substantially (0001) plane (that is, a substantially Ga plane; a plane having an off angle from the Ga plane of 0 ° or more and 2 ° or less; the same applies hereinafter). -1) plane (that is, substantially N-plane; a plane having an off angle from the N-plane of 0 ° or more and 2 ° or less, the same applies hereinafter), while the peak intensity becomes extremely high. In the X-ray multiple diffraction peak of No. 7, the peak intensity on the substantially (0001) plane and the peak intensity on the substantially (000-1) plane are substantially the same. Therefore, the peak Nos. Derived from at least (02-21) and (0-220) shown in Table 1. 7 as the second reference X-ray multiple diffraction peak (S2), the polarity of the GaN crystal substrate depends on the intensity of the first reference X-ray multiple diffraction peak (S1). It is evaluated based on the magnitude of the second reference peak intensity ratio (S2 / S1 ratio), which is the ratio of the intensity of the diffraction peak (S2). Specifically, when the second reference peak intensity ratio is 0.18 or more, preferably 0.20 or more, the main surface at that time is evaluated as a substantially (0001) plane (ie, a substantially Ga plane). You. When the second reference peak intensity ratio is less than 0.18, preferably 0.16 or less, the principal surface at that time is evaluated as a substantially (000-1) plane (that is, a substantially N plane).
また、略(0001)面の主面と略(000−1)の主面との2つの主面を有するGaN結晶基板について、一方の主面および他方の主面についてのX線多重回折ピークから得られる第2基準ピーク強度比の値が互いに異なるとき、より大きな第2基準ピーク強度比を与える主面が略(0001)(すなわち略Ga面)と評価される。 In addition, for a GaN crystal substrate having two main surfaces, a main surface of a substantially (0001) plane and a main surface of a substantially (000-1) plane, the X-ray multiple diffraction peaks of one main surface and the other main surface are used. When the values of the obtained second reference peak intensity ratios are different from each other, the principal surface giving the larger second reference peak intensity ratio is evaluated as substantially (0001) (that is, substantially Ga surface).
(GaN結晶基板の極性を考慮した結晶品質の評価)
上述のように、GaN結晶基板の結晶品質は、第1基準ピーク強度比(バックグランド強度に対する第1基準X線多重回折ピークの強度比)の大きさにより評価される。また、GaN結晶基板においては、結晶品質が同程度であっても、その極性により、略(0001)面(略Ga面)の主面における第1基準X線多重回折ピークの強度と略(000−1)面(略N面)の主面における第1基準X線多重回折ピークの強度とが異なる。したがって、GaN結晶基板は、その極性を考慮して、主面が略(0001)面(略Ga面)のときの第1基準ピーク強度比が500以上および/または主面が略(000−1)面(略N面)のときの第1基準ピーク強度比が750以上のとき結晶品質が高く、主面が略(0001)面(略Ga面)のときの第1基準ピーク強度比が650以上および/または主面が略(000−1)面(略N面)のときの第1基準ピーク強度比が950以上のとき結晶品質がより高く、主面が略(0001)面(略Ga面)のときの第1基準ピーク強度比が800以上および/または主面が略(000−1)面(略N面)のときの第1基準ピーク強度比が1150以上のとき結晶品質がさらに高い、と評価される。ここで、上記の第1基準ピーク強度比および第2基準ピーク強度比は、入射側にX線キャピラリーレンズ(発散角0.3°)を使用して0.5mm×0.5mmのクロススリットにより得られるCuKα1単色X線の小発散角入射X線平行ビームを用い、受光側に反射率測定用の0.27°のコリメータ(0.27°スリットは設けない)およびグラファイト平板モノクロメータを用いたX線回折測定において得られたものとする。
(Evaluation of crystal quality considering polarity of GaN crystal substrate)
As described above, the crystal quality of the GaN crystal substrate is evaluated by the magnitude of the first reference peak intensity ratio (the intensity ratio of the first reference X-ray multiple diffraction peak to the background intensity). In the case of a GaN crystal substrate, even if the crystal quality is almost the same, the intensity of the first reference X-ray multiple diffraction peak on the substantially (0001) plane (substantially Ga plane) main surface is substantially (000) due to its polarity. -1) The intensity of the first reference X-ray multiple diffraction peak on the main surface (substantially N surface) is different. Therefore, in consideration of the polarity, the GaN crystal substrate has a first reference peak intensity ratio of 500 or more when the main surface is substantially (0001) plane (substantially Ga plane) and / or the main surface has substantially (000-1). ) Plane (substantially N plane), the crystal quality is high when the first reference peak intensity ratio is 750 or more, and the first reference peak intensity ratio when the main surface is substantially (0001) plane (substantially Ga plane) is 650. The crystal quality is higher when the first reference peak intensity ratio is 950 or more when the above and / or the main surface is substantially (000-1) plane (substantially N plane), and the main surface is substantially (0001) plane (substantially Ga plane). Surface), the crystal quality is further improved when the first reference peak intensity ratio is 800 or more and / or when the main surface is substantially (000-1) plane (substantially N plane). It is evaluated as high. Here, the first reference peak intensity ratio and the second reference peak intensity ratio are determined by a 0.5 mm × 0.5 mm cross slit using an X-ray capillary lens (divergence angle: 0.3 °) on the incident side. Using the obtained CuKα 1 monochromatic X-ray, a small divergence incident X-ray parallel beam, a 0.27 ° collimator (without a 0.27 ° slit) and a graphite flat plate monochromator for reflectance measurement are used on the light receiving side. It should be obtained in the X-ray diffraction measurement.
GaN結晶基板のように極性を有する結晶の場合、X線のブラッグ反射の強度を定める構造因子に関して、一方の極性面(たとえばGa面である(0001)面)に対する構造因子F(h,k,l)と、他方の極性面(たとえばN面である(000−1)面)に対するF(−h,−k,−l)とは等しくない。結晶の品質および極性の評価にあたっては、X線多重回折ピークの強度をバックグラウンド強度で除した比を用いるが、X線多重回折ピークの強度には上記の構造因子の差による強度の差が現れる。GaN結晶基板の場合、(0001)面がGa面(極性面)であり、(000−1)面がN面(極性面)である。かかる極性面に対応したX線多重回折ピークの強度が定まるため、結晶評価は極性面を特定して行う必要がある。すなわち、同じ種類の同じ品質の結晶であっても、評価する極性面が異なれば評価するX線多重回折ピークの強度が異なるため、評価する極性面毎に基準の数値を定める必要がある。 In the case of a crystal having polarity, such as a GaN crystal substrate, with respect to the structure factor that determines the intensity of X-ray Bragg reflection, the structure factor F (h, k, l) is not equal to F (-h, -k, -l) for the other polar plane (for example, the (000-1) plane which is the N plane). In evaluating the quality and polarity of the crystal, a ratio obtained by dividing the intensity of the X-ray multiple diffraction peak by the background intensity is used. In the intensity of the X-ray multiple diffraction peak, a difference in intensity due to the above-described difference in the structure factor appears. . In the case of a GaN crystal substrate, the (0001) plane is a Ga plane (polar plane), and the (000-1) plane is an N plane (polar plane). Since the intensity of the X-ray multiple diffraction peak corresponding to such a polar plane is determined, it is necessary to perform crystal evaluation by specifying the polar plane. In other words, even for crystals of the same type and quality, if the polar planes to be evaluated are different, the intensity of the X-ray multiple diffraction peak to be evaluated is different. Therefore, it is necessary to determine a reference value for each polar plane to be evaluated.
結晶品質は、X線回折ピークの強度の大きさが大きいほど、X線回折ピークの半値幅が小さいほど高品質と判定できるため、対称ブラッグ反射におけるX線回折ピーク強度、対称禁制ブラッグ反射におけるX線多重回折ピーク強度などを用いることが可能である。対称ブラッグ反射におけるX線回折ピーク強度の場合にも、2軸傾斜試料台を用いて結晶面(たとえば、(0001)面、(000−1)面)の法線(たとえば、<0001>軸)と結晶の回転軸(φ軸)とを一致をさせた場合には、極性に対応した強度を測定できるために、極性判定に利用できる。しかしながら、対称ブラッグ反射におけるX線回折ピークは、主面の表面状態の影響を受けやすく、一方の主面と他方の主面とにおける結晶状態が異なっているとピークの強度が異なる。 The crystal quality can be determined to be high quality as the intensity of the X-ray diffraction peak is larger and the half-width of the X-ray diffraction peak is smaller. Therefore, the X-ray diffraction peak intensity in the symmetric Bragg reflection and the X-ray diffraction in the symmetric forbidden Bragg reflection can be determined. It is possible to use line multiplex diffraction peak intensity and the like. Also in the case of the X-ray diffraction peak intensity in the symmetric Bragg reflection, the normal line (for example, the <0001> axis) of the crystal plane (for example, the (0001) plane, the (000-1) plane) using the biaxially inclined sample stage. When the crystal and the rotation axis (φ axis) of the crystal are made to coincide with each other, the intensity corresponding to the polarity can be measured. However, the X-ray diffraction peak in symmetric Bragg reflection is easily affected by the surface state of the main surface, and the intensity of the peak is different if the crystal state of one main surface is different from that of the other main surface.
X線多重回折ピークの強度を用いる場合には、上記のように、極性に依存しているピークNo.8のピーク(少なくとも(1−100)および(−1101)に由来する第1基準X線多重回折ピーク(S1))と、極性に依存しないピークNo.7のピーク(少なくとも(02−21)および(0−220)に由来する第2基準多重回折ピーク(S2))とが有り、第1基準X線多重回折ピーク(S1)の強度に対する第2基準多重回折ピーク(S2)の強度の比である第2基準ピーク強度比(S2/S1比)から極性の判別ができる。この場合は、一方の主面と他方の主面とにおける結晶状態が異なっていても、X線多重回折が結晶内部の現象であるために、問題なく極性を判別できる利点がある。したがって、X線多重回折ピークの強度を用いる評価方法は、GaN結晶基板以外の極性結晶についても広く応用できることが期待される。 When the intensity of the X-ray multiple diffraction peak is used, as described above, the peak No. depending on the polarity is used. 8 (at least the first reference X-ray multiple diffraction peak (S1) derived from (1-100) and (-1101)) and the peak No. 8 independent of polarity. 7 peaks (at least a second reference multiple diffraction peak (S2) derived from (02-21) and (0-220)), and a second reference to the intensity of the first reference X-ray multiple diffraction peak (S1). The polarity can be determined from the second reference peak intensity ratio (S2 / S1 ratio), which is the intensity ratio of the multiple diffraction peaks (S2). In this case, even if the crystal states of the one main surface and the other main surface are different, there is an advantage that the polarity can be determined without any problem because the X-ray multiple diffraction is a phenomenon inside the crystal. Therefore, the evaluation method using the intensity of the X-ray multiple diffraction peak is expected to be widely applicable to polar crystals other than the GaN crystal substrate.
