JP2019501524A - 絶縁体上半導体基板 - Google Patents
絶縁体上半導体基板 Download PDFInfo
- Publication number
- JP2019501524A JP2019501524A JP2018528045A JP2018528045A JP2019501524A JP 2019501524 A JP2019501524 A JP 2019501524A JP 2018528045 A JP2018528045 A JP 2018528045A JP 2018528045 A JP2018528045 A JP 2018528045A JP 2019501524 A JP2019501524 A JP 2019501524A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- wafer
- semiconductor
- insulator
- aluminum nitride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012212 insulator Substances 0.000 title claims abstract description 86
- 239000004065 semiconductor Substances 0.000 title claims abstract description 84
- 239000000758 substrate Substances 0.000 title claims abstract description 37
- 235000012431 wafers Nutrition 0.000 claims abstract description 186
- 238000000034 method Methods 0.000 claims abstract description 84
- 230000008569 process Effects 0.000 claims abstract description 55
- 239000000463 material Substances 0.000 claims abstract description 53
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims abstract description 18
- 238000000926 separation method Methods 0.000 claims abstract description 11
- 239000010410 layer Substances 0.000 claims description 222
- 229910052710 silicon Inorganic materials 0.000 claims description 44
- 239000010703 silicon Substances 0.000 claims description 44
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 41
- 238000002513 implantation Methods 0.000 claims description 29
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 27
- 239000007943 implant Substances 0.000 claims description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 18
- 239000013078 crystal Substances 0.000 claims description 17
- 235000012239 silicon dioxide Nutrition 0.000 claims description 9
- 239000000377 silicon dioxide Substances 0.000 claims description 9
- 238000004544 sputter deposition Methods 0.000 claims description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims description 7
- 239000001257 hydrogen Substances 0.000 claims description 7
- 229910052734 helium Inorganic materials 0.000 claims description 6
- 239000001307 helium Substances 0.000 claims description 6
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 6
- 238000001552 radio frequency sputter deposition Methods 0.000 claims description 6
- 238000000151 deposition Methods 0.000 claims description 5
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 5
- 229920005591 polysilicon Polymers 0.000 claims description 4
- 230000008021 deposition Effects 0.000 claims description 3
- 239000011810 insulating material Substances 0.000 claims description 3
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 2
- 239000012777 electrically insulating material Substances 0.000 claims 7
- 239000012790 adhesive layer Substances 0.000 claims 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 238000013459 approach Methods 0.000 description 32
- 238000005516 engineering process Methods 0.000 description 11
- 241000894007 species Species 0.000 description 11
- 230000008901 benefit Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 238000002347 injection Methods 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000017525 heat dissipation Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000006798 recombination Effects 0.000 description 4
- 238000005215 recombination Methods 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 229910021417 amorphous silicon Inorganic materials 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 238000010292 electrical insulation Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 3
- 239000011241 protective layer Substances 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 230000003313 weakening effect Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000007872 degassing Methods 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000009966 trimming Methods 0.000 description 2
- FRWYFWZENXDZMU-UHFFFAOYSA-N 2-iodoquinoline Chemical compound C1=CC=CC2=NC(I)=CC=C21 FRWYFWZENXDZMU-UHFFFAOYSA-N 0.000 description 1
- 241000293849 Cordylanthus Species 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- LTPBRCUWZOMYOC-UHFFFAOYSA-N beryllium oxide Inorganic materials O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000004549 pulsed laser deposition Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical group [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000005382 thermal cycling Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/26506—Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
- H01L21/26533—Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically inactive species in silicon to make buried insulating layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/7624—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
- H01L21/76251—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
- H01L21/76254—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/02227—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
- H01L21/0223—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
- H01L21/02233—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
- H01L21/02236—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
- H01L21/02238—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/7624—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
- H01L21/76243—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using silicon implanted buried insulating layers, e.g. oxide layers, i.e. SIMOX techniques
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- High Energy & Nuclear Physics (AREA)
- Plasma & Fusion (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Element Separation (AREA)
Abstract
種々の半導体ウェハ及びそれらの製造方法が開示されている。1つの典型的なプロセスには、第1のウェハ上に本質的に窒化アルミニウムからなる層を形成することが含まれている。第1のウェハは基板を含んでいる。またプロセスには、第1のウェハに第2のウェハを結合することが含まれている。結合ステップ後に窒化アルミニウムは基板と第2のウェハとの間に配置される。またプロセスには、第1及び第2のウェハを分離して絶縁体上半導体(SOI)ウェハを形成することが含まれている。分離ステップ中に、SOIは第2のウェハから半導体材料層を受け取る。分離ステップ後に、SOIウェハは、半導体材料層、本質的に窒化アルミニウムからなる層、及び基板を含む。
Description
関連出願の相互参照
この特許出願では、2015年12月4日出願の米国仮特許出願第62/263,504号、及び2016年1月5日出願の米国仮特許出願第62/275,103号の利益を主張し、これらは共にその全体がすべての目的のために参照により本明細書に援用される。
この特許出願では、2015年12月4日出願の米国仮特許出願第62/263,504号、及び2016年1月5日出願の米国仮特許出願第62/275,103号の利益を主張し、これらは共にその全体がすべての目的のために参照により本明細書に援用される。
絶縁体上半導体(SOI)技術が最初に商業化されたのは1990年代後半である。SOI技術をよく表している特徴は、回路が形成されている半導体領域が電気絶縁層によってバルク基板から絶縁されていることである。この絶縁層は通常、二酸化ケイ素である。二酸化ケイ素が選ばれる理由は、ウェハを酸化させることによってシリコンのウェハ上に形成することができ、したがって効率的な製造に適しているからである。SOI技術の有利な側面は、絶縁体層によって活性層をバルク基板から電子的に絶縁できることから直接生じる。活性層は回路が形成される領域である。したがって、活性層には能動素子たとえばトランジスタを形成するために利用できる高品質半導体材料が含まれる。高品質半導体材料は素子品質材料と言われる。
絶縁層を導入することによってSOI構造内の能動素子が絶縁されて、能動素子の電気的特性が改善されるため、SOI技術によって従来のバルク基板技術に対する改善が示される。しかし素子性能の向上は、SOIウェハ全体における熱放散の減少によって部分的に相殺される。前述したように、二酸化ケイ素は最新のSOI技術における普遍的な絶縁体層である。温度300度ケルビン(K)において、二酸化ケイ素の熱伝導度はほぼ1.4ワット/メートル/ケルビン(W/m*K)である。同じ温度におけるバルクシリコン基板の熱伝導度はほぼ130W/m*Kである。SOI技術が示す熱放散性能のほぼ100分の1の減少は非常に問題である。集積回路内で高レベルの熱が発生すると、その素子の電気的特性が予想範囲の外側にシフトして、致命的な設計欠陥が生じる可能性がある。無検査のままだと、素子内で過剰熱が生じた場合に、素子の回路内での材料のゆがみまたは融解の形態での永続的で致命的な欠陥に至る可能性がある。電力回路内の能動回路は、システムレベル電流を吸い込むことが求められる可能性があり、大量の熱を放散することが求められるため、この影響はパワーエレクトロニクスの分野において特に問題である。
次に、開示した発明の実施形態について詳細に言及する。その1つ以上の例を添付図面に例示する。各例は本技術の説明として示しており、本技術の限定としてではない。実際には、当業者に明らかであるように、本技術において、その範囲から逸脱することなく変更及び変形を行なうことが可能である。たとえば、一実施形態の一部として例示または記載される特徴を別の実施形態とともに用いて、他の更なる実施形態を得てもよい。したがって、本主題は、添付の請求項の範囲内のすべてのこのような変更及び変形ならびにそれらの均等物を包含することが意図されている。
絶縁体上半導体(SOI)構造及びこれらの構造を製造する方法が開示される。本構造には、窒化アルミニウムなど熱伝導性でもある電気絶縁層が含まれ、これは素子品質材料と基板との間に配置されている。このような構造によって、構造上に製造される回路内に蓄積し得る熱量が減る。構造は、集積回路を形成するさらなる処理に対する基礎として機能する完成型で与えられる半導体ウェハとすることができる。集積回路には、パワー素子、パワードライバー及びコントローラ回路、または他の種類の能動的な発熱素子を含めることができる。
図1に示すのは、SOI構造を形成することができる方法のセットのフローチャート100である。図2〜8は、フローチャート100における方法の1つ以上の種々の段階の間に与えられまたは形成される半導体構造を示す。フローチャート100上のステップの多くは任意的であり、フローチャート100に含まれるすべての方法において用いられるわけではない。
フローチャート100における方法のいくつかは、第1のウェハを提供することによって始まる。第1のウェハには半導体材料を含めることができる。半導体材料はシリコンとすることができ、また能動半導体素子、たとえばトランジスタを製造するための基礎として機能することができる素子品質シリコンとすることができる。第1のウェハは、標準的なSOI製造プロセスにおいて用いられるきれいなシリコンドナーウェハとすることができる。第1のウェハは単結晶とすることができる。シリコンにドーパント種をドープしてシリコンを活性化させることができる。ドーパントはp型またはn型とすることができる。特定の例では、第1のウェハは、ボロンまたはリンがドープされたシリコンとすることができる。
フローチャート100における方法のいくつかには、第1のウェハの表面上にベース絶縁体を形成するステップ101が含まれる。他のアプローチでは、第1のウェハに、ベース絶縁体として機能することができる半導体材料上にすでに形成された絶縁体を与える。ベース絶縁体は、第1のウェハの表面上の二酸化ケイ素(SiO2)層とすることができる。一例では、ベース絶縁体は形成時に150nm厚未満である。ベース絶縁体は、ウェハ内に注入種を注入するアプローチでは、第1のウェハの表面に対する損傷を防止する働きをすることができる。
フローチャート100における方法のいくつかには、第1のウェハ内に注入種を注入して半導体ウェハの表面の下方に注入層を形成するステップ102が含まれる。ステップ102を、図2の半導体構造200を参照して説明することができる。注入は、半導体材料の薄層を画定するためとすることができる。この材料の薄層は最終的に、完成したSOIウェハの活性層になってもよい。これが、第1のウェハに素子品質半導体材料を含めることができる理由である。これらのアプローチでは、材料の薄層は第1のウェハから与えられるため、ドナー層と言うこともできる。この材料の薄層の下方に形成される層を、注入層と言うことができる。図2に例示するように、注入は、半導体材料の薄層203を画定する注入層または注入平面202を形成するための第1のウェハ201内への注入種の高エネルギー注入とすることができる。半導体材料の薄層203は通常、1μm厚未満であり、素子品質半導体材料が含まれていてもよい。材料は単結晶とすることができ、特定のドーパント種をドープして半導体材料を活性化させることができる。材料はシリコンとすることができる。
種々の注入種を半導体材料内に注入して、水素、ヘリウム、ボロン、シリコン、及び他の元素、及びイオンなどのこの層を形成することができる。注入種をベース絶縁体を通して注入することができる。例示するように、半導体構造200は熱成長SiO2のベース絶縁体層204を含む。これを通して、水素205の第1の打ち込みとヘリウム206の第2の打ち込みとを注入する。この組み合わせアプローチでは、ヘリウム注入は、水素注入によって誘起される微小クラックの成長を促進する働きをする。組み合わせによって、必要な水素ドーズが一桁減る。ステップ102で用いる具体的な種とは関係なく、結果は高濃度注入層を生じさせることである。これは、注入平面または劈開面とも言うことができ、その結晶構造は、第1のウェハの残りの部分の結晶構造よりも弱い。半導体構造200では、注入層は注入層202として例示され、第1のウェハ201の表面内に約1100nmの深さである。以下に詳細に説明するように、注入層は割れ、気泡を作り、分割され、または破裂して、材料の薄層を第1のウェハから分離することができる。材料の薄層を取り除くために用いる方法に応じて、このステップを記述する適切な用語を、層を剥離すると言う場合がある。最終結果では、半導体材料の薄層203が第1のウェハ201から取り除かれる。
フローチャート100の方法のいくつかは、ベース絶縁体を薄くするかまたは取り除く任意的なステップを続けることができる。たとえば、層204を薄くするかまたは取り除くことができる。これらの状況では、ステップ102中にベース絶縁体を用いて第1のウェハを保護することができるが、以下のステップのために次にベース絶縁体を取り除いて、ウェハの下に設けられた材料を露出することができる。詳細には、図3を参照して、ベース絶縁体204を薄くするかまたは絶縁層301の形成前に半導体構造300から取り除いて、半導体材料の薄層203上に絶縁層301を直接形成することができる。さらに、ベース絶縁体を薄くした後にある厚さに再形成して、絶縁体ステップ中に損傷した絶縁体の一部を取り除くことができる。絶縁体を再形成するために用いるプロセスは、350℃未満の低温プロセスを用いたSiO2ベース絶縁体に対する熱成長プロセスとすることができる。ベース絶縁体204など何らかのSiO2ベース絶縁体を用いる場合、層を最初に50nm未満に形成するか、または50nm未満に薄くするアプローチに対してある利益が生じる。SiO2はある程度熱絶縁性であるため、熱散逸の観点から、層を完全に取り除くかまたはそもそも全く導入しないこの範囲内に薄くすることが好ましい。
