JP2019219090A - Heat exchanger - Google Patents
Heat exchanger Download PDFInfo
- Publication number
- JP2019219090A JP2019219090A JP2018115792A JP2018115792A JP2019219090A JP 2019219090 A JP2019219090 A JP 2019219090A JP 2018115792 A JP2018115792 A JP 2018115792A JP 2018115792 A JP2018115792 A JP 2018115792A JP 2019219090 A JP2019219090 A JP 2019219090A
- Authority
- JP
- Japan
- Prior art keywords
- heat exchange
- path
- outflow
- inflow
- heat exchanger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Details Of Heat-Exchange And Heat-Transfer (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
【課題】一方向に流れる流体が一方向に長く延びた熱交換路に一方向から流入し、熱交換路から一方向へ流出する場合と比して、流体の圧力損失が高くなるのを抑制した上で、流体から熱交換部材への伝熱量を増やすことができる熱交換器を得る。【解決手段】熱交換部材で形成されている熱交換路32は、一方向に延びている流入路12と、一方向に延びている流出路22との間で、一方向に並んで複数配置され、流入路12と流出路22とを交差方向に繋いでいる。【選択図】図1PROBLEM TO BE SOLVED: To suppress an increase in pressure loss of a fluid as compared with a case where a fluid flowing in one direction flows into a heat exchange path extending long in one direction from one direction and flows out from the heat exchange path in one direction. Then, a heat exchanger capable of increasing the amount of heat transfer from the fluid to the heat exchange member is obtained. SOLUTION: A plurality of heat exchange paths 32 formed of heat exchange members are arranged side by side in one direction between an inflow path 12 extending in one direction and an outflow path 22 extending in one direction. The inflow path 12 and the outflow path 22 are connected in the crossing direction. [Selection diagram] Fig. 1
Description
本発明は、熱交換器に関する。 The present invention relates to a heat exchanger.
特許文献1に記載の熱交換器は、扁平形状に形成され、熱交換対象物と熱交換する熱媒体が内部を流通する流路管と、流路管の内部に配置され、熱交換対象物と熱媒体との伝熱面積を増大させる板状のインナーフィンと、を備えている。 The heat exchanger described in Patent Literature 1 is formed in a flat shape, a flow pipe through which a heat medium that exchanges heat with a heat exchange object flows, and an inside of the flow pipe, and a heat exchange object is disposed. And a plate-shaped inner fin for increasing a heat transfer area between the heat transfer medium and the heat medium.
従来、熱交換器では、一方向に流れる流体(熱媒体)が、一方向に長く延びた熱交換路に一方向から流入し、熱交換路から一方向へ流出する。このように、熱交換路が一方向に長く延びているため、流体の圧力損失が高くなる。一方、流体の圧力損失を低下させるために、熱交換路の流路断面積を大きくすると、単位流量当たりの流体が熱交換部材(インナーフィン)と接触する接触面積が減ってしまう。これにより、流体から熱交換部材への伝熱量が減ってしまう。 Conventionally, in a heat exchanger, a fluid (heat medium) flowing in one direction flows into a heat exchange path extending in one direction from one direction, and flows out of the heat exchange path in one direction. As described above, since the heat exchange path extends in one direction, the pressure loss of the fluid increases. On the other hand, if the flow path cross-sectional area of the heat exchange path is increased to reduce the pressure loss of the fluid, the contact area where the fluid per unit flow rate contacts the heat exchange member (inner fin) decreases. As a result, the amount of heat transfer from the fluid to the heat exchange member decreases.
本発明の課題は、一方向に流れる流体が一方向に長く延びた熱交換路に一方向から流入し、熱交換路から一方向へ流出する場合と比して、流体の圧力損失が高くなるのを抑制した上で、流体から熱交換部材への伝熱量を増やすことである。 An object of the present invention is to increase a pressure loss of a fluid as compared with a case where a fluid flowing in one direction flows into a heat exchange path extending in one direction from one direction and flows out of the heat exchange path in one direction. And increasing the amount of heat transfer from the fluid to the heat exchange member.
本発明の請求項1に係る熱交換器は、一方向に延びていると共に端部から前記一方向に流れる流体が流入して前記一方向に流れる流入路と、前記一方向に対して交差する交差方向で前記流入路と離間して前記一方向に延びていると共に前記一方向に流れる流体が端部から流出する流出路との間に、前記一方向に並んで複数配置され、前記流入路と前記流出路とを前記交差方向に繋いでおり、熱交換対象部材と流体との間で熱交換するための熱交換部材で形成されている熱交換路であって、前記交差方向における長さをLとし、流路幅をW1とすると下記式(1)が満たされている前記熱交換路を有する熱交換器であって、前記流入路を前記一方向に流れる流体の流れを止め、流体を前記熱交換路に案内する案内部材を有することを特徴とする。
W1/2≦L≦5W1・・・・・(1)
The heat exchanger according to claim 1 of the present invention intersects with the inflow path, which extends in one direction and into which the fluid flowing in one direction flows from an end and flows in the one direction. A plurality of the inflow paths are arranged in the one direction, between the inflow path and the outflow path, which extends in the one direction while being separated from the inflow path in the cross direction and in which the fluid flowing in the one direction flows out from an end. And the outflow path in the cross direction, a heat exchange path formed by a heat exchange member for heat exchange between the heat exchange target member and the fluid, the length in the cross direction Where L is the flow path width and W1 is the heat exchanger having the heat exchange path satisfying the following expression (1), wherein the flow of the fluid flowing through the inflow path in the one direction is stopped. Having a guide member for guiding the heat to the heat exchange path.
W1 / 2 ≦ L ≦ 5W1 (1)
上記構成によれば、流体は、一方向に延びている流入路の端部から流入路へ流入し、一方向へ流れる。さらに、流入路を流れる流体は、案内部材によって一方向への流れが止められ、流れ方向を変えて、一方向に並んで複数配置された熱交換路を夫々流れる(案内される)。また、熱交換路を形成している熱交換部材を介して、熱交換路を流れる流体と熱交換対象部品との間で熱交換が行われる。さらに、複数の熱交換路を夫々流れる流体は、流れ方向を変えて、一方向に延びている流出路へ流入し、流出路から流出する。 According to the above configuration, the fluid flows into the inflow channel from the end of the inflow channel extending in one direction, and flows in one direction. Further, the flow of the fluid flowing in the inflow path is stopped in one direction by the guide member, the flow direction is changed, and the fluid flows (guides) through the plurality of heat exchange paths arranged in one direction. Further, heat exchange is performed between the fluid flowing in the heat exchange path and the heat exchange target component via the heat exchange member forming the heat exchange path. Further, the fluid flowing through each of the plurality of heat exchange paths changes the flow direction, flows into the outflow path extending in one direction, and flows out of the outflow path.
以上説明したように、熱交換路は複数設けられている。さらに、流入路から熱交換路へ流入する流体は、流れ方向を変えて熱交換路へ流入する。また、熱交換路から流出路へ流入する流体は、流れ方向を変えて流出路へ流入する。さらに、交差方向における熱交換路の長さをLとし、熱交換路の流路幅をW1とすると下記式(1)が満たされている。 As described above, a plurality of heat exchange paths are provided. Further, the fluid flowing from the inflow path to the heat exchange path changes its flow direction and flows into the heat exchange path. Further, the fluid flowing from the heat exchange path to the outflow path changes the flow direction and flows into the outflow path. Further, when the length of the heat exchange path in the cross direction is L and the flow path width of the heat exchange path is W1, the following expression (1) is satisfied.
W1/2≦L≦5W1・・・・・(1) W1 / 2 ≦ L ≦ 5W1 (1)
このため、一方向に流れる流体が一方向に長く延びた熱交換路に一方向から流入し、熱交換路から一方向へ流出する場合と比して、流体の圧力損失が高くなるのを抑制した上で、流体から熱交換部材への伝熱量を増やすことができる。 For this reason, compared to the case where the fluid flowing in one direction flows into the heat exchange path extending in one direction from one direction and flows out from the heat exchange path in one direction, the pressure loss of the fluid is suppressed from increasing. Then, the amount of heat transfer from the fluid to the heat exchange member can be increased.
本発明の請求項2に係る熱交換器は、請求項1に記載の熱交換器において、前記一方向に流れる流体が前記流出路の端部から前記流出路に流入するのを抑制する抑制部材を有することを特徴とする。 The heat exchanger according to claim 2 of the present invention is the heat exchanger according to claim 1, wherein the fluid that flows in one direction is suppressed from flowing into the outflow path from an end of the outflow path. It is characterized by having.
上記構成によれば、抑制部材が、一方向に流れる流体が流出路の端部から流出路に流入するのを抑制する。つまり、熱交換路から流出路に流入する流体を妨げる流体が流出路に流入するのが抑制されている。このため、一方向に流れる流体が流出路の端部から流出路に流入する場合と比して、熱交換路を通過する流体の流量を増やすことができる。 According to the above configuration, the suppression member suppresses the fluid flowing in one direction from flowing into the outflow channel from the end of the outflow channel. That is, the fluid that blocks the fluid flowing from the heat exchange path to the outflow path is suppressed from flowing into the outflow path. Therefore, the flow rate of the fluid passing through the heat exchange path can be increased as compared with the case where the fluid flowing in one direction flows into the outflow path from the end of the outflow path.
本発明の請求項3に係る熱交換器は、請求項1又は2に記載の熱交換器において、前記流入路を挟んで両側に、前記熱交換路及び前記流出路が夫々形成されていることを特徴とする。 In the heat exchanger according to claim 3 of the present invention, in the heat exchanger according to claim 1 or 2, the heat exchange path and the outflow path are respectively formed on both sides of the inflow path. It is characterized.
上記構成によれば、流入路を挟んで両側に、熱交換路及び流出路が夫々形成されている。このため、流入路の片側だけに、熱交換路及び流出路が形成されている場合と比して、流体から熱交換部材への伝熱量を増やすことができる。 According to the above configuration, the heat exchange path and the outflow path are respectively formed on both sides of the inflow path. Therefore, the amount of heat transferred from the fluid to the heat exchange member can be increased as compared with the case where the heat exchange path and the outflow path are formed only on one side of the inflow path.
本発明の請求項4に係る熱交換器は、請求項1〜3の何れか1項に記載の熱交換器において、前記流入路は複数形成され、前記流出路は複数形成され、前記流入路と前記流出路とは交互に並んでいることを特徴とする。 The heat exchanger according to claim 4 of the present invention is the heat exchanger according to any one of claims 1 to 3, wherein a plurality of the inflow paths are formed, a plurality of the outflow paths are formed, and the inflow path is provided. And the outflow channel are alternately arranged.