<実施形態2:GaN結晶基板>
[実施形態2−1]
図13および図15〜図18を参照して、本実施形態のGaN結晶基板は、少なくとも1つの主面を有するGaN結晶基板であって、主面が略(0001)面(すなわち、(0001)面からのオフ角が0°以上2°以下の面)である。小発散角入射X線平行ビームを用いたX線回折測定において、2軸傾斜試料台上に主面が露出するようにGaN結晶基板を配置し、(0001)面の法線である<0001>軸とφ軸とが一致し、かつ、[1−100]方向をφ=0°の方向とするように調整し、0001対称禁制ブラッグ反射についての入射角ωおよび回折角2θにおけるφ軸を回転軸としたφスキャンパターン測定におけるφが−180°から180°までの測定において、結晶内におけるX線の多重回折により現われるX線多重回折パターンは、φが−180°から−60°まで、−60°から60°まで、および60°から180°までの120°毎に繰り返す3回回転対称性を有する3つの120°回転対称ピーク領域を備える。各120°回転対称ピーク領域は、その領域のφの範囲の中央のφの角度を示す線および<0001>軸を含む面を鏡映面として互いに鏡映対称性を有する−領域と+領域とを備える。各−領域は、その領域のφの範囲の中央のφの角度を示す線および<0001>軸の交点を中心として互いに回反対称性を有する−L領域と−R領域とを備える。各+領域は、その領域のφの範囲の中央のφの角度を示す線および<0001>軸の交点を中心として互いに回反対称性を有する+L領域と+R領域とを備える。各−L領域、各−R領域、各+L領域、および各+R領域の少なくとも1領域において、バックグランド強度に対する少なくとも(1−100)および(−1101)に由来する第1基準X線多重回折ピークの強度の比である第1基準ピーク強度比が500以上であり、第1基準X線多重回折ピークの強度に対する少なくとも(02−21)および(0−220)に由来する第2基準多重回折ピークの強度の比である第2基準ピーク強度比が0.18以上である。本実施形態のGaN結晶基板は、略(0001)面(略Ga面)を主面とするX線多重回折パターンにおいて、従来のGaN結晶基板に比べて、高い対称性と大きな第1基準ピーク強度比とを有しているため、結晶品質が高い。
<Embodiment 2: GaN crystal substrate>
[Embodiment 2-1]
Referring to FIG. 13 and FIGS. 15 to 18, the GaN crystal substrate of the present embodiment is a GaN crystal substrate having at least one main surface, and the main surface is substantially (0001) plane (that is, (0001) plane). Off-angle from the surface of 0 ° or more and 2 ° or less). In X-ray diffraction measurement using a small divergence incident X-ray parallel beam, a GaN crystal substrate is arranged so that a main surface is exposed on a biaxially tilted sample stage, and <0001> is a normal line of a (0001) plane. Axis is aligned with the φ axis, and the [1-100] direction is adjusted so that φ = 0 °, and the φ axis at the incident angle ω and the diffraction angle 2θ for the 0001 symmetric forbidden Bragg reflection is rotated. In the measurement in which φ is −180 ° to 180 ° in the φ scan pattern measurement with the axis as the axis, the X-ray multiple diffraction pattern that appears due to the multiple diffraction of X-rays in the crystal has φ ranging from −180 ° to −60 °, − It comprises three 120 ° rotationally symmetric peak regions with a triple rotational symmetry that repeats every 60 ° from 60 ° to 60 ° and from 60 ° to 180 °. Each of the 120 ° rotationally symmetric peak regions is a-region and a + region that have mirror symmetry with respect to each other, with a plane including the line indicating the angle of φ in the center of the range of φ and the <0001> axis as a mirror plane. Is provided. Each − region includes a line indicating the angle of φ at the center of the range of φ of the region and a −L region and a −R region having anti-rotational symmetry about the intersection of the <0001> axis. Each + region includes a line indicating the angle of φ in the center of the range of φ of the region and a + L region and a + R region having anti-rotational symmetry about an intersection of the <0001> axis. First reference X-ray multiple diffraction peaks derived from at least (1-100) and (-1101) with respect to the background intensity in at least one of the -L region, -R region, + L region, and + R region. The first reference peak intensity ratio, which is the ratio of the intensity of the first reference X-ray multiple diffraction peak, is at least 500, and the second reference multiple diffraction peak derived from at least (02-21) and (0-220) with respect to the intensity of the first reference X-ray multiple diffraction peak. Is a second reference peak intensity ratio of 0.18 or more. The GaN crystal substrate of the present embodiment has a higher symmetry and a larger first reference peak intensity compared to a conventional GaN crystal substrate in an X-ray multiple diffraction pattern having a substantially (0001) plane (substantially Ga plane) as a main surface. And the crystal quality is high.
ここで、上記の第1基準ピーク強度比および第2基準ピーク強度比は、入射側にX線キャピラリーレンズ(発散角0.3°)を使用して0.5mm×0.5mmのクロススリットにより得られるCuKα1単色X線の小発散角入射X線平行ビームを用い、受光側に反射率測定用の0.27°のコリメータ(0.27°スリットは設けない)およびグラファイト平板モノクロメータを用いたX線回折測定において得られたものとする。 Here, the first reference peak intensity ratio and the second reference peak intensity ratio are determined by a 0.5 mm × 0.5 mm cross slit using an X-ray capillary lens (divergence angle: 0.3 °) on the incident side. Using the obtained CuKα 1 monochromatic X-ray, a small divergence incident X-ray parallel beam, a 0.27 ° collimator (without a 0.27 ° slit) and a graphite flat plate monochromator for reflectance measurement are used on the light receiving side. It should be obtained in the X-ray diffraction measurement.
ここで、X線多重回折パターンの回転対称性および鏡映対称性における「対称」とは、多重ピーク領域の位置が対称の位置にあることを意味するものであり、多重回折ピーク領域における各X線多重回折ピークの位置および強度が対称であることを意味するものではない。すなわち、GaN結晶基板の対称性が高いとは、対称関係にあるX線多重回折ピーク群の位置がよく一致することをいい、具体的には、対称関係にあるそれぞれのX線多重回折ピーク群のピークの本数の差異が2本以下であること、および、対称関係にあるそれぞれのX線多重回折ピーク群のピークの位置の差異が2°を超えるものが2本以下であることをいう。 Here, "symmetry" in the rotational symmetry and the mirror symmetry of the X-ray multiple diffraction pattern means that the position of the multiple peak region is symmetric, and each X-ray in the multiple diffraction peak region is not symmetric. It does not mean that the position and intensity of the line multiple diffraction peak are symmetric. That is, a high symmetry of the GaN crystal substrate means that the positions of the X-ray multiple diffraction peak groups having a symmetrical relationship are in good agreement, and specifically, the respective X-ray multiple diffraction peak groups having a symmetrical relationship. Means that the difference in the number of peaks is 2 or less, and that the difference between the positions of the peaks in each symmetric X-ray multiple diffraction peak group exceeds 2 ° is 2 or less.
本実施形態の主面が略(0001)面(すなわち略Ga面)であるGaN結晶基板において、結晶の品質が高い観点から、第1基準ピーク強度比は、500以上であり、好ましくは650以上であり、より好ましくは800以上である。また、結晶の極性の判別が明確な観点から、第2基準ピーク強度比は、0.18以上であり、好ましくは0.20以上である。 In the GaN crystal substrate whose main surface is a substantially (0001) plane (that is, a substantially Ga plane) in the present embodiment, the first reference peak intensity ratio is 500 or more, preferably 650 or more from the viewpoint of high crystal quality. And more preferably 800 or more. From the viewpoint of clearly determining the polarity of the crystal, the second reference peak intensity ratio is 0.18 or more, preferably 0.20 or more.
本実施形態のGaN結晶基板の結晶評価は、主面が略{0001}面(略Ga面)であり、入射側にX線キャピラリーレンズを使用してW0.5mm×H0.5mmのクロススリットによりポイントフォーカスしたCuKα1単色X線の小発散角入射X線平行ビームを用い、2軸傾斜試料台上に主面が露出するようにGaN結晶基板を配置し、(0001)面の法線である<0001>軸とφ軸とが一致し、かつ、[1−100]方向をφ=0°の方向とするように調整し、受光側に反射率測定用の0.27°のコリメータ(0.27°スリットは設けない)およびグラファイト平板モノクロメータを用いたX線回折測定において、0001対称禁制ブラッグ反射の入射角ωおよび回折角2θ(すなわち入射角ω:8.5428°および回折角2θ:17.0856°)における<0001>軸を回転軸としたφスキャンパターン測定は、詳細で正確なX線多重回折パターンを得る観点から、測定φ角度ステップ0.02°、測定するφの角度範囲に応じて、各ステップでの計測時間が1秒から50秒の範囲の測定条件で行なう。 In the crystal evaluation of the GaN crystal substrate of the present embodiment, the principal surface is a substantially {0001} plane (substantially a Ga surface), and an X-ray capillary lens is used on the incident side and a W0.5 mm × H0.5 mm cross slit is used. Using a point-focused CuKα 1 monochromatic X-ray small divergence incident X-ray parallel beam, a GaN crystal substrate is arranged on a biaxially tilted sample stage such that the main surface is exposed, and is a normal to the (0001) plane. The <0001> axis is matched with the φ axis, and the [1-100] direction is adjusted so that φ = 0 °, and a 0.27 ° collimator (0) for reflectance measurement is provided on the light receiving side. In the X-ray diffraction measurement using a .27 ° slit and a graphite flat plate monochromator, the incident angle ω and the diffraction angle 2θ of the 0001 symmetric forbidden Bragg reflection (that is, the incident angle ω: 8.5428 ° and the diffraction angle 2θ: 7.0856 °) with the <0001> axis as the rotation axis, from the viewpoint of obtaining a detailed and accurate X-ray multiple diffraction pattern, the measurement φ angle step is 0.02 ° and the angle range of φ to be measured. Is performed under measurement conditions in a range of 1 second to 50 seconds in each step.
本実施形態の主面が略(0001)面(略Ga面)であるGaN結晶基板は、自立基板であることが好ましい。かかるGaN結晶基板は、結晶品質の高い自立基板であるため、半導体デバイスの製造に好適に用いられる。ここで、GaN結晶基板は、自立基板となるためには、その厚さが250μm以上であることが好ましい。
本実施形態の主面が略(0001)面(略Ga面)であるGaN結晶基板は、その厚さが250μm以上が好ましく、300μm以上がより好ましく、400μm以上がさらに好ましいる。かかるGaN結晶基板は、結晶品質が高い厚さが250μm以上の基板であるため、半導体デバイスの製造に好適に用いられる。また、本実施形態のGaN結晶基板は、その直径が50mm以上が好ましく、75mm以上がより好ましく、100mm以上がさらに好ましい。かかるGaN結晶基板は、結晶品質が高い直径が50mm以上の基板であるため、半導体デバイスの製造に好適に用いられる。なお、2インチとは正確には50.8mmであるが、当業界においては直径50mmの基板を2インチ基板とよぶ場合もある。
The GaN crystal substrate having a substantially (0001) plane (substantially Ga plane) in the present embodiment is preferably a free-standing substrate. Since such a GaN crystal substrate is a free-standing substrate having high crystal quality, it is suitably used for manufacturing semiconductor devices. Here, the GaN crystal substrate preferably has a thickness of 250 μm or more in order to be a free-standing substrate.
In the present embodiment, the GaN crystal substrate whose main surface is substantially (0001) plane (substantially Ga plane) preferably has a thickness of 250 μm or more, more preferably 300 μm or more, and still more preferably 400 μm or more. Since such a GaN crystal substrate is a substrate having a high crystal quality and a thickness of 250 μm or more, it is suitably used for manufacturing a semiconductor device. Further, the diameter of the GaN crystal substrate of the present embodiment is preferably 50 mm or more, more preferably 75 mm or more, and even more preferably 100 mm or more. Since such a GaN crystal substrate is a substrate having a high crystal quality and a diameter of 50 mm or more, it is suitably used for manufacturing a semiconductor device. Although 2 inches is exactly 50.8 mm, a substrate having a diameter of 50 mm may be called a 2 inch substrate in the art.
(GaN結晶基板の製造方法)
本実施形態の主面が略(0001)面(略Ga面)であるGaN結晶基板の製造方法は、下地基板上にGaN結晶を成長させる工程と、成長させたGaN結晶を窒素ガス雰囲気中900℃以上かつ1800気圧以上の高温高圧条件下で2回以上熱処理する工程と、熱処理したGaN結晶をGaN結晶基板に加工する工程と、を備える。本実施形態のGaN結晶基板の製造方法は、900℃以上かつ1800気圧以上の高温高圧条件下で2回以上熱処理されたGaN結晶を加工することにより結晶品質の高いGaN結晶基板が得られる。
(Manufacturing method of GaN crystal substrate)
The method of manufacturing a GaN crystal substrate having a substantially (0001) plane (substantially Ga plane) according to the present embodiment includes a step of growing a GaN crystal on a base substrate, and a step of growing the grown GaN crystal in a nitrogen gas atmosphere. The method includes a step of performing heat treatment twice or more under high temperature and high pressure conditions of not less than 1 ° C. and not less than 1800 atm, and a step of processing the heat-treated GaN crystal into a GaN crystal substrate. In the method of manufacturing a GaN crystal substrate according to the present embodiment, a GaN crystal substrate having high crystal quality can be obtained by processing a GaN crystal that has been heat-treated twice or more under high-temperature and high-pressure conditions of 900 ° C. or higher and 1800 atm or higher.
成長させたGaN結晶の上記の2回以上の熱処理は、熱処理後のGaN結晶を加工して得られるGaN結晶基板の結晶品質を高める観点から、処理雰囲気が窒素雰囲気で、処理温度が900℃以上であり、好ましくは1000℃以上であり、処理圧力が1800気圧以上であり、好ましくは2000気圧以上である。また、製造装置の仕様から、処理温度は1200℃以下が好ましく、処理圧力は2000気圧以下が好ましい。 The heat treatment of the grown GaN crystal at least twice is performed in a nitrogen atmosphere at a processing temperature of 900 ° C. or higher from the viewpoint of improving the crystal quality of a GaN crystal substrate obtained by processing the GaN crystal after the heat treatment. , Preferably at a temperature of at least 1000 ° C., and a processing pressure of at least 1800 atm, preferably at least 2,000 atm. Further, from the specifications of the manufacturing apparatus, the processing temperature is preferably 1200 ° C. or lower, and the processing pressure is preferably 2000 atm or lower.
[実施形態2−2]
図14〜図18を参照して、本実施形態のGaN結晶基板は、少なくとも1つの主面を有するGaN結晶基板であって、主面が略(000−1)面(すなわち、(000−1)面からのオフ角が0°以上2°以下の面)である。小発散角入射X線平行ビームを用いたX線回折測定において、2軸傾斜試料台上に主面が露出するようにGaN結晶基板を配置し、(000−1)面の法線である<0001>軸とφ軸とが一致し、かつ、[1−100]方向をφ=0°の方向とするように調整し、000−1対称禁制ブラッグ反射についての入射角ωおよび回折角2θにおけるφ軸を回転軸としたφスキャンパターン測定におけるφが−180°から180°までの測定において、結晶内におけるX線の多重回折により現われるX線多重回折パターンは、φが−180°から−60°まで、−60°から60°まで、および60°から180°までの120°毎に繰り返す3回回転対称性を有する3つの120°回転対称ピーク領域を備える。各120°回転対称ピーク領域は、その領域のφの範囲の中央のφの角度を示す線および<0001>軸を含む面を鏡映面として互いに鏡映対称性を有する−領域と+領域とを備える。各−領域は、その領域のφの範囲の中央のφの角度を示す線および<0001>軸の交点を中心として互いに回反対称性を有する−L領域と−R領域とを備える。各+領域は、その領域のφの範囲の中央のφの角度を示す線および<0001>軸の交点を中心として互いに回反対称性を有する+L領域と+R領域とを備える。各−L領域、各−R領域、各+L領域、および各+R領域の少なくとも1領域において、バックグランド強度に対する少なくとも(1−100)および(−1101)に由来する第1基準X線多重回折ピークの強度の比である第1基準ピーク強度比が750以上であり、第1基準X線多重回折ピークの強度に対する少なくとも(02−21)および(0−220)に由来する第2基準多重回折ピークの強度の比である第2基準ピーク強度比が0.18未満である。本実施形態のGaN結晶基板は、(0001)面(Ga面)を主面とするX線多重回折パターンにおいて、従来のGaN結晶基板に比べて、高い対称性と大きな第1基準ピーク強度比とを有しているため、結晶品質が高い。
[Embodiment 2-2]
Referring to FIGS. 14 to 18, the GaN crystal substrate of the present embodiment is a GaN crystal substrate having at least one main surface, and the main surface is substantially (000-1) plane (that is, (000-1) ) Plane from 0 ° to 2 °). In the X-ray diffraction measurement using the small divergence incident X-ray parallel beam, the GaN crystal substrate is arranged so that the main surface is exposed on the biaxially tilted sample stage, and the normal to the (000-1) plane is < The 0001> axis and the φ axis coincide with each other, and the [1-100] direction is adjusted to be the direction of φ = 0 °, and the incident angle ω and the diffraction angle 2θ for the 000-1 symmetric forbidden Bragg reflection are adjusted. In the measurement of φ in the range of −180 ° to 180 ° in the φ scan pattern measurement using the φ axis as the rotation axis, the X-ray multiple diffraction pattern that appears due to the multiple diffraction of X-rays in the crystal has a φ of −180 ° to −60 °. And three 120 ° rotationally symmetric peak regions with a threefold rotational symmetry that repeats every 120 ° from −60 ° to 60 ° and from 60 ° to 180 °. Each of the 120 ° rotationally symmetric peak regions is a-region and a + region that have mirror symmetry with respect to each other, with a plane including the line indicating the angle of φ in the center of the range of φ and the <0001> axis as a mirror plane. Is provided. Each − region includes a line indicating the angle of φ at the center of the range of φ of the region and a −L region and a −R region having anti-rotational symmetry about the intersection of the <0001> axis. Each + region includes a line indicating the angle of φ in the center of the range of φ of the region and a + L region and a + R region having anti-rotational symmetry about an intersection of the <0001> axis. First reference X-ray multiple diffraction peaks derived from at least (1-100) and (-1101) with respect to the background intensity in at least one of the -L region, -R region, + L region, and + R region. The first reference peak intensity ratio, which is a ratio of the intensity of the first reference X-ray multiple diffraction peak, is at least 750, and the second reference multiple diffraction peak derived from at least (02-21) and (0-220) with respect to the intensity of the first reference X-ray multiple diffraction peak. Is less than 0.18. The GaN crystal substrate of the present embodiment has higher symmetry and a larger first reference peak intensity ratio in the X-ray multiple diffraction pattern having the (0001) plane (Ga plane) as a main surface, as compared with the conventional GaN crystal substrate. Therefore, the crystal quality is high.
ここで、上記の第1基準ピーク強度比および第2基準ピーク強度比は、入射側にX線キャピラリーレンズ(発散角0.3°)を使用して0.5mm×0.5mmのクロススリットにより得られるCuKα1単色X線の小発散角入射X線平行ビームを用い、受光側に反射率測定用の0.27°のコリメータ(0.27°スリットは設けない)およびグラファイト平板モノクロメータを用いたX線回折測定において得られたものとする。 Here, the first reference peak intensity ratio and the second reference peak intensity ratio are determined by a 0.5 mm × 0.5 mm cross slit using an X-ray capillary lens (divergence angle: 0.3 °) on the incident side. Using the obtained CuKα 1 monochromatic X-ray, a small divergence incident X-ray parallel beam, a 0.27 ° collimator (without a 0.27 ° slit) and a graphite flat plate monochromator for reflectance measurement are used on the light receiving side. It should be obtained in the X-ray diffraction measurement.
ここで、本実施形態の主面が略(000−1)面(すなわち略N面)であるGaN結晶基板におけるX線多重回折パターンの回転対称性および鏡映対称性における「対称」および「GaN結晶基板の対称性が高い」の意味は、実施形態2−1の主面が略(0001)面(略Ga面)であるGaN結晶基板の場合と同様であるため、ここでは繰り返さない。 Here, “symmetric” and “GaN” in the rotational symmetry and the mirror symmetry of the X-ray multiple diffraction pattern on the GaN crystal substrate whose main surface is substantially the (000-1) plane (that is, substantially the N plane) are used. The meaning of “the crystal substrate has high symmetry” is the same as in the case of the GaN crystal substrate having the substantially (0001) plane (substantially Ga plane) in Embodiment 2-1 and will not be repeated here.
本実施形態の主面が略(000−1)面(略N面)であるGaN結晶基板において、結晶の品質が高い観点から、第1基準ピーク強度比は、750以上であり、好ましくは950以上であり、より好ましくは1100以上である。また、結晶の極性が明確な観点から、第2基準ピーク強度比は、0.18未満であり、好ましくは0.16以下である。 In the GaN crystal substrate having a substantially (000-1) plane (substantially N plane) in the present embodiment, the first reference peak intensity ratio is 750 or more, preferably 950, from the viewpoint of high crystal quality. Or more, more preferably 1100 or more. Further, from the viewpoint of clearly defining the polarity of the crystal, the second reference peak intensity ratio is less than 0.18, and preferably 0.16 or less.
本実施形態の主面が略(000−1)面(略N面)であるGaN結晶基板の結晶評価は、実施形態2−1の主面が略(0001)面(略Ga面)であるGaN結晶基板の場合と同様であるため、ここでは繰り返さない。また、本実施形態の主面が略(000−1)面(略N面)であるGaN結晶基板が自立基板であることの利点、その厚さおよびその直径についても、実施形態2−1の主面が略(0001)面(略Ga面)であるGaN結晶基板の場合と同様であるため、ここでは繰り返さない。本実施形態の主面が略(000−1)面(略N面)であるGaN結晶基板の製造方法は、実施形態2−1の主面が略(0001)面(略Ga面)であるGaN結晶基板の場合と同様であるため、ここでは繰り返さない。 In the crystal evaluation of the GaN crystal substrate whose main surface is substantially (000-1) plane (substantially N plane) in the present embodiment, the main surface of Embodiment 2-1 is substantially (0001) plane (substantially Ga plane). Since it is similar to the case of the GaN crystal substrate, it will not be repeated here. In addition, the advantage of the GaN crystal substrate whose main surface is a substantially (000-1) plane (substantially N plane) of the present embodiment being a self-standing substrate, its thickness and its diameter are also described in Embodiment 2-1. This is the same as the case of a GaN crystal substrate having a substantially (0001) plane (substantially Ga plane), and thus will not be repeated here. In the method of manufacturing a GaN crystal substrate whose main surface is substantially (000-1) plane (substantially N plane) according to the present embodiment, the main surface of Embodiment 2-1 is substantially (0001) plane (substantially Ga plane). Since it is similar to the case of the GaN crystal substrate, it will not be repeated here.
[実施形態2−3]
図13〜図18を参照して、本実施形態のGaN結晶基板は、2つの主面を有するGaN結晶基板であって、1つの主面が略(0001)面(すなわち(0001)面からのオフ角が0°以上2°以下の面)であり、他の主面が略(000−1)面(すなわち(000−1)面からのオフ角が0°以上2°以下の面)である。各主面についての小発散角入射X線平行ビームを用いたX線回折測定において、2軸傾斜試料台上に各主面が露出するようにGaN結晶基板を配置し、(0001)面および(000−1)面の法線である<0001>軸とφ軸とが一致し、かつ、[1−100]方向をφ=0°の方向とするように調整し、主面が略(0001)面のときは0001対称禁制ブラッグ反射について、主面が略(000−1)面のときは000−1対称禁制ブラッグ反射についての入射角ωおよび回折角2θにおけるφ軸を回転軸としたφスキャンパターン測定におけるφが−180°から180°までの測定において、結晶内におけるX線の多重回折により現われるX線多重回折パターンは、φが−180°から−60°まで、−60°から60°まで、および60°から180°までの120°毎に繰り返す3回回転対称性を有する3つの120°回転対称ピーク領域を備える。各120°回転対称ピーク領域は、その領域のφの範囲の中央のφの角度を示す線および<0001>軸を含む面を鏡映面として互いに鏡映対称性を有する−領域と+領域とを備える。各−領域は、その領域のφの範囲の中央のφの角度を示す線および<0001>軸の交点を中心として互いに回反対称性を有する−L領域と−R領域とを備える。各+領域は、その領域のφの範囲の中央のφの角度を示す線および<0001>軸の交点を中心として互いに回反対称性を有する+L領域と+R領域とを備える。各−L領域、各−R領域、各+L領域、および各+R領域の少なくとも1領域において、2つの主面における少なくとも(1−100)および(−1101)に由来する第1基準X線多重回折ピークの強度に対する少なくとも(02−21)および(0−220)に由来する第2基準多重回折ピークの強度の比である第2基準ピーク強度比の値は互いに異なり、より大きな第2基準ピーク強度比を与える主面が略(0001)面である。本実施形態のGaN結晶基板は、略(0001)面を主面とするX線多重回折パターンおよび略(000−1)面を主面とするX線多重回折パターンのいずれにおいても、従来のGaN結晶基板に比べて、高い対称性を有しているため、結晶品質が高い。また、本実施形態のGaN結晶基板は、上記2つの主面についてのX線多重回折パターンからそれぞれ得られる2つの第2基準ピーク強度比の大小から略(0001)面(略Ga面)(極性面)である主面が判別されるため、当該GaN結晶基板を破壊しなくても極性が判別される。
[Embodiment 2-3]
Referring to FIGS. 13 to 18, the GaN crystal substrate of the present embodiment is a GaN crystal substrate having two main surfaces, and one main surface is substantially (0001) plane (that is, from the (0001) plane). The off angle is a surface of 0 ° or more and 2 ° or less), and the other main surface is substantially a (000-1) surface (that is, a surface having an off angle of 0 ° or more and 2 ° or less from a (000-1) surface). is there. In X-ray diffraction measurement using a small divergence incident X-ray parallel beam for each main surface, a GaN crystal substrate is arranged on a biaxially tilted sample stage such that each main surface is exposed, and the (0001) plane and the ( The <0001> axis, which is the normal to the 000-1) plane, is aligned with the φ axis, and the [1-100] direction is adjusted so that φ = 0 °. ) Plane, for 0001 symmetric forbidden Bragg reflection, and when the main surface is substantially (000-1) plane, for 000-1 symmetric forbidden Bragg reflection. In the scan pattern measurement in which φ is from −180 ° to 180 °, the X-ray multiple diffraction pattern that appears due to the multiple diffraction of X-rays in the crystal has φ of −180 ° to −60 ° and −60 ° to 60 °. Up to ° and 60 ° With three 120 ° rotational symmetry peak region having a 3-fold rotational symmetry repeats every 120 ° until et 180 °. Each of the 120 ° rotationally symmetric peak regions is a-region and a + region that have mirror symmetry with respect to each other, with a plane including the line indicating the angle of φ in the center of the range of φ and the <0001> axis as a mirror plane. Is provided. Each − region includes a line indicating the angle of φ at the center of the range of φ of the region and a −L region and a −R region having anti-rotational symmetry about the intersection of the <0001> axis. Each + region includes a line indicating the angle of φ in the center of the range of φ of the region and a + L region and a + R region having anti-rotational symmetry about an intersection of the <0001> axis. First reference X-ray multiple diffraction derived from at least (1-100) and (-1101) on two main surfaces in at least one region of each -L region, each -R region, each + L region, and each + R region. The value of the second reference peak intensity ratio, which is the ratio of the intensity of the second reference multiple diffraction peaks derived from at least (02-21) and (0-220) to the peak intensity, is different from each other, and is larger than the second reference peak intensity. The principal surface giving the ratio is a substantially (0001) surface. The GaN crystal substrate of the present embodiment has a conventional GaN crystal in both an X-ray multiple diffraction pattern having a substantially (0001) plane as a main surface and an X-ray multiple diffraction pattern having a substantially (000-1) plane as a main surface. Compared with a crystal substrate, it has higher symmetry, and thus has higher crystal quality. Further, the GaN crystal substrate of the present embodiment has a substantially (0001) plane (substantially Ga plane) (polarity) based on the magnitude of the two second reference peak intensity ratios obtained from the X-ray multiple diffraction patterns of the two main surfaces. Since the main surface is determined, the polarity can be determined without breaking the GaN crystal substrate.
本実施形態のGaN結晶基板におけるX線多重回折パターンの回転対称性および鏡映対称性における「対称」および「GaN結晶基板の対称性が高い」の意味、結晶評価に関しては、略(0001)面の主面については実施形態2−1の主面が略(0001)面(略Ga面)であるGaN結晶基板の場合と同様であり、略(000−1)面の主面については実施形態2−2の主面が略(000−1)面(略N面)であるGaN結晶基板の場合と同様であるため、ここでは繰り返さない。また、本実施形態のGaN結晶基板の厚さおよび直径については、実施形態2−1の主面が略(0001)面(略Ga面)であるGaN結晶基板および実施形態2−2の主面が略(000−1)面(略N面)であるGaN結晶基板の場合と同様であるため、ここでは繰り返さない。本実施形態のGaN結晶基板の製造方法は、実施形態2−1の主面が略(0001)面(略Ga面)であるGaN結晶基板の場合と同様であるため、ここでは繰り返さない。 Regarding the meaning of “symmetry” and “high symmetry of the GaN crystal substrate” in the rotational symmetry and the mirror symmetry of the X-ray multiple diffraction pattern in the GaN crystal substrate of the present embodiment, the crystal evaluation is substantially (0001) plane. Is the same as the case of the GaN crystal substrate in which the main surface of the embodiment 2-1 is a substantially (0001) plane (substantially Ga plane). Since the main surface of 2-2 is similar to the case of a GaN crystal substrate having a substantially (000-1) plane (substantially N plane), it will not be repeated here. Regarding the thickness and diameter of the GaN crystal substrate of this embodiment, the main surface of Embodiment 2-1 is a substantially (0001) plane (substantially Ga surface) and the main surface of Embodiment 2-2. Is similar to the case of a GaN crystal substrate having a substantially (000-1) plane (substantially N plane), and thus will not be repeated here. The method for manufacturing a GaN crystal substrate according to the present embodiment is the same as that of the GaN crystal substrate having the substantially (0001) plane (substantially Ga plane) in Embodiment 2-1 and will not be repeated here.
(実施例1)
1.GaN結晶基板の作製
直径76mmのサファイア基板上にMOCVD(有機金属化学気相堆積)法によりGaNを成長した(0001)面からのオフ角が0°以上2°以下の面を主面とするテンプレート基板を準備し、これを下地基板として、直径85mmで厚さ20mmのSiCコーティングしたカーボン製の基板ホルダー上に置いてHVPE(ハイドライド気相成長)装置のリアクター内に配置した。リアクター内を1020℃まで加熱後、HClガスをGaと反応して発生したGaClガスと、NH3ガスと、をリアクター内へ供給した。このような下地基板の上でのGaN層成長工程において、リアクター温度1020℃を29時間保持し、また、成長圧力を1.01×105Paとし、GaClガスの分圧を6.52×102Paとし、NH3ガスの分圧を7.54×103Paとし、HClガスの分圧を3.55×101Paとした。GaN層成長工程終了後、リアクター内を室温まで降温し、GaN結晶を得た。得られたGaN結晶は、(0001)面を結晶成長面として結晶成長しており、触針式の膜厚計で測定した厚さは3.5mmであった。
(Example 1)
1. Preparation of GaN Crystal Substrate A template having a main surface with an off angle of 0 ° or more and 2 ° or less from a (0001) plane on which GaN was grown on a sapphire substrate having a diameter of 76 mm by MOCVD (metal organic chemical vapor deposition). A substrate was prepared and used as a base substrate, placed on a substrate holder made of SiC coated with 85 mm in diameter and 20 mm in thickness, and placed in a reactor of an HVPE (hydride vapor phase epitaxy) apparatus. After heating the inside of the reactor to 1020 ° C., GaCl gas generated by reacting HCl gas with Ga and NH 3 gas were supplied into the reactor. In the GaN layer growth process on such an undersubstrate, the reactor temperature is maintained at 1020 ° C. for 29 hours, the growth pressure is set to 1.01 × 10 5 Pa, and the partial pressure of GaCl gas is set to 6.52 × 10 5 The pressure was 2 Pa, the partial pressure of NH 3 gas was 7.54 × 10 3 Pa, and the partial pressure of HCl gas was 3.55 × 10 1 Pa. After the GaN layer growth step was completed, the temperature in the reactor was lowered to room temperature to obtain a GaN crystal. The obtained GaN crystal was grown using the (0001) plane as a crystal growth surface, and the thickness measured by a stylus-type film thickness meter was 3.5 mm.