チャート100の方法には、絶縁体層を形成するステップ103が含まれる。ステップには、本質的に窒化アルミニウムからなる層(AlN)を第1のウェハ上に形成することを含めることができる。またステップには、低温プロセスを用いて第1のウェハ上に絶縁層を形成することを含めることができる。第1のウェハには基板を含めることができる。たとえば、図3の半導体構造300において、絶縁層301は、イオンが注入された第1のウェハ201の表面上に形成された窒化アルミニウムである。ステップ103は低温堆積プロセスを用いて行なうことができる。具体例として、プロセスを低温スパッタリングプロセスを用いて行なうことができる。プロセスは、RFスパッタリング、パルスDCもしくはACスパッタリング、または反応性DCスパッタリングを伴うことができる。しかし、他の低温エピタキシャル、パルスレーザ、または化学気相成長プロセスを用いることができる。低温は、これらのステップに関して、注入層202が割れ、気泡を作り、分割され、または破裂する高温に対して画定される。図3の注入層202は素子品質シリコン内への水素及びヘリウムの二重注入によって形成されているため、層は全般的に約400℃で割れる。そのため、この注入ステップで与えられる低温堆積ステップは350℃未満である。より大まかには、用語低温は、本明細書で用いる場合、400℃未満の温度で行なわれる処理ステップを指す。
ステップ103で形成する絶縁体層は、好適な熱伝導度及び電気絶縁を伴う他の材料とすることができる。たとえば、絶縁体層は炭化ケイ素、酸化アルミニウム、酸化ベリリウム、ダイヤモンド、または他のセラミック材料とすることができる。前述したように、これらの層のいずれかを低温スパッタリングプロセス、たとえばRFスパッタリングを介して形成するアプローチに対して利益が生じる。任意の絶縁体層であって、熱伝導度が10ワット/メートルケルビンを超え、電気伝導度が10,000Ω-cmよりも大きく、低温プロセスを介して形成することができる絶縁体層をステップ103で形成して、本明細書で開示する利益のいくつかを実現することができる。
ステップ103で形成する絶縁層は1μm〜4μmのAlN層とすることができる。その正確な値は、製造される最終的な半導体構造内に形成される回路の動作周波数、その回路の熱特性、及び第1のウェハの材料に対するAlNの応力プロファイルに依存する。前述したように、絶縁層は第1のウェハの半導体材料上に直接形成することができるし、またはベース絶縁体上に形成することができる。すなわち、半導体構造300では絶縁層301をベース絶縁体層204上に形成しているが、薄い半導体層203上に直接形成することもできた。
複数の要因が、ベース絶縁体204を用いる決定、及びステップ103で形成する絶縁体層の厚さはどのくらいであるべきかの決定に影響する可能性がある。たとえば、絶縁体層の形成が薄すぎると、層は横方向に熱伝導性がなく、ウェハに対して不十分な熱散逸経路が形成されて、熱のポケットが特定の回路の下方に形成される。また、絶縁体層が薄すぎると、その電気特性は、薄い半導体層内に形成される回路を支持するのに十分でない場合がある。しかし、絶縁体層が厚すぎると、性能は、完全に絶縁体材料からなるウェハのそれに近づき、全般的に望ましくない。以下に説明するように、絶縁体層は最終的に、電気絶縁性ではないが熱伝導性の材料の基板上に配置される。たとえば、絶縁体層はAlNとすることができ、基板材料はシリコンとすることができる。
絶縁体層がAlNである状況では、AlN層は、十分な電気絶縁性能及び熱散逸性能を得るために1μm〜4μmの範囲でなければならない。キャパシタンスの点で、2μmのAlNは従来のSOIウェハにおける1μmのSiO2と実用的等価である。この範囲はまた、最終的な層の粗さを考慮すべき事柄として選択した。AlN層は別のウェハに結合するための表面として機能し、層は厚さの増加とともにその粗さが全体的に増加するため、適切な結合面を得るためには層を薄く保つことが有用である。低温堆積AlNは他の絶縁体層と比べて費用のかかる材料であるため、厚さを最小に保つことで、フローチャート100の方法により半導体ウェハを製造する製造ラインの変動コストが減少する。
半導体構造400を参照して、SiO2のベース絶縁体層204を含めることは、特に再結合に関して、薄いシリコン半導体層203内に形成される素子の電気特性が、従来のSOIウェハ上で実施される素子と同様の電気特性を有するという一定の利益を示す。したがって、埋込み絶縁体としてSiO2を用いる従来のSOIウェハ上で実施される回路設計を、フローチャート100のプロセスを用いて製造される設計により容易に移植することができる。しかし、ベース絶縁体層204は、絶縁体層301によって得られる熱性能の向上を実現するために50nm未満に保持しなければならない。厚さが10nm以上であれば、これらの具体的な実施にとって望ましい電気特性が得られる可能性がある。これらのアプローチはまた、ウェハ内に注入種を注入して注入平面202を形成する間に第1のウェハ201をシールドする所定の位置にベース絶縁体を有することによって実現される相乗効果から利益を得る。
ベース絶縁体層204を含まないアプローチでは、取り除くかまたはそもそも全く形成しないことによって、やはり、考慮すべきある利益が実現する。AlN層301が活性シリコン層203と直接接触すると、界面再結合速度が高いため、層203内に形成されるトランジスタへのボディタイに対する必要性がなくなる場合がある。またこの構成によって、層203内に形成されるトランジスタの線形性が改善され、その破壊電圧が増加する場合がある。パワー素子は破壊電圧の増加から利益を得るため、ベース絶縁体層204が存在しないアプローチを用いて、層203内に有利な特徴を伴うパワー素子を形成してもよい。しかし、再結合は可変である可能性がある。この可変性が、既知の再結合状態を得るためにSiO2のベース絶縁体層204を有益に適用することができる理由である。
フローチャート100の方法は、第1のウェハを第2のウェハに結合するステップ104を続けることができる。フローチャート100の方法のいくつかは、その代わりに、ステップ103で形成した絶縁体層の表面上に付着層を形成する任意的なステップ105を、ステップ104へ進む前に続けることができる。いずれの場合でも、絶縁体層の形成に続いて即座に脱気アニールを、付着層形成の形成105または結合ステップ104の前に行なうことができる。図4の半導体構造400に例示するように、付着層は、低温堆積プロセスを介して絶縁体層301上に適用されるアモルファスシリコン層401であってもよい。また付着層は、低温PECVDプロセスを用いて形成した窒化ケイ素(Si3N4)またはSiO2とすることができる。アモルファスシリコン層はRFスパッタリングを介して形成することができる。ステップ105を参照して、用語低温はステップ103の場合と同じ意味であり、この場合もやはり、より大まかに400℃未満を意味する。次に付着層または絶縁体層のいずれかに化学機械平坦化(CMP)または他の平坦化ステップを施して半導体構造400の表面粗さを減らして、結合に備えることができる。たとえば、アモルファスシリコン層401にCMPプロセスを施して、二乗平均平方根粗さが0.5nm未満、及びウェハ反りが30μm未満を達成することができる。別のアプローチでは、付着層を、PECVDプロセスを用いて堆積させたSiO2の1μm層とすることができ、付着層にCMPを施して1μm未満の厚さにすることができる。
あるアプローチでは、ステップ104を、第1のウェハに第2のウェハを結合することによって行ない、絶縁層は結合ステップ後に第1及び第2のウェハの基板の間に配置される。第1のウェハに注入層、たとえば、注入層202が含まれるアプローチでは、結合ステップ後に、絶縁材料層は注入層と第2のウェハとの間にある。図5の参照矢印502によって例示される結合方向は、これらの種類のアプローチの両方を例示している。
あるアプローチでは、第2のウェハ501には基板が含まれる。基板は半導体材料たとえば多結晶シリコンとすることができる。また第2のウェハは、高抵抗率シリコン基板であって、電気抵抗率が少なくとも40Ω-cmで、いくつかの実施形態では、少なくとも100Ω-cmで、最終的な半導体構造内の薄い半導体層203内に形成される電子素子及び受動素子の高周波(たとえば、GHz及びそれ以上)性能を改善する高抵抗率シリコン基板とすることができる。図5に例示するように、第2のウェハ501は、SiO2503の被覆を有する高抵抗率シリコンウェハである。第2のウェハの厚さはその直径に依存する。シリコンウェハの場合、200mm直径のウェハは厚さがほぼ725μmであり、150mm直径のウェハは厚さがほぼ675μmである。また基板材料は、層301よりも熱伝導度を高くして、薄い半導体層203内に最終的に形成される回路から熱が拡散する低抵抗経路を得ることができる。
ステップ104で行なう結合プロセスは、結合プロセスに対する結合界面を共に形成する第1及び第2のウェハの表面上に存在する材料に依存する。前述したように、第1のウェハは、その表面上に付着層401を有することができ、または単純に結合界面に絶縁層301を露出することができる。第2のウェハは均質なウェハとすることができ、または結合界面に露出する別個の外層を含むことができる。たとえば、第2のウェハ501は、SiO2503の被覆を伴うシリコンウェハとすることができる。これらの例では、SiO2503を取り除いて結合界面にシリコンを示すことができ、またはSiO2503を結合界面に示すことができる。1つのアプローチでは、直接シリコン結合を、第2のウェハのシリコン基板と絶縁層上に堆積されたシリコン付着層との間に実現する。図5を参照して、これは、ウェハ501のシリコンと付着層401との間の直接の疎水結合であり、低温結合プロセスを必要とする。この直接のシリコン対シリコン結合は熱抵抗率が低いであろう。しかし、第2のウェハ501の外層及び付着層401に対して前述した材料の任意の組み合わせを用いてもよい。たとえば、酸化物対酸化物の親水性結合が要求された場合、SiO2の付着層をシリコン付着層401の代わりに用いることができ、第2のウェハ501のSiO2層503を所定の位置に残すことができて、両方のウェハからSiO2が結合界面に示されるようにすることができる。別の例として、半導体構造内の第1のウェハは付着層401を有していなくてもよく、第1のウェハ501のSiO2被覆を取り除いて、結合界面に示される材料がAlN及びシリコンとなるようにすることができる。このようなプロセスは、絶縁層301がスパッタリングプロセスによって形成された場合に、絶縁層301から窒素及びアルゴンを脱気することを伴う可能性がある。またこのステップを行なう前に、絶縁層にCMPまたは他の平坦化プロセスを施すこともできる。このアプローチにおける結合方法は、超高真空及び高圧室を用いて行なうことができ、また室温で行なってシリコンとAlNとの間の熱的不整合を制御下で保つことができる。結合プロセスはすべて、注入平面202を乱すことを回避するために低温で有益に行なうことができる。
第2のウェハの基板に対して選択的にエッチングすることができる材料が結合界面に含まれるあるアプローチでは、ある背面処理を絶縁体上半導体ウェハに適用してウェハの熱伝導度を増加させることができる。たとえば、第2のウェハの基板がシリコンで、結合界面にSiO2が含まれるアプローチでは、表面504の背面エッチングを行なって、基板材料をSiO2に至るまで取り除くことができる。SiO2または他の選択的にエッチングされた材料を次に、薄くするかまたは取り除くこともできる。次に、熱伝導性材料を、掘り出した領域内に堆積させることができる。たとえば、銅の層を背面上に堆積させることができる。具体例では、銅リードフレームを絶縁体上半導体ウェハの背面上に形成して、さらに熱を放散することができる。
結合後に、フローチャート100の方法を、注入層を弱くする任意的なステップ106、結合ウェハをエッジトリミングする任意的なステップ107を続けることもできる、またはウェハを分離するステップ108に進むこともできる。例示するように、フローチャート100の方法はまた、ステップ108に進む前に、ステップ107及び106の両方をいずれかの順番で含むことができる。これらのステップのいずれかの前に、結合ウェハをひっくり返すステップを行なうこともできる。エッジトリムステップは、ウェハの全周囲の周りでウェハのエッジから中心に向かって材料の2〜3mmを取り除くことを伴う可能性がある。
図1のステップの種々の変形を、フローチャート600及び図6〜10を参照して、より詳細に説明することができる。フローチャート600は、フローチャート100における方法のサブセットである方法のセットを例示する。フローチャート600における方法はすべて、任意的なエッジトリムステップを含む。フローチャート600は、図1のステップ104からの外部ページ参照601から始まる。フローチャート600は、図1のステップ109に戻る外部ページ参照602で終了する。フローチャート600の2つの分岐は、どの順番でエッジトリムステップとウェハ分離ステップとを行なうかに関して異なる。エッジトリム603は、ウェハを分離するステップ604の前に行なう。エッジトリム606は、ウェハを分離するステップ605の後に行なう。いずれかの状況において、ウェハを分離するステップ604またはウェハを分離するステップ605を、注入層を弱くするステップ106及びウェハを分離するステップ108の特徴を伴う2つのサブステップに分割することができる。加えて、ウェハを分離するステップ604をこれらのサブステップに分割して、注入層を弱くするステップをエッジトリム603の前に行なうことができる。ステップ603及び604を含むフローチャート600の分岐は、図7及び8を参照して説明することができる。ステップ605及び606を含むフローチャート600の分岐は、図9及び10を参照して説明することができる。
あるアプローチでは、第1及び第2のウェハを分離する前に、任意的なエッジトリムを行なう。このアプローチの利益は、ステップ603中に、注入平面202に伴うエッジ効果が第1のウェハ201から効果的にトリムされることであり、その結果、ウェハを分離するステップ603中によりきれいな分離が得られる。図7の半導体構造700に示すように、結合ウェハを反転して、第1のウェハ201が最上部に、第2のウェハ501が最下部にくるようにする。図示するように、第1のウェハ201と絶縁層301とのエッジ701がエッジトリム処置を介して取り除かれている。例示するように、エッジトリム処置の時間を計って、第2のウェハ501の最上表面におけるシリコンの一部を取り除く。前述したように、エッジトリムによって、第1のウェハ201に対してきれいで明瞭なエッジが残り、ステップ107または603でウェハを分離するためのあるアプローチを助けることができる。たとえば、剥離除去処置では、エッジトリム701によって、分離ステップ中のエッジの剥がれ落ちまたは剥がれのわずかな発生も減る。ステップ106の例として、結合ウェハに熱サイクルを施して注入層内で注入種を拡大し、欠陥ラインを形成して、薄い半導体層203の剥離を引き起こすかまたは剥離の準備をすることができる。たとえば、注入層が、シリコン内に注入された水素及びヘリウムだった場合、約450℃の熱サイクルを適用して欠陥ラインを形成することができる。エッジ効果がエッジトリム701によって取り除かれているため、残りの注入平面202は略均一で、これらの熱サイクルにウェハのエッジから中心まで予測可能に反応する。
ステップ108では、2つのウェハを分離して絶縁体上半導体ウェハを形成することができる。分離ステップ108中に、絶縁体上半導体ウェハは第1のウェハから半導体材料層を受け取る。分離ステップ後に、絶縁体上半導体ウェハは、半導体材料の薄層、絶縁体層、及び第2のウェハからの基板を含む。効果的に、分離中に、薄い半導体層と絶縁体層とが第1のウェハから第2のウェハに効果的に移される。ウェハの分離を、注入層に向けて物理的な力を印加すること、熱サイクリングを継続して注入種を拡大すること、またはウェハ全体に渡って上向き方向に物理的な力を印加することを介して、注入層内に破砕を誘起することによって、行なうことができる。
図8に、ステップ604により分離ステップ108を行なう例を、半導体構造800を参照して例示する。例示するように、第1のウェハ201を参照線801によってマーキングされた方向に取り除く。図8に例示するアプローチはエッジトリムステップの後に行なうためステップ604に従う。前述したように、結果として得られるウェハがエッジ効果によって破損する可能性は低い。しかし、第1のウェハ201はエッジトリム処置を用いて処理されているため、廃棄する必要がある可能性が高い。これは第1のウェハ201から使用される唯一の材料が後に残る薄い半導体層203であるため、材料コストの観点からは最良の結果ではない。
図9に、ステップ605により分離ステップ108を行なう例を、半導体構造900を参照して例示する。例示するように、第1のウェハ201を参照線901によってマーキングされた方向に取り除く。図9に例示するアプローチはエッジトリムステップの前に行なうためステップ605に従う。したがって、ウェハ201はエッジトリムを受けることなく取り除かれる。薄い半導体層203及び絶縁層301の後続するエッジトリム1001が、半導体構造1000を参照して図10に例示される。参照線901によって示すようなきれいな分離を保証するために、注入ステップ102を変更して、注入をウェハのエッジまでずっと行なうことを保証するかまたは注入時にエッジをオーバースキャンすることが必要な場合がある。たとえば、ある注入装置ではクランプによってエッジの周りの注入が影になり、この事実を調整するために注入を補償する必要があり得る。特に、その代わりにステップ603及び604を用いるアプローチを適用する場合、存在し得るいかなるクランプも問題点がより少なく、補償する必要がない。
ステップ108のある実施態様の後に残る薄い半導体層203は、約1.1μm厚のシリコンの細いストリップである。分離後に、高温アニールを行なって、注入ステップ中に生じた薄い半導体層に対するわずかな損傷もアニールによって消失させることができる。この高温アニールはまた、第1のウェハ及び第2のウェハが両方とも結合界面にシリコンを示した状況では、シリコン対シリコン結合の結合強度を向上させる働きをすることができる。絶縁体上半導体ウェハの最上表面を次に、所望の厚さまで薄くすることができる。あるアプローチでは、完成した薄い半導体層は1μm厚未満である。他のアプローチでは、完成した薄い半導体層を100nm厚未満とすることができ、完全に空乏化した素子を活性層内に作製することができる。
フローチャート100の方法は、絶縁体上半導体ウェハが完成するステップ109で終了することができる。このステップには、ウェハ上にSiO2の保護層を堆積させることを含めることができる。これはPECVDを用いて行なうことができる。次に、窒化ケイ素または厚いポリシリコンの保護層を堆積させて、フィールド酸化などの高温処理中にウェハのエッジを保護し、過剰なバーズビーク及びウェハゆがみを防止することができる。応力平衡に対する必要性は、第2のウェハ501の基板の厚さに対する絶縁層301の厚さとともに増加する。絶縁層厚さが1μm〜4μmで、基板厚さが対応して675μm〜725μmと変わる場合、500nm未満、たとえば400nmの窒化ケイ素またはSiO2層が全般的に十分である。しかし、厚いポリシリコンは、後の高温処理ステップ、たとえば、フィールド酸化膜の導入中に部分酸化するため、他をすべて等しく保った状態でポリシリコンの必要な厚さはより大きい。図11の具体例では、半導体構造1100は、SiO2層1101と保護層1102とを含み、フローチャート100における方法のセット内の方法により製造した完成された絶縁体上半導体ウェハである。
前述したアプローチによって、薄い半導体層を1um厚未満にすることができ、また薄い半導体層を100nm厚未満にすることができて、完全に空乏化した素子を活性層内に作製することができる。また、AlNを低温堆積させると、平均結晶サイズが100nmを超えて1000nm、500nm、または250nm未満の絶縁体層が形成され得るが、依然として、薄い半導体層内に形成される素子に対して十分な電気絶縁が得られる。概して言えば、前述した低温アプローチによって得られるAlN層は、基板表面付近に形成される等軸の小さい結晶からなり、層厚さが増加する柱の成長を伴い、平均結晶サイズが堆積の温度に反比例して変化するものである。なお、ここで用語「基板」は、第1のウェハの基板201を指し、それは絶縁層301を形成させるための基板として機能するためである。詳細には、少なくとも4.9μm厚のAlNの絶縁層を、室温(〜25℃)のままの基板に対するRFスパッタリングを用いて形成することによって、平均結晶サイズが900nm〜1000nmの絶縁層が得られることになる。別の例として、少なくとも4.5μm厚のAlNの絶縁層を、RFスパッタリングを用いて、また基板を200℃を超えて加熱して形成すると、絶縁層として平均結晶サイズが120nm〜150nmのものができる。これに対し、高温堆積技術を用いるアプローチでは、AlN層の厚さのとは関係なく、はるかに小さい結晶サイズを伴う絶縁層となる。具体例として、基板を750℃まで加熱する関連するアプローチでは、AlNの絶縁層として、少なくとも5μm厚で、平均結晶サイズが20nm〜40nmのものができる。しかし、本明細書で開示したアプローチを用いて、AlN層として、十分に厚く、十分に小さい結晶サイズを示して、SOI技術の利益を完成ウェハの薄い半導体層内の素子に与える一方で、やはり、注入平面202への損傷を回避するように十分に低い温度プロセスを用いて形成されるAlN層を形成することができる。
本明細書を本発明の特定の実施形態に対して詳細に説明してきたが、前述の理解によれば、これらの実施形態に対して当業者が容易に修正、変形、及び均等物を想起できるであろうことを理解されたい。本発明に対するこれら及び他の変更及び変形を、当業者であれば本発明の範囲から逸脱することなく実施し得る。本発明は添付の特許請求の範囲においてより詳細に述べる。
Claims (20)
- プロセスであって、
第1の半導体ウェハ内に注入種を注入して、前記第1の半導体ウェハの表面の下方に注入層を形成することと、
低温スパッタリングプロセスを用いて、前記表面上に電気絶縁材料層を形成することと、
前記第1のウェハに第2のウェハを結合することであって、前記結合ステップ後に前記絶縁材料層は前記注入層と前記第2のウェハとの間にある、結合することと、
前記注入層において前記第1及び第2のウェハを分離して、絶縁体上半導体ウェハを形成することと、を含み、
前記分離ステップ後に、前記絶縁体上半導体ウェハは、前記第1の半導体ウェハからの半導体材料層、前記電気絶縁材料層、及び前記第2のウェハを含む、前記プロセス。 - 前記絶縁体上半導体ウェハ内の前記電気絶縁材料層は、平均結晶サイズが100ナノメートルよりも大きい窒化アルミニウム層であり、前記絶縁体上半導体ウェハ内の前記半導体材料層は単結晶シリコン層である、請求項1に記載のプロセス。
- 前記絶縁体上半導体ウェハ内の前記電気絶縁材料層は1〜4マイクロメートル厚であり、
前記絶縁体上半導体ウェハ内の前記半導体材料層は1マイクロメートル厚未満である、請求項2に記載のプロセス。 - 前記注入ステップの前に、前記第1の半導体ウェハ上にベース絶縁体層を形成することをさらに含み、前記注入種の注入は前記ベース絶縁体層を通して行なう、請求項2に記載のプロセス。
- 前記ベース絶縁体層の形成ステップ後に、前記第1の半導体ウェハ内に第2の注入種を注入して、前記第1の半導体ウェハの表面の下方に注入層を形成することをさらに含み、前記注入種は水素であり、前記第2の注入種はヘリウムであり、前記ベース絶縁体層は熱成長二酸化ケイ素である、請求項4に記載のプロセス。
- 前記電気絶縁材料層を形成する前に、前記ベース絶縁体層を50ナノメートル未満の厚さまで薄くすることをさらに含む、請求項4に記載のプロセス。
- 前記低温スパッタリングプロセスは350℃未満の温度で行なう、請求項2に記載のプロセス。
- 前記低温スパッタリングプロセスはRFスパッタリングプロセスであることをさらに含む、請求項7に記載のプロセス。
- 前記電気絶縁材料層を形成した後に、前記第1の半導体ウェハ上にポリシリコンの付着層を形成することをさらに含み、前記付着層は前記結合ステップ中に結合界面に配置される、請求項2に記載のプロセス。
- 前記電気絶縁材料層を形成した後に、低温堆積を用いて前記第1の半導体上に付着層を形成することをさらに含み、前記付着層は前記結合ステップ中に結合界面に配置され、前記付着層はSiO2及びSi3N4の一方である、請求項2に記載のプロセス。
- プロセスであって、
第1のウェハ上に本質的に窒化アルミニウムからなる層を形成することであって、前記第1のウェハは基板を含む、前記形成することと、
前記第1のウェハに第2のウェハを結合することであって、前記結合ステップ後に、前記本質的に窒化アルミニウムからなる層は前記基板と前記第2のウェハとの間に配置される、前記結合することと、
前記第1及び第2のウェハを分離して絶縁体上半導体ウェハを形成することと、を含み、
前記分離ステップ中に、前記絶縁体上半導体ウェハは前記第2のウェハから半導体材料層を受け取り、
前記分離ステップ後に、前記絶縁体上半導体ウェハは、前記半導体材料層、前記本質的に窒化アルミニウムからなる層、及び前記基板を含む、前記プロセス。 - 前記第2の半導体ウェハ内に注入種を注入して前記第2の半導体ウェハの表面の下方に注入層を形成することをさらに含み、前記絶縁体上半導体ウェハ内の前記半導体材料層は単結晶シリコン層であり、前記絶縁体上半導体ウェハ内の前記半導体材料層は厚さが1マイクロメートル未満である、請求項11に記載のプロセス。
- 前記本質的に窒化アルミニウムからなる層は1〜4マイクロメートル厚である、請求項11に記載のプロセス。
- 前記結合ステップの前に、前記第1のウェハ上の前記本質的に窒化アルミニウムからなる層上に付着層を形成することを含み、前記付着層はSiO2をさらに含む、請求項11に記載のプロセス。
- 前記結合ステップの前に、前記付着層を平坦化することをさらに含み、平坦化した後に、前記付着層は1マイクロメートル厚未満である、請求項14に記載のプロセス。
- 前記本質的に窒化アルミニウムからなる層内の平均結晶サイズは100ナノメートルよりも大きい、請求項11に記載のプロセス。
- 絶縁体上半導体ウェハであって、
1マイクロメートル厚未満である素子品質シリコン層と、
前記素子品質シリコン層の下に配置され、前記素子品質シリコン層と接触している50ナノメートル厚を下回る二酸化ケイ素層と、
前記二酸化ケイ素層の下にあり、前記二酸化ケイ素層と接触している1マイクロメートル〜4マイクロメートル厚の窒化アルミニウム層と、
前記窒化アルミニウム層の下方に配置されたシリコンの基板と、を含み、
前記窒化アルミニウム層内の平均結晶サイズは100ナノメートルよりも大きい、前記絶縁体上半導体ウェハ。 - 前記素子品質シリコン層は100ナノメートル厚未満である、請求項17に記載の絶縁体上半導体ウェハ。
- 絶縁体上半導体ウェハであって、1マイクロメートル厚未満である素子品質シリコン層と、前記素子品質シリコン層の下にあり、前記素子品質シリコン層と接触している1マイクロメートル〜4マイクロメートル厚の窒化アルミニウム層と、前記窒化アルミニウム層の下方に配置されたシリコンの基板と、を含み、前記窒化アルミニウム層内の平均結晶サイズは100ナノメートルよりも大きい、前記絶縁体上半導体ウェハ。
- 前記素子品質シリコン層は100ナノメートル厚未満である、請求項19に記載の絶縁体上半導体ウェハ。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562263504P | 2015-12-04 | 2015-12-04 | |
US62/263,504 | 2015-12-04 | ||
US201662275103P | 2016-01-05 | 2016-01-05 | |
US62/275,103 | 2016-01-05 | ||
PCT/IB2016/056720 WO2017093829A1 (en) | 2015-12-04 | 2016-11-08 | Semiconductor on insulator substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2019501524A true JP2019501524A (ja) | 2019-01-17 |
Family
ID=58796396
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018528045A Pending JP2019501524A (ja) | 2015-12-04 | 2016-11-08 | 絶縁体上半導体基板 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20180294158A1 (ja) |
JP (1) | JP2019501524A (ja) |
TW (1) | TW201729339A (ja) |
WO (1) | WO2017093829A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190164720A1 (en) * | 2017-11-30 | 2019-05-30 | National Cheng Kung University | Liquid sample carrier |
US10847419B2 (en) * | 2018-03-14 | 2020-11-24 | Raytheon Company | Stress compensation and relief in bonded wafers |
US10504716B2 (en) * | 2018-03-15 | 2019-12-10 | Taiwan Semiconductor Manufacturing Company Ltd. | Method for manufacturing semiconductor device and manufacturing method of the same |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62151359A (ja) * | 1985-12-25 | 1987-07-06 | Alps Electric Co Ltd | サ−マルヘツド |
US6033974A (en) * | 1997-05-12 | 2000-03-07 | Silicon Genesis Corporation | Method for controlled cleaving process |
US7473614B2 (en) * | 2004-11-12 | 2009-01-06 | Intel Corporation | Method for manufacturing a silicon-on-insulator (SOI) wafer with an etch stop layer |
US8720105B2 (en) * | 2006-08-11 | 2014-05-13 | Larry Schoenike | Fishing float or strike indicator and attachment methods |
FR2912259B1 (fr) * | 2007-02-01 | 2009-06-05 | Soitec Silicon On Insulator | Procede de fabrication d'un substrat du type "silicium sur isolant". |
CN102986020A (zh) * | 2010-06-30 | 2013-03-20 | 康宁股份有限公司 | 对绝缘体基材上的硅进行精整的方法 |
SG192202A1 (en) * | 2011-01-31 | 2013-08-30 | Denovo Biomarkers Inc | Method for discovering pharmacogenomic biomarkers |
JP6228462B2 (ja) * | 2011-03-16 | 2017-11-08 | エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッドMemc Electronic Materials,Incorporated | ハンドルウエハ内に高抵抗率領域を有するシリコン・オン・インシュレータ構造体およびそのような構造体の製法 |
US9142448B2 (en) * | 2011-11-04 | 2015-09-22 | The Silanna Group Pty Ltd | Method of producing a silicon-on-insulator article |
US20160379943A1 (en) * | 2015-06-25 | 2016-12-29 | Skyworks Solutions, Inc. | Method and apparatus for high performance passive-active circuit integration |
-
2016
- 2016-11-08 WO PCT/IB2016/056720 patent/WO2017093829A1/en active Application Filing
- 2016-11-08 US US15/781,062 patent/US20180294158A1/en not_active Abandoned
- 2016-11-08 JP JP2018528045A patent/JP2019501524A/ja active Pending
- 2016-11-29 TW TW105139286A patent/TW201729339A/zh unknown
Also Published As
Publication number | Publication date |
---|---|
TW201729339A (zh) | 2017-08-16 |
US20180294158A1 (en) | 2018-10-11 |
WO2017093829A1 (en) | 2017-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103348473B (zh) | 用于半导体装置的富陷阱层 | |
US9761493B2 (en) | Thin epitaxial silicon carbide wafer fabrication | |
US6717213B2 (en) | Creation of high mobility channels in thin-body SOI devices | |
US7449395B2 (en) | Method of fabricating a composite substrate with improved electrical properties | |
CN106409669B (zh) | 形成晶片结构的方法、形成半导体器件的方法和晶片结构 | |
US9142448B2 (en) | Method of producing a silicon-on-insulator article | |
KR20050044643A (ko) | 접합 웨이퍼 및 접합 웨이퍼의 제조방법 | |
TWI692001B (zh) | 貼合式soi晶圓的製造方法 | |
TW201225256A (en) | Electronic device for radiofrequency or power applications and process for manufacturing such a device | |
US10242947B2 (en) | SOI wafers with buried dielectric layers to prevent CU diffusion | |
TW201937535A (zh) | 使用工程設計過的基板結構來實施的功率及rf設備 | |
TW201810628A (zh) | 貼合式soi晶圓的製造方法 | |
JP2022500869A (ja) | ハイブリッド集積用の改良された基板を製造するためのプロセス | |
JP2019501524A (ja) | 絶縁体上半導体基板 | |
US9478654B2 (en) | Method for manufacturing semiconductor device with tensile stress | |
TW201810380A (zh) | 貼合式soi晶圓的製造方法 | |
JP6070487B2 (ja) | Soiウェーハの製造方法、soiウェーハ、及び半導体デバイス | |
JP5201169B2 (ja) | 誘電体分離型半導体装置の製造方法 | |
JP2011029594A (ja) | Soiウェーハの製造方法及びsoiウェーハ | |
US8518798B2 (en) | Semiconductor structure and method for making same | |
JP2011138818A (ja) | 半導体装置、高周波集積回路、高周波無線通信システムおよび半導体装置の製造方法 | |
US20140199823A1 (en) | Method for manufacturing semiconductor device | |
JPWO2012169060A1 (ja) | 半導体装置の製造方法 |