上記構成によれば、流入路は複数形成され、流出路は複数形成され、流入路と流出路とは交互に並んでいる。このため、流出路及び流出路の少なくとも一方が1個である場合と比して、流体から熱交換部材への伝熱量を増やすことができる。 According to the above configuration, a plurality of inflow paths are formed, and a plurality of outflow paths are formed, and the inflow paths and the outflow paths are alternately arranged. For this reason, the amount of heat transfer from the fluid to the heat exchange member can be increased as compared with the case where at least one of the outflow path and the outflow path is one.
本発明の請求項5に係る熱交換器は、請求項1〜4の何れか1項に記載の熱交換器において、前記流入路において前記熱交換路が臨んでいる部分の流路幅は、流体が流れる流れ方向において上流側から下流側に向かって狭くなっていることを特徴とする。 The heat exchanger according to claim 5 of the present invention is the heat exchanger according to any one of claims 1 to 4, wherein a flow passage width of a portion of the inflow passage facing the heat exchange passage is: It is characterized in that it becomes narrower from the upstream side to the downstream side in the flow direction in which the fluid flows.
上記構成によれば、流入路において熱交換路が臨んでいる部分の流路幅は、流体が流れる流れ方向において上流側から下流側に向かって狭くなっている。このため、流入路の流路幅が一定の場合と比して、流入路から、一の熱交換路へ流入する流体の流量と、他の熱交換路へ流入する流量との差を少なくすることができる。 According to the above configuration, the flow path width of the portion where the heat exchange path faces the inflow path decreases from the upstream side to the downstream side in the flow direction of the fluid. For this reason, the difference between the flow rate of the fluid flowing from the inflow path to one heat exchange path and the flow rate to the other heat exchange path is reduced as compared with the case where the flow path width of the inflow path is constant. be able to.
本発明の請求項6に係る熱交換器は、請求項1〜5の何れか1項に記載の熱交換器において、前記流出路において前記熱交換路が臨んでいる部分の流路幅は、流体が流れる流れ方向において上流側から下流側に向かって広くなっていることを特徴とする。 The heat exchanger according to claim 6 of the present invention is the heat exchanger according to any one of claims 1 to 5, wherein a flow path width of a portion of the outflow path facing the heat exchange path is: It is characterized in that the fluid becomes wider from the upstream side to the downstream side in the flow direction in which the fluid flows.
上記構成によれば、流出路において熱交換路が臨んでいる部分の流路幅は、流体が流れる流れ方向において上流側から下流側に向かって広くなっている。このため、流出路の流路幅が一定の場合と比して、一の熱交換路から流出路へ流入する流体の流量と、他の熱交換路から流出路へ流入する流体の流量との差を少なくすることができる。 According to the above configuration, the flow path width of the portion where the heat exchange path faces the outflow path increases from the upstream side to the downstream side in the flow direction of the fluid. For this reason, compared with the case where the flow path width of the outflow path is constant, the flow rate of the fluid flowing from one heat exchange path to the outflow path and the flow rate of the fluid flowing from another heat exchange path to the outflow path are different. The difference can be reduced.
本発明の請求項7に係る熱交換器は、請求項1〜6の何れか1項に記載の熱交換器において、前記流入路、前記流出路、及び前記熱交換路は、平行な2枚の平面の間に形成されていることを特徴とする。 The heat exchanger according to claim 7 of the present invention is the heat exchanger according to any one of claims 1 to 6, wherein the inflow path, the outflow path, and the heat exchange path are two parallel sheets. Characterized by being formed between the flat surfaces.
上記構成によれば、流入路、流出路、及び熱交換路は、平行な2枚の平面の間に形成されている。このため、管材を用いて、流入路、流出路、及び熱交換路を形成する場合と比して、簡易な構成で流入路、流出路、及び熱交換路を形成することができる。 According to the above configuration, the inflow path, the outflow path, and the heat exchange path are formed between two parallel planes. For this reason, the inflow path, the outflow path, and the heat exchange path can be formed with a simple configuration as compared with the case where the inflow path, the outflow path, and the heat exchange path are formed using the pipe material.
本発明によれば、一方向に流れる流体が一方向に長く延びた熱交換路に一方向から流入し、熱交換路から一方向へ流出する場合と比して、流体の圧力損失が高くなるのを抑制した上で、流体から熱交換部材への伝熱量を増やすことができる。 ADVANTAGE OF THE INVENTION According to this invention, the pressure loss of a fluid becomes high compared with the case where the fluid which flows in one direction flows into the heat exchange path extended in one direction from one direction, and flows out from the heat exchange path in one direction. And the amount of heat transfer from the fluid to the heat exchange member can be increased.
<第1実施形態>
本発明の第1実施形態に係る熱交換器の一例について図1〜図4を用いて説明する。なお、図中に示す矢印Hは、装置の上下方向(鉛直方向)を示し、矢印Wは、装置の幅方向(水平方向)を示し、矢印Dは、装置の奥行方向(水平方向)を示す。
<First embodiment>
An example of the heat exchanger according to the first embodiment of the present invention will be described with reference to FIGS. In addition, the arrow H shown in the figure shows the vertical direction (vertical direction) of the apparatus, the arrow W shows the width direction (horizontal direction) of the apparatus, and the arrow D shows the depth direction (horizontal direction) of the apparatus. .
(全体構成)
本第1実施形態に係る熱交換器10は、例えば、流体(熱媒体)としての給水G1と、熱交換対象部材(冷却対象部材)である電子部品Eとの間で熱交換するための装置である。具体的には、流体としての給水G1を用いて、電子部品Eを冷却する装置である。
(overall structure)
The heat exchanger 10 according to the first embodiment is, for example, an apparatus for exchanging heat between a water supply G1 as a fluid (heat medium) and an electronic component E which is a heat exchange target member (cooling target member). It is. Specifically, it is a device that cools the electronic component E using the feedwater G1 as a fluid.
この熱交換器10は、図1に示されるように、熱交換器10へ流入する給水G1が流れる流入路12と、熱交換が終了した排水G2が流れる流出路22とを有している。さらに、熱交換器10は、電子部品E(図2(B)参照)と給水G1との間で熱交換するための熱交換フィン34、36で形成されている熱交換路32を複数有している。熱交換フィン34、36は、アルミニウムや銅等の高い熱伝導性を有する金属製のプレートを積層し、これらのプレートを接合して構成されている板状の部材である。つまり、熱交換フィン34、36とは、例えば、熱伝導率70〔W/m・K〕以上の金属又は金属の積層体である。熱交換フィン34、36は、熱交換部材の一例である。 As shown in FIG. 1, the heat exchanger 10 has an inflow path 12 through which feed water G1 flowing into the heat exchanger 10 flows, and an outflow path 22 through which drainage G2 after heat exchange has finished. Further, the heat exchanger 10 has a plurality of heat exchange paths 32 formed by heat exchange fins 34 and 36 for exchanging heat between the electronic component E (see FIG. 2B) and the water supply G1. ing. The heat exchange fins 34 and 36 are plate-like members formed by laminating metal plates having high thermal conductivity such as aluminum and copper and joining these plates. That is, the heat exchange fins 34 and 36 are, for example, a metal or a metal laminate having a thermal conductivity of 70 [W / m · K] or more. The heat exchange fins 34 and 36 are examples of a heat exchange member.
そして、流入路12、流出路22、及び熱交換路32は、図2(A)(B)(C)に示されるように、装置上下方向に離間すると共に平行な2枚の平面40A、42Aの間に形成されている。具体的には、熱交換器10は、装置上下方向に離間すると共に金属材料を用いて成形された2個の板材40、42を備えている。そして、板材40の流入路12、流出路22、及び熱交換路32側が平面40Aとされており、板材42の流入路12、流出路22、及び熱交換路32側が平面42Aとされている。 As shown in FIGS. 2A, 2B, and 2C, the inflow path 12, the outflow path 22, and the heat exchange path 32 are separated from each other in the vertical direction of the apparatus and are two parallel flat surfaces 40A and 42A. Is formed between. Specifically, the heat exchanger 10 includes two plate members 40 and 42 that are separated from each other in the vertical direction of the device and are formed using a metal material. The inflow path 12, the outflow path 22, and the heat exchange path 32 side of the plate 40 are a plane 40A, and the inflow path 12, the outflow path 22, and the heat exchange path 32 of the plate 42 are a plane 42A.
また、電子部品Eは、図2(B)に示されるように、熱交換路32に対して板材42を挟んで反対側で、板材42において平面42Aの反対側の平面42Bと接触している。 Further, as shown in FIG. 2B, the electronic component E is in contact with a plane 42B opposite to the plane 42A in the plate 42 on the opposite side of the heat exchange path 32 across the plate 42. .
本実施形態では、平面間の距離(図中H1)は、熱交換路32の流路幅W1(詳細は後述)と比して長くされている。 In the present embodiment, the distance between the planes (H1 in the figure) is longer than the flow path width W1 of the heat exchange path 32 (details will be described later).
〔流入路12〕
流入路12は、図1、図2(A)に示されるように、装置奥行方向に延びている。さらに、長手方向に対して直交する方向で切断した流入路12の形状は、矩形状とされており、装置奥行方向において同様の形状とされている。装置奥行方向は、一方向の一例である。
[Inflow channel 12]
The inflow path 12 extends in the apparatus depth direction as shown in FIGS. Furthermore, the shape of the inflow channel 12 cut in a direction orthogonal to the longitudinal direction is a rectangular shape, and has a similar shape in the device depth direction. The apparatus depth direction is an example of one direction.
また、流入路12は、流入路12の装置幅方向の一方側(図中左側)の側板14Aと、流入路12の装置幅方向の他方側(図中右側)の側板14Bと、流入路12の装置奥行方向の奥側の底板16とを含んで形成されている。さらに、側板14A、14B、及び底板16は、金属材料を用いて成形されている。底板16は案内部材の一例である。 The inflow passage 12 includes a side plate 14A on one side (left side in the drawing) of the inflow passage 12 in the device width direction, a side plate 14B on the other side (right side in the drawing) of the inflow passage 12 in the device width direction, and an inflow passage 12. And the bottom plate 16 on the back side in the device depth direction. Further, the side plates 14A and 14B and the bottom plate 16 are formed using a metal material. The bottom plate 16 is an example of a guide member.
また、流入路12において装置幅方向の他方側には、熱交換路32の一端が臨んでいる。具体的には、流入路12において装置幅方向の他方側については、装置奥行方向の手前側から奥側に、側板14B、及び熱交換路32がこの順番で並んでいる。なお、本実施形態では、側板14Bの装置奥行方向の長さ、及び流入路12の流路幅(図2(A)のB1)は、熱交換路32の流路幅W1(詳細は後述)に対して±30〔%〕以内の長さとされている。 One end of the heat exchange passage 32 faces the other side of the inflow passage 12 in the device width direction. Specifically, on the other side in the apparatus width direction in the inflow path 12, the side plates 14B and the heat exchange paths 32 are arranged in this order from the near side to the far side in the apparatus depth direction. In the present embodiment, the length of the side plate 14B in the device depth direction and the flow path width of the inflow path 12 (B1 in FIG. 2A) are the flow path width W1 of the heat exchange path 32 (details will be described later). Is within ± 30%.
この構成において、給水G1は、流入路12において装置奥行方向の手前側の端部から流入し、流入路12を装置奥行方向の手前側から奥側へ流れる。 In this configuration, the water supply G1 flows in the inflow path 12 from the end on the near side in the apparatus depth direction, and flows through the inflow path 12 from the near side in the apparatus depth direction to the back side.
〔流出路22〕
流出路22は、図1、図2(C)に示されるように、装置幅方向で流入路12と離間し、装置奥行方向に延びている。さらに、長手方向に対して直交する方向で切断した流出路の形状は、矩形状とされており、装置奥行方向において同様の形状とされている。
[Outflow channel 22]
As shown in FIGS. 1 and 2C, the outflow channel 22 is separated from the inflow channel 12 in the device width direction and extends in the device depth direction. Furthermore, the shape of the outflow channel cut in a direction perpendicular to the longitudinal direction is rectangular, and has the same shape in the device depth direction.
また、流出路22は、流出路22の装置幅方向の他方側(流入路12とは反対側)の側板24Aと、流出路22の装置幅方向の一方側(流入路12側)の側板24Bと、流出路22の装置奥行方向の手前側の底板26とで形成されている。さらに、側板24A、24B、及び底板26は、金属材料を用いて形成されている。底板26は、抑制部材の一例である。 The outflow channel 22 includes a side plate 24A on the other side of the outflow channel 22 in the device width direction (the opposite side to the inflow channel 12) and a side plate 24B on one side of the outflow channel 22 in the device width direction (the inflow channel 12 side). And a bottom plate 26 on the near side of the outflow channel 22 in the apparatus depth direction. Further, the side plates 24A and 24B and the bottom plate 26 are formed using a metal material. The bottom plate 26 is an example of a suppressing member.
また、流出路22において装置幅方向の一方側には、熱交換路32の他端が臨んでいる。具体的には、流出路22において装置幅方向の一方側については、装置奥行方向の奥側から手前側に、側板24B、及び熱交換路32がこの順番で並んでいる。なお、本実施形態では、側板24Bの装置奥行方向の長さ、及び流出路22の流路幅(図2(C)のB2)は、熱交換路32の流路幅W1(詳細は後述)と同様の寸法とされている。 The other end of the heat exchange path 32 faces one side of the outflow path 22 in the apparatus width direction. Specifically, on one side of the outflow channel 22 in the device width direction, the side plate 24B and the heat exchange channel 32 are arranged in this order from the depth side to the front side in the device depth direction. In the present embodiment, the length of the side plate 24B in the apparatus depth direction and the flow path width of the outflow path 22 (B2 in FIG. 2C) are the flow path width W1 of the heat exchange path 32 (details will be described later). It has the same dimensions as.
この構成において、排水G2は、流出路22を装置奥行方向の手前側から奥側へ流れ、流出路22において装置奥行方向の奥側の端部から流出する。また、底板26は、装置奥行方向に流れる流体が流出路22の端部から流出路22に流入するのを抑制する。 In this configuration, the drainage G <b> 2 flows from the near side in the apparatus depth direction to the back side in the outflow path 22, and flows out of the outflow path 22 from an end on the back side in the apparatus depth direction. Further, the bottom plate 26 suppresses the fluid flowing in the device depth direction from flowing into the outflow channel 22 from the end of the outflow channel 22.
〔熱交換路32〕
熱交換路32は、図1、図2(B)に示されるように、装置奥行方向に並んで3個配置されており、流入路12と流出路22とを装置幅方向に繋いでいる。装置幅方向は、交差方向の一例である。
[Heat exchange path 32]
As shown in FIGS. 1 and 2B, three heat exchange paths 32 are arranged side by side in the apparatus depth direction, and connect the inflow path 12 and the outflow path 22 in the apparatus width direction. The device width direction is an example of the cross direction.
さらに、長手方向に対して直交する方向で切断した熱交換路32の形状は、矩形状とされており、装置幅方向において同様の形状とされている。そして、熱交換路32の一端は、流入路12に臨んでおり、熱交換路32の他端は、流出路22に臨んでいる。 Further, the shape of the heat exchange path 32 cut in a direction perpendicular to the longitudinal direction is rectangular, and has the same shape in the apparatus width direction. One end of the heat exchange path 32 faces the inflow path 12, and the other end of the heat exchange path 32 faces the outflow path 22.
熱交換路32は、熱交換路32の装置奥行方向の両側の熱交換フィン34、36で形成されている。熱交換フィン34は、隣り合う熱交換路32を仕切るように2個配置されている。また、熱交換フィン36は、装置奥行方向から2個の熱交換フィン34を挟むように2個配置されている。なお、以下の説明では、便宜上、3個の熱交換路32については、装置奥行方向の手前側から順に、熱交換路32A、熱交換路32B、熱交換路32Cと称することがある。 The heat exchange path 32 is formed by heat exchange fins 34 and 36 on both sides of the heat exchange path 32 in the apparatus depth direction. Two heat exchange fins 34 are arranged to partition adjacent heat exchange paths 32. Further, two heat exchange fins 36 are arranged so as to sandwich the two heat exchange fins 34 from the apparatus depth direction. In the following description, for convenience, the three heat exchange paths 32 may be referred to as a heat exchange path 32A, a heat exchange path 32B, and a heat exchange path 32C in order from the near side in the apparatus depth direction.
本実施形態では、熱交換フィン36の厚さは、一例として、2〔mm〕以上4〔mm〕以下とされており、熱交換フィン34の厚さは、熱交換フィン36の厚さの2倍とされている。また、熱交換路32の流路幅(図2(B)のW1)は、4〔mm〕以上8〔mm〕以下とされている。 In the present embodiment, the thickness of the heat exchange fins 36 is, for example, not less than 2 [mm] and not more than 4 [mm], and the thickness of the heat exchange fins 34 is 2 mm of the thickness of the heat exchange fins 36. It is doubled. In addition, the flow path width (W1 in FIG. 2B) of the heat exchange path 32 is not less than 4 [mm] and not more than 8 [mm].
さらに、熱交換路32の長さ(図1のL)と、熱交換路32の流路幅W1とについては、下記式(1)が満たされている。 Further, the length (L in FIG. 1) of the heat exchange path 32 and the flow path width W1 of the heat exchange path 32 satisfy the following expression (1).
W1/2≦L≦5W1・・・・・(1) W1 / 2 ≦ L ≦ 5W1 (1)
なお、熱交換路32の長さLは、熱交換路32の中心線と熱交換路32を形成している熱交換フィン34、36の一端を結んだ線との交点から、熱交換路32の中心線と熱交換路32を形成している熱交換フィン34、36の他端を結んだ線との交点までの長さである。 The length L of the heat exchange path 32 is determined by the intersection of the center line of the heat exchange path 32 and a line connecting one end of the heat exchange fins 34 and 36 forming the heat exchange path 32. Of the heat exchange fins 34, 36 forming the heat exchange path 32 and the line connecting the other ends of the heat exchange fins 34, 36.
(作用)
次に、熱交換器10の作用について、比較形態に係る熱交換器500と比較しつつ説明する。先ず、比較形態に係る熱交換器500の構成について説明する。
(Action)
Next, the operation of the heat exchanger 10 will be described in comparison with the heat exchanger 500 according to the comparative embodiment. First, the configuration of the heat exchanger 500 according to the comparative embodiment will be described.
〔熱交換器500の構成〕
熱交換器500は、図4(A)に示されるように、装置奥行方向に延びている熱交換路532を備えている。この熱交換路532は、図4(B)に示されるように、装置上下方向に離間すると共に平行な2枚の平面40A、42Aの間に形成されている。また、熱交換路532は、熱交換路532の装置幅方向の両側の熱交換フィン534を含んで形成されている。
[Configuration of heat exchanger 500]
As shown in FIG. 4A, the heat exchanger 500 includes a heat exchange path 532 extending in the apparatus depth direction. As shown in FIG. 4B, the heat exchange path 532 is formed between two parallel flat surfaces 40A and 42A that are separated in the vertical direction of the apparatus. The heat exchange path 532 includes heat exchange fins 534 on both sides of the heat exchange path 532 in the device width direction.
熱交換フィン534は、アルミニウムや銅等の高い熱伝導性を有する金属製のプレートを積層し、これらのプレートを接合して構成されている板状の部材であり、熱交換フィン534の厚さは、熱交換器10の熱交換フィン36の厚さと同様とされている。また、熱交換路532の流路幅(図4(B)のB4)は、熱交換器10における熱交換路32の流路幅W1(図2(B)参照)と同様とされている。さらに、熱交換路532の長さ(図4のL10)については、熱交換器10における熱交換路32の長さL(図1参照)の3倍とされている。 The heat exchange fins 534 are plate-like members formed by laminating metal plates having high thermal conductivity such as aluminum or copper and joining these plates. Is the same as the thickness of the heat exchange fins 36 of the heat exchanger 10. Further, the flow path width of the heat exchange path 532 (B4 in FIG. 4B) is the same as the flow path width W1 of the heat exchange path 32 in the heat exchanger 10 (see FIG. 2B). Further, the length (L10 in FIG. 4) of the heat exchange path 532 is set to be three times the length L (see FIG. 1) of the heat exchange path 32 in the heat exchanger 10.
つまり、熱交換路532の長さL10は、3個の熱交換路32の長さLの合計と同様とされており、熱交換器500の熱交換路532の流路容積は、熱交換器10の3個の熱交換路32における流路容積の合計と同様とされている。また、熱交換器500の熱交換路532を流れる給水G1と熱交換フィン534との接触面積は、熱交換器10の熱交換路32を流れる給水G1と熱交換フィン34、36との接触面積の合計と同様とされている。 That is, the length L10 of the heat exchange path 532 is the same as the sum of the lengths L of the three heat exchange paths 32, and the flow volume of the heat exchange path 532 of the heat exchanger 500 is It is the same as the sum of the flow path volumes in the ten heat exchange paths 32. The contact area between the feed water G1 flowing through the heat exchange path 532 of the heat exchanger 500 and the heat exchange fins 534 is the contact area between the feed water G1 flowing through the heat exchange path 32 of the heat exchanger 10 and the heat exchange fins 34 and 36. Is the same as the sum of
また、電子部品Eは、熱交換路532に対して板材42を挟んで反対側で、板材42において平面42Aの反対側の平面42Bと接触するように配置されている。 The electronic component E is disposed on the opposite side of the heat exchange path 532 across the plate 42 so as to be in contact with the plane 42B of the plate 42 opposite to the plane 42A.