得られたGaN結晶を、その外周ならびに表(おもて)面(結晶成長面側の面)と裏面(結晶成長面と反対側の面)の両面を加工(具体的には、両面を平行かつ平坦に加工)して、加工変質層(加工歪み層)を除去した後、2回熱処理した。熱処理には神戸製鋼製の熱間静水圧プレス(HIP)装置を用いた。2回の熱処理条件は、いずれも2000気圧の窒素雰囲気中1200℃で20時間とした。上記2回の熱処理後に、HIP装置よりGaN結晶を回収し、表(おもて)面および裏面の両面を研磨して鏡面に仕上げ、両面共に加工変質層(加工歪み層)を除去して、直径2インチ(50.8mm)で厚さ400μmのGaN結晶基板に加工した。 The obtained GaN crystal is processed on both its outer periphery and both the front (front) surface (the surface on the crystal growth surface side) and the back surface (the surface opposite to the crystal growth surface) (specifically, both surfaces are parallelized). And processed flat) to remove the affected layer (processed strained layer), and then heat-treated twice. For the heat treatment, a hot isostatic press (HIP) device made by Kobe Steel was used. The conditions of the two heat treatments were each set to 1200 ° C. for 20 hours in a nitrogen atmosphere at 2000 atm. After the above two heat treatments, the GaN crystal is collected from the HIP device, and both the front (front) surface and the back surface are polished to a mirror surface, and the work-altered layer (work strain layer) is removed on both surfaces. The substrate was processed into a GaN crystal substrate having a diameter of 2 inches (50.8 mm) and a thickness of 400 μm.
2.GaN結晶基板のX線回折
(1)2軸傾斜試料台へのGaN結晶基板の配置と調整
X線回折装置(スペクトリス株式会社製PANalytical X’Pert MRD)の2軸傾斜試料台に、上記GaN結晶基板をその結晶成長面側の主面が露出するように配置した。配置したGaN結晶基板を、x軸、y軸およびz軸を調整して、入射角ωのオフセット値、煽り角χのオフセット値、および回転角φのオフセット値を定めることにより、(0001)面および(000−1)面の法線である<0001>軸とφ軸とが一致し、かつ、[1−100]方向をφ=0°の方向となるように調整した。かかる調整には、小発散角入射X線平行ビーム(入射側:ポイントフォーカスCuX線管球を電圧45kVおよび電流40mAで作動させて発生するCuKα1線について、発散角0.3°のX線キャピラリーレンズおよび幅W0.5mm×高さH0.5mmのクロススリットを用いて得られるX線平行ビーム、受光側:0.27°コリメータ(0.27°スリットは設けない)およびグラファイト平板モノクロメータを通して、Xe比例計数管により検出)を用いた。
2. X-Ray Diffraction of GaN Crystal Substrate (1) Arrangement and Adjustment of GaN Crystal Substrate on Biaxial Tilt Sample Stage The above GaN crystal is placed on the biaxial tilt sample stage of an X-ray diffractometer (PANALYTICAL X'Pert MRD manufactured by Spectris Co., Ltd.). The substrate was arranged such that the main surface on the crystal growth surface side was exposed. The (0001) plane is obtained by adjusting the x-axis, the y-axis, and the z-axis to determine the offset value of the incident angle ω, the offset value of the tilt angle χ, and the offset value of the rotation angle φ. The <0001> axis, which is the normal line of the (000-1) plane, and the φ axis coincide with each other, and the [1-100] direction was adjusted so that φ = 0 °. Such adjustment, the small divergence angle incident X-ray parallel beam (incident side: Point focus for CuKa 1 rays CuX ray tube operated at voltages 45kV and current 40mA the generated, divergence angle 0.3 ° X-ray capillary X-ray parallel beam obtained using a lens and a cross slit of width W 0.5 mm × height H 0.5 mm, light receiving side: 0.27 ° collimator (no 0.27 ° slit provided) and graphite plate monochromator, Xe proportional counter).
(2)GaN結晶基板のX線多重回折ピークの測定
上記の小発散角入射X線平行ビームを用いて、測定φ角度ステップ0.02°、測定φの角度範囲に応じて、各ステップでの計測時間が1秒から50秒の範囲の測定条件で、0001対称禁制ブラッグ反射または000−1対称禁制ブラッグ反射の位置(入射角ω:8.5428°、回折角2θ:17.0856°)にてφスキャンを測定した。図13および図15〜図18と同様のX線多重回折ピークが測定された。A領域(φが−60°から60°までの領域、すなわちA-L領域、A-R領域、A+L領域およびA+R領域の4つの区分領域で構成される領域)の主なX線多重回折ピークについての結果を表2および表3にまとめた。
(2) Measurement of X-ray multiple diffraction peak of GaN crystal substrate Using the above small divergence incident X-ray parallel beam, measurement φ angle step is 0.02 °, and each step is performed according to the angle range of measurement φ. Under the measurement conditions in which the measurement time is in the range of 1 second to 50 seconds, at the position of 0001 symmetric forbidden Bragg reflection or 000-1 symmetric forbidden Bragg reflection (incident angle ω: 8.5428 °, diffraction angle 2θ: 17.0856 °). Φ scan was measured. X-ray multiple diffraction peaks similar to those in FIGS. 13 and 15 to 18 were measured. The main X of the A region (a region where φ is −60 ° to 60 °, that is, a region composed of four divided regions of an A −L region, an A −R region, an A + L region, and an A + R region) The results for the line multiple diffraction peaks are summarized in Tables 2 and 3.
A-L領域、A-R領域、A+L領域およびA+R領域の4つの区分領域において、対称関係にあるそれぞれのX線多重回折ピーク群のピークの本数の差異が2本以下であり、かつ、対称関係にあるそれぞれのX線多重回折ピーク群のピークの位置の差異が2°を超えるものが2本以下であったため、それぞれのX線多重回折ピーク群の位置がよく一致しており、GaN結晶基板の対称性が高かった。また、表2および表3を参照して、A-L領域、A-R領域、A+領域LおよびA+R領域の4つの区分領域において、バックグランド(BG)強度に対する第1基準X線多重回折ピーク(S1)の強度の比である第1基準ピーク強度比(S1/BG比)は766〜1161と極めて高く、結晶品質は極めて高いと評価された。さらに、A-L領域、A-R領域、A+L領域およびA+領域Rの4つの区分領域において、第1基準X線多重回折ピーク(S1)の強度に対する第2基準X線多重回折ピーク(S2)の強度の比である第2基準ピーク強度比(S2/S1比)は0.207〜0.232と0.18以上であり、本実施例の結晶成長面側の主面が略(0001)面(すなわち略Ga面)(極性面)であると評価された。 The difference in the number of peaks of each of the symmetrical X-ray multiple diffraction peak groups in the four divided regions of the A- L region, the A- R region, the A + L region, and the A + R region is two or less. In addition, since the difference between the positions of the peaks of the respective X-ray multiple diffraction peak groups having a symmetrical relationship was more than 2 ° and not more than two, the positions of the respective X-ray multiple diffraction peak groups matched well. Thus, the symmetry of the GaN crystal substrate was high. Further, referring to Tables 2 and 3, the first reference X-ray with respect to the background (BG) intensity in four divided regions of the A -L region, the A -R region, the A + region L and the A + R region. The first reference peak intensity ratio (S1 / BG ratio), which is the ratio of the intensity of the multiple diffraction peaks (S1), was extremely high at 766 to 1161, and the crystal quality was evaluated to be extremely high. Further, the second reference X-ray multiple diffraction peak with respect to the intensity of the first reference X-ray multiple diffraction peak (S1) in four divided regions of the AL region, the AR region, the A + L region, and the A + region R. The second reference peak intensity ratio (S2 / S1 ratio), which is the intensity ratio of (S2), is 0.207 to 0.232, which is 0.18 or more. It was evaluated as a (0001) plane (that is, a substantially Ga plane) (polar plane).
3.GaN結晶基板上のエピタキシャル層の形成とフォトルミネッセンス測定
上記GaN結晶基板の上記主面上に、MOCVD法により、エピタキシャル層として、厚さ3μmのGaN層を成長させた。成長させたエピタキシャル層のフォトルミネッセンスの発光強度を測定し、その結果を表6にまとめた。
3. Formation of Epitaxial Layer on GaN Crystal Substrate and Photoluminescence Measurement On the main surface of the GaN crystal substrate, a 3 μm-thick GaN layer was grown as an epitaxial layer by MOCVD. The photoluminescence emission intensity of the grown epitaxial layer was measured, and the results are summarized in Table 6.
(実施例2)
実施例1と同様のGaN結晶基板を作製した。得られたGaN結晶基板を、結晶成長面と反対側の面側の主面を露出させて、2軸傾斜試料台に配置したこと以外は、実施例1と同様にして、(0001)面および(000−1)面の法線である<0001>軸とφ軸とが一致し、かつ、[1−100]方向をφ=0°の方向となるように調整し、実施例1と同様の条件でX線多重回折ピークを測定した。図14〜図18と同様のX線多重回折ピークが測定された。A領域(φが−60°から60°までの領域、すなわちA-L領域、A-R領域、A+L領域およびA+R領域の4つの区分領域で構成される領域)の主なX線多重回折ピークについての結果を表4および表5にまとめた。
(Example 2)
A GaN crystal substrate similar to that of Example 1 was produced. Except that the obtained GaN crystal substrate was placed on a biaxially inclined sample stage with the main surface on the side opposite to the crystal growth surface being exposed, the (0001) plane and the The <0001> axis, which is the normal line of the (000-1) plane, is aligned with the φ axis, and the [1-100] direction is adjusted so that φ = 0 °, as in the first embodiment. The X-ray multiple diffraction peak was measured under the following conditions. X-ray multiple diffraction peaks similar to those in FIGS. 14 to 18 were measured. The main X of the A region (a region where φ is −60 ° to 60 °, that is, a region composed of four divided regions of an A −L region, an A −R region, an A + L region, and an A + R region) The results for the line multiple diffraction peaks are summarized in Tables 4 and 5.
A-L領域、A-R領域、A+L領域およびA+R領域の4つの区分領域において、対称関係にあるそれぞれのX線多重回折ピーク群のピークの本数の差異が2本以下であり、かつ、対称関係にあるそれぞれのX線多重回折ピーク群のピークの位置の差異が2°を超えるものが2本以下であったため、それぞれのX線多重回折ピーク群の位置がよく一致しており、GaN結晶基板の対称性が高かった。また、表4および表5を参照して、A-L領域、A-R領域、A+L領域およびA+R領域の4つの区分領域において、バックグランド(BG)強度に対する第1基準X線多重回折ピーク(S1)の強度の比である第1基準ピーク強度比(S1/BG比)は1188〜1287と極めて高く、結晶品質は極めて高いと評価された。さらに、A-L領域、A-R領域、A+L領域およびA+R領域の4つの区分領域において、第1基準X線多重回折ピーク(S1)の強度に対する第2基準X線多重回折ピーク(S2)の強度の比である第2基準ピーク強度比(S2/S1比)は0.144〜0.159と0.18未満であり、本実施例の結晶成長面と反対側の側の主面が略(000−1)面(すなわち略N面)であると評価された。 The difference in the number of peaks of each of the symmetrical X-ray multiple diffraction peak groups in the four divided regions of the A- L region, the A- R region, the A + L region, and the A + R region is two or less. In addition, since the difference between the positions of the peaks of the respective X-ray multiple diffraction peak groups having a symmetrical relationship was more than 2 ° and not more than two, the positions of the respective X-ray multiple diffraction peak groups matched well. Thus, the symmetry of the GaN crystal substrate was high. Further, referring to Tables 4 and 5, the first reference X-ray with respect to the background (BG) intensity in four divided regions of the A -L region, the A -R region, the A + L region, and the A + R region. The first reference peak intensity ratio (S1 / BG ratio), which is the ratio of the intensities of the multiple diffraction peaks (S1), was extremely high at 1188 to 1287, and the crystal quality was evaluated to be extremely high. Further, the second reference X-ray multiple diffraction peak with respect to the intensity of the first reference X-ray multiple diffraction peak (S1) in four divided regions of the A -L region, the A -R region, the A + L region, and the A + R region. The second reference peak intensity ratio (S2 / S1 ratio), which is the intensity ratio of (S2), is 0.144 to 0.159 and less than 0.18, and is opposite to the crystal growth surface of the present example. The main surface was evaluated to be a substantially (000-1) surface (that is, a substantially N surface).
(参考例1)
結晶成長後の2回の熱処理を行わなかったこと以外は、実施例1と同様にしてGaN結晶基板を作製した。得られたGaN結晶基板について、結晶成長面と反対側の面側の主面を露出させて、2軸傾斜試料台に配置したこと以外は、実施例1と同様にして、(0001)面および(000−1)面の法線である<0001>軸とφ軸とが一致し、かつ、[1−100]方向をφ=0°の方向となるように調整し、実施例1と同様の条件でX線多重回折ピークを測定した。A-L領域、A-R領域、A+L領域およびA+R領域の4つの区分領域において、バックグランド(BG)強度に対する第1基準X線多重回折ピーク(S1)の強度の比である第1基準ピーク強度比(S1/BG比)は320〜400と500未満であり、結晶品質は高くないと評価された。さらに、A-L領域、A-R領域、A+L領域およびA+R領域の4つの区分領域において、第1基準X線多重回折ピーク(S1)の強度に対する第2基準X線多重回折ピーク(S2)の強度の比である第2基準ピーク強度比(S2/S1比)は0.34〜0.41と0.18以上であり、本実施例の結晶成長面側の主面が略(0001)面(すなわち略Ga面)であると評価された。
(Reference Example 1)
A GaN crystal substrate was manufactured in the same manner as in Example 1 except that the heat treatment was not performed twice after the crystal growth. Regarding the obtained GaN crystal substrate, the (0001) plane and the (0001) plane were formed in the same manner as in Example 1 except that the main surface on the side opposite to the crystal growth plane was exposed and arranged on the biaxially inclined sample stage. The <0001> axis, which is the normal line of the (000-1) plane, is aligned with the φ axis, and the [1-100] direction is adjusted so that φ = 0 °, as in the first embodiment. The X-ray multiple diffraction peak was measured under the following conditions. This is the ratio of the intensity of the first reference X-ray multiple diffraction peak (S1) to the background (BG) intensity in four divided regions of the A- L region, the A- R region, the A + L region, and the A + R region. The first reference peak intensity ratio (S1 / BG ratio) was 320 to 400, which was less than 500, and it was evaluated that the crystal quality was not high. Further, the second reference X-ray multiple diffraction peak with respect to the intensity of the first reference X-ray multiple diffraction peak (S1) in four divided regions of the A -L region, the A -R region, the A + L region, and the A + R region. The second reference peak intensity ratio (S2 / S1 ratio), which is the intensity ratio of (S2), is 0.34 to 0.41 and 0.18 or more. The (0001) plane (that is, the substantially Ga plane) was evaluated.
さらに、上記GaN結晶基板の上記主面上に、MOCVD法により、エピタキシャル層として、厚さ3μmのGaN層を成長させた。成長させたエピタキシャル層のフォトルミネッセンスの発光強度を測定し、その結果を表6にまとめた。 Further, a GaN layer having a thickness of 3 μm was grown as an epitaxial layer on the main surface of the GaN crystal substrate by MOCVD. The photoluminescence emission intensity of the grown epitaxial layer was measured, and the results are summarized in Table 6.
(参考例2)
参考例1と同様のGaN結晶基板を作製した。得られたGaN結晶基板を、結晶成長面と反対側の面側の主面を露出させて、2軸傾斜試料台に配置したこと以外は、実施例1と同様にして、(0001)面および(000−1)面の法線である<0001>軸とφ軸とが一致し、かつ、[1−100]方向をφ=0°の方向となるように調整し、実施例1と同様の条件でX線多重回折ピークを測定した。A-L領域、A-R領域、A+L領域およびA+R領域の4つの区分領域において、バックグランド(BG)強度に対する第1基準X線多重回折ピーク(S1)の強度の比である第1基準ピーク強度比(S1/BG比)は375〜550と750未満であり、結晶品質は高くないと評価された。さらに、A-L領域、A-R領域、A+L領域およびA+R領域の4つの基本区分領域において、第1基準X線多重回折ピーク(S1)の強度に対する第2基準X線多重回折ピーク(S2)の強度の比である第2基準ピーク強度比(S2/S1比)は0.15〜0.16と0.18未満であり、本実施例の結晶成長面と反対側の側の主面が略(000−1)面(すなわち略N面)であると評価された。
(Reference Example 2)
A GaN crystal substrate similar to that of Reference Example 1 was produced. Except that the obtained GaN crystal substrate was placed on a biaxially inclined sample stage with the main surface on the side opposite to the crystal growth surface being exposed, the (0001) plane and the The <0001> axis, which is the normal line of the (000-1) plane, is aligned with the φ axis, and the [1-100] direction is adjusted so that φ = 0 °, as in the first embodiment. The X-ray multiple diffraction peak was measured under the following conditions. This is the ratio of the intensity of the first reference X-ray multiple diffraction peak (S1) to the background (BG) intensity in four divided regions of the A- L region, the A- R region, the A + L region, and the A + R region. The first reference peak intensity ratio (S1 / BG ratio) was 375 to 550 and less than 750, and it was evaluated that the crystal quality was not high. Further, in four basic divisional regions of the A -L region, the A -R region, the A + L region and the A + R region, the second reference X-ray multiple diffraction with respect to the intensity of the first reference X-ray multiple diffraction peak (S1) is performed. The second reference peak intensity ratio (S2 / S1 ratio), which is the ratio of the intensity of the peak (S2), is 0.15 to 0.16 and less than 0.18, and is the side opposite to the crystal growth surface of the present example. Was evaluated to be a substantially (000-1) plane (that is, a substantially N plane).
表6を参照して、結晶品質が高くないことが確認された参考例1のGaN結晶基板の主面(すなわち略(0001)面(略Ga面))上に成長されたエピタキシャル層は、フォトルミネッセンスの発光強度が低く、結晶品質の低いエピタキシャル層であることが分かった。これに対して、結晶品質が極めて高いことが確認された実施例1のGaN結晶基板の主面(すなわち略(0001)面(略Ga面))上に成長されたエピタキシャル層は、フォトルミネッセンスの発光強度が高く、結晶品質の高いエピタキシャル層であることが分かった。 Referring to Table 6, the epitaxial layer grown on the main surface (that is, substantially (0001) plane (substantially Ga plane)) of the GaN crystal substrate of Reference Example 1 in which the crystal quality was not as high It was found that the luminescence intensity was low and the epitaxial layer was low in crystal quality. On the other hand, the epitaxial layer grown on the main surface (that is, the substantially (0001) plane (substantially Ga plane)) of the GaN crystal substrate of Example 1, which was confirmed to have extremely high crystal quality, has a photoluminescent property. It was found that the epitaxial layer had high emission intensity and high crystal quality.
上記のように、0001対称禁制ブラッグ反射または000−1対称禁制ブラッグ反射におけるX線多重回折ピークを用いた結晶評価(すなわち、X線多重回折ピークの対称性、バックグランド(BG)強度に対する第1基準X線多重回折ピーク(S1)の強度の比(S1/BG比)、および第1基準X線多重回折ピーク(S1)の強度に対する第2基準X線多重回折ピーク(S2)の強度の比(S2/S1比)など)により、結晶品質の高いGaN結晶基板について、その結晶品質および極性について詳細に評価することができた。 As described above, the crystal evaluation using the X-ray multiple diffraction peak in the 0001 symmetrical forbidden Bragg reflection or the 000-1 symmetrical forbidden Bragg reflection (that is, the first symmetry of the X-ray multiple diffraction peak, the first relative to the background (BG) intensity) The ratio of the intensity of the reference X-ray multiple diffraction peak (S1) (S1 / BG ratio), and the ratio of the intensity of the second reference X-ray multiple diffraction peak (S2) to the intensity of the first reference X-ray multiple diffraction peak (S1). (S2 / S1 ratio), etc., the crystal quality and polarity of the GaN crystal substrate with high crystal quality could be evaluated in detail.
今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態および実施例ではなく特許請求の範囲によって示され、特許請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。 It should be understood that the embodiments and examples disclosed this time are illustrative in all aspects and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the embodiments and examples described above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
1,2,3,4,5,6,7,8,9,10,11,12,13,14 ピークNo.、S1 第1基準X線多重回折ピーク、S2 第2基準X線多重回折ピーク、A,A-,A+,A-L,A-R,A+L,A+R,B,B-,B+,B-L,B-R,B+L,B+R,C,C-,C+,C-L,C-R,C+L,C+R 領域、ω 入射角、2θ 回折角、χ 煽り角、φ 回転角。 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 Peak No. , S1 first reference X-ray multiplexing diffraction peaks, S2 second reference X-ray multiplexing diffraction peaks, A, A -, A + , A -L, A -R, A + L, A + R, B, B -, B +, B -L, B -R , B + L, B + R, C, C -, C +, C -L, C -R, C + L, C + R region, omega incident angle, 2 [Theta] diffraction Fold angle, χ angle, φ rotation angle.
Claims (7)
前記主面が(0001)面からのオフ角が0°以上2°以下の面であり、
小発散角入射X線平行ビームを用いたX線回折測定において、2軸傾斜試料台上に前記主面が露出するように前記窒化ガリウム結晶基板を配置し、(0001)面の法線である<0001>軸とφ軸とが一致し、かつ、[1−100]方向をφ=0°の方向とするように調整し、
0001対称禁制ブラッグ反射についての入射角ωおよび回折角2θにおける前記φ軸を回転軸としたφスキャンパターン測定におけるφが−180°から180°までの測定において、結晶内におけるX線の多重回折により現われるX線多重回折パターンは、φが−180°から−60°まで、−60°から60°まで、および60°から180°までの120°毎に繰り返す3回回転対称性を有する3つの120°回転対称ピーク領域を備え、
各前記120°回転対称ピーク領域は、その領域のφの範囲の中央のφの角度を示す線および<0001>軸を含む面を鏡映面として互いに鏡映対称性を有する−領域と+領域とを備え、
各前記−領域は、その領域のφの範囲の中央のφの角度を示す線および<0001>軸の交点を中心として互いに回反対称性を有する−L領域と−R領域とを備え、
各前記+領域は、その領域のφの範囲の中央のφの角度を示す線および<0001>軸の交点を中心として互いに回反対称性を有する+L領域と+R領域とを備え、
各前記−L領域、各前記−R領域、各前記+L領域、および各前記+R領域の少なくとも1領域において、バックグランド強度に対する少なくとも(1−100)および(−1101)に由来する第1基準X線多重回折ピークの強度の比である第1基準ピーク強度比が500以上であり、
前記第1基準X線多重回折ピークの強度に対する少なくとも(02−21)および(0−220)に由来する第2基準多重回折ピークの強度の比である第2基準ピーク強度比が0.18以上である、窒化ガリウム結晶基板。 A gallium nitride crystal substrate having at least one major surface,
The main surface is a surface having an off angle from the (0001) plane of 0 ° or more and 2 ° or less,
In the X-ray diffraction measurement using a parallel beam of small divergence incident X-rays, the gallium nitride crystal substrate is arranged so that the main surface is exposed on a biaxially inclined sample stage, and is a normal line of the (0001) plane. The <0001> axis and the φ axis are aligned, and the [1-100] direction is adjusted so that the φ = 0 ° direction.
In the measurement of φ from −180 ° to 180 ° in the φ scan pattern measurement using the φ axis as the rotation axis at the incident angle ω and the diffraction angle 2θ for the 0001 symmetrical forbidden Bragg reflection, the multiple diffraction of X-rays in the crystal is performed. The resulting X-ray multiple diffraction pattern has three 120-fold rotational symmetries that repeat every 120 ° from φ from −180 ° to −60 °, from −60 ° to 60 °, and from 60 ° to 180 °. ° Rotationally symmetric peak area,
Each of the 120 ° rotationally symmetric peak regions is a − region and a + region having a mirror symmetry with respect to each other, with a plane including the line indicating the angle of φ in the center of the range of φ and the <0001> axis as a mirror plane. With
Each of the-regions includes a line indicating the angle of φ in the center of the range of φ of the region and -L regions and -R regions having anti-symmetrical symmetry with respect to the intersection of the <0001> axis,
Each of the + regions includes a line indicating the angle of φ in the center of the range of φ of the region and a + L region and a + R region having anti-rotational symmetry with respect to an intersection of the <0001> axis,
In at least one of the -L region, each -R region, each + L region, and each + R region, a first reference X derived from at least (1-100) and (-1101) with respect to background intensity. A first reference peak intensity ratio, which is a ratio of the intensity of the line multiplex diffraction peak, is 500 or more;
A second reference peak intensity ratio, which is a ratio of at least the intensity of the second reference multiple diffraction peak derived from (02-21) and (0-220) to the intensity of the first reference X-ray multiple diffraction peak, is 0.18 or more. A gallium nitride crystal substrate.
前記主面が(000−1)面からのオフ角が0°以上2°以下の面であり、
小発散角入射X線平行ビームを用いたX線回折測定において、2軸傾斜試料台上に前記主面が露出するように前記窒化ガリウム結晶基板を配置し、(000−1)面の法線である<0001>軸とφ軸とが一致し、かつ、[1−100]方向をφ=0°の方向とするように調整し、
000−1対称禁制ブラッグ反射についての入射角ωおよび回折角2θにおける前記φ軸を回転軸としたφスキャンパターン測定におけるφが−180°から180°までの測定において、結晶内におけるX線の多重回折により現われるX線多重回折パターンは、φが−180°から−60°まで、−60°から60°まで、および60°から180°までの120°毎に繰り返す3回回転対称性を有する3つの120°回転対称ピーク領域を備え、
各前記120°回転対称ピーク領域は、その領域のφの範囲の中央のφの角度を示す線および<0001>軸を含む面を鏡映面として互いに鏡映対称性を有する−領域と+領域とを備え、
各前記−領域は、その領域のφの範囲の中央のφの角度を示す線および<0001>軸の交点を中心として互いに回反対称性を有する−L領域と−R領域とを備え、
各前記+領域は、その領域のφの範囲の中央のφの角度を示す線および<0001>軸の交点を中心として互いに回反対称性を有する+L領域と+R領域とを備え、
各前記−L領域、各前記−R領域、各前記+L領域、および各前記+R領域の少なくとも1領域において、バックグランド強度に対する少なくとも(1−100)および(−1101)に由来する第1基準X線多重回折ピークの強度の比である第1基準ピーク強度比が750以上であり、
前記第1基準X線多重回折ピークの強度に対する少なくとも(02−21)および(0−220)に由来する第2基準多重回折ピークの強度の比である第2基準ピーク強度比が0.18未満である、窒化ガリウム結晶基板。 A gallium nitride crystal substrate having at least one major surface,
The main surface is a surface having an off angle from the (000-1) plane of 0 ° or more and 2 ° or less,
In X-ray diffraction measurement using a parallel beam of small divergence incident X-rays, the gallium nitride crystal substrate is arranged on a biaxially inclined sample stage so that the main surface is exposed, and a normal to a (000-1) plane is set. Is adjusted so that the <0001> axis coincides with the φ axis, and the [1-100] direction is the direction of φ = 0 °.
Multiplexing of X-rays in the crystal in the measurement of φ in the range of −180 ° to 180 ° in the φ scan pattern measurement using the φ axis as the rotation axis at the incident angle ω and the diffraction angle 2θ for the 000-1 symmetric forbidden Bragg reflection The X-ray multiple diffraction pattern appearing by diffraction has a three-fold rotational symmetry where φ repeats every 120 ° from −180 ° to −60 °, from −60 ° to 60 °, and from 60 ° to 180 °. With two 120 ° rotationally symmetric peak regions,
Each of the 120 ° rotationally symmetric peak regions is a − region and a + region having a mirror symmetry with respect to each other, with a plane including the line indicating the angle of φ in the center of the range of φ and the <0001> axis as a mirror plane. With
Each of the-regions includes a line indicating the angle of φ in the center of the range of φ of the region and -L regions and -R regions having anti-symmetrical symmetry with respect to the intersection of the <0001> axis,
Each of the + regions includes a line indicating the angle of φ in the center of the range of φ of the region and a + L region and a + R region having anti-rotational symmetry with respect to an intersection of the <0001> axis,
In at least one of the -L region, each -R region, each + L region, and each + R region, a first reference X derived from at least (1-100) and (-1101) with respect to background intensity. A first reference peak intensity ratio, which is a ratio of the intensity of the line multiplex diffraction peak, is 750 or more;
A second reference peak intensity ratio, which is a ratio of at least the intensity of the second reference multiple diffraction peak derived from (02-21) and (0-220) to the intensity of the first reference X-ray multiple diffraction peak, is less than 0.18. A gallium nitride crystal substrate.
1つの前記主面が(0001)面からのオフ角が0°以上2°以下の面であり、他の前記主面が(000−1)面からのオフ角が0°以上2°以下の面であり、
各前記主面についての小発散角入射X線平行ビームを用いたX線回折測定において、2軸傾斜試料台上に各前記主面が露出するように前記窒化ガリウム結晶基板を配置し、(0001)面および(000−1)面の法線である<0001>軸とφ軸とが一致し、かつ、[1−100]方向をφ=0°の方向とするように調整し、
前記主面が(0001)面からのオフ角が0°以上2°以下の面のときは0001対称禁制ブラッグ反射について、前記主面が(000−1)面からのオフ角が0°以上2°以下の面のときは000−1対称禁制ブラッグ反射についての入射角ωおよび回折角2θにおける前記φ軸を回転軸としたφスキャンパターン測定におけるφが−180°から180°までの測定において、結晶内におけるX線の多重回折により現われるX線多重回折パターンは、φが−180°から−60°まで、−60°から60°まで、および60°から180°までの120°毎に繰り返す3回回転対称性を有する3つの120°回転対称ピーク領域を備え、
各前記120°回転対称ピーク領域は、その領域のφの範囲の中央のφの角度を示す線および<0001>軸を含む面を鏡映面として互いに鏡映対称性を有する−領域と+領域とを備え、
各前記−領域は、その領域のφの範囲の中央のφの角度を示す線および<0001>軸の交点を中心として互いに回反対称性を有する−L領域と−R領域とを備え、
各前記+領域は、その領域のφの範囲の中央のφの角度を示す線および<0001>軸の交点を中心として互いに回反対称性を有する+L領域と+R領域とを備え、
各前記−L領域、各前記−R領域、各前記+L領域、および各前記+R領域の少なくとも1領域において、2つの前記主面における少なくとも(1−100)および(−1101)に由来する第1基準X線多重回折ピークの強度に対する少なくとも(02−21)および(0−220)に由来する第2基準多重回折ピークの強度の比である第2基準ピーク強度比の値は互いに異なり、より大きな前記第2基準ピーク強度比を与える前記主面が(0001)面からのオフ角が0°以上2°以下の面である、窒化ガリウム結晶基板。 A gallium nitride crystal substrate having two main surfaces,
One of the principal surfaces is a surface having an off angle from the (0001) plane of 0 ° or more and 2 ° or less, and the other principal surface has an off angle of 0 ° or more and 2 ° or less from the (000-1) plane. Plane
In X-ray diffraction measurement using a small divergence incident X-ray parallel beam on each of the main surfaces, the gallium nitride crystal substrate is arranged on a biaxially inclined sample stage such that the main surfaces are exposed, and (0001) The <0001> axis, which is the normal line of the) plane and the (000-1) plane, is aligned with the φ axis, and the [1-100] direction is adjusted to be the direction of φ = 0 °,
When the main surface is a surface having an off angle of 0 ° or more and 2 ° or less from the (0001) plane, the main surface has an off angle of 0 ° or more and 2 ° from the (000-1) plane for 0001 symmetric forbidden Bragg reflection. When the surface is less than or equal to 000-1 symmetrical forbidden Bragg reflection, in the φ scan pattern measurement with the φ axis as the rotation axis at the incident angle ω and the diffraction angle 2θ at the diffraction angle 2θ, in the measurement from −180 ° to 180 °, The X-ray multiple diffraction pattern appearing by the multiple diffraction of X-rays in the crystal repeats every 120 ° from φ ranging from −180 ° to −60 °, from −60 ° to 60 °, and from 60 ° to 180 °. Comprising three 120 ° rotationally symmetric peak regions with rotational symmetry,
Each of the 120 ° rotationally symmetric peak regions is a − region and a + region having a mirror symmetry with respect to each other, with a plane including the line indicating the angle of φ in the center of the range of φ and the <0001> axis as a mirror plane. With
Each of the-regions includes a line indicating the angle of φ in the center of the range of φ of the region and -L regions and -R regions having anti-symmetrical symmetry with respect to the intersection of the <0001> axis,
Each of the + regions includes a line indicating the angle of φ in the center of the range of φ of the region and a + L region and a + R region having anti-rotational symmetry with respect to an intersection of the <0001> axis,
In at least one of the -L region, the -R region, the + L region, and the + R region, the first derived from at least (1-100) and (-1101) on the two main surfaces. The value of the second reference peak intensity ratio, which is the ratio of the intensity of the second reference multiple diffraction peak derived from at least (02-21) and (0-220) to the intensity of the reference X-ray multiple diffraction peak, is different from each other and is larger. The gallium nitride crystal substrate, wherein the main surface giving the second reference peak intensity ratio is a surface having an off angle from the (0001) plane of 0 ° or more and 2 ° or less.
2軸傾斜試料台上に前記主面が露出するように前記窒化ガリウム結晶基板を配置し、(0001)面および(000−1)面の法線である<0001>軸とφ軸とが一致し、かつ、[1−100]方向をφ=0°の方向とするように調整する工程と、
前記主面が(0001)面からのオフ角が0°以上2°以下の面のときは0001対称禁制ブラッグ反射について、前記主面が(000−1)面からのオフ角が0°以上2°以下の面のときは000−1対称禁制ブラッグ反射についての入射角ωおよび回折角2θにおいて、前記φ軸を回転軸としたφスキャンパターン測定を行なう工程と、を含み、
前記φスキャンパターン測定から得られるX線多重回折ピークの対称性の高さおよびバックグランド強度に対する少なくとも(1−100)および(−1101)に由来する第1基準X線多重回折ピークの強度の比である第1基準ピーク強度比の大きさから、前記窒化ガリウム結晶基板の結晶の品質を評価する、窒化ガリウム結晶基板の結晶評価方法。 A gallium nitride crystal substrate having at least one main surface, wherein the main surface is a surface having an off angle of at least 0 ° and not more than 2 ° from at least one of a (0001) plane and a (000-1) plane. A method of evaluating by X-ray diffraction measurement using a small divergence angle incident X-ray parallel beam,
The gallium nitride crystal substrate is arranged on the biaxially tilted sample stage such that the main surface is exposed, and the <0001> axis, which is a normal to the (0001) plane and the (000-1) plane, and the φ axis are aligned with each other. And adjusting the [1-100] direction so that φ = 0 °.
When the main surface is a surface having an off angle of 0 ° or more and 2 ° or less from the (0001) plane, the main surface has an off angle of 0 ° or more and 2 ° from the (000-1) plane for 0001 symmetric forbidden Bragg reflection. At a plane of less than or equal to 000-1 symmetrical forbidden Bragg reflection, at an incident angle ω and a diffraction angle 2θ, performing a φ scan pattern measurement with the φ axis as a rotation axis,
Ratio of the intensity of the first reference X-ray multiple diffraction peak derived from at least (1-100) and (-1101) to the height of symmetry and background intensity of the X-ray multiple diffraction peak obtained from the φ scan pattern measurement A gallium nitride crystal substrate crystal evaluation method, wherein the quality of the gallium nitride crystal substrate crystal is evaluated from the magnitude of the first reference peak intensity ratio.
2つの前記主面における前記第1基準X線多重回折ピークの強度に対する少なくとも(02−21)および(0−220)に由来する第2基準多重回折ピークの強度の比である第2基準ピーク強度比の値は互いに異なり、
より大きな前記第2基準ピーク強度比を与える前記主面を(0001)面からのオフ角が0°以上2°以下の面と評価する、請求項5に記載の窒化ガリウム結晶基板の結晶評価方法。 The gallium nitride crystal substrate has two main surfaces,
A second reference peak intensity which is a ratio of at least the intensity of the second reference multiple diffraction peak derived from (02-21) and (0-220) to the intensity of the first reference X-ray multiple diffraction peak on the two main surfaces. The ratio values are different from each other,
The crystal evaluation method for a gallium nitride crystal substrate according to claim 5, wherein the main surface providing the larger second reference peak intensity ratio is evaluated as a surface having an off angle from the (0001) plane of 0 ° or more and 2 ° or less. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018131735A JP7079683B2 (en) | 2018-07-11 | 2018-07-11 | Gallium nitride crystal substrate and its crystal evaluation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018131735A JP7079683B2 (en) | 2018-07-11 | 2018-07-11 | Gallium nitride crystal substrate and its crystal evaluation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020008497A true JP2020008497A (en) | 2020-01-16 |
JP7079683B2 JP7079683B2 (en) | 2022-06-02 |
Family
ID=69151532
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018131735A Active JP7079683B2 (en) | 2018-07-11 | 2018-07-11 | Gallium nitride crystal substrate and its crystal evaluation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7079683B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113851387A (en) * | 2021-09-22 | 2021-12-28 | 济南晶正电子科技有限公司 | Method for measuring deflection angle of composite substrate and device manufacturing method |
CN115700376A (en) * | 2021-07-15 | 2023-02-07 | 环球晶圆股份有限公司 | Silicon carbide anchor evaluation method and device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005298319A (en) * | 2004-03-17 | 2005-10-27 | Sumitomo Electric Ind Ltd | GaN single crystal substrate manufacturing method and GaN single crystal substrate |
US20160380153A1 (en) * | 2015-06-25 | 2016-12-29 | Gwangju Institute Of Science And Technology | Substrate, method of preparing the same, and light-emitting diode using the substrate |
-
2018
- 2018-07-11 JP JP2018131735A patent/JP7079683B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005298319A (en) * | 2004-03-17 | 2005-10-27 | Sumitomo Electric Ind Ltd | GaN single crystal substrate manufacturing method and GaN single crystal substrate |
US20160380153A1 (en) * | 2015-06-25 | 2016-12-29 | Gwangju Institute Of Science And Technology | Substrate, method of preparing the same, and light-emitting diode using the substrate |
Non-Patent Citations (3)
Title |
---|
"X-ray multiple diffraction (Umweganregung) in wurtzite-type GaN and ZnO epitaxial layers", PHYSICA STATUS SOLIDI. A.APPLICATIONS AND MATERIALS SCIENCE, JPN7022000654, 2004, US, ISSN: 0004710316 * |
"小発散角入射X線平行ビームによるGaN基板表面0001対称禁制反射", JCCG-46, JPN7022000656, 27 November 2017 (2017-11-27), JP, ISSN: 0004710314 * |
"高分解能X線回折法によるGaN材料の評価", リガクジャーナル, vol. 第44巻、第2号, JPN7022000655, 2013, JP, pages 7 - 15, ISSN: 0004710315 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115700376A (en) * | 2021-07-15 | 2023-02-07 | 环球晶圆股份有限公司 | Silicon carbide anchor evaluation method and device |
CN113851387A (en) * | 2021-09-22 | 2021-12-28 | 济南晶正电子科技有限公司 | Method for measuring deflection angle of composite substrate and device manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP7079683B2 (en) | 2022-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2654232B2 (en) | High pressure phase material single crystal production method | |
US20230078982A1 (en) | Chamfered silicon carbide substrate and method of chamfering | |
Gallheber et al. | Growth, stress, and defects of heteroepitaxial diamond on Ir/YSZ/Si (111) | |
US20210115592A1 (en) | Silicon carbide ingot, method of preparing the same, and method for preparing silicon carbide wafer | |
Muchnikov et al. | Characterization of interfaces in mosaic CVD diamond crystal | |
JP2020008497A (en) | Gallium nitride crystal substrate and crystal evaluation method thereof | |
WO2013147203A1 (en) | Periodic table group 13 metal nitride crystals and method for manufacturing periodic table group 13 metal nitride crystals | |
Bläsing et al. | Oxygen induced strain field homogenization in AlN nucleation layers and its impact on GaN grown by metal organic vapor phase epitaxy on sapphire: An x-ray diffraction study | |
JP2020516070A (en) | Sphalerite structure III-nitride | |
JP2022088407A (en) | Nitride semiconductor substrate and semiconductor laminate | |
CN111745305B (en) | Method for realizing surface orientation of diamond single crystal substrate | |
JP5949064B2 (en) | GaN bulk crystal | |
Trager-Cowan et al. | Structural and luminescence imaging and characterisation of semiconductors in the scanning electron microscope | |
JP2022161941A (en) | gallium nitride crystal substrate | |
Letts et al. | Reduction of crack density in ammonothermal bulk GaN growth | |
Vogg et al. | High quality heteroepitaxial AlN films on diamond | |
Darakchieva et al. | Structural characteristics and lattice parameters of hydride vapor phase epitaxial GaN free-standing quasisubstrates | |
Wang et al. | Lattice-plane orientation mapping of homo-epitaxial GaN (0001) thin films via grazing-incidence X-ray diffraction topography in 2-in. wafer | |
Gao et al. | Study of defects and interfaces on the atomic scale in epitaxial TiO2 thin films on sapphire | |
JP2023519639A (en) | Gallium nitride substrate and semiconductor composite substrate | |
JP7134427B2 (en) | Crystal lattice plane distribution measurement method | |
JP2015178438A (en) | Method for producing gallium nitride free-standing substrate, gallium nitride crystal and gallium nitride free-standing substrate | |
WO2020036166A1 (en) | METHOD FOR EVALUATING SiC SINGLE CRYSTAL AND METHOD FOR PRODUCING SiC WAFER | |
Paskova et al. | Thick hydride vapour phase epitaxial GaN layers grown on sapphire with different buffers | |
JPH0687691A (en) | Production of diamond and diamond single crystal substrate used in the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180809 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210323 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220222 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220419 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220510 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220523 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7079683 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |