[go: up one dir, main page]

JP2019213245A - Rotor for rotary electric machine and manufacturing method for the same and rotary electric machine - Google Patents

Rotor for rotary electric machine and manufacturing method for the same and rotary electric machine Download PDF

Info

Publication number
JP2019213245A
JP2019213245A JP2018104238A JP2018104238A JP2019213245A JP 2019213245 A JP2019213245 A JP 2019213245A JP 2018104238 A JP2018104238 A JP 2018104238A JP 2018104238 A JP2018104238 A JP 2018104238A JP 2019213245 A JP2019213245 A JP 2019213245A
Authority
JP
Japan
Prior art keywords
rotor
refrigerant flow
steel plates
magnet insertion
circumferential direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018104238A
Other languages
Japanese (ja)
Other versions
JP7015213B2 (en
Inventor
徹 竹島
Toru Takeshima
竹島  徹
忠伸 高橋
Tadanobu Takahashi
忠伸 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2018104238A priority Critical patent/JP7015213B2/en
Priority to CN201910448469.4A priority patent/CN110556948B/en
Publication of JP2019213245A publication Critical patent/JP2019213245A/en
Application granted granted Critical
Publication of JP7015213B2 publication Critical patent/JP7015213B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

【課題】ロータの冷却効果を高める。【解決手段】実施形態の回転電機のロータは、積層された複数の鋼板41〜48によって構成され、周方向に間隔をあけて形成された複数の冷媒通流孔31,32を有するロータコア21を備え、ロータコア21には、軸方向で隣り合う鋼板41〜48の冷媒通流孔31,32が、相互に周方向に位置をずらしつつ、軸方向で隣り合う鋼板41〜48の冷媒通流孔31,32のみと相互に連通することにより、軸方向に連続した螺旋形状の冷媒通路29が形成されている。【選択図】図2A rotor cooling effect is improved. A rotor of a rotating electric machine according to an embodiment includes a rotor core 21 that is formed of a plurality of laminated steel plates 41 to 48 and that has a plurality of refrigerant flow holes 31 and 32 that are formed at intervals in the circumferential direction. In the rotor core 21, the refrigerant passage holes 31, 32 of the steel plates 41 to 48 that are axially adjacent to each other are displaced from each other in the circumferential direction while the refrigerant passage holes of the steel plates 41 to 48 that are axially adjacent to each other are provided. By communicating only with 31 and 32, a spiral refrigerant passage 29 continuous in the axial direction is formed. [Selection diagram] Figure 2

Description

本発明は、回転電機のロータ、その製造方法および回転電機に関する。   The present invention relates to a rotor of a rotating electrical machine, a manufacturing method thereof, and the rotating electrical machine.

ハイブリッド自動車や電気自動車等に搭載される回転電機では、コイルに電流が供給されることでステータコアに磁界が形成され、ロータの磁石とステータコアとの間に磁気的な吸引力や反発力が生じる。これにより、ロータがステータに対して回転する。   In a rotating electrical machine mounted on a hybrid vehicle, an electric vehicle, or the like, a magnetic field is formed in the stator core by supplying current to the coil, and a magnetic attractive force or repulsive force is generated between the rotor magnet and the stator core. Thereby, a rotor rotates with respect to a stator.

回転電機に使用されるロータとしては、複数の電磁鋼板を積層してなるロータコアを備えたものが知られている。例えば、特許文献1には、それぞれの鋼板が、第一の円周方向間隔毎に形成される磁石挿入孔片と、第一の円周方向間隔とは異なる大きさの第二の円周方向間隔毎に形成される貫通孔片と、を備え、複数の鋼板を所定の枚数おきに第一の円周方向間隔で回転し積層した構造が開示されている。特許文献1では、生産効率を維持しながら、ロータの偏心、及び応力の集中を防止することを目的としている。   As a rotor used for a rotating electrical machine, a rotor having a rotor core formed by laminating a plurality of electromagnetic steel plates is known. For example, Patent Document 1 discloses that each steel plate has a magnet insertion hole piece formed at each first circumferential interval and a second circumferential direction having a size different from the first circumferential interval. There is disclosed a structure in which a plurality of through-hole pieces formed at intervals are provided, and a plurality of steel plates are rotated and laminated at predetermined intervals in a first circumferential direction. Patent Document 1 aims to prevent rotor eccentricity and stress concentration while maintaining production efficiency.

特開2015−61466号公報Japanese Patent Laying-Open No. 2015-61466

しかしながら、複数の貫通孔片同士の間に形成されたリブ部分に隙間が生じる場合、ロータ内で冷媒の流れを発生させるまでには至らず、ロータを十分に冷却することが困難となる可能性がある。
そのため、ロータの冷却効果を高める上で改善の余地があった。
However, in the case where a gap is generated in the rib portion formed between the plurality of through-hole pieces, the flow of the refrigerant does not occur in the rotor, and it may be difficult to sufficiently cool the rotor. There is.
Therefore, there is room for improvement in enhancing the cooling effect of the rotor.

そこで本発明は、ロータの冷却効果を高めることができる回転電機のロータ、その製造方法および回転電機を提供することを目的とする。   Then, an object of this invention is to provide the rotor of the rotary electric machine which can improve the cooling effect of a rotor, its manufacturing method, and a rotary electric machine.

(1)本発明の一態様に係る回転電機(例えば、実施形態における回転電機1)のロータ(例えば、実施形態におけるロータ4)は、積層された複数の鋼板(例えば、実施形態における鋼板41〜48)によって構成され、周方向に間隔をあけて形成された複数の冷媒通流孔(例えば、実施形態における冷媒通流孔31,32)を有するロータコア(例えば、実施形態におけるロータコア21)を備え、前記ロータコアには、軸方向で隣り合う前記鋼板の前記冷媒通流孔が、相互に周方向に位置をずらしつつ、軸方向で隣り合う前記鋼板の前記冷媒通流孔のみと相互に連通することにより、軸方向に連続した螺旋形状の冷媒通路(例えば、実施形態における冷媒通路29)が形成されている。
(2)本発明の一態様において、前記複数の鋼板のそれぞれは、周方向に間隔をあけて形成された複数の磁石挿入孔(例えば、実施形態における磁石挿入孔25)を有する環状の磁石挿入部(例えば、実施形態における磁石挿入部26)と、前記磁石挿入部の内周側に配置され、前記複数の冷媒通流孔を有する環状の冷媒通流部(例えば、実施形態における冷媒通流部30)と、を備え、前記複数の鋼板のそれぞれにおいて、前記磁石挿入部に対する前記冷媒通流部の周方向へのずらし角度(例えば、実施形態におけるずらし角度A)は互いに異なり、前記複数の鋼板は、前記磁石挿入部の位置を固定して積層されていてもよい。
(3)本発明の一態様において、前記複数の冷媒通流孔は、軸方向から見て外周側に凸の三角形状をなす複数の第一通流孔(例えば、実施形態における第一通流孔31)と、軸方向から見て内周側に凸の三角形状をなす複数の第二通流孔(例えば、実施形態における第二通流孔32)と、を含み、前記第一通流孔と前記第二通流孔とは、周方向に互いに間隔をあけて交互に配置されていてもよい。
(4)本発明の一態様において、前記冷媒通路は、前記ロータコアの軸方向の一方側端(例えば、実施形態における一方側端21a)から他方側端(例えば、実施形態における他方側端21b)にわたって連続した螺旋形状をなして形成されていてもよい。
(5)本発明の一態様に係る回転電機のロータの製造方法は、上記の回転電機のロータの製造方法であって、複数の鋼板本体(例えば、実施形態における鋼板本体50)のそれぞれに、周方向に間隔をあけて配置された複数の磁石挿入孔を有する環状の磁石挿入部を形成し、複数の第一鋼板(例えば、実施形態における第一鋼板51)を作製する第一鋼板作製工程と、前記複数の第一鋼板のそれぞれに、前記複数の冷媒通流孔を有する環状の冷媒通流部を形成し、複数の第二鋼板(例えば、実施形態における第二鋼板52)を作製する第二鋼板作製工程と、を含み、前記第二鋼板作製工程では、前記複数の第二鋼板のそれぞれにおいて、前記磁石挿入部に対する前記冷媒通流部の周方向へのずらし角度を互いに異ならせ、前記第二鋼板作製工程の後、前記複数の第二鋼板を、前記磁石挿入部の位置を固定して積層する。
(6)本発明の一態様に係る回転電機は、筒状のステータ(例えば、実施形態におけるステータ3)と、前記ステータに対して径方向の内側に配置された上記のロータと、を備える。
(1) A rotor (for example, the rotor 4 in the embodiment) of the rotating electrical machine (for example, the rotating electrical machine 1 in the embodiment) according to one aspect of the present invention includes a plurality of stacked steel plates (for example, the steel plates 41 to 41 in the embodiment). 48) and a rotor core (for example, the rotor core 21 in the embodiment) having a plurality of refrigerant flow holes (for example, the refrigerant flow holes 31, 32 in the embodiment) formed at intervals in the circumferential direction. In the rotor core, the refrigerant flow holes of the steel plates adjacent in the axial direction communicate with each other only with the refrigerant flow holes of the steel plates adjacent in the axial direction while shifting their positions in the circumferential direction. Thus, a spiral-shaped refrigerant passage that is continuous in the axial direction (for example, the refrigerant passage 29 in the embodiment) is formed.
(2) In one aspect of the present invention, each of the plurality of steel plates has an annular magnet insertion having a plurality of magnet insertion holes (for example, magnet insertion holes 25 in the embodiment) formed at intervals in the circumferential direction. Portion (for example, magnet insertion portion 26 in the embodiment) and an annular refrigerant flow portion (for example, refrigerant flow in the embodiment) that is disposed on the inner peripheral side of the magnet insertion portion and has the plurality of refrigerant flow holes. 30), and in each of the plurality of steel plates, the circumferential shift angle of the refrigerant flow portion with respect to the magnet insertion portion (for example, the shift angle A in the embodiment) is different from each other. The steel plate may be laminated with the position of the magnet insertion portion fixed.
(3) In one aspect of the present invention, the plurality of refrigerant flow holes are a plurality of first flow holes (for example, the first flow holes in the embodiment) having a triangular shape that is convex toward the outer peripheral side when viewed from the axial direction. Hole 31) and a plurality of second flow holes (for example, second flow holes 32 in the embodiment) having a triangular shape convex toward the inner periphery when viewed from the axial direction, and the first flow The holes and the second flow holes may be alternately arranged at intervals in the circumferential direction.
(4) In one aspect of the present invention, the refrigerant passage extends from one axial end of the rotor core (for example, one side end 21a in the embodiment) to the other side end (for example, the other side end 21b in the embodiment). It may be formed in a continuous spiral shape.
(5) A method of manufacturing a rotor of a rotating electrical machine according to an aspect of the present invention is the method of manufacturing a rotor of the rotating electrical machine described above, and each of a plurality of steel plate bodies (for example, a steel plate body 50 in the embodiment) A first steel plate manufacturing step of forming a plurality of first steel plates (for example, the first steel plate 51 in the embodiment) by forming an annular magnet insertion portion having a plurality of magnet insertion holes arranged at intervals in the circumferential direction. And forming an annular refrigerant flow portion having the plurality of refrigerant flow holes in each of the plurality of first steel plates to produce a plurality of second steel plates (for example, the second steel plate 52 in the embodiment). A second steel plate production step, and in the second steel plate production step, in each of the plurality of second steel plates, the shift angle in the circumferential direction of the refrigerant flow portion with respect to the magnet insertion portion is different from each other, The second steel plate maker After, the plurality of second steel plates are laminated to fix the position of the magnet insertion portions.
(6) A rotating electrical machine according to an aspect of the present invention includes a cylindrical stator (for example, the stator 3 in the embodiment), and the rotor arranged on the inner side in the radial direction with respect to the stator.

上記(1)の態様によれば、ロータコアには、軸方向で隣り合う鋼板の冷媒通流孔が、相互に周方向に位置をずらしつつ、軸方向で隣り合う鋼板の冷媒通流孔のみと相互に連通することにより、軸方向に連続した螺旋形状の冷媒通路が形成されていることで、ロータに供給される冷媒を、螺旋形状の冷媒通路に沿って軸方向に流すことができる。そのため、複数の貫通孔片同士の間に形成されたリブ部分に隙間が生じる場合と比較して、ロータ内で冷媒の流れを促進することができる。加えて、ロータの回転によって、ロータ内で冷媒の流れを発生させ、冷媒の流れを途切れさせることなく、流速を保ったままロータ外へ冷媒を排出することができる。これにより、ステータとロータとの間のエアギャップへの冷媒の浸入を抑制することができる。加えて、温度上昇した冷媒が、遠心力の影響でロータ内に残留しにくくなるため、冷媒と被冷却体との温度差を確保でき、効果的な熱交換を促すことができる。したがって、ロータの冷却効果を高めることができる。
上記(2)の態様によれば、複数の鋼板のそれぞれにおいて、磁石挿入部に対する冷媒通流部の周方向へのずらし角度は互いに異なり、複数の鋼板は、磁石挿入部の位置を固定して積層されていることで、複数の鋼板が所定の枚数おきに第一の円周方向間隔で回転されて積層される構造と比較して、磁石挿入孔および冷媒通流孔のレイアウトに制限が生じることを回避することができる。加えて、磁石挿入部に対する冷媒通流部の周方向へのずらし角度を鋼板毎に細かく設定できるため、磁石挿入孔および冷媒通流孔の位置・形状、ならびに冷媒通路の形状(螺旋角度)の自由度を確保することができる。
上記(3)の態様によれば、第一通流孔と第二通流孔とは、周方向に互いに間隔をあけて交互に配置されていることで、通流孔の種類を最小限に抑えてロータの周方向に均等に冷媒通路を形成することができる。したがって、簡素な構造でロータの冷却効果を高めることができる。
上記(4)の態様によれば、冷媒通路は、ロータコアの軸方向の一方側端から他方側端にわたって連続した螺旋形状をなして形成されていることで、ロータコアの軸方向全体にわたって、ロータ内で冷媒の流れを促進することができる。したがって、ロータの冷却効果をより一層高めることができる。
上記(5)の態様によれば、第二鋼板作製工程では、複数の第二鋼板のそれぞれにおいて、磁石挿入部に対する冷媒通流部の周方向へのずらし角度を互いに異ならせ、第二鋼板作製工程の後、複数の第二鋼板を、磁石挿入部の位置を固定して積層することで、複数の鋼板を所定の枚数おきに第一の円周方向間隔で回転させて積層する方法と比較して、磁石挿入孔および冷媒通流孔のレイアウトに制限が生じることを回避することができる。加えて、磁石挿入部に対する冷媒通流部の周方向へのずらし角度を鋼板毎に細かく設定できるため、磁石挿入孔および冷媒通流孔の位置・形状、ならびに冷媒通路の形状(螺旋角度)の自由度を確保することができる。
上記(6)の態様によれば、筒状のステータと、ステータに対して径方向の内側に配置された上記のロータと、を備えることで、ロータの冷却効果を高めることができる回転電機を提供することができる。
According to the aspect of (1), the rotor core has only the refrigerant flow holes of the steel plates adjacent in the axial direction, while the refrigerant flow holes of the steel plates adjacent in the axial direction are shifted from each other in the circumferential direction. By communicating with each other, a spiral refrigerant passage that is continuous in the axial direction is formed, so that the refrigerant supplied to the rotor can flow in the axial direction along the spiral refrigerant passage. Therefore, the flow of the refrigerant can be promoted in the rotor as compared with the case where a gap is generated in the rib portion formed between the plurality of through-hole pieces. In addition, the rotation of the rotor generates a refrigerant flow in the rotor, and the refrigerant can be discharged out of the rotor while maintaining the flow velocity without interrupting the refrigerant flow. Thereby, the penetration | invasion of the refrigerant | coolant to the air gap between a stator and a rotor can be suppressed. In addition, since the refrigerant whose temperature has risen is less likely to remain in the rotor due to the centrifugal force, a temperature difference between the refrigerant and the object to be cooled can be secured, and effective heat exchange can be promoted. Therefore, the cooling effect of the rotor can be enhanced.
According to the aspect of (2) above, in each of the plurality of steel plates, the displacement angle in the circumferential direction of the refrigerant flow portion with respect to the magnet insertion portion is different from each other, and the plurality of steel plates have a fixed position of the magnet insertion portion. By being laminated, the layout of the magnet insertion holes and the refrigerant flow holes is limited as compared with a structure in which a plurality of steel plates are rotated and laminated at a first circumferential interval every predetermined number of sheets. You can avoid that. In addition, the displacement angle in the circumferential direction of the refrigerant flow portion relative to the magnet insertion portion can be set finely for each steel plate, so the position and shape of the magnet insertion hole and the refrigerant flow hole, and the shape of the refrigerant passage (spiral angle) A degree of freedom can be secured.
According to the above aspect (3), the first through holes and the second through holes are alternately arranged at intervals in the circumferential direction, thereby minimizing the type of the through holes. Thus, the refrigerant passage can be formed uniformly in the circumferential direction of the rotor. Therefore, the cooling effect of the rotor can be enhanced with a simple structure.
According to the above aspect (4), the refrigerant passage is formed in a continuous spiral shape from one end in the axial direction of the rotor core to the other end, so that the inside of the rotor extends throughout the entire axial direction of the rotor core. Can promote the flow of refrigerant. Therefore, the cooling effect of the rotor can be further enhanced.
According to the aspect of the above (5), in the second steel plate production step, in each of the plurality of second steel plates, the displacement angle in the circumferential direction of the refrigerant flow portion with respect to the magnet insertion portion is made different from each other, thereby producing the second steel plate. Compared to the method of laminating a plurality of second steel plates by laminating a plurality of steel plates at a predetermined interval in the first circumferential direction by laminating a plurality of second steel plates with the position of the magnet insertion portion fixed. Thus, it is possible to avoid a restriction in the layout of the magnet insertion hole and the refrigerant flow hole. In addition, the displacement angle in the circumferential direction of the refrigerant flow portion relative to the magnet insertion portion can be set finely for each steel plate, so the position and shape of the magnet insertion hole and the refrigerant flow hole, and the shape of the refrigerant passage (spiral angle) A degree of freedom can be secured.
According to the aspect of said (6), the rotary electric machine which can improve the cooling effect of a rotor by providing a cylindrical stator and said rotor arrange | positioned inside radial direction with respect to a stator. Can be provided.