〔熱交換器500の作用〕
給水G1は、図4(A)に示す熱交換路532の装置奥行方向の手前側の端部から熱交換路532へ流入する。本実施形態では、一例として、25〔℃〕の給水G1が、空間速度300〔h−1〕で熱交換路532へ流入する。
[Operation of heat exchanger 500]
The water supply G1 flows into the heat exchange path 532 from the end of the heat exchange path 532 shown in FIG. In the present embodiment, as an example, the feedwater G1 at 25 ° C. flows into the heat exchange path 532 at a space velocity of 300 [h −1 ].
熱交換路532へ流入した給水G1は、熱交換路532を装置奥行方向の奥側へ流れる(図中矢印K1)。さらに、板材42及び熱交換フィン534を介して、熱交換路532を流れる給水G1と電子部品Eとの間で熱交換が行われる。これにより、電子部品Eが冷却される。また、熱交換が終了した排水G2が、熱交換路532の装置奥行方向の奥側の端部から流出する。 The feed water G1 that has flowed into the heat exchange path 532 flows through the heat exchange path 532 to the depth side in the apparatus depth direction (arrow K1 in the figure). Further, heat exchange is performed between the water supply G1 flowing through the heat exchange path 532 and the electronic component E via the plate member 42 and the heat exchange fins 534. Thereby, the electronic component E is cooled. In addition, the drainage G2 after the completion of the heat exchange flows out from the end of the heat exchange path 532 on the far side in the apparatus depth direction.
〔熱交換器10の作用〕
給水G1は、図1(A)に示す流入路12において装置奥行方向の手前側の端部から流入路12へ流入する。本実施形態では、一例として、25〔℃〕の給水G1が、空間速度300〔h−1〕で流入路12へ流入する。流入路12へ流入した給水G1は、流入路12を装置奥行方向の奥側へ流れる(図中矢印M1)。
[Operation of heat exchanger 10]
The water supply G1 flows into the inflow path 12 from the front end in the apparatus depth direction in the inflow path 12 shown in FIG. In the present embodiment, as an example, the feedwater G1 at 25 [° C.] flows into the inflow path 12 at a space velocity of 300 [h −1 ]. The feedwater G1 that has flowed into the inflow path 12 flows through the inflow path 12 to the depth side in the apparatus depth direction (arrow M1 in the figure).
流入路12を流れる給水G1の一部は、流れ方向を装置幅方向に変えて熱交換路32Aへ流入する(図中矢印M2)。また、熱交換路32Aへ流入した給水G1は、熱交換路32Aを装置幅方向へ流れる(図中矢印M3)。さらに、板材42及び熱交換フィン34、36を介して、熱交換路32Aを流れる給水G1と電子部品Eとの間で熱交換が行われる。 A part of the feed water G1 flowing through the inflow path 12 flows into the heat exchange path 32A by changing the flow direction to the apparatus width direction (arrow M2 in the figure). The feedwater G1 that has flowed into the heat exchange path 32A flows through the heat exchange path 32A in the width direction of the device (arrow M3 in the figure). Further, heat exchange is performed between the water supply G1 flowing through the heat exchange path 32A and the electronic component E via the plate member 42 and the heat exchange fins 34 and 36.
また、熱交換が終了した排水G2は、熱交換路32Aから流れ方向を装置奥行方向に変えて流出路22へ流入する(図中矢印M4)。流出路22へ流入した排水G2は、流出路22を装置奥行方向の奥側へ流れ、流出路22の装置奥行方向の奥側から流出する(図中矢印M5)。 Further, the drainage G2 after the completion of the heat exchange flows from the heat exchange path 32A into the outflow path 22 with the flow direction changed to the apparatus depth direction (arrow M4 in the figure). The drainage G2 that has flowed into the outflow channel 22 flows through the outflow channel 22 in the depth direction of the device, and flows out of the outflow channel 22 in the depth direction of the device (arrow M5 in the figure).
また、流入路12を流れる給水G1の他の一部は、流れ方向を装置幅方向に変えて熱交換路32Bへ流入する(図中矢印M6)。また、熱交換路32Bへ流入した給水G1は、熱交換路32Aを装置幅方向へ流れる(図中矢印M7)。さらに、板材42及び一対の熱交換フィン34を介して、熱交換路32Bを流れる給水G1と電子部品Eとの間で熱交換が行われる。 Another part of the feed water G1 flowing through the inflow path 12 changes the flow direction to the apparatus width direction and flows into the heat exchange path 32B (arrow M6 in the figure). The feedwater G1 that has flowed into the heat exchange path 32B flows through the heat exchange path 32A in the device width direction (arrow M7 in the figure). Further, heat exchange is performed between the water supply G1 flowing through the heat exchange path 32B and the electronic component E via the plate member 42 and the pair of heat exchange fins 34.
また、熱交換が終了した排水G2は、熱交換路32Bから流れ方向を装置奥行方向に変えて流出路22へ流入する(図中矢印M8)。流出路22へ流入した排水G2は、流出路22を装置奥行方向の奥側へ流れ、流出路22の装置奥行方向の奥側から流出する(図中矢印M5)。 Further, the waste water G2 after the completion of the heat exchange flows from the heat exchange path 32B into the outflow path 22 with the flow direction changed to the apparatus depth direction (arrow M8 in the figure). The drainage G2 that has flowed into the outflow channel 22 flows through the outflow channel 22 in the depth direction of the device, and flows out of the outflow channel 22 in the depth direction of the device (arrow M5 in the figure).
さらに、流入路12を流れる給水G1の残部は、底板16によって装置奥行方向への流れが止められて熱交換路32C側に案内される。そして、給水G1は、流れ方向を装置幅方向に変えて熱交換路32Cへ流入する(図中矢印M9)。また、熱交換路32Cへ流入した給水G1は、熱交換路32Cを装置幅方向へ流れる(図中矢印M10)。さらに、板材42及び熱交換フィン34、36を介して、熱交換路32Cを流れる給水G1と電子部品E(図2(B)参照)との間で熱交換が行われる。 Further, the remaining portion of the feedwater G1 flowing through the inflow path 12 is stopped by the bottom plate 16 from flowing in the apparatus depth direction, and is guided toward the heat exchange path 32C. Then, the feedwater G1 changes the flow direction to the apparatus width direction and flows into the heat exchange path 32C (arrow M9 in the figure). The feedwater G1 that has flowed into the heat exchange path 32C flows through the heat exchange path 32C in the device width direction (arrow M10 in the figure). Further, heat exchange is performed between the water supply G1 flowing through the heat exchange path 32C and the electronic component E (see FIG. 2B) via the plate member 42 and the heat exchange fins 34 and 36.
また、熱交換が終了した排水G2は、熱交換路32Cから流れ方向を装置奥行方向に変えて流出路22へ流入する(図中矢印M11)。流出路22へ流入した排水G2は、流出路22を装置奥行方向の奥側へ流れ、流出路22の装置奥行方向の奥側から流出する(図中矢印M5)。 Further, the waste water G2 after the completion of the heat exchange flows from the heat exchange path 32C into the outflow path 22 with the flow direction changed to the apparatus depth direction (arrow M11 in the figure). The drainage G2 that has flowed into the outflow channel 22 flows through the outflow channel 22 in the depth direction of the device, and flows out of the outflow channel 22 in the depth direction of the device (arrow M5 in the figure).
これにより、熱交換路32Aを単位時間当たりに流れる給水G1の流量、及び熱交換路32Bを単位時間当たりに流れる給水G1の流量は、熱交換器500の熱交換路532を単位時間当たりに流れる給水G1の流量と比して少なくなる。さらに、熱交換路32Cを単位時間当たりに流れる給水G1の流量は、熱交換器500の熱交換路532を単位時間当たりに流れる給水G1の流量と比して少なくなる。 Thereby, the flow rate of the feedwater G1 flowing through the heat exchange path 32A per unit time and the flow rate of the feedwater G1 flowing through the heat exchange path 32B per unit time flow through the heat exchange path 532 of the heat exchanger 500 per unit time. It is smaller than the flow rate of the feedwater G1. Further, the flow rate of the feedwater G1 flowing through the heat exchange path 32C per unit time is smaller than the flow rate of the feedwater G1 flowing through the heat exchange path 532 of the heat exchanger 500 per unit time.
また、熱交換路32A、32B、32Cの夫々の長さLは、熱交換器500の熱交換路532の長さL10の1/3とされている。このため、熱交換器10では、熱交換器500と比して、熱交換路32を流れる給水G1の圧力損失が高くなるのが抑制されている。 The length L of each of the heat exchange paths 32A, 32B, and 32C is set to 1/3 of the length L10 of the heat exchange path 532 of the heat exchanger 500. For this reason, in the heat exchanger 10, the increase in the pressure loss of the feedwater G1 flowing through the heat exchange path 32 is suppressed as compared with the heat exchanger 500.
ここで、図3を用いて、一方向(図中左右方向)に延びた熱交換路632を流れる給水G1から熱交換フィン634へ熱が伝達される様子について説明する。 Here, the manner in which heat is transferred from the feed water G1 flowing through the heat exchange path 632 extending in one direction (the left-right direction in the figure) to the heat exchange fins 634 will be described with reference to FIG.
図3に示されるように、給水G1が熱交換路632に熱交換路632の一端(図中左端)から流入すると、熱交換フィン634側を流れる部分の給水G1の熱(温度の低い熱)が、熱交換フィン634に伝達される。つまり、熱交換フィン634側を流れる部分の給水G1の温度が高くなる。具体的には、温度が高くなった給水G1の部分が、給水G1の流れ方向の上流側から下流側に向かって増加する。 As shown in FIG. 3, when the feedwater G1 flows into the heat exchange path 632 from one end (the left end in the figure) of the heat exchange path 632, the heat of the part of the feedwater G1 flowing on the heat exchange fin 634 side (heat having a low temperature). Is transmitted to the heat exchange fins 634. That is, the temperature of the feedwater G1 in the portion flowing on the heat exchange fin 634 side increases. Specifically, the portion of the feedwater G1 having a higher temperature increases from the upstream side to the downstream side in the flow direction of the feedwater G1.
このため、温度が低いままの給水G1−1と、温度が高くなった給水G1−2とに境界層S1が生じる。この境界層S1と熱交換フィン634とは、給水G1の流れ方向の上流側から下流側に向かうに従って流路幅方向で離れ、何れ、境界層S1と熱交換フィン634との距離は一定となる(飽和する)。ここで、CFD(Computational Fluid Dynamics)解析を行いこの解析結果から得た知見に基づき、熱交換路632の流入口から、境界層S1と熱交換フィン634との距離が一定となる位置までの距離(図中L50)は、熱交換路632の流路幅(図中W50)の5倍程度である。 Therefore, a boundary layer S1 is generated between the feedwater G1-1 with the temperature kept low and the feedwater G1-2 with the temperature raised. The boundary layer S1 and the heat exchange fins 634 are separated from each other in the flow channel width direction from the upstream side to the downstream side in the flow direction of the feedwater G1, and eventually the distance between the boundary layer S1 and the heat exchange fins 634 becomes constant. (Saturates). Here, CFD (Computational Fluid Dynamics) analysis is performed, and based on the knowledge obtained from the analysis results, the distance from the inlet of the heat exchange path 632 to the position where the distance between the boundary layer S1 and the heat exchange fins 634 becomes constant. (L50 in the figure) is about five times the flow path width (W50 in the figure) of the heat exchange path 632.
ここで、熱交換路632において流入口から流路幅W50の5倍の長さ以下の領域を領域R1とし、熱交換路632において流入口から流路幅W50の5倍の長さより長い領域を領域R2とする。そうすると、領域R1では、領域R2と比して、温度が低いままの給水G1−1と熱交換フィン634との距離が近く、給水G1の温度の低い熱が効果的に熱交換フィン634に伝達される(放熱される)。 Here, in the heat exchange path 632, a region that is five times or less the length of the flow path width W50 from the inflow port is defined as a region R1, and an area that is longer than the length of five times the flow path width W50 from the inflow port in the heat exchange path 632 is defined. It is set as a region R2. Then, in region R1, as compared with region R2, the distance between supply water G1-1 and the heat exchange fins 634 with a lower temperature is shorter, and the lower heat of supply water G1 is effectively transmitted to heat exchange fins 634. (Heat is dissipated).
また、単位流量当たりの給水G1が熱交換フィン634と接触する接触面積を確保する観点から、熱交換路632の長さは、熱交換路632の流入口から流路幅W50の半分の長さ以上であることが好ましい。 In addition, from the viewpoint of ensuring a contact area where the feedwater G1 per unit flow rate contacts the heat exchange fins 634, the length of the heat exchange path 632 is half the length of the flow path width W50 from the inlet of the heat exchange path 632. It is preferable that it is above.
以上より、熱交換路632の長さは、給水G1の温度の低い熱を効果的に熱交換フィン634に伝達させる観点から、流路幅W50の半分の長さ以上で、かつ、流路幅W50の5倍の長さ以下であることが好ましい。 As described above, the length of the heat exchange path 632 is equal to or more than half the length of the flow path width W50 and from the viewpoint of effectively transmitting the low-temperature heat of the feedwater G1 to the heat exchange fins 634. It is preferable that the length is not more than five times W50.
ここで、本実施形態では、熱交換器10の熱交換路32の長さLは、前述した式(1)を満たしている。つまり、熱交換路32の長さLは、流路幅W1の半分の長さ以上で、かつ、流路幅W1の5倍の長さ以下である。 Here, in the present embodiment, the length L of the heat exchange path 32 of the heat exchanger 10 satisfies the above-described expression (1). That is, the length L of the heat exchange path 32 is equal to or more than half the length of the flow path width W1 and equal to or less than five times the length of the flow path width W1.
また、熱交換器10では、図1に示されるように、流入路12を流れる給水G1は、流れ方向を装置幅方向に変えて熱交換路32へ流入する(図1の矢印M2、M6、M9)。このため、熱交換器10では、給水G1が流れ方向を変えずに熱交換路へ流入する場合と比して、前述した境界層S1の形成が開始される位置が、給水G1の流れ方向の下流側へ移動する。これにより、熱交換器10では、給水G1から熱交換フィン34、36への伝熱量が増えている。 Further, in the heat exchanger 10, as shown in FIG. 1, the feedwater G1 flowing through the inflow path 12 changes its flow direction to the apparatus width direction and flows into the heat exchange path 32 (arrows M2, M6, M9). For this reason, in the heat exchanger 10, the position where the formation of the boundary layer S1 described above is started, as compared with the case where the feedwater G1 flows into the heat exchange path without changing the flow direction, in the flow direction of the feedwater G1. Move downstream. Thereby, in the heat exchanger 10, the amount of heat transfer from the feedwater G1 to the heat exchange fins 34, 36 is increased.
また、熱交換器10では、図1に示されるように、熱交換路32を流れる排水G2は、流れ方向を装置幅方向に変えて流出路22へ流入する(図1の矢印M4、M8、M11)。このため、熱交換器10では、排水G2が流れ方向を変えずに熱交換路から流出する場合と比して、熱交換路32において排水G2の流れ方向の下流側の部分の境界層S1が乱される。これにより、熱交換器10では、給水G1から熱交換フィン34、36への伝熱量が増えている。 Further, in the heat exchanger 10, as shown in FIG. 1, the wastewater G2 flowing through the heat exchange path 32 changes its flow direction to the apparatus width direction and flows into the outflow path 22 (arrows M4, M8, M11). For this reason, in the heat exchanger 10, the boundary layer S <b> 1 of the portion of the heat exchange path 32 on the downstream side in the flow direction of the wastewater G <b> 2 is compared with the case where the wastewater G <b> 2 flows out of the heat exchange path without changing the flow direction. Disturbed. Thereby, in the heat exchanger 10, the amount of heat transfer from the feedwater G1 to the heat exchange fins 34, 36 is increased.
また、熱交換器10では、熱交換路32Aを流れる給水G1の流路長と、熱交換路32Bを流れる給水G1の流路長と、熱交換路32Cを流れる給水G1の流路長とが同様となる。このため、流路長が異なる場合と比して、給水G1から満遍なく熱が熱交換フィン34、36へ伝達される。 In the heat exchanger 10, the flow path length of the feed water G1 flowing through the heat exchange path 32A, the flow path length of the feed water G1 flowing through the heat exchange path 32B, and the flow path length of the feed water G1 flowing through the heat exchange path 32C are different. It becomes the same. Therefore, the heat is uniformly transmitted from the water supply G1 to the heat exchange fins 34 and 36 as compared with the case where the flow path lengths are different.
また、熱交換器10では、流入路12及び流出路22は、装置奥行方向に延びている。これにより、装置奥行方向へ流れる給水G1が流入路12へ流入し、熱交換が終了した排水G2が流出路22から装置奥行方向へ流出する。つまり、熱交換器10は、装置奥行方向から流入した給水G1を、排水G2として装置奥行方向へ流出させる。 In the heat exchanger 10, the inflow path 12 and the outflow path 22 extend in the apparatus depth direction. Thereby, the feedwater G1 flowing in the apparatus depth direction flows into the inflow path 12, and the wastewater G2 after the heat exchange ends flows out of the outflow path 22 in the apparatus depth direction. That is, the heat exchanger 10 causes the supply water G1 that has flowed in from the device depth direction to flow out as drainage G2 in the device depth direction.
(まとめ)
以上説明したように、熱交換器10では、熱交換器500と比して、熱交換路32を流れる給水G1の圧力損失が高くなるのを抑制した上で、給水G1から熱交換フィン34、36への伝熱量を増やすことができる。
(Summary)
As described above, in the heat exchanger 10, after suppressing the pressure loss of the feedwater G1 flowing through the heat exchange path 32 from increasing compared to the heat exchanger 500, the heat exchange fins 34, The amount of heat transfer to the heat exchanger 36 can be increased.
また、熱交換器10では、前述したように、装置奥行方向から流入した給水G1を、排水G2として装置奥行方向へ流出させることができる。つまり、熱交換器10では、熱交換器10に流入する給水G1の流れ方向と、熱交換器10から流出する排水G2の流れ方向とを同様の方向にすることができる。 Further, in the heat exchanger 10, as described above, the water supply G1 that has flowed in from the device depth direction can flow out as drainage G2 in the device depth direction. That is, in the heat exchanger 10, the flow direction of the feedwater G1 flowing into the heat exchanger 10 and the flow direction of the drainage G2 flowing out of the heat exchanger 10 can be made the same.
また、底板16が、流入路12を装置奥行方向に流れる給水G1の流れを止め、給水G1を熱交換路32に案内する。これにより、流入路12を流れる全ての給水G1の流れ方向を変えて、給水G1を熱交換路32へ流入させることができる。 Further, the bottom plate 16 stops the flow of the feedwater G1 flowing in the inflow path 12 in the apparatus depth direction, and guides the feedwater G1 to the heat exchange path 32. Thereby, the flow direction of all the feedwater G1 flowing through the inflow path 12 can be changed, and the feedwater G1 can flow into the heat exchange path 32.
底板26が、装置奥行方向に流れる給水G1等の流体が流出路22の端部から流出路22に流入するのを抑制する。つまり、熱交換路32から流出路22に流入する排水G2を妨げる流体が流出路22に流入するのが抑制されている。このため、装置奥行方向に流れる流体が流出路の端部から流出路に流入する場合と比して、熱交換路32を通過する排水G2の流量を増やすことができる。 The bottom plate 26 suppresses the flow of the fluid such as the feed water G1 flowing in the depth direction of the device from flowing into the outflow channel 22 from the end of the outflow channel 22. That is, the flow of the fluid that blocks the drainage G2 flowing from the heat exchange path 32 into the outflow path 22 is suppressed from flowing into the outflow path 22. Therefore, the flow rate of the drainage G2 passing through the heat exchange path 32 can be increased as compared with the case where the fluid flowing in the apparatus depth direction flows into the outflow path from the end of the outflow path.
また、流入路12、流出路22、及び熱交換路32は、平行な2枚の平面40A、42Aの間に形成されている。このため、管材を用いて、流入路、流出路、及び熱交換路を形成する場合と比して、簡易な構成で流入路12、流出路22、及び熱交換路32を形成することができる。 The inflow channel 12, the outflow channel 22, and the heat exchange channel 32 are formed between two parallel flat surfaces 40A and 42A. For this reason, the inflow path 12, the outflow path 22, and the heat exchange path 32 can be formed with a simple configuration as compared with the case where the inflow path, the outflow path, and the heat exchange path are formed using the pipe material. .
<第2実施形態>
本発明の第2実施形態に係る熱交換器の一例について図5を用いて説明する。なお、第2実施形態については、第1実施形態と異なる部分を主に説明する。
<Second embodiment>
An example of the heat exchanger according to the second embodiment of the present invention will be described with reference to FIG. In addition, about 2nd Embodiment, the part different from 1st Embodiment is mainly demonstrated.
第2実施形態に係る熱交換器110は、図5に示されるように、装置奥行方向に延びている流入路12の中心線C1に対して対称とされている。具体的には、熱交換器110は、熱交換フィン34、36に対応した熱交換フィン134、136と、熱交換路32A、32B、32Cに対応した熱交換路132A、132B、132Cと、流出路22に対応した流出路122とを有している。さらに、熱交換器110は、側板24A、24Bに対応した側板124A、124Bと、底板26に対応した底板126と、側板14Bに対応した側板114Bとを有している。このように、流入路12を挟んで両側に、熱交換路32、132及び流出路22、122が夫々形成されている。 As shown in FIG. 5, the heat exchanger 110 according to the second embodiment is symmetric with respect to the center line C1 of the inflow path 12 extending in the apparatus depth direction. Specifically, the heat exchanger 110 includes heat exchange fins 134 and 136 corresponding to the heat exchange fins 34 and 36, heat exchange paths 132A, 132B and 132C corresponding to the heat exchange paths 32A, 32B and 32C, and outflow. An outflow path 122 corresponding to the path 22 is provided. Further, the heat exchanger 110 has side plates 124A and 124B corresponding to the side plates 24A and 24B, a bottom plate 126 corresponding to the bottom plate 26, and a side plate 114B corresponding to the side plate 14B. Thus, the heat exchange paths 32 and 132 and the outflow paths 22 and 122 are formed on both sides of the inflow path 12, respectively.
この構成において、給水G1は、熱交換器110の流入路12の装置奥行方向の手前側の端部から流入路12へ流入する(図中矢印M1)。 In this configuration, the feedwater G1 flows into the inflow path 12 from the end of the inflow path 12 of the heat exchanger 110 on the near side in the device depth direction (arrow M1 in the figure).
流入路12を流れる給水G1の一部は、流れ方向を装置幅方向に変えて熱交換路32A、132Aへ流入する(図中矢印M2−1、M2−2)。また、熱交換路32A、132Aへ流入した給水G1は、熱交換路32A、132Aを装置幅方向へ流れる(図中矢印M3−1、M3−2)。さらに、板材42及び熱交換フィン34、36、熱交換フィン134、136を介して、熱交換路32A、132Aを流れる給水G1と電子部品Eとの間で熱交換が行われる。 Part of the feedwater G1 flowing through the inflow path 12 flows into the heat exchange paths 32A and 132A with the flow direction changed to the apparatus width direction (arrows M2-1 and M2-2 in the figure). The feedwater G1 that has flowed into the heat exchange paths 32A and 132A flows in the apparatus width direction through the heat exchange paths 32A and 132A (arrows M3-1 and M3-2 in the figure). Further, heat exchange is performed between the water supply G1 flowing through the heat exchange paths 32A and 132A and the electronic component E via the plate member 42, the heat exchange fins 34 and 36, and the heat exchange fins 134 and 136.
また、熱交換が終了した排水G2は、熱交換路32A、132Aから流れ方向を装置奥行方向に変えて流出路22、122へ流入する(図中矢印M4−1、M4−2)。流出路22、122へ流入した排水G2は、流出路22、122を装置奥行方向の奥側へ流れ、流出路22、122の装置奥行方向の奥側の端部から流出する(図中矢印M5−1、M5−2)。 Further, the waste water G2 after the completion of the heat exchange flows from the heat exchange paths 32A and 132A into the outflow paths 22 and 122 with the flow direction changed to the apparatus depth direction (arrows M4-1 and M4-2 in the figure). The drainage G2 flowing into the outflow channels 22 and 122 flows through the outflow channels 22 and 122 to the depth side in the apparatus depth direction, and flows out of the end portions of the outflow channels 22 and 122 in the depth direction of the device (arrow M5 in the figure). -1, M5-2).
また、流入路12を流れる給水G1の他の一部は、熱交換路32B、132Bへ流入する(図中矢印M6−1、M6−2)。熱交換路32B、132Bへ流入した給水G1は、熱交換路32B、132Bを流れる(図中矢印M7−1、M7−2)。さらに、板材42及び熱交換フィン34、熱交換フィン134を介して、熱交換路32B、132Bを流れる給水G1と電子部品Eとの間で熱交換が行われる。 Another part of the feedwater G1 flowing through the inflow path 12 flows into the heat exchange paths 32B and 132B (arrows M6-1 and M6-2 in the figure). The feedwater G1 flowing into the heat exchange paths 32B and 132B flows through the heat exchange paths 32B and 132B (arrows M7-1 and M7-2 in the figure). Further, heat exchange is performed between the water supply G1 flowing through the heat exchange paths 32B and 132B and the electronic component E via the plate member 42, the heat exchange fins 34, and the heat exchange fins 134.
また、熱交換が終了した排水G2は、熱交換路32B、132Bから流出路22、122へ流入する(図中矢印M8−1、M8−2)。流出路22、122へ流入した排水G2は、流出路22、122の装置奥行方向の奥側の端部から流出する(図中矢印M5−1、M5−2)。 Further, the wastewater G2 after the completion of the heat exchange flows from the heat exchange paths 32B and 132B to the outflow paths 22 and 122 (arrows M8-1 and M8-2 in the figure). The drainage G2 that has flowed into the outflow channels 22 and 122 flows out from the end of the outflow channels 22 and 122 in the depth direction of the device (arrows M5-1 and M5-2 in the figure).
また、流入路12を流れる給水G1の残部は、底板16によって装置奥行方向への流れが止められて熱交換路32C、132C側に案内される。そして、給水G1は、流れ方向を装置幅方向に変えて熱交換路32C、132Cへ流入する(図中矢印M9-1、M9-2)。熱交換路32C、132Cへ流入した給水G1は、熱交換路32C、132Cを流れる(図中矢印M10−1、M10−2)。さらに、板材42及び熱交換フィン34、36、熱交換フィン134、136を介して、熱交換路32C、132Cを流れる給水G1と電子部品Eとの間で熱交換が行われる。 Further, the remaining portion of the feedwater G1 flowing through the inflow passage 12 is guided by the bottom plate 16 toward the heat exchange passages 32C and 132C after the flow in the device depth direction is stopped. Then, the feedwater G1 changes the flow direction to the apparatus width direction and flows into the heat exchange paths 32C and 132C (arrows M9-1 and M9-2 in the figure). The feedwater G1 that has flowed into the heat exchange paths 32C and 132C flows through the heat exchange paths 32C and 132C (arrows M10-1 and M10-2 in the figure). Further, heat exchange is performed between the water supply G1 flowing through the heat exchange paths 32C and 132C and the electronic component E via the plate member 42, the heat exchange fins 34 and 36, and the heat exchange fins 134 and 136.
また、熱交換が終了した排水G2は、熱交換路32C、132Cから流出路22、122へ流入する(図中矢印M11−1、M11−2)。流出路22、122へ流入した排水G2は、流出路22、122の装置奥行方向の奥側の端部から流出する(図中矢印M5−1、M5−2)。 Further, the wastewater G2 after the completion of the heat exchange flows from the heat exchange paths 32C and 132C into the outflow paths 22 and 122 (arrows M11-1 and M11-2 in the figure). The drainage G2 that has flowed into the outflow channels 22 and 122 flows out from the end of the outflow channels 22 and 122 in the depth direction of the device (arrows M5-1 and M5-2 in the figure).
以上説明したように、本第2実施形態の熱交換器110では、熱交換路32A、132A、熱交換路32B、132B、及び熱交換路32C、132Cが、装置幅方向におけて流入路12の両側に形成されている。このため、熱交換器10と比して、給水G1から熱交換フィン34、36、熱交換フィン134、136への伝熱量を増やすことができる。具体的には、給水G1が一方側にのみ流れ方向を変えて熱交換路32に流入する場合と比して、給水G1が一方側及び他方側に流れ方向を変えて熱交換路32、132に流入する。このため、給水G1と熱交換フィン34、36、熱交換フィン134、136とを効果的に接触させることができ、前述した伝熱量を増やすことができる。他の作用については、第1実施形態の作用と同様である。 As described above, in the heat exchanger 110 of the second embodiment, the heat exchange paths 32A and 132A, the heat exchange paths 32B and 132B, and the heat exchange paths 32C and 132C are arranged in the inflow path 12 in the apparatus width direction. Formed on both sides. For this reason, the amount of heat transfer from the feedwater G1 to the heat exchange fins 34, 36 and the heat exchange fins 134, 136 can be increased as compared with the heat exchanger 10. Specifically, compared with the case where the feedwater G1 changes the flow direction to only one side and flows into the heat exchange path 32, the feedwater G1 changes the flow direction to one side and the other side, and the heat exchange paths 32 and 132 Flows into. For this reason, the water supply G1 can be effectively brought into contact with the heat exchange fins 34, 36 and the heat exchange fins 134, 136, and the amount of heat transfer described above can be increased. Other operations are the same as those of the first embodiment.
<第3実施形態>
本発明の第3実施形態に係る熱交換器の一例について図6を用いて説明する。なお、第3実施形態については、第2実施形態と異なる部分を主に説明する。
<Third embodiment>
An example of the heat exchanger according to the third embodiment of the present invention will be described with reference to FIG. In addition, about 3rd Embodiment, a different part from 2nd Embodiment is mainly demonstrated.
第3実施形態に係る熱交換器210は、図6に示されるように、装置奥行方向に延びている流出路122の中心線C2に対して対称とされている。具体的には、熱交換器210は、流入路12に対応した流入路212と、熱交換フィン34、36に対応した熱交換フィン234、236と、熱交換フィン134、136に対応した熱交換フィン284、286とを有している。さらに、熱交換器210は、熱交換路32A、32B、32Cに対応した熱交換路232A、232B、232Cと、熱交換路132A、132B、132Cに対応した熱交換路282A、282B、282Cとを有している。また、熱交換器210は、流出路22に対応した流出路222と、側板24A、24Bに対応した側板224A、224Bと、底板26に対応した底板226とを有している。さらに、熱交換器210は、側板14B、114Bに対応した側板214B、264Bと、側板124Bに対応して側板274Bと、底板16に対応した底板216とを有している。底板216は、案内部材の一例である。 As shown in FIG. 6, the heat exchanger 210 according to the third embodiment is symmetric with respect to the center line C2 of the outflow passage 122 extending in the device depth direction. Specifically, the heat exchanger 210 includes an inflow path 212 corresponding to the inflow path 12, heat exchange fins 234 and 236 corresponding to the heat exchange fins 34 and 36, and heat exchange fins 134 and 136 corresponding to the heat exchange fins 134 and 136. Fins 284 and 286 are provided. Further, the heat exchanger 210 includes heat exchange paths 232A, 232B, 232C corresponding to the heat exchange paths 32A, 32B, 32C, and heat exchange paths 282A, 282B, 282C corresponding to the heat exchange paths 132A, 132B, 132C. Have. Further, the heat exchanger 210 has an outflow channel 222 corresponding to the outflow channel 22, side plates 224A and 224B corresponding to the side plates 24A and 24B, and a bottom plate 226 corresponding to the bottom plate 26. Further, the heat exchanger 210 has side plates 214B and 264B corresponding to the side plates 14B and 114B, a side plate 274B corresponding to the side plate 124B, and a bottom plate 216 corresponding to the bottom plate 16. The bottom plate 216 is an example of a guide member.
この構成において、流出路122には、熱交換路132A、282Aから流入した排水G2、熱交換路132B、282Aから流入した排水G2、及び熱交換路132C、282Cから流入した排水G2が流入する。そして、流出路122へ流入した排水G2は、流出路122の装置奥行方向の奥側の端部から流出する。 In this configuration, the drainage G2 flowing from the heat exchange paths 132A and 282A, the drainage G2 flowing from the heat exchange paths 132B and 282A, and the drainage G2 flowing from the heat exchange paths 132C and 282C flow into the outflow path 122. Then, the drainage G2 that has flowed into the outflow channel 122 flows out from the end of the outflow channel 122 on the far side in the device depth direction.
以上説明したように、熱交換器210では、流入路12、122は2個(複数)形成され、流出路22、122、222は3個(複数)形成されており、流入路12、122と流出路22、122、222とは交互に並んでいる。これにより、流入路及び流出路の少なくとも一方が1個の場合と比して、給水G1から熱交換フィン34、36、熱交換フィン134、136、熱交換フィン234、236、熱交換フィン284、286への伝熱量を増やすことができる。他の作用については、第2実施形態の作用と同様である。 As described above, in the heat exchanger 210, two (plural) inflow paths 12, 122 are formed, and three (plural) outflow paths 22, 122, 222 are formed. The outflow channels 22, 122, 222 are alternately arranged. Thereby, compared with the case where at least one of the inflow path and the outflow path is one, the heat exchange fins 34, 36, the heat exchange fins 134, 136, the heat exchange fins 234, 236, the heat exchange fins 284, 286 can be increased. Other operations are the same as those of the second embodiment.
<第4実施形態>
本発明の第4実施形態に係る熱交換器の一例について図7、図8を用いて説明する。なお、第4実施形態については、第3実施形態と異なる部分を主に説明する。
<Fourth embodiment>
An example of the heat exchanger according to the fourth embodiment of the present invention will be described with reference to FIGS. In addition, about 4th Embodiment, the part different from 3rd Embodiment is mainly demonstrated.
第4実施形態に係る熱交換器310では、流入路12において熱交換路32、132が臨んでいる部分の流路幅は、給水G1の流れ方向において上流側から下流側に向かって狭くなっている。また、熱交換器310では、流入路212において熱交換路232、282が臨んでいる部分の流路幅は、給水G1の流れ方向において上流側から下流側に向かって狭くなっている。 In the heat exchanger 310 according to the fourth embodiment, the flow passage width of the portion where the heat exchange passages 32 and 132 face in the inflow passage 12 becomes narrower from the upstream side to the downstream side in the flow direction of the feedwater G1. I have. Further, in the heat exchanger 310, the flow passage width of the portion where the heat exchange passages 232 and 282 face in the inflow passage 212 decreases from the upstream side to the downstream side in the flow direction of the feedwater G1.
さらに、熱交換器310では、流出路22において、熱交換路32が臨んでいる部分の流路幅は、排水G2の流れ方向の上流側から下流側に向かって広くなっている。また、熱交換器310では、流出路122において、熱交換路132、282が臨んでいる部分の流路幅は、排水G2の流れ方向の上流側から下流側に向かって広くなっている。さらに、熱交換器310では、流出路222において、熱交換路232が臨んでいる部分の流路幅は、排水G2の流れ方向の上流側から下流側に向かって広くなっている。 Further, in the heat exchanger 310, the flow passage width of the portion of the outflow passage 22 where the heat exchange passage 32 faces increases from the upstream side to the downstream side in the flow direction of the drainage G2. In the heat exchanger 310, the flow passage width of the portion where the heat exchange passages 132 and 282 face in the outflow passage 122 increases from the upstream side to the downstream side in the flow direction of the drainage G2. Further, in the heat exchanger 310, the flow passage width of the portion of the outflow passage 222 facing the heat exchange passage 232 increases from the upstream side to the downstream side in the flow direction of the drainage G2.
具体的には、熱交換フィン34、36の装置幅方向の位置、熱交換フィン134、136の装置幅方向の位置、熱交換フィン234、236の装置幅方向の位置、及び熱交換フィン284、286の装置幅方向の位置が、隣の熱交換フィンに対して装置幅方向にずれている。さらに、熱交換器310の流出路22、122、222の流出口の流路幅は、熱交換器210の流出路の流出口の流路幅と比して広くなっている。これにより、流入路12、212、及び流出路22、122、222の流路幅が変えられている。 Specifically, the positions of the heat exchange fins 34 and 36 in the apparatus width direction, the positions of the heat exchange fins 134 and 136 in the apparatus width direction, the positions of the heat exchange fins 234 and 236 in the apparatus width direction, and the heat exchange fins 284 The position 286 in the device width direction is shifted in the device width direction with respect to the adjacent heat exchange fin. Furthermore, the flow path width of the outlet of the outflow path 22, 122, 222 of the heat exchanger 310 is wider than the flow path width of the outflow path of the outflow path of the heat exchanger 210. Thereby, the widths of the inflow paths 12, 212 and the outflow paths 22, 122, 222 are changed.
以上の構成において、熱交換器310では、流入路の流路幅が一定の場合と比して、流入路12から、熱交換路32Aへ流入する給水G1の流量と、熱交換路32Bへ流入する給水G1の流量と、熱交換路32Cへ流入する給水G1の流量との互いの差を少なくすることができる。 In the above configuration, in the heat exchanger 310, the flow rate of the feedwater G1 flowing into the heat exchange path 32A from the inflow path 12 and the flow rate of the feed water G1 flowing into the heat exchange path 32B are different from the case where the flow path width of the inflow path is constant. The difference between the flow rate of the supplied water G1 to be supplied and the flow rate of the supplied water G1 flowing into the heat exchange path 32C can be reduced.
また、熱交換器310では、流入路の流路幅が一定の場合と比して、流入路12から、熱交換路132Aへ流入する給水G1の流量と、熱交換路132Bへ流入する給水G1の流量と、熱交換路132Cへ流入する給水G1の流量との互いの差を少なくすることができる。 In the heat exchanger 310, the flow rate of the feed water G1 flowing from the inflow path 12 to the heat exchange path 132A and the flow rate of the feed water G1 flowing into the heat exchange path 132B are lower than when the flow path width of the inflow path is constant. And the flow rate of the feedwater G1 flowing into the heat exchange path 132C can be reduced.
なお、流入路212から各熱交換路へ流入する給水G1の流量についても同様である。 The same applies to the flow rate of the feedwater G1 flowing from the inflow path 212 to each heat exchange path.
また、熱交換器310では、流出路の流路幅が一定の場合と比して、熱交換路32Aから流出路22へ流入する排水G2の流量と、熱交換路32Bから流出路22へ流入する排水G2の流量と、熱交換路32Cから流出路22へ流入する排水G2の流量との互いの差を少なくすることができる。 In the heat exchanger 310, the flow rate of the drainage G2 flowing from the heat exchange path 32A to the outflow path 22 and the flow rate of the wastewater G2 flowing from the heat exchange path 32B to the outflow path 22 are different from the case where the flow path width of the outflow path is constant. The difference between the flow rate of the discharged wastewater G2 and the flow rate of the discharged water G2 flowing from the heat exchange path 32C to the outflow path 22 can be reduced.
なお、各熱交換路から流出路122へ流入する排水G2の流量、及び各熱交換路から流出路222へ流入する排水G2の流量についても同様である。 The same applies to the flow rate of the wastewater G2 flowing from each heat exchange path to the outflow path 122 and the flow rate of the wastewater G2 flowing from each heat exchange path to the outflow path 222.
また、他の作用については、第3実施形態の作用と同様である。 Other functions are the same as those of the third embodiment.
なお、本発明を特定の実施形態について詳細に説明したが、本発明は係る実施形態に限定されるものではなく、本発明の範囲内にて他の種々の実施形態をとることが可能であることは当業者にとって明らかである。例えば、上記実施形態では、給水G1は、流入路12、212を装置奥行方向の手前側から奥側に流れ、排水G2は、流出路22、122、222を装置奥行方向の手前側から奥側に流れた。このように、給水G1と排水G2とが同じ方向に流れたが、排水G2が給水G1に対して逆方向に流れてもよい。つまり、排水G2が装置奥行方向の奥側から手前側に流れてもよい。 Although the present invention has been described in detail with respect to a specific embodiment, the present invention is not limited to such an embodiment, and various other embodiments can be taken within the scope of the present invention. This will be clear to those skilled in the art. For example, in the above embodiment, the water supply G1 flows through the inflow paths 12, 212 from the near side to the back side in the apparatus depth direction, and the drainage G2 flows through the outflow paths 22, 122, 222 from the near side to the back side in the apparatus depth direction. Flowed to. As described above, the feedwater G1 and the drainage G2 flow in the same direction, but the drainage G2 may flow in the opposite direction to the feedwater G1. That is, the drainage G2 may flow from the back side in the apparatus depth direction to the front side.
また、上記第3、第4実施形態では、流入路12、122は2個形成され、流出路22、122、222は3個形成されたが、流入路が3個以上形成されてもよく、流出路が4個以上形成されてもよい。 In the third and fourth embodiments, two inflow paths 12, 122 are formed and three outflow paths 22, 122, 222 are formed. However, three or more inflow paths may be formed. Four or more outflow channels may be formed.
また、上記実施形態では、装置上下方向から見て、熱交換路は、流入路及び流出路が延びている装置奥行方向に対して直交する直交方向に延びて、流入路と流出路とを繋いていた。しかし、熱交換路が、流入路及び流出路が延びている方向に対して交差する交差方向に延びて、流入路と流出路とを繋いでいればよい。 Further, in the above embodiment, when viewed from the vertical direction of the apparatus, the heat exchange path extends in a direction orthogonal to the apparatus depth direction in which the inflow path and the outflow path extend, and connects the inflow path and the outflow path. I was However, it is only necessary that the heat exchange path extends in a direction intersecting the direction in which the inflow path and the outflow path extend, and connects the inflow path and the outflow path.
また、上記実施形態では、流入路と流出路とが同じ方向に延びていたが、流入路が延びている方向と熱交換路が延びている方向とが交差しており、かつ、流出路が延びている方向と熱交換路が延びている方向とが交差していればよい。 In the above embodiment, the inflow path and the outflow path extend in the same direction. However, the direction in which the inflow path extends and the direction in which the heat exchange path extends intersect, and the outflow path extends. It is sufficient that the extending direction and the direction in which the heat exchange path extends intersect.
また、上記実施形態では、熱媒体の流体として、水を用いたが、他の流体であってもよい。例えば、油、水蒸気、二酸化炭素等であってもよい。 Further, in the above embodiment, water is used as the fluid of the heat medium, but another fluid may be used. For example, oil, steam, carbon dioxide and the like may be used.
また、上記実施形態では、電子部品(熱交換対象物)を冷却したが、熱交換対象物を加熱してもよく、保温してもよい。 Further, in the above embodiment, the electronic component (the heat exchange target) is cooled, but the heat exchange target may be heated or kept warm.
また、上記実施形態では、特に説明しなかったが、図9に示されるように、熱交換フィンをV字状に配置してもよい。 Although not specifically described in the above embodiment, the heat exchange fins may be arranged in a V shape as shown in FIG.
10 熱交換器
12 流入路
16 底板(案内部材の一例)
22 流出路
26 底板(抑制部材の一例)
32 熱交換路
32A 熱交換路
32B 熱交換路
32C 熱交換路
34 熱交換フィン(熱交換部材の一例)
36 熱交換フィン(熱交換部材の一例)
40A 平面
42A 平面
110 熱交換器
122 流出路
126 底板(抑制部材の一例)
132 熱交換路
132A 熱交換路
132B 熱交換路
132C 熱交換路
134 熱交換フィン(熱交換部材の一例)
136 熱交換フィン(熱交換部材の一例)
210 熱交換器
212 流入路
216 底板(案内部材の一例)
222 流出路
226 底板(抑制部材の一例)
232 熱交換路
232A 熱交換路
232B 熱交換路
232C 熱交換路
234 熱交換フィン(熱交換部材の一例)
236 熱交換フィン(熱交換部材の一例)
282 熱交換路
282A 熱交換路
282B 熱交換路
282C 熱交換路
284 熱交換フィン(熱交換部材の一例)
286 熱交換フィン(熱交換部材の一例)
310 熱交換器
Reference Signs List 10 heat exchanger 12 inflow path 16 bottom plate (one example of guide member)
22 Outflow channel 26 Bottom plate (an example of a suppression member)
32 heat exchange path 32A heat exchange path 32B heat exchange path 32C heat exchange path 34 heat exchange fins (an example of a heat exchange member)
36 Heat exchange fins (an example of heat exchange members)
40A Plane 42A Plane 110 Heat exchanger 122 Outflow channel 126 Bottom plate (an example of a suppressing member)
132 heat exchange path 132A heat exchange path 132B heat exchange path 132C heat exchange path 134 heat exchange fins (an example of a heat exchange member)
136 heat exchange fins (example of heat exchange member)
210 Heat exchanger 212 Inflow path 216 Bottom plate (one example of guide member)
222 Outflow channel 226 Bottom plate (an example of a suppression member)
232 heat exchange path 232A heat exchange path 232B heat exchange path 232C heat exchange path 234 heat exchange fins (an example of a heat exchange member)
236 Heat exchange fins (an example of heat exchange members)
282 heat exchange path 282A heat exchange path 282B heat exchange path 282C heat exchange path 284 heat exchange fins (an example of a heat exchange member)
286 heat exchange fins (example of heat exchange member)
310 heat exchanger
Claims (7)
前記流入路を前記一方向に流れる流体の流れを止め、流体を前記熱交換路に案内する案内部材を有する熱交換器。
W1/2≦L≦5W1・・・・・(1) An inflow channel that extends in one direction and flows in the one direction from the end and flows in the one direction, and the one direction that is separated from the inflow channel in an intersecting direction that intersects the one direction. A plurality of fluids extending in the one direction are arranged in the one direction between an outflow channel and a fluid flowing out from an end thereof, and connect the inflow channel and the outflow channel in the cross direction. A heat exchange path formed of a heat exchange member for exchanging heat between the heat exchange target member and the fluid, wherein the length in the cross direction is L, and the flow path width is W1, A heat exchanger having the heat exchange path satisfying (1),
A heat exchanger having a guide member for stopping the flow of the fluid flowing in the one direction in the inflow path and guiding the fluid to the heat exchange path.
W1 / 2 ≦ L ≦ 5W1 (1)
前記流出路は複数形成され、
前記流入路と前記流出路とは交互に並んでいる請求項1〜3の何れか1項に記載の熱交換器。 A plurality of inflow paths are formed,
A plurality of the outflow channels are formed,
The heat exchanger according to any one of claims 1 to 3, wherein the inflow path and the outflow path are alternately arranged.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018115792A JP6911816B2 (en) | 2018-06-19 | 2018-06-19 | Heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018115792A JP6911816B2 (en) | 2018-06-19 | 2018-06-19 | Heat exchanger |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019219090A true JP2019219090A (en) | 2019-12-26 |
JP6911816B2 JP6911816B2 (en) | 2021-07-28 |
Family
ID=69096093
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018115792A Active JP6911816B2 (en) | 2018-06-19 | 2018-06-19 | Heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6911816B2 (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54130881A (en) * | 1978-03-21 | 1979-10-11 | Siemens Ag | Cooler for electric device |
JPH04226058A (en) * | 1990-04-27 | 1992-08-14 | Internatl Business Mach Corp <Ibm> | Fluid-cooling hat |
JPH08172285A (en) * | 1994-12-16 | 1996-07-02 | Asia Electron Inc | Cooling plate and cooling device |
JP2001352025A (en) * | 2000-06-05 | 2001-12-21 | Toshiba Corp | Cooling device for heating element |
JP2006295178A (en) * | 2005-04-11 | 2006-10-26 | Samsung Electronics Co Ltd | Heat sink device for electronic elements |
JP2008205421A (en) * | 2006-07-26 | 2008-09-04 | Furukawa Sky Kk | Heat exchanger |
WO2009069578A1 (en) * | 2007-11-26 | 2009-06-04 | Kabushiki Kaisha Toyota Jidoshokki | Liquid-cooled cooling device |
JP2011134978A (en) * | 2009-12-25 | 2011-07-07 | Fuji Electric Co Ltd | Fluid cooling type heat sink |
JP2014029232A (en) * | 2012-07-31 | 2014-02-13 | Nippon Soken Inc | Cooling device |
JP2014192302A (en) * | 2013-03-27 | 2014-10-06 | Panasonic Corp | Cooling device, and electric vehicle and electronic apparatus with the same mounted therein |
-
2018
- 2018-06-19 JP JP2018115792A patent/JP6911816B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54130881A (en) * | 1978-03-21 | 1979-10-11 | Siemens Ag | Cooler for electric device |
JPH04226058A (en) * | 1990-04-27 | 1992-08-14 | Internatl Business Mach Corp <Ibm> | Fluid-cooling hat |
JPH08172285A (en) * | 1994-12-16 | 1996-07-02 | Asia Electron Inc | Cooling plate and cooling device |
JP2001352025A (en) * | 2000-06-05 | 2001-12-21 | Toshiba Corp | Cooling device for heating element |
JP2006295178A (en) * | 2005-04-11 | 2006-10-26 | Samsung Electronics Co Ltd | Heat sink device for electronic elements |
JP2008205421A (en) * | 2006-07-26 | 2008-09-04 | Furukawa Sky Kk | Heat exchanger |
WO2009069578A1 (en) * | 2007-11-26 | 2009-06-04 | Kabushiki Kaisha Toyota Jidoshokki | Liquid-cooled cooling device |
JP2011134978A (en) * | 2009-12-25 | 2011-07-07 | Fuji Electric Co Ltd | Fluid cooling type heat sink |
JP2014029232A (en) * | 2012-07-31 | 2014-02-13 | Nippon Soken Inc | Cooling device |
JP2014192302A (en) * | 2013-03-27 | 2014-10-06 | Panasonic Corp | Cooling device, and electric vehicle and electronic apparatus with the same mounted therein |
Also Published As
Publication number | Publication date |
---|---|
JP6911816B2 (en) | 2021-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109479385B (en) | Core of laminated radiator | |
WO2019043801A1 (en) | Heat sink | |
JP2016205802A (en) | Heat exchanger | |
CN109443056B (en) | Double-sided staggered printed circuit board type heat exchange plate and heat exchanger | |
US10876801B2 (en) | Heat-exchanging plate, and plate heat exchanger using same | |
JP5944104B2 (en) | Heat exchanger | |
JP2017133718A (en) | Stacked heat exchanger | |
JP4544187B2 (en) | Cooler | |
JP2022128039A (en) | Heat exchanger | |
CN110537070B (en) | Plate heat exchanger | |
JP2019219090A (en) | Heat exchanger | |
JP6614068B2 (en) | Heat exchanger | |
JP2017142033A (en) | Laminated type heat exchanger | |
JP6162836B2 (en) | Heat exchanger | |
CN110199169B (en) | Water heat exchanger | |
JP2019021872A (en) | Multilayer heat exchanger | |
JP2017203613A (en) | Stack type heat exchanger | |
JP2017045857A (en) | Cooler | |
JP2018132298A (en) | Water heat exchanger | |
KR20200065779A (en) | Heat exchanger plate and plate heat exchanger including the same | |
US20190360758A1 (en) | Water heat exchanger | |
JP5818396B2 (en) | Plate heat exchanger | |
JP5933605B2 (en) | Plate heat exchanger | |
JP6096642B2 (en) | Fin for heat exchanger, heat sink using the same, and method for manufacturing fin for heat exchanger | |
JP2011242089A (en) | Laminated heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190306 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200324 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200520 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20201020 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210119 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20210119 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20210128 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210129 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20210405 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20210406 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210608 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210621 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6911816 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |