JP2020006806A - Contact state detection device, contact state detection method and program - Google Patents
Contact state detection device, contact state detection method and program Download PDFInfo
- Publication number
- JP2020006806A JP2020006806A JP2018129719A JP2018129719A JP2020006806A JP 2020006806 A JP2020006806 A JP 2020006806A JP 2018129719 A JP2018129719 A JP 2018129719A JP 2018129719 A JP2018129719 A JP 2018129719A JP 2020006806 A JP2020006806 A JP 2020006806A
- Authority
- JP
- Japan
- Prior art keywords
- state
- torque
- hands
- steering
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 154
- 238000013528 artificial neural network Methods 0.000 claims description 22
- 238000004364 calculation method Methods 0.000 claims description 12
- 230000006870 function Effects 0.000 description 18
- 238000010586 diagram Methods 0.000 description 17
- 230000007246 mechanism Effects 0.000 description 17
- 238000000034 method Methods 0.000 description 13
- 230000006399 behavior Effects 0.000 description 12
- 238000012545 processing Methods 0.000 description 12
- 239000003638 chemical reducing agent Substances 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 230000015654 memory Effects 0.000 description 7
- 230000036962 time dependent Effects 0.000 description 6
- 238000004891 communication Methods 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 238000004590 computer program Methods 0.000 description 3
- 238000013527 convolutional neural network Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000003062 neural network model Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 102100034112 Alkyldihydroxyacetonephosphate synthase, peroxisomal Human genes 0.000 description 1
- 101000799143 Homo sapiens Alkyldihydroxyacetonephosphate synthase, peroxisomal Proteins 0.000 description 1
- 125000002066 L-histidyl group Chemical group [H]N1C([H])=NC(C([H])([H])[C@](C(=O)[*])([H])N([H])[H])=C1[H] 0.000 description 1
- 229910000639 Spring steel Inorganic materials 0.000 description 1
- 238000000848 angular dependent Auger electron spectroscopy Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003936 working memory Effects 0.000 description 1
Images
Landscapes
- Steering Control In Accordance With Driving Conditions (AREA)
- Power Steering Mechanism (AREA)
Abstract
Description
本発明は、操舵部材への接触状態検出装置、接触状態検出方法及びプログラムに関する。 The present invention relates to a device for detecting a contact state with a steering member, a method for detecting a contact state, and a program.
近年、車両を制御するために、ステアリングホイール等の操舵部材に対する運転者の接触状態を検出する技術が検討されている。例えば、特許文献1は、運転者がステアリングホイールから手を放した状態であるハンドルフリー状態を判定する技術を開示している。この技術では、ステアリングの操舵角と操舵角速度とに基づいて、外部から入力されるトルクとしての外乱トルクが推定され、外乱トルクとステアリングの回転軸の軸トルクとが加算演算されることによって、操舵トルクが推定される。そして、操舵トルクの絶対値が閾値未満の状態が所定時間経過した場合、ハンドルフリー状態であると判定される。
2. Description of the Related Art In recent years, technologies for detecting a contact state of a driver with a steering member such as a steering wheel have been studied in order to control a vehicle. For example,
特許文献1の技術では、ハンドルフリー状態の検出に要する時間が長くなる可能性がある。さらに、運転者が小さい操舵トルクでステアリングを把持している場合、ハンドルフリー状態であると判定される可能性がある。このため、特許文献1の技術は、誤検出を生じる可能性がある。
In the technique of
そこで、本発明は、操舵部材への接触状態の検出精度を向上する接触状態検出装置、接触状態検出方法及びプログラムを提供する。 Therefore, the present invention provides a contact state detection device, a contact state detection method, and a program that improve the detection accuracy of the contact state with the steering member.
本発明の一態様に係る接触状態検出装置は、車両用操舵装置の操舵部材への接触状態を検出する接触状態検出装置であって、前記操舵部材に発生するトルクを検出するトルク検出部と、前記トルク検出部の複数の検出値で構成される入力データを用いて演算することによって、前記操舵部材に対するハンズオン状態又はハンズオフ状態を示す情報を出力する演算部とを備える。 A contact state detection device according to one aspect of the present invention is a contact state detection device that detects a contact state of a vehicle steering device with a steering member, and a torque detection unit that detects a torque generated in the steering member. A calculation unit that calculates information using input data composed of a plurality of detection values of the torque detection unit to output information indicating a hands-on state or a hands-off state for the steering member.
本発明の一態様に係る接触状態検出方法は、車両用操舵装置の操舵部材への接触状態を検出する接触状態検出方法であって、前記操舵部材に発生するトルクの複数の検出値を取得し、前記トルクの複数の検出値で構成される入力データを用いて演算することによって、前記操舵部材に対するハンズオン状態又はハンズオフ状態を示す情報を出力する。 A contact state detection method according to one aspect of the present invention is a contact state detection method for detecting a contact state of a steering member of a vehicle with a steering member, and acquires a plurality of detection values of torque generated in the steering member. By using input data composed of a plurality of detected values of the torque, information indicating a hands-on state or a hands-off state with respect to the steering member is output.
本発明の一態様に係るプログラムは、車両用操舵装置の操舵部材に発生するトルクの複数の検出値を取得し、前記トルクの複数の検出値で構成される入力データを用いて演算することによって、前記操舵部材に対するハンズオン状態又はハンズオフ状態を示す情報を出力することをコンピュータに実行させる。 A program according to one aspect of the present invention obtains a plurality of detected values of a torque generated in a steering member of a vehicle steering device, and performs a calculation using input data including the plurality of detected values of the torque. And causing the computer to output information indicating a hands-on state or a hands-off state for the steering member.
本発明に係る接触状態検出装置等によると、操舵部材への接触状態の検出精度を向上することが可能になる。 ADVANTAGE OF THE INVENTION According to the contact state detection apparatus etc. which concern on this invention, it becomes possible to improve the detection accuracy of the contact state with a steering member.
以下、実施の形態に係る接触状態検出装置等を、図面を参照しながら説明する。なお、以下で説明される実施の形態は、包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ(工程)、並びに、ステップの順序等は、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、各図は模式図であり、必ずしも厳密に図示されたものではない。さらに、各図において、実質的に同一の構成要素に対しては同一の符号を付しており、重複する説明は省略又は簡略化される場合がある。 Hereinafter, a contact state detection device and the like according to an embodiment will be described with reference to the drawings. The embodiment described below shows a comprehensive or specific example. Numerical values, shapes, materials, constituent elements, arrangement positions and connection forms of constituent elements, steps (processes), order of steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. Absent. Further, among the components in the following embodiments, components not described in the independent claims indicating the highest concept are described as arbitrary components. In addition, each drawing is a schematic diagram and is not necessarily strictly illustrated. Further, in each of the drawings, substantially the same components are denoted by the same reference numerals, and redundant description may be omitted or simplified in some cases.
[実施の形態1]
本発明の実施の形態1に係る接触状態検出装置100及び接触状態検出装置100を備える車両用操舵装置1の構成を説明する。本実施の形態では、接触状態検出装置100は、車両に搭載された車両用操舵装置1に備えられるとして説明する。車両の例は、自動車、トラック、バス、二輪車、搬送車、鉄道、建設機械、農耕機械及び荷役機械である。本実施の形態では、車両は自動車であるとし、自動車は、エンジンを備える自動車、エンジン及びモータを備えるハイブリッド自動車、及び、エンジンを備えずモータを備える電気自動車のいずれであってもよい。
[Embodiment 1]
A configuration of a contact
図1は、実施の形態1に係る接触状態検出装置100を備える車両用操舵装置1の構成の一例を示す概略図である。図1に示すように、車両用操舵装置1は、車両Aに搭載され、モータの回転駆動力により操舵をトルクアシストするステアリング装置である。車両用操舵装置1は、車両Aの運転者によって操作される操舵機構2と、運転者による操舵機構2への入力に応じて転舵輪60を転舵させる転舵機構3と、運転者の操舵を補助するための補助機構4とを備えている。転舵輪60は、車両Aの舵取り用の車輪である。
FIG. 1 is a schematic diagram illustrating an example of a configuration of a
操舵機構2は、ステアリングホイール11と接続されたステアリングシャフト5を備える。本実施の形態の場合、ステアリングシャフト5は、コラムシャフト5a、インターミディエイトシャフト5b及びピニオンシャフト5cで構成されている。コラムシャフト5a、インターミディエイトシャフト5b及びピニオンシャフト5cは、互いの端部において、屈曲した状態で回転できるように、自在継手を介してこの順で連結されている。コラムシャフト5aは、ステアリングホイール11と接続される。ピニオンシャフト5cは、後述する転舵機構3のラックシャフト6と接続される。ここで、ステアリングホイール11及びステアリングシャフト5は、操舵部材の一例である。
The
転舵機構3は、転舵輪60に接続されるラックシャフト6と、ラックアンドピニオン装置7とを備える。ラックアンドピニオン装置7は、ピニオンシャフト5cの回転をラックシャフト6の往復動に変換する。転舵機構3は、ピニオンシャフト5cから伝達される回転駆動力をラックシャフト6の直線駆動力に変換して転舵輪60に伝達し、転舵輪60を転舵方向に回転させる。
The
補助機構4は、操舵のアシスト力をステアリングシャフト5に付与するモータ8と、モータ8の回転駆動力をステアリングシャフト5に伝達する減速機9とを備える。モータ8は、後述するECU(電子制御ユニット:Electronic Control Unit)50の制御により、動作する。減速機9は、モータ8と接続され、モータ8を駆動源として操舵を補助するためのアシスト力をステアリングシャフト5に付与する装置である。減速機9は、モータ8の回転速度を減速させ且つ回転駆動力を増強してステアリングシャフト5に伝達する。モータ8の例は、電動モータである。減速機9の例は、ウォーム減速機である。ウォーム減速機は、モータ8によって回転駆動されるウォームシャフト9aと、ステアリングシャフト5と一体に回転するウォームホイール9bとを有している。ウォームシャフト9aは、外周面にらせん状の歯を有するネジ状の歯車であり、ウォームホイール9bは、外周に複数の歯を有する円板状の歯車である。小径のウォームシャフト9aの歯と大径のウォームホイール9bの歯とが噛み合っている。
The
本実施の形態の場合、減速機9は、ピニオンシャフト5cに接続されている。しかしながら、減速機9は、コラムシャフト5a又はインターミディエイトシャフト5bに接続されてもよく、ラックシャフト6に接続されてもよい。
In the case of the present embodiment, the speed reducer 9 is connected to the
また、コラムシャフト5aは、入力軸部5aaと、出力軸部5abと、トーションバー部5acとを含む。入力軸部5aaは、ステアリングホイール11と接続され、ステアリングホイール11から運転者の操舵力が入力される。出力軸部5abは、インターミディエイトシャフト5bと接続され、ステアリングホイール11から入力される運転者の操舵力を、インターミディエイトシャフト5bに伝達する。トーションバー部5acは、入力軸部5aaと出力軸部5abとの間に配置され、入力軸部5aaに入力される操舵力を出力軸部5abに伝達する。トーションバー部5acは、入力軸部5aa及び出力軸部5abよりも、軸心を中心とするねじれ方向の剛性が低く構成されている。トーションバー部5acの構成材料の例は、ばね鋼である。操舵力が入力軸部5aaに入力されると、トーションバー部5acは軸心を中心に捻れつつ操舵力を出力軸部5abに伝達する。
The
また、車両用操舵装置1は、運転者によってステアリングホイール11を介してステアリングシャフト5に加えられるトルクを検出するためのトルクセンサ21を備える。トルクセンサ21は、トーションバー部5acに配置され、トーションバー部5acの捩れ量、つまり入力軸部5aa及び出力軸部5abの相対回転角を検出することによって、トルクを検出する。トルクセンサ21が検出するトルクは、運転者が操舵のためにステアリングホイール11に加える操舵トルクに相当する。トルクセンサ21は、検出信号をECU50に送信する。ここで、トルクセンサ21は、トルク検出部の一例である。
Further, the
さらに、車両用操舵装置1は、入力軸部5aaの回転角度を検出する回転角センサ22を備える。回転角センサ22は、入力軸部5aaに配置され、入力軸部5aaの軸心周りの回転量、つまり、回転角度を検出する。回転角センサ22が検出する回転角は、運転者が操舵のためにステアリングホイール11に加える操舵角に相当する。回転角センサ22は、検出信号をECU50に送信する。ここで、回転角センサ22は、回転量検出部の一例である。
Further, the
また、車両用操舵装置1は、ECU50を備える。ECU50は、モータ8、トルクセンサ21及び回転角センサ22等と電気的に接続されている。さらに、ECU50は、車両Aに搭載される車速センサ31と電気的に接続され、車速センサ31から車両Aの速度である車速を示す信号を取得する。ECU50は、トルクセンサ21及び車速センサ31から取得されるトルク及び車速の信号に基づき、モータ8に供給する電流を制御し、モータ8がピニオンシャフト5cに与えるアシスト力を制御する。ECU50は、トルクセンサ21及び回転角センサ22から取得されるトルク及び回転角の信号に基づき、ステアリングホイール11に対する運転者の接触状態を検出する。具体的には、ECU50は、運転者がステアリングホイール11を握っているハンズオン状態であるか、運転者がステアリングホイール11を握っていないハンズオフ状態であるかを検出する。ECU50の詳細は後述する。ECU50と、トルクセンサ21と、回転角センサ22とは、本実施の形態に係る接触状態検出装置100を構成する。
Further, the
ECU50は、CPU(Central Processing Unit)又はDSP(Digital Signal Processor)等のプロセッサ及びメモリを備えるマイクロコンピュータで構成されてもよい。メモリの例は、RAM(Random Access Memory)等の揮発性メモリ、及び、ROM(Read-Only Memory)等の不揮発性メモリであってもよい。ECU50の一部又は全部の機能は、CPUがRAMを作業用のメモリとして用いてROMに記録されたプログラムを実行することによって達成されてもよい。ECU50の一部又は全部の機能は、電子回路又は集積回路等の専用のハードウェア回路によって達成されてもよい。ECU50の一部又は全部の機能は、上記のソフトウェア機能とハードウェア回路との組み合わせによって構成されてもよい。ECU50、モータ8及び上記の各センサ等の間の通信は、CAN(Controller Area Network)等の車載ネットワークを介した通信であってもよい。
The
図2及び図3を参照しつつ、ECU50を含む接触状態検出装置100の構成を説明する。図2は、実施の形態1に係る接触状態検出装置100の機能的な構成の一例を示すブロック図である。図3は、実施の形態1に係る接触状態検出装置100の各構成要素の処理の流れの一例を示す図である。接触状態検出装置100は、トルクセンサ21と、回転角センサ22と、ECU50とを備える。ECU50は、制御部51と、駆動回路52と、電流検出部53とを備える。制御部51は、第一フィルタ511と、第二フィルタ512と、第一蓄積部513と、第二蓄積部514と、状態判定部515と、記憶部516と、モータ制御部517とを含む。
The configuration of the contact
駆動回路52は、制御部51によって制御され、図示しない車両Aのバッテリの電力をモータ8に供給する。駆動回路52は、インバータ回路で構成される。電流検出部53は、モータ8を流れる電流であるモータ電流の大きさを検出し、制御部51に出力する。電流検出部53は、電流を計測する回路等で構成される。第一蓄積部513、第二蓄積部514及び記憶部516は、種々の情報の格納及び取り出しを可能にする。第一蓄積部513、第二蓄積部514及び記憶部516は、例えば、ROM、RAM、フラッシュメモリなどの半導体メモリ、ハードディスクドライブ、又はSSD(Solid State Drive)等の記憶装置によって実現される。
The
記憶部516は、制御部51が動作するために用いる閾値、マップ、数式、及び後述する判定モデル等の種々の情報を格納する。記憶部516は、制御部51が動作するためのプログラムを格納してもよい。
The
第一蓄積部513は、第一フィルタ511を介して取得されるトルクセンサ21の検出値のデータを格納する。第一蓄積部513は、複数の検出値のデータを格納し、具体的には、トルクセンサ21によって検出されるトルク値の時系列データを格納する。第二蓄積部514は、第二フィルタ512を介して取得される回転角センサ22の検出値のデータを格納する。第二蓄積部514は、複数の検出値のデータを格納し、具体的には、回転角センサ22によって検出される角度値の時系列データを格納する。時系列データは、時間の流れと共に順番に観測又は取得されるデータである。トルクセンサ21及び回転角センサ22の検出値は、計測時刻と対応付けられた計測値を含む。計測時刻と計測値との対応付けは、例えば、計測値が取得される際に、トルクセンサ21及び回転角センサ22によって行われてもよい。第一蓄積部513及び第二蓄積部514は、データを一時的に格納するバッファとして機能する。本実施の形態では、第一蓄積部513及び第二蓄積部514は、所定期間以上である1秒間以上にわたって取得されるデータを格納するが、これに限定されない。なお、本実施の形態では、トルクセンサ21及び回転角センサ22は、1m秒毎のセンシング周期で検出を行うが、これに限定されない。
The
第一蓄積部513、第二蓄積部514及び記憶部516は、本実施の形態では、ECU50内において、制御部51に含まれているが、制御部51とは別に設けられてもよく、ECU50の外部に配置されてもよい。
In the present embodiment, the
モータ制御部517は、車速センサ31によって検出される車速、トルクセンサ21によって検出されるトルク、及び、電流検出部53によって検出されるモータ電流に基づいて、駆動回路52を駆動制御することによって、操舵状況に応じた操舵補助を実現する。具体的には、モータ制御部517は、トルク及び車速に基づき、モータ8に流れるモータ電流の目標値である電流指令値を決定する。電流指令値は、操舵状況に応じた操舵補助力(「アシストトルク」とも呼ぶ)の目標値に対応している。そして、モータ制御部517は、電流検出部53によって検出されるモータ電流が電流指令値に近づくように、駆動回路52を駆動制御する。また、モータ制御部517は、後述する状態判定部515の判定結果に基づき、駆動回路52を駆動制御する。具体的には、判定結果がハンズオン状態である場合、モータ制御部517は、駆動回路52にモータ8へ電力を供給させ、操舵補助を実施させる。判定結果がハンズオフ状態である場合、モータ制御部517は、車線維持機能(LKA)などの運転支援機能(ADAS)は停止するが、操舵補助は継続する。
The
第一フィルタ511は、ローパスフィルタであり、トルクセンサ21から出力されるトルクの検出値を示す信号を取得し、当該信号から高周波成分を除去する。第一フィルタ511は、高周波成分を除去後の信号を、第一蓄積部513に格納する。第二フィルタ512は、ローパスフィルタであり、回転角センサ22から出力される角度の検出値を示す信号を取得し、当該信号から高周波成分を除去する。第二フィルタ512は、高周波成分を除去後の信号を第二蓄積部514に格納する。これにより、操舵と関係のないノイズ等の信号が除去される。そして、第一蓄積部513には、トルク値の時系列データが格納され、第二蓄積部514には、角度値の時系列データが格納される。第一フィルタ511及び第二フィルタ512の例は、デジタルフィルタである。ここで、第一フィルタ511及び第二フィルタ512は、フィルタ部の一例である。
The
状態判定部515は、トルクセンサ21によって検出されるトルク値及び回転角センサ22によって検出される角度値を入力データとして用いる。そして、状態判定部515は、当該入力データを用いて演算することによって、運転者がステアリングホイール11を握っているハンズオン状態であるか、運転者がステアリングホイール11を握っていないハンズオフ状態(手放し状態)であるかを判定する。状態判定部515は、判定結果をモータ制御部517に出力する。ここで、状態判定部515は、演算部の一例であり、判定結果は、操舵部材に対するハンズオン状態又はハンズオフ状態を示す情報の一例である。
The
状態判定部515は、判定モデルを用いて判定結果を出力する。判定モデルは、記憶部516に格納されている。判定モデルは、入力データに対する出力データを出力する。判定モデルは、第一蓄積部513に格納されるトルク値の時系列データと、第二蓄積部514に格納される角度値の時系列データとを入力データとし、ハンズオン状態又はハンズオフ状態の判定結果を出力データとする。例えば、状態判定部515は、第一蓄積部513を介して、第一フィルタ511適用後のトルクセンサ21の検出トルク値のうちの最新のトルク値T(k)の計測時点から所定期間の1秒間遡るまで間に計測されたトルク値T(k)〜T(k−n)のデータを取得する。さらに、状態判定部515は、第二蓄積部514を介して、第二フィルタ512適用後の回転角センサ22の検出角度値のうちの最新の角度値θ(k)の計測時点から所定期間の1秒間遡るまで間に計測された角度値θ(k)〜θ(k−n)のデータを取得する。トルク値T(k)〜T(k−n)及び角度値θ(k)〜θ(k−n)のデータは、最新のトルク値T(k)及び角度値θ(k)の計測時点から過去1秒間に取得されたデータである。判定モデルは、トルク値T(k)〜T(k−n)及び角度値θ(k)〜θ(k−n)のデータを入力データとし、出力データを出力する。
本実施の形態では、判定モデルは、学習データを用いて学習することによって判定精度を向上する。判定モデルに適用される学習モデルは、ニューラルネットワーク(Neural Network)または、畳み込みニューラルネットワーク(Convolutional Neural Network)であり、学習方法は、Neuroevolution(Genetic Programming等)やDeep Learningを用いた学習による方法であってもよい。ニューラルネットワークは、脳神経系をモデルにした情報処理モデルである。ニューラルネットワークは、入力層及び出力層を含む複数のノード層で構成されている。ノード層には、1つ以上のノードが含まれる。例えば、図4に示すように、ニューラルネットワークが、入力層、中間層及び出力層で構成される場合、ニューラルネットワークは、入力層のノードに入力された情報について、入力層から中間層への出力処理、中間層での処理、中間層から出力層への出力処理、出力層での処理を順次行い、入力情報に適合する出力結果を出力する。なお、1つの層の各ノードは、次の層の各ノードと接続されており、ノード間の接続には、重み付けがされている。1つの層のノードの情報は、ノード間の接続の重み付けが付与されて、次の層のノードに出力される。なお、図4は、ニューラルネットワークのモデルの一例を示す図である。 In the present embodiment, the judgment model improves judgment accuracy by learning using learning data. The learning model applied to the judgment model is a neural network (Neural Network) or a convolutional neural network (Convolutional Neural Network), and the learning method is a method by learning using Neuroevolution (such as Genetic Programming) or Deep Learning. You may. A neural network is an information processing model that models the nervous system. The neural network is composed of a plurality of node layers including an input layer and an output layer. The node layer includes one or more nodes. For example, as shown in FIG. 4, when the neural network is composed of an input layer, a hidden layer, and an output layer, the neural network outputs information from the input layer to the hidden layer with respect to information input to a node of the input layer. Processing, processing in the intermediate layer, output processing from the intermediate layer to the output layer, and processing in the output layer are sequentially performed, and an output result matching the input information is output. Each node in one layer is connected to each node in the next layer, and the connection between nodes is weighted. The information of the node of one layer is weighted with the connection between the nodes, and is output to the node of the next layer. FIG. 4 is a diagram illustrating an example of a neural network model.
判定モデルの機械学習は、ECU50によって行われてもよく、ECU50とは離れた位置に配置されたサーバ装置等の外部機器である学習装置70によって行われてもよい。本実施の形態では、学習装置70が判定モデルの機械学習を行う。学習装置70で学習された判定モデルは、不揮発性メモリ等の記録媒体、又は、インターネットなどの通信網等を介した無線通信により、記憶部516に送られてもよい。
The machine learning of the determination model may be performed by the
判定モデルの学習は、学習装置70によってオフラインで行われる。なお、オンラインは、車両の走行中を示し、オフラインは、車両の非走行時を示す。オフラインでは、事前に取得されたデータ、及び、人工的に作成されたデータ等の車両の非走行時に取得されるデータが使用される。判定モデルの学習には、教師信号あり学習(「教師あり学習」とも呼ばれる)が用いられる。教師あり学習では、入力データ、つまり入力信号に対する判定モデルの出力データが、教師信号と合致するようにニューラルネットワーク内の重み付けが調整される。
The learning of the judgment model is performed offline by the
本実施の形態では、図5に示すように、学習装置70が備える学習部71は、複数の運転者の運転履歴から、判定モデルを構成する判定ニューラルネットワーク(「判定NN」とも表記する)を構築する。なお、図5は、学習装置70の学習を説明するための図である。複数の運転者は、不特定多数の運転者であってよく、車両Aと関連していてもよく関連していなくてもよい。各運転者の運転履歴は、各運転者の運転中に取得されたデータであり、操舵トルクと、当該操舵トルクの発生時の操舵角と、当該操舵トルク及び操舵角の発生時でのハンズオン又はハンズオフの状態の情報とを含む。ハンズオン又はハンズオフの状態の情報は、運転者による入力装置への入力信号、カメラによる運転者の撮影画像、ステアリングホイールに設けられた接触センサの検出信号等に基づき、生成されてもよい。
In the present embodiment, as shown in FIG. 5, the
学習部71は、運転履歴に含まれる操舵トルクの時系列データと、当該時系列データの発生時の操舵角の時系列データとを入力信号とし、これら時系列データのうちの最新の操舵トルク及び操舵角の発生時のハンズオン又はハンズオフの状態を教師信号とする。そして、学習部71は、出力データが教師信号と合致するように判定ニューラルネットワークに学習させる。時系列データの時間期間は、状態判定部515が判定に用いる時系列データの時間期間と同じ1秒間である。なお、学習部71は、判定ニューラルネットワークの学習のために、複数の運転者の汎用的な運転履歴だけでなく、車両Aの特定の運転者の運転履歴も用いてもよい。
The
このような判定ニューラルネットワークは、操舵トルク及び操舵角の現在のデータだけでなく、過去のデータを入力データとするため、ハンズオン状態又はハンズオフ状態の判定精度を向上することができる。例えば、運転者のステアリングホイール11の切り替えし時点では、運転者がステアリングホイール11を握っていても、トルクセンサ21によって検出されるトルクは、零になる。このような状態に対して、判定ニューラルネットワークは、切り替えし時点の前の過去のデータを入力データとするため、ハンズオン状態であると判定することができる。また、運転者が、非常に小さい操舵トルクでステアリングホイール11を握り続けている場合、判定ニューラルネットワークは、現在から過去のデータを入力データとするため、ハンズオン状態であると判定することができる。よって、判定ニューラルネットワークで構成される判定モデルを用いる状態判定部515は、高い精度でハンズオン状態又はハンズオフ状態を判定することができる。
Since such a determination neural network uses not only current data of the steering torque and the steering angle but also past data as input data, it is possible to improve the determination accuracy of the hands-on state or the hands-off state. For example, when the driver switches the
次に、図3及び図6を参照しつつ、実施の形態1に係る接触状態検出装置100の接触状態の検出動作を説明する。図6は、実施の形態1に係る接触状態検出装置100の接触状態の検出動作の一例を示すフローチャートである。
Next, an operation of detecting a contact state of the contact
まず、ステップS1において、制御部51は、トルクセンサ21と回転角センサ22とからそれぞれ、トーションバー部5acに発生するトルクを示すトルク信号と、ステアリングシャフト5に発生する回転角を示す角度信号とを取得する。制御部51は、トルクセンサ21及び回転角センサ22によってセンシング周期毎に検出される信号を取得する。センシング周期の例は、1m秒である。
First, in step S1, the
次いで、第一フィルタ511は、ステップS2において、取得されたトルク信号から高周波成分を除去し、ステップS3において、除去後のトルク信号を、例えばトルク値T(k)のデータとして第一蓄積部513に格納する。同様に、第二フィルタ512は、ステップS2において、取得された角度信号から高周波成分を除去し、ステップS3において、除去後の角度信号を、例えば角度値θ(k)のデータとして第二蓄積部514に格納する。トルク値T(k)は、角度値θ(k)に対応し、角度値θ(k)の発生時に発生したトルク値である。このように、取得されたトルク信号及び角度信号は、ローパスフィルタ処理された後に、蓄積される。
Next, in step S2, the
次いで、ステップS4において、状態判定部515は、第一蓄積部513からトルク値の時系列データを取得し、第二蓄積部514から角度値の時系列データを取得し、判定モデルを構成する判定ニューラルネットワークに入力する。トルク値の時系列データは、トルク値T(k)の検出時点から所定期間の1秒間遡るまでの間に検出された時系列データであり、トルク値T(k)〜T(k−n)のデータである。角度値の時系列データは、角度値θ(k)の検出時点から所定期間の1秒間遡るまでの間に検出された時系列データであり、角度値θ(k)〜θ(k−n)のデータである。
Next, in step S4, the
次いで、ステップS5において、判定ニューラルネットワークは、入力データに対する出力データであるハンズオン状態又はハンズオフ状態の判定結果を出力し、状態判定部515は、判定結果をモータ制御部517に出力する。モータ制御部517は、ハンズオン状態である場合、操舵補助を実施し、ハンズオフ状態である場合、操舵補助を停止する。
Next, in step S5, the determination neural network outputs a determination result of the hands-on state or the hands-off state, which is output data with respect to the input data, and the
上述したように、実施の形態1に係る接触状態検出装置100は、車両用操舵装置1の操舵部材としてのステアリングホイール11への接触状態を検出する。接触状態検出装置100は、操舵部材としてのステアリングシャフト5に発生するトルクを検出するトルク検出部としてのトルクセンサ21と、トルクセンサ21の複数の検出値で構成される入力データを用いて演算することによって、ステアリングホイール11に対するハンズオン状態又はハンズオフ状態を示す情報を出力する演算部としての状態判定部515とを備える。
As described above, the contact
上記構成によると、状態判定部515は、1つのトルクの検出値だけでなく、複数のトルクの検出値を用いて、ハンズオン状態又はハンズオフ状態を判定する。複数のトルクの検出値を用いることによって、操舵トルクの状態の高精度な検出が可能である。例えば、複数のトルクの検出値は、トルクの挙動を示し得る。1つのトルクの検出値を用いた判定では、ハンズオン状態又はハンズオフ状態の誤判定が生じる可能性がある。トルクの挙動を用いた判定では、ハンズオン状態のトルクの挙動及びハンズオフ状態のトルクの挙動に基づく判定を行うことができるため、高精度な判定が可能である。よって、接触状態検出装置100は、ステアリングホイール11への接触状態の検出精度を向上することができる。
According to the above configuration, the
また、実施の形態1に係る接触状態検出装置100において、トルクセンサ21の複数の検出値は、時系列データであってもよい。上記構成によると、複数のトルクの検出値は、トルクの経時的な挙動を示し得る。トルクの経時的な挙動を用いた判定では、ハンズオン状態のトルクの経時的な挙動及びハンズオフ状態のトルクの経時的な挙動に基づく判定を行うことができるため、高精度な判定が可能である。
Further, in contact
また、実施の形態1に係る接触状態検出装置100は、ステアリングホイール11の回転量を検出する回転量検出部としての回転角センサ22をさらに備え、状態判定部515は、トルクセンサ21の複数の検出値と回転角センサ22の複数の検出値とで構成されるデータを、入力データとしてもよい。上記構成によると、状態判定部515は、複数のトルクの検出値だけでなく、複数の操舵角の検出値を用いて、ハンズオン状態又はハンズオフ状態を判定する。つまり、状態判定部515は、ステアリングホイール11及びステアリングシャフト5からなる操舵部材の2つ状態を用いて判定するため、高精度な判定が可能である。
Further, the contact
なお、実施の形態1では、接触状態検出装置100は、複数のトルクの検出値及び複数の操舵角の検出値を用いて、ハンズオン状態又はハンズオフ状態を判定したがこれに限定されない。接触状態検出装置100は、複数のトルクの検出値のみを用いて、ハンズオン状態又はハンズオフ状態を判定してもよい。ハンズオン状態では、ステアリングシャフト5にトルクが発生することが多い。このため、複数のトルクの検出値のみを用いた判定でも、高精度な判定が可能である。
In the first embodiment, the contact
また、実施の形態1に係る接触状態検出装置100において、回転角センサ22の複数の検出値は、時系列データであってもよい。上記構成によると、複数の操舵角の検出値は、操舵角の経時的な挙動を示し得る。操舵角の経時的な挙動を用いることによって、ハンズオン状態の操舵角の経時的な挙動及びハンズオフ状態の操舵角の経時的な挙動に基づく判定を行うことができるため、高精度な判定が可能である。
Further, in contact
また、実施の形態1に係る接触状態検出装置100において、状態判定部515は、ニューラルネットワークで構成されてもよい。上記構成によると、状態判定部515におけるフレキシブル且つ高精度な判定処理が、簡易に実現可能である。
Further, in contact
また、実施の形態1に係る接触状態検出装置100は、検出値にローパスフィルタを適用するフィルタ部としての第一フィルタ511及び第二フィルタ512をさらに備え、状態判定部515は、ローパスフィルタ適用後の検出値で構成されるデータを、入力データとしてもよい。上記構成によると、入力データからノイズ及び誤検出等による検出値が除去される。よって、状態判定部515の判定精度が向上する。
In addition, the contact
[実施の形態2]
実施の形態2に係る接触状態検出装置200は、制御部251の状態判定部2515の出力が、実施の形態1と異なる。以下、実施の形態2について、実施の形態1と異なる点を中心に説明し、実施の形態1と同様の点の説明を省略する。
[Embodiment 2]
The contact
図7及び図8を参照しつつ、実施の形態2に係る接触状態検出装置200の構成を説明する。図7は、実施の形態2に係る接触状態検出装置200の機能的な構成の一例を示すブロック図である。図8は、実施の形態2に係る接触状態検出装置200の各構成要素の処理の流れの一例を示す図である。接触状態検出装置200は、トルクセンサ21と、回転角センサ22と、ECU50とを備える。ECU50は、制御部251と、駆動回路52と、電流検出部53とを備える。制御部251は、第一フィルタ511と、第二フィルタ512と、第一蓄積部513と、第二蓄積部514と、状態判定部2515と、記憶部516と、モータ制御部517と、決定部2518とを含む。
The configuration of the contact
状態判定部2515は、実施の形態1と同様に、判定モデルを用いて判定結果を出力する。状態判定部2515は、判定結果を決定部2518に出力する。実施の形態2における判定モデルは、実施の形態1と同様の入力データが入力されると、ハンズオン状態及びハンズオフ状態の確率を示す数値を出力する。具体的には、判定モデルは、「0」から「1」の間の数値を出力する。出力値「1」である場合、ハンズオン状態である確率が100%であり、出力値「0」である場合、ハンズオフ状態である確率が100%である。出力値が「1」に近づく程、ハンズオン状態である確率が高くなり、出力値が「0」に近づく程、ハンズオフである確率が高くなる。判定モデルは、判定ニューラルネットワークで構成される。このような判定ニューラルネットワークも、入力信号を操舵トルク及び操舵角とし、教師信号をハンズオン状態の確率とすることで、実施の形態1と同様に構築可能である。ここで、出力値は、操舵部材に対するハンズオン状態又はハンズオフ状態を示す情報の一例である。
決定部2518は、状態判定部2515から取得される出力値に対して、ハンズオン状態又はハンズオフ状態を決定する。決定部2518は、出力値が閾値よりも大きい場合、ハンズオン状態であると判定し、出力値が閾値以下である場合、ハンズオフ状態であると判定する。なお、決定部2518は、出力値の継続時間を考慮してもよい。決定部2518は、出力値が閾値よりも大きい状態が所定時間以上継続する場合、ハンズオン状態であると判定し、そうでない場合、ハンズオフ状態であると判定してもよい。決定部2518は、決定結果をモータ制御部517に出力する。閾値の例は、0.5以上の値である。所定時間の例は、1秒間以上の時間である。ここで、決定部2518は、判定部の一例である。
The
実施の形態2に係る接触状態検出装置200のその他の構成及び動作は、実施の形態1と同様であるため、その説明を省略する。また、実施の形態2に係る接触状態検出装置200によると、実施の形態1と同様の効果が得られる。
Other configurations and operations of the contact
さらに、実施の形態2に係る接触状態検出装置200は、状態判定部2515によって出力されるハンズオン状態又はハンズオフ状態の情報が示す値と閾値との比較結果に基づき、ハンズオン状態又はハンズオフ状態を判定する判定部としての決定部2518をさらに備えてもよい。上記構成によると、状態判定部2515がハンズオン状態又はハンズオフ状態を決定せず、ハンズオン状態又はハンズオフ状態を示す値を出力する場合でも、決定部2518によってハンズオン状態又はハンズオフ状態が決定される。このため、車両毎に異なる閾値が設定される場合でも、計算量が大きい判定モデルを変更する必要がなく、同じ判定モデルの使用が可能である。よって、接触状態検出装置200の汎用性が向上する。
Further, contact
また、実施の形態2に係る接触状態検出装置200において、決定部2518は、ハンズオン状態又はハンズオフ状態の情報が示す値が閾値よりも大きい状態が所定時間以上継続する場合、ハンズオン状態を判定し、それ以外の場合、ハンズオフ状態を判定してもよい。上記構成によると、ハンズオン状態及びハンズオフ状態は、一瞬ではなく、ある程度の時間継続するため、決定部2518は、高い精度でハンズオン状態及びハンズオフ状態を決定することができる。
Further, in the contact
[実施の形態3]
実施の形態3に係る接触状態検出装置300は、制御部351の状態判定部3515の入力が、実施の形態1と異なる。以下、実施の形態3について、実施の形態1及び2と異なる点を中心に説明し、実施の形態1又は2と同様の点の説明を省略する。
[Embodiment 3]
The contact
図9及び図10を参照しつつ、実施の形態3に係る接触状態検出装置300の構成を説明する。図9は、実施の形態3に係る接触状態検出装置300の機能的な構成の一例を示すブロック図である。図10は、実施の形態3に係る接触状態検出装置300の各構成要素の処理の流れの一例を示す図である。接触状態検出装置200は、トルクセンサ21と、回転角センサ22と、ECU50とを備える。ECU50は、制御部351と、駆動回路52と、電流検出部53とを備える。制御部351は、推定部3519と、蓄積部3513と、状態判定部3515と、記憶部516と、モータ制御部517とを含む。
The configuration of the contact
推定部3519は、トルクセンサ21によって検出されるトルクと、回転角センサ22によって検出される回転角とを用いて、運転者によってステアリングホイール11に加えられるドライバトルクを推定する。さらに、推定部3519は、推定したドライバトルクを、トルク及び回転角の検出時刻と対応付けて蓄積部3513に格納する。格納されるドライバトルクのデータは、ドライバトルクの値とその検出時刻とを含む。トルクセンサ21によって検出されるトルクは、運転者からの操舵入力に起因するトルク以外に、路面からの外力である負荷トルクを含み得る。さらに、運転者のステアリングホイール11の切り替えし時点では、運転者がステアリングホイール11を握っていても、トルクセンサ21によって検出されるトルクは、零になる。推定部3519は、上記のような要素を除去することによって、運転者によってステアリングホイール11に加えられるトルクであるドライバトルクを推定する。
The
ドライバトルクの推定方法は、特許文献2に記載されているため、その詳細を省略する。特許文献2によると、ドライバトルクは、トルクセンサ21によって検出されるトルクと、レゾルバ等の回転センサによって検出されるモータ8のロータの回転角及びその角速度とを用いて検出される。モータ8のロータの回転角は、回転角センサ22によって検出される操舵角に対応する。このため、本実施の形態では、推定部3519は、トルクセンサ21のトルクと回転角センサ22の回転角及びその角速度とを用いて、ドライバトルクを推定する。
Since the method of estimating the driver torque is described in
蓄積部3513の構成は、実施の形態1の第一蓄積部513及び第二蓄積部514と同様である。蓄積部3513は、推定部3519によって推定された複数のドライバトルクのデータを格納する。具体的には、蓄積部3513は、ドライバトルク値の時系列データを格納する。
The configuration of the
状態判定部3515は、実施の形態1と同様に、判定モデルを用いて判定結果を出力する。状態判定部3515は、判定結果をモータ制御部517に出力する。実施の形態3における判定モデルは、蓄積部3513のドライバトルク値の時系列データを入力データとし、実施の形態1と同様の出力データ、つまり、ハンズオン状態又はハンズオフ状態の判定結果を出力する。具体的には、状態判定部3515は、推定部3519によって推定された最新のドライバトルク値Td(k)の検出時刻から所定期間の1秒間遡るまでの間に検出されたドライバトルク値Td(k)〜Td(k−n)のデータを、蓄積部3513から取得する。状態判定部3515の判定モデルは、ドライバトルク値Td(k)〜Td(k−n)のデータを入力データとし、ハンズオン状態又はハンズオフ状態を示す出力データを出力する。判定モデルは、判定ニューラルネットワークで構成される。このような判定ニューラルネットワークも、入力信号をドライバトルクとし、教師信号をハンズオン状態又はハンズオフ状態の判定結果とすることで、実施の形態1と同様に構築可能である。
実施の形態3に係る接触状態検出装置300のその他の構成及び動作は、実施の形態1と同様であるため、その説明を省略する。また、実施の形態3に係る接触状態検出装置300によると、実施の形態1と同様の効果が得られる。
Other configurations and operations of the contact
さらに、実施の形態3に係る接触状態検出装置300は、運転者によってステアリングホイール11に加えられるドライバトルクを推定する推定部3519をさらに備え、推定部3519は、トルクセンサ21の複数の検出値及び回転角センサ22の複数の検出値に基づくドライバトルクの複数の推定値を推定し、状態判定部3515は、複数の推定値で構成されるデータを、入力データとしてもよい。上記構成によると、推定部3519は、運転者によってステアリングホイール11に加えられる操舵入力を、ドライバトルクとして高精度に推定することができる。そして、状態判定部3515は、このようなドライバトルクを入力データとして、ハンズオン状態又はハンズオフ状態を判定するため、高精度な判定が可能である。
Further, the contact
また、実施の形態3に係る接触状態検出装置300は、実施の形態1と同様に、トルクセンサ21及び回転角センサ22から推定部3519に出力される検出信号の高周波成分を除去する第一フィルタ511及び第二フィルタ512を備えてもよい。これにより、推定部3519によるドライバトルクの推定精度が向上し得る。
Further, the contact
また、実施の形態3に係る接触状態検出装置300は、実施の形態2と同様に、決定部を備えてもよい。この場合、状態判定部3515は、ドライバトルクを入力データとして、ハンズオン状態及びハンズオフ状態の確率を示す数値を出力してもよい。
Further, the contact
[その他]
以上、本発明の1つ以上の態様に係る接触状態検出装置等について、実施の形態に基づいて説明したが、本発明は、実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の1つ以上の態様の範囲内に含まれてもよい。
[Others]
As described above, the contact state detecting device and the like according to one or more aspects of the present invention have been described based on the embodiments, but the present invention is not limited to the embodiments. Various modifications conceivable by those skilled in the art may be applied to the present embodiment, and a form constructed by combining components in different embodiments may be one or more aspects of the present invention, without departing from the spirit of the present invention. May be included in the range.
例えば、実施の形態に係る接触状態検出装置において、状態判定部は、1つのトルクセンサ21によって検出される複数の検出値と、1つの回転角センサ22によって検出される複数の検出値とを、入力データとしたが、これに限定されない。状態判定部は、複数のトルクセンサによって検出される複数の検出値と、複数の回転角センサによって検出される複数の検出値とを、入力データとしてもよい。複数のトルクセンサの配置位置が異なることによって、各トルクセンサの検出値が異なり得る。複数の回転角センサの配置位置が異なることによって、各回転角センサの検出値が異なり得る。状態判定部の判定モデルは、多様なデータを入力データとすることによって、高精度な判定が可能である。このように、状態判定部は、1つ以上のトルクセンサによって検出される複数の検出値と、1つ以上の回転角センサによって検出される複数の検出値とを、入力データとしてもよい。
For example, in the contact state detection device according to the embodiment, the state determination unit determines a plurality of detection values detected by one
また、実施の形態に係る接触状態検出装置において、状態判定部は、トルクセンサ21によって検出される複数の検出値と、回転角センサ22によって検出される複数の検出値とを、入力データとしたが、これに限定されない。例えば、状態判定部は、トルクセンサ21によって検出される複数の検出値のみを、入力データとしてもよい。ハンズオン状態では、ステアリングシャフト5にトルクが発生することが多い。トルクセンサ21の検出値は、回転角センサ22の検出値よりも、ハンズオン状態を反映し得る。このため、複数のトルクの検出値のみを用いた状態判定部の判定でも、高精度な判定が可能である。
In the contact state detection device according to the embodiment, the state determination unit uses the plurality of detection values detected by the
また、実施の形態に係る接触状態検出装置は、操舵機構と転舵機構とが機械的に接続されている車両用操舵装置1に備えられたが、これに限定されない。接触状態検出装置を備える車両用操舵装置は、操舵機構と転舵機構とが機械的に接続されていないステア・バイ・ワイヤシステムを構成してもよい。さらに、車両用操舵装置は、左右独立操舵可能なステア・バイ・ワイヤシステムを構成してもよい。上記ステア・バイ・ワイヤシステムでは、左右の転舵輪それぞれの転舵機構は、互いに機械的に結合されておらず、操舵機構とも機械的に結合されていない。左右の転舵機構は、各転舵機構に設けられたアクチュエータによって動作する。
Further, the contact state detecting device according to the embodiment is provided in the
また、実施の形態に係る接触状態検出装置は、車両に搭載されたが、これに限定されず、操舵部材を備えるいかなる装置等に搭載されてもよい。例えば、接触状態検出装置は、船舶、又は航空機に搭載されてもよい。 Further, the contact state detecting device according to the embodiment is mounted on a vehicle, but is not limited to this, and may be mounted on any device or the like including a steering member. For example, the contact state detection device may be mounted on a ship or an aircraft.
また、実施の形態において、接触状態検出装置の状態判定部のハンズオン状態及びハンズオフ状態の判定結果は、いかなる用途に用いられてもよい。例えば、車両Aが自動運転機能を有する場合、状態判定部の判定結果は、自動運転機能の稼動及び非稼動、つまりON/OFFの制御のために用いられてもよい。例えば、自動運転中に状態判定部がハンズオン状態を判定すると、自動運転機能がOFFされてもよい。又は、手動運転中に状態判定部が一定期間以上にわたるハンズオフ状態を判定すると、警告が発せられてもよい。なお、自動運転機能は、運転者の運転を支援する一部自動運転機能、並びに、操作及び判断等の運転者の行為が介入しない完全自動運転機能を含んでもよい。 In the embodiment, the determination results of the hands-on state and the hands-off state of the state determination unit of the contact state detection device may be used for any purpose. For example, when the vehicle A has an automatic driving function, the determination result of the state determining unit may be used for operation and non-operation of the automatic driving function, that is, for ON / OFF control. For example, when the state determination unit determines the hands-on state during the automatic driving, the automatic driving function may be turned off. Alternatively, a warning may be issued when the state determination unit determines the hands-off state for a certain period or more during the manual operation. The automatic driving function may include a partial automatic driving function that assists the driver in driving, and a fully automatic driving function in which the driver's actions such as operation and determination do not intervene.
また、上述したように、本発明の技術は、システム、装置、方法、集積回路、コンピュータプログラム又はコンピュータ読取可能な記録ディスク等の記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。コンピュータ読み取り可能な記録媒体は、例えばCD−ROM等の不揮発性の記録媒体を含む。 Further, as described above, the technology of the present invention may be realized by a recording medium such as a system, an apparatus, a method, an integrated circuit, a computer program or a computer-readable recording disk, and the system, the apparatus, the method, and the integrated circuit. , A computer program and a recording medium. The computer-readable recording medium includes, for example, a non-volatile recording medium such as a CD-ROM.
例えば、上記実施の形態に含まれる各処理部は典型的には集積回路であるLSI(Large Scale Integration:大規模集積回路)として実現される。これらは個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。 For example, each processing unit included in the above embodiment is typically realized as an LSI (Large Scale Integration), which is an integrated circuit. These may be individually formed into one chip, or may be formed into one chip so as to include some or all of them.
また、集積回路化はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後にプログラムすることが可能なFPGA(Field Programmable Gate Array)、又はLSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。 Further, the integrated circuit is not limited to the LSI, and may be realized by a dedicated circuit or a general-purpose processor. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI, or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
なお、上記実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPUなどのプロセッサ等のプログラム実行部が、ハードディスク又は半導体メモリ等の記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。 In the above-described embodiment, each component may be configured by dedicated hardware or may be realized by executing a software program suitable for each component. Each component may be realized by a program execution unit such as a processor such as a CPU reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
また、上記構成要素の一部又は全部は、脱着可能なIC(Integrated Circuit)カード又は単体のモジュールから構成されてもよい。ICカード又はモジュールは、マイクロプロセッサ、ROM、RAM等から構成されるコンピュータシステムである。ICカード又はモジュールは、上記のLSI又はシステムLSIを含むとしてもよい。マイクロプロセッサが、コンピュータプログラムにしたがって動作することにより、ICカード又はモジュールは、その機能を達成する。これらICカード及びモジュールは、耐タンパ性を有するとしてもよい。 In addition, a part or all of the above components may be configured by a removable IC (Integrated Circuit) card or a single module. The IC card or the module is a computer system including a microprocessor, a ROM, a RAM, and the like. The IC card or the module may include the above-described LSI or system LSI. The IC card or module achieves its functions by the microprocessor operating according to the computer program. These IC cards and modules may have tamper resistance.
また、本発明の接触状態検出方法は、例えば、車両用操舵装置の操舵部材への接触状態を検出する接触状態検出方法であって、前記操舵部材に発生するトルクの複数の検出値を取得し、前記トルクの複数の検出値で構成される入力データを用いて演算することによって、前記操舵部材に対するハンズオン状態又はハンズオフ状態を示す情報を出力する。このような接触状態検出方法は、MPU(Micro Processing Unit)及びCPUなどのプロセッサ、LSIなどの回路、ICカード又は単体のモジュール等によって、実現されてもよい。 The contact state detection method of the present invention is, for example, a contact state detection method for detecting a contact state of a steering member of a vehicle steering device with a plurality of detection values of a torque generated in the steering member. By using input data composed of a plurality of detected values of the torque, information indicating a hands-on state or a hands-off state with respect to the steering member is output. Such a contact state detection method may be realized by a processor such as an MPU (Micro Processing Unit) and a CPU, a circuit such as an LSI, an IC card or a single module, or the like.
さらに、本発明の技術は、ソフトウェアプログラム又はソフトウェアプログラムからなるデジタル信号によって実現されてもよく、プログラムが記録された非一時的なコンピュータ読み取り可能な記録媒体であってもよい。例えば、このようなプログラムは、車両用操舵装置の操舵部材に発生するトルクの複数の検出値を取得し、前記トルクの複数の検出値で構成される入力データを用いて演算することによって、前記操舵部材に対するハンズオン状態又はハンズオフ状態を示す情報を出力することをコンピュータに実行させる。 Further, the technology of the present invention may be realized by a software program or a digital signal including the software program, or may be a non-temporary computer-readable recording medium on which the program is recorded. For example, such a program obtains a plurality of detected values of a torque generated in a steering member of a vehicle steering device, and calculates by using input data constituted by a plurality of detected values of the torque, thereby obtaining the aforementioned program. And causing the computer to output information indicating a hands-on state or a hands-off state for the steering member.
また、上記で用いた序数、数量等の数字は、全て本発明を具体的に説明するために例示するものであり、本発明は例示された数字に制限されない。また、構成要素間の接続関係は、本発明を具体的に説明するために例示するものであり、本発明の機能を実現する接続関係はこれに限定されない。 Further, the numbers such as the ordinal numbers and the quantities used above are all examples for specifically explaining the present invention, and the present invention is not limited to the illustrated numbers. Further, the connection relation between the constituent elements is illustrated for specifically describing the present invention, and the connection relation for realizing the function of the present invention is not limited to this.
また、ブロック図における機能ブロックの分割は一例であり、複数の機能ブロックを1つの機能ブロックとして実現したり、1つの機能ブロックを複数に分割したり、一部の機能を他の機能ブロックに移してもよい。また、類似する機能を有する複数の機能ブロックの機能を単一のハードウェア又はソフトウェアが並列又は時分割に処理してもよい。 The division of functional blocks in the block diagram is merely an example, and a plurality of functional blocks can be implemented as one functional block, one functional block can be divided into a plurality of functional blocks, and some functions can be transferred to other functional blocks. You may. Also, the functions of a plurality of functional blocks having similar functions may be processed by a single piece of hardware or software in parallel or time division.
本発明に係る接触状態検出装置は、操舵部材を備える装置に有用である。 The contact state detecting device according to the present invention is useful for a device including a steering member.
1 車両用操舵装置、5 ステアリングシャフト(操舵部材)、11 ステアリングホイール(操舵部材)、21 トルクセンサ(トルク検出部)、22 回転角センサ(回転量検出部)、51,251,351 制御部、100,200,300 接触状態検出装置、511 第一フィルタ(フィルタ部)、512 第二フィルタ(フィルタ部)、515,2515,3515 状態判定部(演算部)、2518 決定部(判定部)、3519 推定部、A 車両
Claims (11)
前記操舵部材に発生するトルクを検出するトルク検出部と、
前記トルク検出部の複数の検出値で構成される入力データを用いて演算することによって、前記操舵部材に対するハンズオン状態又はハンズオフ状態を示す情報を出力する演算部とを備える
接触状態検出装置。 A contact state detection device that detects a contact state of a steering device for a vehicle with a steering member,
A torque detector that detects a torque generated in the steering member;
A contact unit for calculating information using input data composed of a plurality of detection values of the torque detecting unit, thereby outputting information indicating a hands-on state or a hands-off state for the steering member.
請求項1に記載の接触状態検出装置。 The contact state detection device according to claim 1, wherein the plurality of detection values of the torque detection unit are time-series data.
前記演算部は、前記トルク検出部の複数の検出値と前記回転量検出部の複数の検出値とで構成されるデータを、前記入力データとする
請求項1または2に記載の接触状態検出装置。 Further provided is a rotation amount detection unit that detects a rotation amount of the steering member,
3. The contact state detection device according to claim 1, wherein the calculation unit uses, as the input data, data configured by a plurality of detection values of the torque detection unit and a plurality of detection values of the rotation amount detection unit. 4. .
請求項3に記載の接触状態検出装置。 The contact state detection device according to claim 3, wherein the plurality of detection values of the rotation amount detection unit are time-series data.
運転者によって前記操舵部材に加えられるドライバトルクを推定する推定部とをさらに備え、
前記推定部は、前記トルク検出部の複数の検出値及び前記回転量検出部の複数の検出値に基づく前記ドライバトルクの複数の推定値を推定し、
前記演算部は、前記複数の推定値で構成されるデータを、前記入力データとする
請求項1〜4のいずれか一項に記載の接触状態検出装置。 A rotation amount detection unit that detects a rotation amount of the steering member,
An estimating unit that estimates a driver torque applied to the steering member by a driver,
The estimation unit estimates a plurality of estimated values of the driver torque based on a plurality of detection values of the torque detection unit and a plurality of detection values of the rotation amount detection unit,
The contact state detection device according to any one of claims 1 to 4, wherein the calculation unit uses data composed of the plurality of estimated values as the input data.
請求項1〜5のいずれか一項に記載の接触状態検出装置。 The contact according to any one of claims 1 to 5, further comprising: a determination unit configured to determine the hands-on state or the hands-off state based on a comparison result between a value indicated by the information output by the calculation unit and a threshold. State detection device.
請求項6に記載の接触状態検出装置。 The contact according to claim 6, wherein the determination unit determines the hands-on state when a state in which the value indicated by the information is greater than the threshold continues for a predetermined time or more, and otherwise determines the hands-off state. State detection device.
請求項1〜7のいずれか一項に記載の接触状態検出装置。 The contact state detection device according to any one of claims 1 to 7, wherein the calculation unit includes a neural network.
前記演算部は、前記ローパスフィルタ適用後の前記検出値で構成されるデータを、前記入力データとする
請求項1〜8のいずれか一項に記載の接触状態検出装置。 Further comprising a filter unit that applies a low-pass filter to the detection value,
The contact state detection device according to any one of claims 1 to 8, wherein the calculation unit uses data constituted by the detection values after the application of the low-pass filter as the input data.
前記操舵部材に発生するトルクの複数の検出値を取得し、
前記トルクの複数の検出値で構成される入力データを用いて演算することによって、前記操舵部材に対するハンズオン状態又はハンズオフ状態を示す情報を出力する
接触状態検出方法。 A contact state detection method for detecting a contact state of a steering member for a vehicle with a steering member,
Obtain a plurality of detection values of torque generated in the steering member,
A contact state detection method for outputting information indicating a hands-on state or a hands-off state with respect to the steering member by calculating using input data including a plurality of detected values of the torque.
前記トルクの複数の検出値で構成される入力データを用いて演算することによって、前記操舵部材に対するハンズオン状態又はハンズオフ状態を示す情報を出力する
ことをコンピュータに実行させるプログラム。 Obtain a plurality of detected values of torque generated in the steering member of the vehicle steering device,
A program for causing a computer to output information indicating a hands-on state or a hands-off state for the steering member by calculating using input data composed of a plurality of detected values of the torque.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018129719A JP2020006806A (en) | 2018-07-09 | 2018-07-09 | Contact state detection device, contact state detection method and program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018129719A JP2020006806A (en) | 2018-07-09 | 2018-07-09 | Contact state detection device, contact state detection method and program |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2020006806A true JP2020006806A (en) | 2020-01-16 |
Family
ID=69150331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018129719A Pending JP2020006806A (en) | 2018-07-09 | 2018-07-09 | Contact state detection device, contact state detection method and program |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2020006806A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6950859B1 (en) * | 2020-07-13 | 2021-10-13 | 日本精工株式会社 | Hands-off detection device and steering device |
WO2022014097A1 (en) * | 2020-07-13 | 2022-01-20 | 日本精工株式会社 | Hands-off detection device and steering device |
JP2022037789A (en) * | 2020-08-25 | 2022-03-09 | いすゞ自動車株式会社 | Determination device |
WO2022263249A1 (en) * | 2021-06-18 | 2022-12-22 | Knorr-Bremse Systeme für Nutzfahrzeuge GmbH | Method and detection unit for detecting a probability that a steering element of a vehicle is held by a hand of a driver |
-
2018
- 2018-07-09 JP JP2018129719A patent/JP2020006806A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6950859B1 (en) * | 2020-07-13 | 2021-10-13 | 日本精工株式会社 | Hands-off detection device and steering device |
WO2022014097A1 (en) * | 2020-07-13 | 2022-01-20 | 日本精工株式会社 | Hands-off detection device and steering device |
US11472479B2 (en) | 2020-07-13 | 2022-10-18 | Nsk Ltd. | Hands-off detection device and steering device |
JP2022037789A (en) * | 2020-08-25 | 2022-03-09 | いすゞ自動車株式会社 | Determination device |
JP7327322B2 (en) | 2020-08-25 | 2023-08-16 | いすゞ自動車株式会社 | discrimination device |
WO2022263249A1 (en) * | 2021-06-18 | 2022-12-22 | Knorr-Bremse Systeme für Nutzfahrzeuge GmbH | Method and detection unit for detecting a probability that a steering element of a vehicle is held by a hand of a driver |
JP2024523375A (en) * | 2021-06-18 | 2024-06-28 | クノル-ブレムゼ ジステーメ フューア ヌッツファールツォイゲ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Method and detection unit for detecting the probability that a steering element of a vehicle is gripped by the driver's hands - Patents.com |
JP7639186B2 (en) | 2021-06-18 | 2025-03-04 | クノル-ブレムゼ ジステーメ フューア ヌッツファールツォイゲ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Method and detection unit for detecting the probability that a steering element of a vehicle is gripped by the driver's hands - Patents.com |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7155682B2 (en) | CONTACT STATE DETECTION DEVICE, CONTACT STATE DETECTION METHOD AND PROGRAM | |
JP2020006806A (en) | Contact state detection device, contact state detection method and program | |
US10843727B2 (en) | Steering apparatus | |
JP2020001531A (en) | Contact state detection device, method and program of detecting contact state | |
US8082078B2 (en) | Methods, systems, and computer program products for steering travel limit determination for electric power steering | |
CN111017006B (en) | Steering device | |
JP2006117181A (en) | Steering control device | |
JP6641595B2 (en) | Vehicle alarm system | |
CN110386189A (en) | Interference signal is accessed into datum quantity in Cascade control | |
JP2015524364A (en) | Method for detecting the direction of travel of an automobile | |
Wang et al. | Online sensing of human steering intervention torque for autonomous driving actuation systems | |
JP3842235B2 (en) | Control parameter setting method, control parameter setting device, and electric power steering device | |
EP1508501A1 (en) | Method and device for controlling maneuverability of vehicle | |
JP3925422B2 (en) | Steering device abnormality detection device and steering device abnormality detection method | |
CN109955898B (en) | Method and system for determining rack force, operation assisting method and operation assisting device | |
CN111591339A (en) | Control circuit and motor control device | |
CN110001764A (en) | High bandwidth general electric steering system controller | |
JP2008247119A (en) | Operation support device for vehicle | |
CN108860312A (en) | Method for calibrating the steering angle sensing device of motor vehicle | |
EP1508500B1 (en) | Method for controlling motion of vehicle and motion controller of vehicle | |
JP5588155B2 (en) | Rotation angle detector | |
JP2016215875A (en) | Control device for vehicle | |
JP4189675B2 (en) | Electric power steering device for vehicle | |
JP7384694B2 (en) | Steering control device | |
JP2007245908A (en) | Vehicular steering device |