実施形態に係る回転電機の概略構成図。The schematic block diagram of the rotary electric machine which concerns on embodiment. 実施形態に係るロータを軸方向から見た、図1のII矢視図。The II arrow line view of FIG. 1 which looked at the rotor which concerns on embodiment from the axial direction. 実施形態に係る冷媒通路の模式図。The schematic diagram of the refrigerant path which concerns on embodiment. 実施形態に係るロータの製造工程を示す図。The figure which shows the manufacturing process of the rotor which concerns on embodiment. 図4に続く、ロータの製造工程を示す図。The figure which shows the manufacturing process of a rotor following FIG. 図5に続く、ロータの製造工程を示す図。The figure which shows the manufacturing process of a rotor following FIG. 図6に続く、ロータの製造工程を示す図。The figure which shows the manufacturing process of a rotor following FIG. 図7に続く、ロータの製造工程を示す図。The figure which shows the manufacturing process of a rotor following FIG. 実施形態の変形例に係るロータの正面図。The front view of the rotor which concerns on the modification of embodiment. 第一比較例に係るロータの正面図。The front view of the rotor which concerns on a 1st comparative example. 第二比較例に係るロータの正面図。The front view of the rotor which concerns on a 2nd comparative example.

以下、本発明の実施形態について図面を参照して説明する。実施形態においては、ハイブリッド自動車や電気自動車等の車両に搭載される回転電機(走行用モータ)を挙げて説明する。   Embodiments of the present invention will be described below with reference to the drawings. In the embodiment, a rotating electric machine (traveling motor) mounted on a vehicle such as a hybrid vehicle or an electric vehicle will be described.

<回転電機>
図1は、実施形態に係る回転電機1の全体構成を示す概略構成図である。図1は、軸線Cを含む仮想平面で切断した断面を含む図である。
図1に示すように、回転電機1は、ケース2、ステータ3、ロータ4、出力シャフト5、および冷媒供給機構(不図示)を備える。
<Rotating electrical machinery>
FIG. 1 is a schematic configuration diagram illustrating an overall configuration of a rotating electrical machine 1 according to the embodiment. FIG. 1 is a diagram including a cross section cut along a virtual plane including an axis C. FIG.
As shown in FIG. 1, the rotating electrical machine 1 includes a case 2, a stator 3, a rotor 4, an output shaft 5, and a refrigerant supply mechanism (not shown).

ケース2は、ステータ3およびロータ4を収容する筒状の箱形をなしている。ケース2内には、冷媒(不図示)が収容されている。ステータ3の一部は、ケース2内において、冷媒に浸漬された状態で配置されている。例えば、冷媒としては、トランスミッションの潤滑や動力伝達等に用いられる作動油である、ATF(Automatic Transmission Fluid)等が用いられる。   The case 2 has a cylindrical box shape that houses the stator 3 and the rotor 4. A refrigerant (not shown) is accommodated in the case 2. A part of the stator 3 is disposed in the case 2 so as to be immersed in the refrigerant. For example, as the refrigerant, ATF (Automatic Transmission Fluid), which is hydraulic oil used for transmission lubrication, power transmission, or the like, is used.

出力シャフト5は、ケース2に回転可能に支持されている。図1において符号6は、出力シャフト5を回転可能に支持する軸受を示す。以下、出力シャフト5の軸線Cに沿う方向を「軸方向」、軸線Cに直交する方向を「径方向」、軸線C周りの方向を「周方向」とする。   The output shaft 5 is rotatably supported by the case 2. In FIG. 1, the code | symbol 6 shows the bearing which supports the output shaft 5 rotatably. Hereinafter, the direction along the axis C of the output shaft 5 is referred to as “axial direction”, the direction orthogonal to the axis C is referred to as “radial direction”, and the direction around the axis C is referred to as “circumferential direction”.

ステータ3は、ステータコア11と、ステータコア11に装着されたコイル12と、を備える。
ステータコア11は、軸線Cと同軸に配置された筒状をなしている。ステータコア11は、ケース2の内周面に固定されている。例えば、ステータコア11は、電磁鋼板が軸方向に積層されて構成されている。なお、ステータコア11は、金属磁性粉末を圧縮成形した、いわゆる圧粉コアであってもよい。
The stator 3 includes a stator core 11 and a coil 12 attached to the stator core 11.
The stator core 11 has a cylindrical shape arranged coaxially with the axis C. The stator core 11 is fixed to the inner peripheral surface of the case 2. For example, the stator core 11 is configured by laminating electromagnetic steel plates in the axial direction. The stator core 11 may be a so-called dust core obtained by compression molding metal magnetic powder.

コイル12は、ステータコア11に装着されている。コイル12は、周方向に関して互いに120°の位相差をもって配置されたU相コイル、V相コイル及びW相コイルを備える。コイル12は、ステータコア11のスロット(不図示)に挿通された挿通部12aと、ステータコア11から軸方向に突出したコイルエンド部12bと、を備える。ステータコア11には、コイル12に電流が流れることで磁界が発生する。   The coil 12 is attached to the stator core 11. The coil 12 includes a U-phase coil, a V-phase coil, and a W-phase coil that are arranged with a phase difference of 120 ° with respect to the circumferential direction. The coil 12 includes an insertion portion 12 a that is inserted into a slot (not shown) of the stator core 11, and a coil end portion 12 b that protrudes from the stator core 11 in the axial direction. A magnetic field is generated in the stator core 11 when a current flows through the coil 12.

ロータ4は、ステータ3に対して径方向の内側に、間隔をあけて配置されている。ロータ4は、出力シャフト5に固定されている。ロータ4は、軸線C回りに出力シャフト5と一体で回転可能に構成されている。ロータ4は、ロータコア21、磁石22および端面板23を備える。実施形態において、磁石22は永久磁石である。   The rotor 4 is arranged on the inner side in the radial direction with respect to the stator 3 with an interval. The rotor 4 is fixed to the output shaft 5. The rotor 4 is configured to be rotatable integrally with the output shaft 5 around the axis C. The rotor 4 includes a rotor core 21, a magnet 22, and an end face plate 23. In the embodiment, the magnet 22 is a permanent magnet.

ロータコア21は、軸線Cと同軸に配置された筒状をなしている。ロータコア21の径方向内側には、出力シャフト5が圧入固定されている。ロータコア21は、電磁鋼板が軸方向に積層されて構成されている。   The rotor core 21 has a cylindrical shape arranged coaxially with the axis C. The output shaft 5 is press-fitted and fixed inside the rotor core 21 in the radial direction. The rotor core 21 is configured by laminating electromagnetic steel plates in the axial direction.

端面板23は、ロータコア21に対して軸方向の両端部に配置されている。端面板23の径方向内側には、出力シャフト5が圧入固定されている。端面板23は、ロータコア21における少なくとも磁石挿入孔25を軸方向の両端側から覆っている。端面板23は、ロータコア21の軸方向の外端面に当接している。   The end face plates 23 are disposed at both end portions in the axial direction with respect to the rotor core 21. The output shaft 5 is press-fitted and fixed inside the end face plate 23 in the radial direction. The end face plate 23 covers at least the magnet insertion hole 25 in the rotor core 21 from both ends in the axial direction. The end face plate 23 is in contact with the outer end face of the rotor core 21 in the axial direction.

<磁石挿入孔>
ロータコア21の外周部には、ロータコア21を軸方向に貫通する磁石挿入孔25が設けられている。磁石挿入孔25は、周方向に間隔をあけて複数配置されている(図2参照)。各磁石挿入孔25内には、磁石22が挿入されている。図2の軸方向から見て(正面視で)、磁石22は、径方向外方に開放するV字状をなしている。図2においては、出力シャフト5および端面板23などの図示を省略している。
<Magnet insertion hole>
A magnet insertion hole 25 penetrating the rotor core 21 in the axial direction is provided on the outer periphery of the rotor core 21. A plurality of magnet insertion holes 25 are arranged at intervals in the circumferential direction (see FIG. 2). A magnet 22 is inserted into each magnet insertion hole 25. When viewed from the axial direction of FIG. 2 (in front view), the magnet 22 has a V shape that opens radially outward. In FIG. 2, the output shaft 5 and the end face plate 23 are not shown.

図2の例では、ロータコア21の外周部には、周方向に間隔をあけて8つの磁石挿入孔25が配置されている。すなわち、複数の磁石挿入孔25は、ロータコア21の外周部において、周方向に45°間隔毎に配置されている。以下、ロータコア21の外周部26(周方向に間隔をあけて形成された複数の磁石挿入孔25を有する環状の部分)を、「磁石挿入部26」ともいう。   In the example of FIG. 2, eight magnet insertion holes 25 are arranged on the outer peripheral portion of the rotor core 21 at intervals in the circumferential direction. That is, the plurality of magnet insertion holes 25 are arranged at intervals of 45 ° in the circumferential direction on the outer peripheral portion of the rotor core 21. Hereinafter, the outer peripheral portion 26 of the rotor core 21 (an annular portion having a plurality of magnet insertion holes 25 formed at intervals in the circumferential direction) is also referred to as a “magnet insertion portion 26”.

<冷媒通流孔>
ロータコア21の内周部には、ロータコア21を軸方向に貫通する冷媒通流孔31,32が形成されている。冷媒通流孔31,32は、周方向に間隔をあけて複数配置されている。軸方向から見て、複数の冷媒通流孔31,32は、径方向外側(外周側)に凸の三角形状をなす複数の第一通流孔31と、径方向内側(内周側)に凸の三角形状をなす複数の第二通流孔32と、を含んでいる。軸方向から見て、第一通流孔31と第二通流孔32とは、周方向に互いに間隔をあけて交互に配置されている。
<Refrigerant flow hole>
Refrigerant flow holes 31 and 32 that penetrate the rotor core 21 in the axial direction are formed in the inner peripheral portion of the rotor core 21. A plurality of refrigerant flow holes 31 and 32 are arranged at intervals in the circumferential direction. When viewed from the axial direction, the plurality of refrigerant flow holes 31 and 32 are formed on the radially inner side (inner peripheral side) and the plurality of first flow holes 31 having a triangular shape protruding radially outward (outer peripheral side). And a plurality of second flow holes 32 having a convex triangular shape. When viewed from the axial direction, the first flow holes 31 and the second flow holes 32 are alternately arranged in the circumferential direction at intervals.

図2の例では、ロータコア21の内周部には、周方向に間隔をあけて8つの冷媒通流孔31,32(4つの第一通流孔31および4つの第二通流孔32)が配置されている。すなわち、複数の冷媒通流孔31,32は、ロータコア21の内周部において、周方向に45°間隔毎に配置されている。複数の第一通流孔31および複数の第二通流孔32は、周方向にそれぞれ90°間隔毎に配置されている。以下、ロータコア21の内周部30(周方向に間隔をあけて形成された複数の冷媒通流孔31,32を有する環状の部分)を、「冷媒通流部30」ともいう。冷媒通流部30は、磁石挿入部26の径方向内側(内周側)に配置されている。図2において符号Kは、磁石挿入部26と冷媒通流部30との境界線(仮想円)を示す。   In the example of FIG. 2, eight refrigerant flow holes 31 and 32 (four first flow holes 31 and four second flow holes 32) are provided in the inner peripheral portion of the rotor core 21 at intervals in the circumferential direction. Is arranged. That is, the plurality of refrigerant flow holes 31 and 32 are arranged at intervals of 45 ° in the circumferential direction in the inner peripheral portion of the rotor core 21. The plurality of first flow holes 31 and the plurality of second flow holes 32 are arranged at intervals of 90 ° in the circumferential direction. Hereinafter, the inner peripheral portion 30 of the rotor core 21 (an annular portion having a plurality of refrigerant flow holes 31 and 32 formed at intervals in the circumferential direction) is also referred to as a “refrigerant flow portion 30”. The refrigerant flow portion 30 is disposed on the radially inner side (inner peripheral side) of the magnet insertion portion 26. In FIG. 2, symbol K indicates a boundary line (virtual circle) between the magnet insertion portion 26 and the refrigerant flow portion 30.

<冷媒通路>
ロータコア21には、軸方向で隣り合う鋼板の冷媒通流孔31,32が、相互に周方向に位置をずらしつつ、軸方向で隣り合う鋼板の冷媒通流孔31,32のみと相互に連通することにより、軸方向に連続した螺旋形状の冷媒通路29が形成されている。ここで、軸方向で隣り合う鋼板の冷媒通流孔のみと相互に連通するとは、軸方向で隣り合う一方の鋼板に形成された一つの冷媒通流孔のみと、他方の鋼板に形成された一つの冷媒通流孔のみとが相互に連通することを意味する。
<Refrigerant passage>
In the rotor core 21, the refrigerant flow holes 31 and 32 of the steel plates adjacent in the axial direction communicate with each other only with the refrigerant flow holes 31 and 32 of the steel plates adjacent in the axial direction while shifting their positions in the circumferential direction. Thus, a spiral refrigerant passage 29 that is continuous in the axial direction is formed. Here, only the refrigerant flow holes of adjacent steel plates in the axial direction communicate with each other means that only one refrigerant flow hole formed in one steel plate adjacent in the axial direction and the other steel plate are formed. It means that only one refrigerant flow hole communicates with each other.

図10に示すように、軸方向で隣り合う一方の鋼板に形成された一つの冷媒通流孔31X1と、他方の鋼板に形成された二つの冷媒通流孔31X2とが相互に連通する構成(第一比較例)は、軸方向で隣り合う鋼板の冷媒通流孔のみと相互に連通する構成ではない。   As shown in FIG. 10, one refrigerant flow hole 31X1 formed in one steel plate adjacent in the axial direction and two refrigerant flow holes 31X2 formed in the other steel plate communicate with each other ( The first comparative example is not configured to communicate with only the refrigerant flow holes of the steel plates adjacent in the axial direction.

図11に示すように、軸方向で隣り合う一方の鋼板に形成された冷媒通流孔31Y1と、他方の鋼板に形成された冷媒通流孔31Y2とが連通しない構成(第二比較例)は、軸方向で隣り合う鋼板の冷媒通流孔のみと相互に連通する構成ではない。すなわち、軸方向で隣り合う一方の鋼板に形成された冷媒通流孔31Y1と、他方の鋼板の冷媒通流孔非形成部とが重なる構成(第二比較例)は、軸方向で隣り合う鋼板の冷媒通流孔のみと相互に連通する構成ではない。   As shown in FIG. 11, the configuration (second comparative example) in which the refrigerant flow hole 31Y1 formed in one steel plate adjacent in the axial direction does not communicate with the refrigerant flow hole 31Y2 formed in the other steel plate. It is not the structure which mutually communicates only with the refrigerant | coolant flow hole of the steel plate adjacent in an axial direction. That is, the configuration (second comparative example) in which the refrigerant flow hole 31Y1 formed in one steel plate adjacent in the axial direction and the refrigerant flow hole non-forming portion of the other steel plate overlap is the steel plate adjacent in the axial direction. It is not the structure which mutually communicates only with the refrigerant | coolant flow hole.

図3に示すように、実施形態の冷媒通路29は、ロータコア21の軸方向の一方側端21aから他方側端21bにわたって連続した螺旋形状をなして形成されている。冷媒通路29は、軸線Cを中心とした螺旋形状をなしている。冷媒通路には、ケース2等に設けた供給口(不図示)および端面板23の開口部(不図示)を通じてオイル等の冷媒が供給される。図3において、矢印Q1は冷媒(オイル)の流れる向き、矢印R1はロータ4の回転の向き、矢印S1は螺旋の向きをそれぞれ示す。   As shown in FIG. 3, the refrigerant passage 29 of the embodiment is formed in a continuous spiral shape from one end 21 a in the axial direction of the rotor core 21 to the other end 21 b. The refrigerant passage 29 has a spiral shape with the axis C as the center. A refrigerant such as oil is supplied to the refrigerant passage through a supply port (not shown) provided in the case 2 and the like and an opening (not shown) of the end face plate 23. In FIG. 3, the arrow Q1 indicates the direction in which the refrigerant (oil) flows, the arrow R1 indicates the direction of rotation of the rotor 4, and the arrow S1 indicates the direction of the spiral.

図2に示すように、複数の鋼板のそれぞれにおいて、磁石挿入部26に対する冷媒通流部30の周方向へのずらし角度は互いに異なっている。複数の鋼板は、磁石挿入部26の位置を固定して積層されている。   As shown in FIG. 2, in each of the plurality of steel plates, the shifting angles in the circumferential direction of the refrigerant flow portion 30 with respect to the magnet insertion portion 26 are different from each other. The plurality of steel plates are laminated with the position of the magnet insertion portion 26 fixed.

図2の例では、ロータコア21は、8枚の鋼板が積層されて形成されている。図2中符号Aは、磁石挿入部26に対する冷媒通流部30の周方向へのずらし角度を示す。ここで、磁石挿入部26に対する冷媒通流部30の周方向へのずらし角度は、磁石挿入部26の位置を固定して、軸線Cを中心として冷媒通流部30を右回り(時計回り)に回転させたときの回転角度を意味する。   In the example of FIG. 2, the rotor core 21 is formed by laminating eight steel plates. In FIG. 2, a symbol A indicates a shift angle in the circumferential direction of the refrigerant flow portion 30 with respect to the magnet insertion portion 26. Here, the displacement angle in the circumferential direction of the refrigerant flow part 30 with respect to the magnet insertion part 26 fixes the position of the magnet insertion part 26 and rotates the refrigerant flow part 30 clockwise around the axis C (clockwise). It means the rotation angle when it is rotated.

以下、8枚の鋼板のそれぞれを、ロータコア21の軸方向の一方側端21aから他方側端21bに向けて並ぶ順に、「一枚目鋼板41」、「二枚目鋼板42」、「三枚目鋼板43」、「四枚目鋼板44」、「五枚目鋼板45」、「六枚目鋼板46」、「七枚目鋼板47」、「八枚目鋼板48」ともいう。8枚の鋼板41〜48は、一枚毎に、磁石挿入部26に対する冷媒通流部30の周方向へのずらし角度を変えている。   Hereinafter, the “first steel plate 41”, “second steel plate 42”, “three steel plates” are arranged in the order in which the eight steel plates are arranged from the one end 21a in the axial direction of the rotor core 21 toward the other end 21b. It is also called “eye plate 43”, “fourth plate 44”, “fifth plate 45”, “sixth plate 46”, “seventh plate 47”, “eight plate steel 48”. Each of the eight steel plates 41 to 48 changes the shifting angle in the circumferential direction of the refrigerant flow portion 30 with respect to the magnet insertion portion 26.

ここで、一枚目鋼板41から八枚目鋼板48において、磁石挿入部26に対する冷媒通流部30の周方向へのずらし角度を、それぞれ角度A1、角度A2、角度A3、角度A4、角度A5、角度A6、角度A7、角度A8とする。角度A1からA8は、互いに異なっている。実施形態において、角度A1からA8は、A1<A2<A3<A4<A5<A6<A7<A8の関係を有する。   Here, in the first steel plate 41 to the eighth steel plate 48, the shift angles in the circumferential direction of the refrigerant flow portion 30 with respect to the magnet insertion portion 26 are respectively angle A1, angle A2, angle A3, angle A4, angle A5. , Angle A6, angle A7, and angle A8. The angles A1 to A8 are different from each other. In the embodiment, the angles A1 to A8 have a relationship of A1 <A2 <A3 <A4 <A5 <A6 <A7 <A8.

<ロータの製造方法>
以下、実施形態のロータ4の製造方法の一例について説明する。
まず、円盤状の鋼板本体50を複数準備する(図4参照)。
<Method for manufacturing rotor>
Hereinafter, an example of a method for manufacturing the rotor 4 of the embodiment will be described.
First, a plurality of disk-shaped steel plate bodies 50 are prepared (see FIG. 4).

次に、複数の鋼板本体50のそれぞれに、周方向に間隔をあけて配置された複数の磁石挿入孔25を有する環状の磁石挿入部26を形成する(図5参照)。例えば、磁石挿入部26は、鋼板本体50の外周部に、打ち抜き加工を施して複数の磁石挿入孔25を開けることにより形成する。これにより、磁石挿入部26を有する複数の第一鋼板51を作製する(第一鋼板作製工程)。   Next, an annular magnet insertion portion 26 having a plurality of magnet insertion holes 25 arranged at intervals in the circumferential direction is formed in each of the plurality of steel plate bodies 50 (see FIG. 5). For example, the magnet insertion portion 26 is formed by punching the outer peripheral portion of the steel plate body 50 to open a plurality of magnet insertion holes 25. Thereby, the some 1st steel plate 51 which has the magnet insertion part 26 is produced (1st steel plate production process).

次に、複数の第一鋼板51のそれぞれに、周方向に間隔をあけて配置された複数の冷媒通流孔31,32を有する環状の冷媒通流部30を形成する(図6参照)。例えば、冷媒通流部30は、第一鋼板51の内周部に、打ち抜き加工を施して複数の冷媒通流孔31,32を開けることにより形成する。これにより、冷媒通流部30を有する複数の第二鋼板52を作製する(第二鋼板作製工程)。第二鋼板作製工程においては、第一鋼板51の中心部に、打ち抜き加工を施してシャフト固定孔8を形成してもよい。   Next, an annular refrigerant flow portion 30 having a plurality of refrigerant flow holes 31 and 32 arranged at intervals in the circumferential direction is formed in each of the plurality of first steel plates 51 (see FIG. 6). For example, the refrigerant flow portion 30 is formed by punching the inner peripheral portion of the first steel plate 51 to open a plurality of refrigerant flow holes 31 and 32. Thereby, the some 2nd steel plate 52 which has the refrigerant | coolant flow part 30 is produced (2nd steel plate production process). In the second steel plate manufacturing step, the shaft fixing hole 8 may be formed by punching the center portion of the first steel plate 51.

第二鋼板作製工程では、複数の第二鋼板52のそれぞれにおいて、磁石挿入部26に対する冷媒通流部30の周方向へのずらし角度を互いに異ならせる。例えば、第一鋼板51(図5参照)の設置台(第一鋼板51自体)を定位置に固定し、冷媒通流部用の打ち抜き工具(不図示)を右回り(図中矢印T1方向)へ回転することにより、第一鋼板51を角度変更する。そして、打ち抜き工具を角度変更した状態で、第一鋼板51の内周部に打ち抜き加工を施す。これにより、複数の第二鋼板52の一枚毎に、磁石挿入部26に対する冷媒通流部30の周方向へのずらし角度を変える。   In the second steel plate manufacturing step, the shift angles in the circumferential direction of the refrigerant flow portion 30 with respect to the magnet insertion portion 26 are made different from each other in each of the plurality of second steel plates 52. For example, the installation base (first steel plate 51 itself) of the first steel plate 51 (see FIG. 5) is fixed at a fixed position, and a punching tool (not shown) for the refrigerant flow portion is turned clockwise (in the direction of arrow T1 in the drawing). The angle of the first steel plate 51 is changed by rotating to. And the punching process is performed to the inner peripheral part of the 1st steel plate 51 in the state which changed the punching tool angle. Thereby, the shift angle in the circumferential direction of the refrigerant flow portion 30 with respect to the magnet insertion portion 26 is changed for each of the plurality of second steel plates 52.

例えば、一枚目の第二鋼板52においては、磁石挿入部26に対する冷媒通流部30の周方向へのずらし角度を、角度A1(例えば0°)とする(図6参照)。二枚目の第二鋼板52においては、磁石挿入部26に対する冷媒通流部30の周方向へのずらし角度を、角度A2(A2>A1)とする(図7参照)。三枚目の第二鋼板52においては、磁石挿入部26に対する冷媒通流部30の周方向へのずらし角度を、角度A3(A3>A2)とする(図8参照)。四枚目以降の第二鋼板52においては、磁石挿入部26に対する冷媒通流部30の周方向へのずらし角度を、徐々に大きくしていく。   For example, in the first second steel plate 52, the shift angle in the circumferential direction of the refrigerant flow portion 30 with respect to the magnet insertion portion 26 is set to an angle A1 (for example, 0 °) (see FIG. 6). In the second second steel plate 52, the shift angle in the circumferential direction of the refrigerant flow portion 30 with respect to the magnet insertion portion 26 is set to an angle A2 (A2> A1) (see FIG. 7). In the third second steel plate 52, the shift angle in the circumferential direction of the refrigerant flow portion 30 with respect to the magnet insertion portion 26 is defined as an angle A3 (A3> A2) (see FIG. 8). In the second and subsequent second steel plates 52, the shift angle in the circumferential direction of the refrigerant flow portion 30 with respect to the magnet insertion portion 26 is gradually increased.

第二鋼板作製工程の後、複数の第二鋼板52を、磁石挿入部26の位置を固定して積層する。これにより、ロータコア21を作製する(図2参照)。その後、ロータコア21に、出力シャフト5、磁石22および端面板23を取り付ける。以上の工程により、実施形態のロータ4の製造が完了する(図1参照)。   After the second steel plate manufacturing step, the plurality of second steel plates 52 are laminated with the position of the magnet insertion portion 26 fixed. Thereby, the rotor core 21 is produced (see FIG. 2). Thereafter, the output shaft 5, the magnet 22 and the end face plate 23 are attached to the rotor core 21. The manufacture of the rotor 4 of the embodiment is completed through the above steps (see FIG. 1).

以上説明したように、上記実施形態の回転電機1のロータ4は、積層された複数の鋼板41〜48によって構成され、周方向に間隔をあけて形成された複数の冷媒通流孔31,32を有するロータコア21を備え、ロータコア21には、軸方向で隣り合う鋼板41〜48の冷媒通流孔31,32が、相互に周方向に位置をずらしつつ、軸方向で隣り合う鋼板41〜48の冷媒通流孔31,32のみと相互に連通することにより、軸方向に連続した螺旋形状の冷媒通路29が形成されていることを特徴とする。
この構成によれば、ロータコア21には、軸方向で隣り合う鋼板41〜48の冷媒通流孔31,32が、相互に周方向に位置をずらしつつ、軸方向で隣り合う鋼板41〜48の冷媒通流孔31,32のみと相互に連通することにより、軸方向に連続した螺旋形状の冷媒通路29が形成されていることで、ロータ4に供給される冷媒を、螺旋形状の冷媒通路29に沿って軸方向に流すことができる。そのため、複数の貫通孔片同士の間に形成されたリブ部分に隙間が生じる場合と比較して、ロータ4内で冷媒の流れを促進することができる。加えて、ロータ4の回転によって、ロータ4内で冷媒の流れを発生させ、冷媒の流れを途切れさせることなく、流速を保ったままロータ4外へ冷媒を排出することができる。これにより、ステータ3とロータ4との間のエアギャップへの冷媒の浸入を抑制することができる。加えて、温度上昇した冷媒が、遠心力の影響でロータ4内に残留しにくくなるため、冷媒と被冷却体との温度差を確保でき、効果的な熱交換を促すことができる。したがって、ロータ4の冷却効果を高めることができる。
As described above, the rotor 4 of the rotating electrical machine 1 according to the above-described embodiment is configured by the plurality of stacked steel plates 41 to 48 and has a plurality of refrigerant flow holes 31 and 32 formed at intervals in the circumferential direction. The refrigerant cores 31 and 32 of the steel plates 41 to 48 adjacent to each other in the axial direction are displaced in the circumferential direction from each other, and the steel plates 41 to 48 adjacent to each other in the axial direction are provided in the rotor core 21. A refrigerant passage 29 having a spiral shape continuous in the axial direction is formed by communicating with only the refrigerant flow holes 31 and 32.
According to this configuration, the coolant flow holes 31 and 32 of the steel plates 41 to 48 adjacent in the axial direction are shifted in the circumferential direction in the rotor core 21 while the positions of the steel plates 41 to 48 adjacent in the axial direction are shifted from each other. By communicating with only the refrigerant flow holes 31, 32, the spiral refrigerant passage 29 continuous in the axial direction is formed, so that the refrigerant supplied to the rotor 4 can be supplied to the spiral refrigerant passage 29. In the axial direction. Therefore, it is possible to promote the flow of the refrigerant in the rotor 4 as compared with a case where a gap is generated in the rib portion formed between the plurality of through-hole pieces. In addition, the rotation of the rotor 4 generates a refrigerant flow in the rotor 4, and the refrigerant can be discharged out of the rotor 4 while maintaining the flow velocity without interrupting the refrigerant flow. Thereby, the penetration of the refrigerant into the air gap between the stator 3 and the rotor 4 can be suppressed. In addition, since the refrigerant whose temperature has increased is less likely to remain in the rotor 4 due to the centrifugal force, a temperature difference between the refrigerant and the object to be cooled can be secured, and effective heat exchange can be promoted. Therefore, the cooling effect of the rotor 4 can be enhanced.

上記実施形態では、複数の鋼板41〜48のそれぞれにおいて、磁石挿入部26に対する冷媒通流部30の周方向へのずらし角度A1〜A8は互いに異なり、複数の鋼板41〜48は、磁石挿入部26の位置を固定して積層されていることで、複数の鋼板が所定の枚数おきに第一の円周方向間隔で回転されて積層される構造と比較して、磁石挿入孔25および冷媒通流孔31,32のレイアウトに制限が生じることを回避することができる。加えて、磁石挿入部26に対する冷媒通流部30の周方向へのずらし角度A1〜A8を鋼板毎に細かく設定できるため、磁石挿入孔25および冷媒通流孔31,32の位置・形状、ならびに冷媒通路29の形状(螺旋角度)の自由度を確保することができる。   In the said embodiment, in each of the some steel plates 41-48, the shift | offset | difference angle A1-A8 to the circumferential direction of the refrigerant | coolant flow part 30 with respect to the magnet insertion part 26 differs mutually, and the several steel plates 41-48 are magnet insertion parts. 26, the magnet insertion hole 25 and the coolant passage are compared with a structure in which a plurality of steel plates are rotated and laminated at a predetermined interval in the first circumferential direction. It can be avoided that the layout of the flow holes 31 and 32 is limited. In addition, since the shift angles A1 to A8 in the circumferential direction of the refrigerant flow part 30 with respect to the magnet insertion part 26 can be set finely for each steel plate, the positions and shapes of the magnet insertion hole 25 and the refrigerant flow holes 31 and 32, and The degree of freedom of the shape (spiral angle) of the refrigerant passage 29 can be ensured.

上記実施形態では、第一通流孔31と第二通流孔32とは、周方向に互いに間隔をあけて交互に配置されていることで、通流孔の種類を最小限に抑えてロータ4の周方向に均等に冷媒通路29を形成することができる。したがって、簡素な構造でロータ4の冷却効果を高めることができる。   In the above-described embodiment, the first through holes 31 and the second through holes 32 are alternately arranged in the circumferential direction with a space therebetween, thereby minimizing the types of through holes. The refrigerant passages 29 can be formed evenly in the circumferential direction of the four. Therefore, the cooling effect of the rotor 4 can be enhanced with a simple structure.

上記実施形態では、冷媒通路29は、ロータコア21の軸方向の一方側端21aから他方側端21bにわたって連続した螺旋形状をなして形成されていることで、ロータコア21の軸方向全体にわたって、ロータ4内で冷媒の流れを促進することができる。したがって、ロータ4の冷却効果をより一層高めることができる。   In the above embodiment, the refrigerant passage 29 is formed in a spiral shape that extends from the one side end 21 a in the axial direction of the rotor core 21 to the other side end 21 b, so that the rotor 4 extends over the entire axial direction of the rotor core 21. The flow of the refrigerant can be promoted in the interior. Therefore, the cooling effect of the rotor 4 can be further enhanced.

上記実施形態の回転電機1のロータ4の製造方法は、第二鋼板作製工程では、複数の第二鋼板52のそれぞれにおいて、磁石挿入部26に対する冷媒通流部30の周方向へのずらし角度Aを互いに異ならせ、第二鋼板作製工程の後、複数の第二鋼板52を、磁石挿入部26の位置を固定して積層することで、複数の鋼板を所定の枚数おきに第一の円周方向間隔で回転させて積層する方法と比較して、磁石挿入孔25および冷媒通流孔31,32のレイアウトに制限が生じることを回避することができる。加えて、磁石挿入部26に対する冷媒通流部30の周方向へのずらし角度Aを鋼板毎に細かく設定できるため、磁石挿入孔25および冷媒通流孔31,32の位置・形状、ならびに冷媒通路29の形状(螺旋角度)の自由度を確保することができる。   In the method of manufacturing the rotor 4 of the rotating electrical machine 1 according to the above embodiment, in the second steel plate manufacturing step, the displacement angle A in the circumferential direction of the refrigerant flow portion 30 with respect to the magnet insertion portion 26 in each of the plurality of second steel plates 52. After the second steel plate manufacturing step, the plurality of second steel plates 52 are laminated with the position of the magnet insertion portion 26 fixed, thereby stacking a plurality of steel plates at a predetermined circumference. Compared with the method of laminating by rotating at intervals in the direction, it is possible to avoid that the layout of the magnet insertion hole 25 and the refrigerant flow holes 31 and 32 is limited. In addition, since the shift angle A in the circumferential direction of the refrigerant flow part 30 with respect to the magnet insertion part 26 can be finely set for each steel plate, the positions and shapes of the magnet insertion hole 25 and the refrigerant flow holes 31, 32, and the refrigerant path The degree of freedom of 29 shapes (spiral angle) can be ensured.

上記実施形態の回転電機1は、筒状のステータ3と、ステータ3に対して径方向の内側に配置された上記のロータ4と、を備えることで、ロータ4の冷却効果を高めることができる回転電機1を提供することができる。   The rotating electrical machine 1 according to the embodiment includes the cylindrical stator 3 and the rotor 4 arranged on the inner side in the radial direction with respect to the stator 3, thereby enhancing the cooling effect of the rotor 4. The rotating electrical machine 1 can be provided.

以下、実施形態の変形例について説明する。各変形例において、実施形態と同一の構成については同一の符号を付し、詳細説明を省略する。   Hereinafter, modifications of the embodiment will be described. In each modified example, the same components as those in the embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

上述した実施形態では、軸方向から見て、複数の冷媒通流孔31,32は、径方向外側(外周側)に凸の三角形状をなす複数の第一通流孔31と、径方向内側(内周側)に凸の三角形状をなす複数の第二通流孔32と、を含む構成について説明したが、これに限らない。例えば、複数の冷媒通流孔は、径方向外側(外周側)に凸の三角形状をなすもののみで構成されていてもいし、径方向内側(内周側)に凸の三角形状をなすもののみで構成されていてもよい。すなわち、複数の冷媒通流孔は、三角形状をなしていてもよい。   In the embodiment described above, when viewed from the axial direction, the plurality of refrigerant flow holes 31, 32 are radially inward of the plurality of first flow holes 31 that form a triangular shape that protrudes radially outward (outer peripheral side). Although the structure including the plurality of second flow holes 32 having a triangular shape (inner peripheral side) has been described, the present invention is not limited to this. For example, the plurality of refrigerant flow holes may be configured only with a triangular shape that protrudes radially outward (outer peripheral side), or a triangular shape that protrudes radially inward (inner peripheral side). It may be comprised only by. That is, the plurality of refrigerant flow holes may have a triangular shape.

複数の冷媒通流孔は、三角形状をなしていることに限らない。例えば、複数の冷媒通流孔は、矩形等の三角形以外の多角形であってもよい。例えば、複数の冷媒通流孔は、円形または楕円形であってもよい。複数の冷媒通流孔の形状は、要求仕様に応じて種々の態様を採用することができる。図9の例では、複数の冷媒通流孔131は、それぞれ円形をなしている。   The plurality of refrigerant flow holes are not limited to a triangular shape. For example, the plurality of refrigerant flow holes may be polygons other than a triangle such as a rectangle. For example, the plurality of refrigerant flow holes may be circular or elliptical. Various forms can be adopted as the shape of the plurality of refrigerant flow holes according to the required specifications. In the example of FIG. 9, each of the plurality of refrigerant flow holes 131 has a circular shape.

上述した実施形態では、軸方向から見て、磁石22が径方向外方に開放するV字状をなしている構成について説明したが、これに限らない。例えば、軸方向から見て、磁石22は、ロータ4の回転方向R1における接線方向成分に長手を有する矩形をなしていてもよい。   In the above-described embodiment, the configuration in which the magnet 22 is V-shaped so as to open outward in the radial direction when viewed from the axial direction has been described, but the configuration is not limited thereto. For example, when viewed from the axial direction, the magnet 22 may have a rectangular shape with a longitudinal component in the tangential direction component in the rotation direction R <b> 1 of the rotor 4.

上述した実施形態では、回転電機1が、ハイブリッド自動車や電気自動車等の車両に搭載される走行用モータである例を挙げて説明したが、これに限らない。例えば、回転電機1は、発電用モータやその他用途のモータ、車両用以外の回転電機(発電機を含む)であってもよい。   In the above-described embodiment, the rotating electrical machine 1 has been described by taking an example of a traveling motor mounted on a vehicle such as a hybrid vehicle or an electric vehicle. However, the present invention is not limited to this. For example, the rotating electrical machine 1 may be a motor for power generation, a motor for other uses, or a rotating electrical machine other than for a vehicle (including a generator).

上述した実施形態では、冷媒通路29には、ケース2等に設けた供給口(不図示)および端面板23の開口部(不図示)を通じてオイル等の冷媒が供給される例を挙げて説明したが、これに限らない。例えば、出力シャフト5に設けたシャフト流路を利用して、軸心冷却を行っていてもよい。例えば、ロータ4の回転により、端面板23に設けられた誘導壁(不図示)に沿って冷媒を磁石に供給してもよい。   In the above-described embodiment, the refrigerant passage 29 has been described with an example in which a refrigerant such as oil is supplied through a supply port (not shown) provided in the case 2 or the like and an opening (not shown) of the end face plate 23. However, it is not limited to this. For example, shaft center cooling may be performed using a shaft flow path provided in the output shaft 5. For example, the coolant may be supplied to the magnet along a guide wall (not shown) provided on the end face plate 23 by the rotation of the rotor 4.

上述した実施形態では、複数の鋼板の一枚毎に、磁石挿入部26に対する冷媒通流部30の周方向へのずらし角度Aを変えている例を挙げて説明したが、これに限らない。例えば、複数の鋼板の一枚または複数枚毎に、磁石挿入部26に対する冷媒通流部30の周方向へのずらし角度Aを変えていてもよい。すなわち、複数の鋼板の所定枚毎に、磁石挿入部26に対する冷媒通流部30の周方向へのずらし角度Aを変えていてもよい。   In the above-described embodiment, an example in which the shift angle A in the circumferential direction of the refrigerant flow portion 30 with respect to the magnet insertion portion 26 is changed for each of the plurality of steel plates has been described, but the present invention is not limited thereto. For example, the shift angle A in the circumferential direction of the refrigerant flow portion 30 relative to the magnet insertion portion 26 may be changed for each of a plurality of steel plates. That is, the shift angle A in the circumferential direction of the refrigerant flow portion 30 with respect to the magnet insertion portion 26 may be changed for every predetermined number of steel plates.

上述した実施形態では、ロータコア21の外周部には、周方向に間隔をあけて8つの磁石挿入孔25が配置されている例を挙げて説明したが、これに限らない。例えば、磁石挿入孔25の配置数は、7つ以下であってもよいし、9つ以上であってもよい。   In the above-described embodiment, the example in which the eight magnet insertion holes 25 are arranged in the outer peripheral portion of the rotor core 21 at intervals in the circumferential direction has been described. However, the present invention is not limited thereto. For example, the number of magnet insertion holes 25 may be seven or less, or nine or more.

上述した実施形態では、ロータコア21の内周部には、周方向に間隔をあけて8つの冷媒通流孔31,32が配置されている例を挙げて説明したが、これに限らない。例えば、冷媒通流孔31,32の配置数は、7つ以下であってもよいし、9つ以上であってもよい。   In the above-described embodiment, the example in which the eight refrigerant flow holes 31 and 32 are arranged in the inner peripheral portion of the rotor core 21 at intervals in the circumferential direction has been described. However, the present invention is not limited thereto. For example, the number of refrigerant flow holes 31 and 32 may be 7 or less, or 9 or more.

上述した実施形態では、冷媒通路29は、ロータコア21の軸方向の一方側端21aから他方側端21bにわたって連続した螺旋形状をなして形成されている例を挙げて説明したが、これに限らない。例えば、冷媒通路29は、ロータコア21の軸方向の一部において連続した螺旋形状をなして形成されていてもよい。   In the above-described embodiment, the refrigerant passage 29 has been described by taking an example in which the refrigerant passage 29 is formed in a continuous spiral shape from the one end 21a in the axial direction of the rotor core 21 to the other end 21b. . For example, the coolant passage 29 may be formed in a continuous spiral shape in a part of the rotor core 21 in the axial direction.

上述した実施形態では、第二鋼板作製工程において、第一鋼板51の設置台(第一鋼板自体)を定位置に固定し、冷媒通流部用の打ち抜き工具を右回り(矢印T1方向)へ回転する例を挙げて説明したが、これに限らない。例えば、冷媒通流部用の打ち抜き工具を定位置に固定し、第一鋼板51の設置台を右回り(矢印T1方向)へ回転してもよい。すなわち、第一鋼板51の設置台(第一鋼板51自体)と冷媒通流部用の打ち抜き工具とを軸線Cの回りに相対回転してもよい。   In the embodiment described above, in the second steel plate manufacturing step, the installation base (first steel plate itself) of the first steel plate 51 is fixed at a fixed position, and the punching tool for the refrigerant flow portion is turned clockwise (in the direction of arrow T1). Although the example which rotates is demonstrated and demonstrated, it is not restricted to this. For example, the punching tool for the refrigerant flow portion may be fixed at a fixed position, and the installation base of the first steel plate 51 may be rotated clockwise (in the direction of the arrow T1). That is, the installation base of the first steel plate 51 (the first steel plate 51 itself) and the punching tool for the refrigerant flow portion may be relatively rotated about the axis C.

以上、本発明の好ましい実施形態を説明したが、本発明はこれらに限定されることはなく、本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能であり、上述した変形例を適宜組み合わせることも可能である。   Although the preferred embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and additions, omissions, substitutions, and other modifications of the configuration can be made without departing from the spirit of the present invention. It is also possible to combine the above-described modified examples as appropriate.

1…回転電機
3…ステータ
4…ロータ
21…ロータコア
21a…一方側端
21b…他方側端
22…磁石
25…磁石挿入孔
26…磁石挿入部
29…冷媒通路
30…冷媒通流部
31…第一通流孔(冷媒通流孔)
32…第二通流孔(冷媒通流孔)
41…一枚目鋼板(鋼板)
42…二枚目鋼板(鋼板)
43…三枚目鋼板(鋼板)
44…四枚目鋼板(鋼板)
45…五枚目鋼板(鋼板)
46…六枚目鋼板(鋼板)
47…七枚目鋼板(鋼板)
48…八枚目鋼板(鋼板)
50…鋼板本体
51…第一鋼板
52…第二鋼板
131…冷媒通流孔
A…ずらし角度
A1〜A8…ずらし角度
DESCRIPTION OF SYMBOLS 1 ... Rotary electric machine 3 ... Stator 4 ... Rotor 21 ... Rotor core 21a ... One side end 21b ... The other side end 22 ... Magnet 25 ... Magnet insertion hole 26 ... Magnet insertion part 29 ... Refrigerant passage 30 ... Refrigerant flow part 31 ... First Through hole (refrigerant through hole)
32 ... Second flow hole (refrigerant flow hole)
41 ... First steel plate (steel plate)
42 ... Second steel plate (steel plate)
43 ... Third steel plate (steel plate)
44 ... Fourth steel plate
45 ... Fifth steel plate (steel plate)
46. Sixth steel plate (steel plate)
47. Seventh steel plate (steel plate)
48… Eighth steel plate (steel plate)
DESCRIPTION OF SYMBOLS 50 ... Steel plate main body 51 ... 1st steel plate 52 ... 2nd steel plate 131 ... Refrigerant flow hole A ... Shift angle A1-A8 ... Shift angle

Claims (6)

積層された複数の鋼板によって構成され、周方向に間隔をあけて形成された複数の冷媒通流孔を有するロータコアを備え、
前記ロータコアには、軸方向で隣り合う前記鋼板の前記冷媒通流孔が、相互に周方向に位置をずらしつつ、軸方向で隣り合う前記鋼板の前記冷媒通流孔のみと相互に連通することにより、軸方向に連続した螺旋形状の冷媒通路が形成されていることを特徴とする回転電機のロータ。
It is composed of a plurality of laminated steel plates, and includes a rotor core having a plurality of refrigerant flow holes formed at intervals in the circumferential direction,
In the rotor core, the refrigerant flow holes of the steel plates adjacent in the axial direction communicate with only the refrigerant flow holes of the steel plates adjacent in the axial direction while being shifted in the circumferential direction. Thus, the rotor of the rotating electrical machine is characterized in that a spiral refrigerant passage continuous in the axial direction is formed.
前記複数の鋼板のそれぞれは、
周方向に間隔をあけて形成された複数の磁石挿入孔を有する環状の磁石挿入部と、
前記磁石挿入部の内周側に配置され、前記複数の冷媒通流孔を有する環状の冷媒通流部と、を備え、
前記複数の鋼板のそれぞれにおいて、前記磁石挿入部に対する前記冷媒通流部の周方向へのずらし角度は互いに異なり、
前記複数の鋼板は、前記磁石挿入部の位置を固定して積層されていることを特徴とする請求項1に記載の回転電機のロータ。
Each of the plurality of steel plates is
An annular magnet insertion portion having a plurality of magnet insertion holes formed at intervals in the circumferential direction;
An annular refrigerant flow portion disposed on the inner peripheral side of the magnet insertion portion and having the plurality of refrigerant flow holes,
In each of the plurality of steel plates, the shifting angle in the circumferential direction of the refrigerant flow portion with respect to the magnet insertion portion is different from each other,
The rotor of a rotating electrical machine according to claim 1, wherein the plurality of steel plates are laminated with the position of the magnet insertion portion fixed.
前記複数の冷媒通流孔は、
軸方向から見て外周側に凸の三角形状をなす複数の第一通流孔と、
軸方向から見て内周側に凸の三角形状をなす複数の第二通流孔と、を含み、
前記第一通流孔と前記第二通流孔とは、周方向に互いに間隔をあけて交互に配置されていることを特徴とする請求項1または2に記載の回転電機のロータ。
The plurality of refrigerant flow holes are:
A plurality of first flow holes having a triangular shape convex to the outer peripheral side when viewed from the axial direction;
A plurality of second flow holes having a triangular shape that is convex toward the inner peripheral side when viewed from the axial direction,
3. The rotor of a rotating electrical machine according to claim 1, wherein the first flow hole and the second flow hole are alternately arranged at intervals in the circumferential direction.
前記冷媒通路は、前記ロータコアの軸方向の一方側端から他方側端にわたって連続した螺旋形状をなして形成されていることを特徴とする請求項1から3のいずれか一項に記載の回転電機のロータ。   4. The rotating electrical machine according to claim 1, wherein the refrigerant passage is formed in a spiral shape continuous from one end in the axial direction of the rotor core to the other end. 5. Rotor. 請求項1から4のいずれか一項に記載の回転電機のロータの製造方法であって、
複数の鋼板本体のそれぞれに、周方向に間隔をあけて配置された複数の磁石挿入孔を有する環状の磁石挿入部を形成し、複数の第一鋼板を作製する第一鋼板作製工程と、
前記複数の第一鋼板のそれぞれに、前記複数の冷媒通流孔を有する環状の冷媒通流部を形成し、複数の第二鋼板を作製する第二鋼板作製工程と、を含み、
前記第二鋼板作製工程では、前記複数の第二鋼板のそれぞれにおいて、前記磁石挿入部に対する前記冷媒通流部の周方向へのずらし角度を互いに異ならせ、
前記第二鋼板作製工程の後、前記複数の第二鋼板を、前記磁石挿入部の位置を固定して積層することを特徴とする回転電機のロータの製造方法。
A method for manufacturing a rotor of a rotating electrical machine according to any one of claims 1 to 4,
A first steel plate production step of forming a plurality of first steel plates, forming an annular magnet insertion portion having a plurality of magnet insertion holes arranged at intervals in the circumferential direction in each of the plurality of steel plate bodies,
Each of the plurality of first steel plates includes a second steel plate production step of forming a plurality of second steel plates by forming an annular refrigerant flow portion having the plurality of refrigerant flow holes,
In each of the plurality of second steel plates in the second steel plate manufacturing step, the shift angles in the circumferential direction of the refrigerant flow portion with respect to the magnet insertion portion are different from each other,
A method of manufacturing a rotor of a rotating electrical machine, wherein after the second steel plate manufacturing step, the plurality of second steel plates are stacked while fixing the position of the magnet insertion portion.
筒状のステータと、
前記ステータに対して径方向の内側に配置された請求項1から4のいずれか一項に記載の回転電機のロータと、を備えることを特徴とする回転電機。
A cylindrical stator;
A rotating electrical machine comprising: the rotor of the rotating electrical machine according to any one of claims 1 to 4 disposed radially inward of the stator.
JP2018104238A 2018-05-31 2018-05-31 Rotating machine rotor, its manufacturing method and rotating machine Active JP7015213B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018104238A JP7015213B2 (en) 2018-05-31 2018-05-31 Rotating machine rotor, its manufacturing method and rotating machine
CN201910448469.4A CN110556948B (en) 2018-05-31 2019-05-27 Rotor of rotating electrical machine and method of manufacturing the same, and rotating electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018104238A JP7015213B2 (en) 2018-05-31 2018-05-31 Rotating machine rotor, its manufacturing method and rotating machine

Publications (2)

Publication Number Publication Date
JP2019213245A true JP2019213245A (en) 2019-12-12
JP7015213B2 JP7015213B2 (en) 2022-02-02

Family

ID=68736386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018104238A Active JP7015213B2 (en) 2018-05-31 2018-05-31 Rotating machine rotor, its manufacturing method and rotating machine

Country Status (2)

Country Link
JP (1) JP7015213B2 (en)
CN (1) CN110556948B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114915069A (en) * 2022-06-17 2022-08-16 珠海格力电器股份有限公司 A kind of rotor punching piece, rotor iron core and motor rotor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114696494A (en) * 2020-12-31 2022-07-01 广东美的制冷设备有限公司 Rotor and motor of a motor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103986263A (en) * 2014-06-07 2014-08-13 哈尔滨理工大学 A rotor lamination and a method for forming a spiral channel
JP2015061466A (en) * 2013-09-20 2015-03-30 本田技研工業株式会社 Rotating electrical machine rotor
WO2017001490A1 (en) * 2015-06-30 2017-01-05 Abb Schweiz Ag Rotor for electric machine and electric machine comprising the same
WO2017121526A1 (en) * 2016-01-15 2017-07-20 Continental Automotive Gmbh Electrical machine
DE102016210930A1 (en) * 2016-06-20 2017-12-21 Continental Automotive Gmbh Rotor laminated core for an electric machine
JP2018033265A (en) * 2016-08-25 2018-03-01 本田技研工業株式会社 Rotor structure of rotating electrical machine
JP2018074759A (en) * 2016-10-28 2018-05-10 日産自動車株式会社 Rotating electrical machine rotor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101098091A (en) * 2006-12-28 2008-01-02 刘连兵 Permanent-magnet arc welding alternator rotor
AT509029B1 (en) * 2008-11-17 2015-04-15 Traktionssysteme Austria Gmbh PERMANENT MAGNETIC RACK MACHINE
CN202014176U (en) * 2011-03-17 2011-10-19 广州市鼎丰机械有限公司 Brushless direct current motor rotor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015061466A (en) * 2013-09-20 2015-03-30 本田技研工業株式会社 Rotating electrical machine rotor
CN103986263A (en) * 2014-06-07 2014-08-13 哈尔滨理工大学 A rotor lamination and a method for forming a spiral channel
WO2017001490A1 (en) * 2015-06-30 2017-01-05 Abb Schweiz Ag Rotor for electric machine and electric machine comprising the same
WO2017121526A1 (en) * 2016-01-15 2017-07-20 Continental Automotive Gmbh Electrical machine
DE102016210930A1 (en) * 2016-06-20 2017-12-21 Continental Automotive Gmbh Rotor laminated core for an electric machine
JP2018033265A (en) * 2016-08-25 2018-03-01 本田技研工業株式会社 Rotor structure of rotating electrical machine
JP2018074759A (en) * 2016-10-28 2018-05-10 日産自動車株式会社 Rotating electrical machine rotor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114915069A (en) * 2022-06-17 2022-08-16 珠海格力电器股份有限公司 A kind of rotor punching piece, rotor iron core and motor rotor

Also Published As

Publication number Publication date
CN110556948B (en) 2021-06-22
JP7015213B2 (en) 2022-02-02
CN110556948A (en) 2019-12-10

Similar Documents

Publication Publication Date Title
JP6079012B2 (en) 3-phase rotating electric machine
JP5598378B2 (en) shaft
JP5893462B2 (en) Rotating electric machine
EP2863516B1 (en) Motor
JP2020120470A (en) Rotary electric machine
JP2005318782A (en) Cooling structure for axial gap electric motor
JP2006025573A (en) Structure of stator of disk type rotary electric machine
JP7483928B2 (en) Rotors, rotating electrical machines
JP7115912B2 (en) Rotor manufacturing method
KR20230024411A (en) motor
JP6567304B2 (en) Rotating electric machine and hoisting machine
JP2014138543A (en) Rotating electric machine
WO2019049397A1 (en) Rotor cooling structure for dynamo-electric machine
JP2013258889A (en) Induction motor
JP2010246185A (en) Rotor and motor
JP2019213245A (en) Rotor for rotary electric machine and manufacturing method for the same and rotary electric machine
JP2017158398A (en) Rotary electric machine
JP2018061405A (en) Synchronous reluctance type rotary electric machine
CN111478519B (en) Rotating electrical machine
JP2019110664A (en) Cooling structure for stator
JP5097743B2 (en) Electric motor
JP2019149859A (en) Magnet cooling structure and rotary electric machine
JP2009106001A (en) Rotating electric machine
JP2013192339A (en) Induction motor
JP6042244B2 (en) Motor series and how to create it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220121