[go: up one dir, main page]

JP2019212637A - Electrode active material for all-solid secondary battery, manufacturing method thereof, and all-solid secondary battery - Google Patents

Electrode active material for all-solid secondary battery, manufacturing method thereof, and all-solid secondary battery Download PDF

Info

Publication number
JP2019212637A
JP2019212637A JP2019161173A JP2019161173A JP2019212637A JP 2019212637 A JP2019212637 A JP 2019212637A JP 2019161173 A JP2019161173 A JP 2019161173A JP 2019161173 A JP2019161173 A JP 2019161173A JP 2019212637 A JP2019212637 A JP 2019212637A
Authority
JP
Japan
Prior art keywords
solid
electrode active
active material
solid electrolyte
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019161173A
Other languages
Japanese (ja)
Other versions
JP7061101B2 (en
Inventor
弘樹 山下
Hiroki Yamashita
弘樹 山下
大神 剛章
Takeaki Ogami
剛章 大神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Publication of JP2019212637A publication Critical patent/JP2019212637A/en
Application granted granted Critical
Publication of JP7061101B2 publication Critical patent/JP7061101B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Catalysts (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

【課題】継続的な二次電池の使用においても固体電解質との界面抵抗が有効に低減される、全固体二次電池用電極活物質、及びその製造方法、並びに全固体二次電池を提供する。
【解決手段】平均繊維径が50nm以下のセルロースナノファイバー由来の炭素鎖に複数の固体電解質ナノ粒子(a)が線状に担持してなる固体電解質ナノ粒子集合体(b)が、電極活物質粒子(A)の表面に担持されてなる、全固体二次電池用電極活物質。
【選択図】図1
An electrode active material for an all-solid-state secondary battery, a method for manufacturing the same, and an all-solid-state secondary battery, in which the interfacial resistance with a solid electrolyte is effectively reduced even when the secondary battery is continuously used. .
A solid electrolyte nanoparticle aggregate (b) in which a plurality of solid electrolyte nanoparticles (a) are linearly supported on a carbon chain derived from cellulose nanofibers having an average fiber diameter of 50 nm or less is an electrode active material. An electrode active material for an all-solid-state secondary battery, supported on the surface of the particles (A).
[Selection] Figure 1

Description

本発明は、固体電解質との界面抵抗が低減された全固体二次電池用電極活物質(正極活物質、負極活物質等)、特に全固体リチウムイオン二次電池用電極活物質、及びそれらの製造方法、並びにそれらを用いた全固体二次電池ないし全固体リチウムイオン二次電池に関する。   The present invention relates to an electrode active material for an all-solid-state secondary battery with reduced interface resistance with a solid electrolyte (a positive electrode active material, an anode active material, etc.), particularly an electrode active material for an all-solid lithium ion secondary battery, and their The present invention relates to a production method, and an all-solid secondary battery or all-solid lithium ion secondary battery using the same.

現在市販されているリチウムイオン二次電池等の二次電池は、電解液に可燃性の有機溶媒が使用されているため、短絡防止のための構造や、短絡が生じた場合の温度上昇を抑える安全装置が必要となる。これに対し、LiLaZr12などの酸化物系の固体電解質や、75LiS・25Pなどの硫化物系の固体電解質を備えた全固体リチウムイオン二次電池は、エネルギー密度の高さと共に、可燃物を用いないことから安全装置の簡素化を図ることができ、製造コストや生産性にも優れるリチウムイオン二次電池として期待されている。 Secondary batteries such as lithium-ion secondary batteries currently on the market use a flammable organic solvent in the electrolyte solution, so they prevent structures from short-circuiting and prevent temperature rises when short-circuiting occurs. A safety device is required. On the other hand, an all-solid-state lithium ion secondary battery including an oxide-based solid electrolyte such as Li 7 La 3 Zr 2 O 12 or a sulfide-based solid electrolyte such as 75Li 2 S · 25P 2 S 5 is It is expected to be a lithium ion secondary battery that has high energy density and simplifies the safety device because it does not use combustible materials, and is excellent in manufacturing cost and productivity.

全固体リチウムイオン二次電池は、アルミ箔等の正極集電体、正極活物質、固体電解質、負極活物質、及び銅箔等の負極集電体といった、構成材料のすべてが固体物質で構成されている。上記全固体リチウムイオン二次電池の製造では、一般的に、これらの構成材料を積層してプレスする工程が含まれるが、これは、固体材料間の固−固界面の接触を改良して界面抵抗を低減し、得られるリチウムイオン二次電池の性能を向上させるためである。   All solid-state lithium ion secondary batteries are composed of solid materials such as a positive electrode current collector such as aluminum foil, a positive electrode active material, a solid electrolyte, a negative electrode active material, and a negative electrode current collector such as copper foil. ing. The production of the all-solid-state lithium ion secondary battery generally includes a step of laminating and pressing these constituent materials, which improves the solid-solid interface contact between the solid materials. This is for reducing the resistance and improving the performance of the obtained lithium ion secondary battery.

また、非特許文献1には、175℃で5時間の加熱処理を行うことによって、固体電解質Li7−xLaZr2−xTa12(LLZT)と金属リチウムからなる負極材料とが良好な接合界面を形成し、界面抵抗が効果的に低減できることが開示されている。 Further, Non-Patent Document 1, by performing heat treatment for 5 hours at 175 ° C., a solid electrolyte Li 7-x La 3 Zr 2 -x Ta x O 12 and (LLZT) a negative electrode material made of metallic lithium It is disclosed that a good bonding interface can be formed and the interface resistance can be effectively reduced.

稲田亮史外;第58回電池討論会講演要旨集、1C07、2017Ryoji Inada; Abstract of the 58th Battery Conference, 1C07, 2017

しかしながら、上述のようにプレスして製造された全固体リチウムイオン二次電池等では、充放電によって繰り返される電極活物質の膨張、収縮や、使用中の振動等によって、二次電池内の材料の積層構造の破壊が生じ、正極活物質と負極活物質とが接触して電池が内部短絡する恐れがある。また、非特許文献1の方法では、金属リチウム以外の電極活物質への適用が困難という問題がある。   However, in an all-solid-state lithium ion secondary battery or the like manufactured by pressing as described above, the material in the secondary battery may be affected by expansion and contraction of the electrode active material that is repeatedly charged and discharged, vibration during use, and the like. The laminated structure may be destroyed, and the positive electrode active material and the negative electrode active material may come into contact with each other and the battery may be internally short-circuited. Further, the method of Non-Patent Document 1 has a problem that it is difficult to apply to electrode active materials other than metallic lithium.

したがって、本発明の課題は、継続的な二次電池の使用においても固体電解質との界面抵抗が有効に低減される、全固体二次電池用電極活物質、特に全固体リチウムイオン二次電池用電極活物質、及びその製造方法、並びにそれらを用いた全固体二次電池を提供することにある。   Accordingly, an object of the present invention is to provide an electrode active material for an all-solid secondary battery, particularly an all-solid lithium ion secondary battery, in which the interface resistance with the solid electrolyte is effectively reduced even in continuous use of the secondary battery. It is an object to provide an electrode active material, a manufacturing method thereof, and an all-solid-state secondary battery using the same.

本発明者らは、上記課題を解決するため鋭意検討した結果、以下に示す全固体二次電池用電極活物質、及びその製造方法、並びにそれらを用いた全固体二次電池により、上記目的を達成できることを見出して、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have achieved the above object by using the electrode active material for an all-solid secondary battery shown below, a method for producing the same, and an all-solid secondary battery using them. The inventors have found that this can be achieved and have completed the present invention.

すなわち、本発明の全固体二次電池用電極活物質は、平均繊維径が50nm以下のセルロースナノファイバー由来の炭素鎖に複数の固体電解質ナノ粒子(a)が線状に担持してなる固体電解質ナノ粒子集合体(b)が、電極活物質粒子(A)の表面に担持されてなることを特徴とする。   That is, the electrode active material for an all-solid secondary battery of the present invention is a solid electrolyte in which a plurality of solid electrolyte nanoparticles (a) are linearly supported on a carbon chain derived from cellulose nanofibers having an average fiber diameter of 50 nm or less. The nanoparticle aggregate (b) is supported on the surface of the electrode active material particles (A).

また、本発明の他の全固体二次電池用電極活物質は、平均繊維径が50nm以下のセルロースナノファイバーに誘導されて固体電解質ナノ粒子(a)が線状に連続して配列した固体電解質ナノ粒子列(c)が、電極活物質粒子(A)の表面に担持されてなることを特徴とする。   Another electrode active material for an all-solid-state secondary battery according to the present invention is a solid electrolyte in which solid electrolyte nanoparticles (a) are linearly arrayed by being induced by cellulose nanofibers having an average fiber diameter of 50 nm or less. The nanoparticle array (c) is supported on the surface of the electrode active material particles (A).

本発明の全固体二次電池用電極活物質によると、上述のように、セルロースナノファイバー由来の炭素鎖を軸又は基材として、これに特定の固体電解質のナノ粒子が複数連なって担持又は配列してなる特異な形状を呈する固体電解質ナノ粒子集合体(b)、又は固体電解質のナノ粒子を用いて得られる線状に配列した複数の固体電解質のナノ粒子列(c)を、たとえば、電極活物質層と固体電解質の界面部に存在させることによって、電極活物質と固体電解質との有効な接合が十分に確保されて界面抵抗が低減され、さらには、電極活物質が充放電による膨張、収縮を繰り返しても電極活物質と固体電解質との有効な接合が継続され得ることが可能となる。   According to the electrode active material for an all-solid-state secondary battery of the present invention, as described above, a carbon chain derived from cellulose nanofibers is used as a shaft or a substrate, and a plurality of nanoparticles of a specific solid electrolyte are supported or arranged in series on this. A solid electrolyte nanoparticle aggregate (b) exhibiting a unique shape, or a plurality of solid electrolyte nanoparticle arrays (c) arranged linearly obtained using the solid electrolyte nanoparticles, for example, an electrode By being present at the interface between the active material layer and the solid electrolyte, effective bonding between the electrode active material and the solid electrolyte is sufficiently ensured to reduce the interface resistance, and further, the electrode active material expands due to charge and discharge, Even when the contraction is repeated, it is possible to continue effective bonding between the electrode active material and the solid electrolyte.

また、本発明の全固体二次電池用電極活物質において、上記電極活物質粒子(A)の平均二次粒子径が、50nm〜50μmとすることができる。上記構成とすることにより、電極活物質(粒子)や電解質(粒子)等との空隙率の小さい良好なパッキング状態を構成することができ、全固体二次電池用電極活物質としてより好適なものとなりうる。   In the electrode active material for an all-solid secondary battery of the present invention, the average secondary particle diameter of the electrode active material particles (A) can be 50 nm to 50 μm. By adopting the above-described configuration, a good packing state with a small porosity with the electrode active material (particles), the electrolyte (particles), etc. can be formed, which is more suitable as an electrode active material for an all-solid-state secondary battery. It can be.

また、本発明の全固体二次電池用電極活物質において、上記固体電解質ナノ粒子(a)の平均粒子径が、0.5nm〜100nmとすることができる。上記構成とすることにより、電極活物質(粒子)や電解質(粒子)等と空隙率の小さい良好なパッキング状態を構成することができ、全固体二次電池用電極活物質としてより好適なものとなりうる。   In the electrode active material for an all-solid secondary battery of the present invention, the average particle diameter of the solid electrolyte nanoparticles (a) can be set to 0.5 nm to 100 nm. By adopting the above configuration, a good packing state with a small porosity can be formed with the electrode active material (particles), the electrolyte (particles), etc., and it becomes more suitable as an electrode active material for an all-solid-state secondary battery. sell.

また、本発明の全固体二次電池用電極活物質において、上記電極活物質粒子(A)と、上記固体電解質ナノ粒子集合体(b)、上記固体電解質ナノ粒子列(c)、又はその両方を含む場合にはその合計量、との質量割合(電極活物質粒子(A):固体電解質ナノ粒子集合体(b)+固体電解質ナノ粒子列(c)((ただし、固体電解質ナノ粒子集合体(b)と固体電解質ナノ粒子列(c)は、いずれか一方しか含まない場合は、その一方のみ。))が、99.9:0.1〜70:30とすることができる。上記構成とすることにより、全固体二次電池用電極活物質としてより好適なものとなりうる。   Further, in the electrode active material for an all-solid-state secondary battery of the present invention, the electrode active material particles (A), the solid electrolyte nanoparticle aggregate (b), the solid electrolyte nanoparticle array (c), or both The total amount, and the mass ratio (electrode active material particles (A): solid electrolyte nanoparticle aggregate (b) + solid electrolyte nanoparticle array (c)) (however, solid electrolyte nanoparticle aggregate (B) and the solid electrolyte nanoparticle array (c), when only one of them is included, only one of them.)) Can be set to 99.9: 0.1 to 70:30. By doing so, it can be more suitable as an electrode active material for an all-solid-state secondary battery.

また、本発明の全固体二次電池用電極活物質において、上記電極活物質粒子(A)が、LiNi1−x−yCoMn、LiNi1−x−yCoAl、LiMPO(M=Ni、Co、Fe、Mn)、LiMSiO(M=Ni、Co、Fe、Mn)、SiO、及びLiTi12からなる群のうち少なくとも1種以上を含むものであっても構わない。上記構成とすることにより、全固体二次電池用電極活物質、特に全固体リチウムイオン二次電池用電極活物質としてより好適なものとなりうる。 In the electrode active material for an all-solid-state secondary battery of the present invention, the electrode active material particles (A) are LiNi 1-xy Co x Mn y O 2 , LiNi 1-xy Co x Al y O. 2 , LiMPO 4 (M = Ni, Co, Fe, Mn), Li 2 MSiO 4 (M = Ni, Co, Fe, Mn), SiO x , and at least one selected from the group consisting of Li 4 Ti 5 O 12. The above may be included. By setting it as the said structure, it can become more suitable as an electrode active material for all-solid-state secondary batteries, especially an electrode active material for all-solid-state lithium ion secondary batteries.

また、本発明の全固体二次電池用電極活物質において、上記固体電解質ナノ粒子(a)が、LiPO‐LiSiO、Li7−xLaZr2−xTa12、La0.51Li0.34TiO2.94、Li1.3Al0.3Ti1.7(PO、LiLaZr12、及び50LiSiO・50LiBOからなる群のうち少なくとも1種以上を含むものであっても構わない。上記構成とすることにより、全固体二次電池用電極活物質、特に全固体リチウムイオン二次電池用電極活物質としてより好適なものとなりうる。 In the electrode active material for an all-solid-state secondary battery according to the present invention, the solid electrolyte nanoparticles (a) are Li 3 PO 4 -Li 4 SiO 4 , Li 7-x La 3 Zr 2 -x Ta x O 12. La 0.51 Li 0.34 TiO 2.94 , Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 , Li 7 La 3 Zr 2 O 12 , and 50Li 4 SiO 4 .50Li 3 BO You may include at least 1 sort (s) among the group which consists of three . By setting it as the said structure, it can become more suitable as an electrode active material for all-solid-state secondary batteries, especially an electrode active material for all-solid-state lithium ion secondary batteries.

また、本発明の全固体二次電池用電極活物質において、上記線状が、直線状、又は略直線状であるとすることができる。上記構成とすることにより、全固体二次電池用電極活物質として好適なものとなりうる。   In the electrode active material for an all-solid-state secondary battery of the present invention, the linear shape may be a linear shape or a substantially linear shape. By setting it as the said structure, it can become a suitable thing as an electrode active material for all-solid-state secondary batteries.

また、本発明の全固体二次電池用電極活物質において、上記全固体リチウムイオン二次電池用であるとすることができる。本発明の全固体二次電池用電極活物質は、上記特徴を有しているため、特に全固体リチウムイオン二次電池用として用いられることが好ましい。   Moreover, the electrode active material for an all-solid-state secondary battery of the present invention can be used for the all-solid-state lithium ion secondary battery. Since the electrode active material for an all-solid-state secondary battery of the present invention has the above characteristics, it is particularly preferable to be used for an all-solid-state lithium ion secondary battery.

一方、本発明の全固体二次電池用電極活物質の製造方法は、
次の工程(II)〜(III):
少なくとも1種の固体電解質の原料化合物、アルカリ溶液、及び原料となるセルロースナノファイバー(以下、「CNF」と称することもある。)を含有するスラリーを、温度が100℃以上、圧力が0.3MPa〜0.9MPaの水熱反応に付して、セルロースナノファイバーの一部、又は全部を内包する固体電解質ナノ粒子集合体(d)、セルロースナノファイバーの一部、又は全部を内包する上記固体電解質の前駆体からなるナノ粒子集合体(e)、又はその両方、を製造する工程(II)、及び、
少なくとも、工程(II)で得られた上記原料CNFの一部、又は全部を内包する固体電解質ナノ粒子集合体(d)、原料CNFの一部、又は全部を内包する上記固体電解質の前駆体からなるナノ粒子集合体(e)及び上記原料CNFの一部、又は全部を内包する上記固体電解質の前駆体からなるナノ粒子集合体(e)と反応して固体電解質ナノ粒子集合体(b)若しくは固体電解質ナノ粒子列(c)を生成するための残余の原料化合物、又はその両方を焼成する工程(III)、
を含むことを特徴とする。
On the other hand, the method for producing an electrode active material for an all-solid-state secondary battery of the present invention includes:
Next steps (II) to (III):
A slurry containing at least one solid electrolyte raw material compound, an alkaline solution, and cellulose nanofibers (hereinafter also referred to as “CNF”) as a raw material has a temperature of 100 ° C. or higher and a pressure of 0.3 MPa. The solid electrolyte nanoparticle aggregate (d) enclosing part or all of the cellulose nanofibers by subjecting to a hydrothermal reaction of ˜0.9 MPa, and the solid electrolyte enclosing part or all of the cellulose nanofibers A step (II) of producing a nanoparticle aggregate (e) consisting of precursors of
At least from the solid electrolyte nanoparticle aggregate (d) enclosing part or all of the raw material CNF obtained in step (II), the precursor of the solid electrolyte encapsulating part or all of the raw material CNF A solid electrolyte nanoparticle aggregate (b) which reacts with the nanoparticle aggregate (e) and the nanoparticle aggregate (e) comprising the precursor of the solid electrolyte encapsulating part or all of the raw material CNF Step (III) of firing the remaining raw material compounds for producing the solid electrolyte nanoparticle array (c), or both,
It is characterized by including.

また、他の本発明の全固体二次電池用電極活物質の製造方法は、
次の工程(II)〜(III’):
少なくとも1種の固体電解質の原料化合物、アルカリ溶液、及び原料となるセルロースナノファイバーを含有するスラリーを、温度が100℃以上、圧力が0.3MPa〜0.9MPaの水熱反応に付して、原料CNFの一部、又は全部を内包する固体電解質ナノ粒子集合体(d)、原料CNFの一部、又は全部を内包する上記固体電解質の前駆体からなるナノ粒子集合体(e)、又はその両方、を製造する工程(II)、及び、
少なくとも、工程(II)で得られた上記原料CNFの一部、又は全部を内包する固体電解質ナノ粒子集合体(d)、原料CNFの一部、又は全部を内包する上記固体電解質の前駆体からなるナノ粒子集合体(e)及び原料CNFの一部、又は全部を内包する上記固体電解質の前駆体からなるナノ粒子集合体(e)と反応して固体電解質ナノ粒子集合体(b)を生成するための残余の原料化合物、又はその両方を、還元雰囲気下で焼成する工程(III’)、
を含むことを特徴とする。
In addition, another method for producing an electrode active material for an all-solid-state secondary battery of the present invention,
Next steps (II) to (III ′):
A slurry containing at least one raw material compound of a solid electrolyte, an alkali solution, and cellulose nanofibers as a raw material is subjected to a hydrothermal reaction at a temperature of 100 ° C. or higher and a pressure of 0.3 MPa to 0.9 MPa, Solid electrolyte nanoparticle aggregate (d) encapsulating part or all of the raw material CNF, nanoparticle aggregate (e) comprising the solid electrolyte precursor encapsulating part or all of the raw material CNF, or Steps (II) for producing both, and
At least from the solid electrolyte nanoparticle aggregate (d) enclosing part or all of the raw material CNF obtained in step (II), the precursor of the solid electrolyte encapsulating part or all of the raw material CNF A solid electrolyte nanoparticle aggregate (b) by reacting with the nanoparticle aggregate (e) comprising the above-mentioned solid electrolyte precursor encapsulating part or all of the raw material CNF and the nanoparticle aggregate (e) A step (III ′) of firing the remaining raw material compounds to be used, or both in a reducing atmosphere,
It is characterized by including.

また、他の本発明の全固体二次電池用電極活物質の製造方法は、
次の工程(II)〜(III’’):
少なくとも1種の固体電解質の原料化合物、アルカリ溶液、及び原料となるセルロースナノファイバーを含有するスラリーを、温度が100℃以上、圧力が0.3MPa〜0.9MPaの水熱反応に付して、原料CNFの一部、又は全部を内包する固体電解質ナノ粒子集合体(d)、原料CNFの一部、又は全部を内包する上記固体電解質の前駆体からなるナノ粒子集合体(e)、又はその両方、を製造する工程(II)、及び、
少なくとも、工程(II)で得られた上記原料CNFの一部、又は全部を内包する固体電解質ナノ粒子集合体(d)、原料CNFの一部、又は全部を内包する上記固体電解質の前駆体からなるナノ粒子集合体(e)及び原料CNFの一部、又は全部を内包する上記固体電解質の前駆体からなるナノ粒子集合体(e)と反応して固体電解質ナノ粒子列(c)を生成するための残余の原料化合物、又はその両方を、酸化雰囲気下で焼成する工程(III’’)、
を含むことを特徴とする。
In addition, another method for producing an electrode active material for an all-solid-state secondary battery of the present invention,
Next steps (II) to (III ″):
A slurry containing at least one raw material compound of a solid electrolyte, an alkali solution, and cellulose nanofibers as a raw material is subjected to a hydrothermal reaction at a temperature of 100 ° C. or higher and a pressure of 0.3 MPa to 0.9 MPa, Solid electrolyte nanoparticle aggregate (d) encapsulating part or all of the raw material CNF, nanoparticle aggregate (e) comprising the solid electrolyte precursor encapsulating part or all of the raw material CNF, or Steps (II) for producing both, and
At least from the solid electrolyte nanoparticle aggregate (d) enclosing part or all of the raw material CNF obtained in step (II), the precursor of the solid electrolyte encapsulating part or all of the raw material CNF Reacting with the nanoparticle aggregate (e) and the nanoparticle aggregate (e) comprising the precursor of the solid electrolyte enclosing part or all of the raw material CNF to produce a solid electrolyte nanoparticle array (c) A step (III ″) of firing the remaining raw material compound for the purpose, or both in an oxidizing atmosphere,
It is characterized by including.

本発明の全固体二次電池用電極活物質の製造方法は、上記構成を有することにより、上述の全固体二次電池用電極活物質をより簡便に製造することが可能となる。さらには、上述のように、工程(III’)、又は工程(III’’)を有することにより、セルロースナノファイバー由来の炭素鎖に複数の固体電解質ナノ粒子(a)が線状に担持してなる上記固体電解質ナノ粒子集合体(b)を備える電極活物質、及びセルロースナノファイバーに誘導されて固体電解質ナノ粒子(a)が線状に連続して配列した上記固体電解質ナノ粒子列(c)を備える電極活物質について、各々所望のものを簡便に得ることが可能となる。   Since the method for producing an electrode active material for an all-solid-state secondary battery of the present invention has the above configuration, the above-described electrode active material for an all-solid-state secondary battery can be more easily produced. Furthermore, as described above, by having the step (III ′) or the step (III ″), a plurality of solid electrolyte nanoparticles (a) are linearly supported on the carbon chains derived from cellulose nanofibers. An electrode active material comprising the solid electrolyte nanoparticle aggregate (b), and the solid electrolyte nanoparticle array (c) in which the solid electrolyte nanoparticles (a) are linearly arranged continuously by being induced by cellulose nanofibers. It is possible to easily obtain each desired electrode active material comprising

また、本発明の全固体二次電池用固体電解質の製造方法において、工程(III)、(III’)、又は(III’’)において、焼成する際に、さらに電極活物質粒子(A)を含むことができる。たとえば、焼成前の原料混合物に、事前に、電極活物質粒子(A)を含めておくことで、上記固体電解質ナノアレイ(b)、又は固体電解質ナノ粒子列(c)のいずれか一方を、電極活物質粒子(A)の表面に担持した全固体二次電池用電極活物質をより簡便に得ることが可能となりうる。   In the method for producing a solid electrolyte for an all-solid-state secondary battery of the present invention, the electrode active material particles (A) are further added during firing in the step (III), (III ′), or (III ″). Can be included. For example, by including the electrode active material particles (A) in advance in the raw material mixture before firing, either the solid electrolyte nanoarray (b) or the solid electrolyte nanoparticle array (c) can be used as an electrode. It may be possible to more easily obtain an electrode active material for an all-solid-state secondary battery supported on the surface of the active material particles (A).

また、本発明の全固体二次電池用電極活物質の製造方法において、さらに、工程(III)、(III’)、又は(III’’)に先立ち、上記電極活物質粒子(A)を製造する工程(I)、を含むことができる。   In the method for producing an electrode active material for an all-solid-state secondary battery of the present invention, the electrode active material particles (A) are produced prior to the step (III), (III ′), or (III ″). Step (I).

また、本発明の全固体二次電池用電極活物質の製造方法において、工程(II)のスラリー中におけるセルロースナノファイバーの含有量が、スラリー中の水100質量部に対し、炭素原子換算量で0.01質量部〜10質量部であるとすることができる。上記構成とすることにより、より確実に、原料CNFの一部、又は全部を内包する固体電解質ナノ粒子集合体(d)、原料CNFの一部、又は全部を内包する上記固体電解質の前駆体からなるナノ粒子集合体(e)、又はその両方へと変換させ、上記全固体二次電池用電極活物質を得ることができうる。   Moreover, in the manufacturing method of the electrode active material for all-solid-state secondary batteries of this invention, content of the cellulose nanofiber in the slurry of process (II) is carbon atom conversion amount with respect to 100 mass parts of water in slurry. It can be 0.01 mass part-10 mass parts. By adopting the above-described configuration, the solid electrolyte nanoparticle aggregate (d) enclosing part or all of the raw material CNF is more reliably obtained from the precursor of the solid electrolyte including part or all of the raw material CNF. It is possible to obtain the above-mentioned electrode active material for an all-solid-state secondary battery by converting into the nanoparticle aggregate (e) or both.

また、本発明の全固体二次電池用電極活物質の製造方法において、工程(II)における水熱反応が、温度が100℃以上、圧力が0.3MPa〜0.9MPa、反応時間が0.5時間〜24時間であるとすることができる。上記構成とすることにより、より確実に、原料CNFの一部、又は全部を内包する固体電解質ナノ粒子集合体(d)、原料CNFの一部、又は全部を内包する上記固体電解質の前駆体からなるナノ粒子集合体(e)、又はその両方へと変換させ、上記全固体二次電池用電極活物質を得ることができうる。   Moreover, in the manufacturing method of the electrode active material for all-solid-state secondary batteries of this invention, the hydrothermal reaction in process (II) is temperature 100 degreeC or more, pressure is 0.3 Mpa-0.9 Mpa, reaction time is 0.00. It can be from 5 hours to 24 hours. By adopting the above-described configuration, the solid electrolyte nanoparticle aggregate (d) enclosing part or all of the raw material CNF is more reliably obtained from the precursor of the solid electrolyte including part or all of the raw material CNF. It is possible to obtain the above-mentioned electrode active material for an all-solid-state secondary battery by converting into the nanoparticle aggregate (e) or both.

また、本発明の全固体二次電池用電極活物質の製造方法において、工程(III)、(III’)、又は(III’’)における焼成の温度が、500℃〜1200℃であるとすることができる。上記構成とすることにより、より確実に、上記セルロースナノファイバーを炭化または焼失させるとともに、原料CNFの一部、又は全部を内包する上記固体電解質の前駆体からなるナノ粒子集合体(e)が含まれる場合にはそれを固体電解質ナノ粒子集合体(b)、又は固体電解質ナノ粒子列(c)と変換させ、上記全固体二次電池用電極活物質を得ることができうる。   Moreover, in the manufacturing method of the electrode active material for all-solid-state secondary batteries of this invention, the calcination temperature in process (III), (III '), or (III' ') shall be 500 to 1200 degreeC. be able to. By the above configuration, the nanoparticle aggregate (e) composed of the precursor of the solid electrolyte encapsulating part or all of the raw material CNF while carbonizing or burning out the cellulose nanofibers more reliably is included. In the case where the solid electrolyte nanoparticle aggregate (b) or the solid electrolyte nanoparticle array (c) is converted, the electrode active material for an all-solid-state secondary battery can be obtained.

他方、本発明の全固体二次電池は、上記全固体二次電池用電極活物質を備えることを特徴とする。   On the other hand, the all-solid-state secondary battery of the present invention includes the above-described electrode active material for all-solid-state secondary batteries.

上記全固体二次電池は、上記特性を有する全固体二次電池用固体電解質を構成要素として備えるため、充放電容量や耐久性等をより一層高めうることができる。   Since the all-solid-state secondary battery includes the solid electrolyte for all-solid-state secondary batteries having the above characteristics as a constituent element, the charge / discharge capacity, durability, and the like can be further improved.

また、本発明の全固体二次電池は、全固体リチウムイオン二次電池であることが好ましい。上記特性を備えるため、充放電容量や耐久性等をより一層高めた全固体リチウムイオン二次電池となりうる。   Moreover, it is preferable that the all-solid-state secondary battery of this invention is an all-solid-state lithium ion secondary battery. Since it has the above characteristics, it can be an all-solid-state lithium ion secondary battery with further improved charge / discharge capacity and durability.

本発明の全固体二次電池用電極活物質によれば、電極活物質粒子(A)の表面に固体電解質ナノ粒子集合体(b)、又は固体電解質粒子のナノ粒子列(c)が担持されているため、それを用いた全固体二次電池、特に全固体リチウムイオン二次電池における電極活物質粒子と上記固体電解質粒子間の界面抵抗が十分に低減され、上記二次電池の充放電容量をより一層高めることができうる。   According to the electrode active material for an all-solid-state secondary battery of the present invention, the solid electrolyte nanoparticle aggregate (b) or the nanoparticle array (c) of solid electrolyte particles is supported on the surface of the electrode active material particles (A). Therefore, the interfacial resistance between the electrode active material particles and the solid electrolyte particles in an all-solid secondary battery using the same, particularly an all-solid lithium ion secondary battery is sufficiently reduced, and the charge / discharge capacity of the secondary battery is Can be further increased.

また、本発明の全固体二次電池用電極活物質の製造方法によれば、上述の電極活物質粒子(A)の表面に固体電解質ナノ粒子集合体(b)、又は固体電解質粒子のナノ粒子列(c)が担持されている所望の各固体電解質を簡便に得ることが可能となる。   Moreover, according to the manufacturing method of the electrode active material for all-solid-state secondary batteries of this invention, the solid electrolyte nanoparticle aggregate | assembly (b) on the surface of the above-mentioned electrode active material particle (A), or the nanoparticle of solid electrolyte particle Each desired solid electrolyte carrying the row (c) can be easily obtained.

また、本発明の全固体二次電池、ないし全固体リチウムイオン二次電池によれば、上記特性を有する全固体二次電池用電極活物質を備えるため、電極活物質粒子と上記固体電解質粒子間の界面抵抗が十分に低減され、上記二次電池の充放電容量や充放電の繰り返しに伴う耐久性をより一層高めた全固体二次電池、ないし全固体リチウムイオン二次電池とすることができうる。   In addition, according to the all-solid secondary battery or the all-solid lithium ion secondary battery of the present invention, the electrode active material for the all-solid-state secondary battery having the above characteristics is provided. The all-solid-state secondary battery, or the all-solid-state lithium ion secondary battery, in which the interfacial resistance of the secondary battery is sufficiently reduced and the durability associated with repeated charge / discharge capacity and charge / discharge of the secondary battery can be further increased. sell.

実施例1で得られた電極活物質粒子の表面構造を示すTEM写真である。2 is a TEM photograph showing the surface structure of electrode active material particles obtained in Example 1. FIG.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

〔全固体二次電池用電極活物質〕
本発明の全固体リチウムイオン二次電池用電極活物質は、平均二次粒子径が50nm〜50μmの電極活物質粒子(A)の表面に、平均繊維径が50nm以下のセルロースナノファイバー由来の炭素鎖に、平均粒径が0.5nm〜100nmの複数の固体電解質ナノ粒子(a)が線状に担持してなる固体電解質ナノ粒子集合体(b)(以後、「固体電解質ナノアレイ(b)」と称することもある。)か、又は上記セルロースナノファイバーに誘導されて固体電解質ナノ粒子(a)が線状に連続して配列した固体電解質ナノ粒子列(c)が、電極活物質粒子(A)の表面に担持されてなる。
[Electrode active material for all-solid-state secondary batteries]
The electrode active material for an all-solid-state lithium ion secondary battery of the present invention is a carbon derived from cellulose nanofibers having an average fiber diameter of 50 nm or less on the surface of electrode active material particles (A) having an average secondary particle diameter of 50 nm to 50 μm. Solid electrolyte nanoparticle aggregate (b) in which a plurality of solid electrolyte nanoparticles (a) having an average particle size of 0.5 nm to 100 nm are linearly supported on a chain (hereinafter referred to as “solid electrolyte nanoarray (b)”) Or a solid electrolyte nanoparticle array (c) in which the solid electrolyte nanoparticles (a) are continuously arranged in a linear form by being induced by the cellulose nanofibers are formed into electrode active material particles (A ).

ここで、本発明における固体電解質ナノ粒子集合体(b)とは、ナノスケールの構造体である平均繊維径が50nm以下のセルロースナノファイバー由来の炭素鎖に、もう一方のナノスケールの構造体である平均粒径が0.5nm〜100nmの複数の固体電解質ナノ粒子が線状に、連続して、又は断続的に、担持してなる、特異な形状を呈している。そして、上記固体電解質ナノ粒子集合体(b)は、構成材料の分離が生じ難いため、上記特異な形状を保持しつつ、電極活物質粒子(A)の表面に担持することが可能である。   Here, the solid electrolyte nanoparticle aggregate (b) in the present invention is the other nanoscale structure on a carbon chain derived from cellulose nanofibers having an average fiber diameter of 50 nm or less, which is a nanoscale structure. A plurality of solid electrolyte nanoparticles having an average particle diameter of 0.5 nm to 100 nm have a unique shape in which they are supported linearly, continuously or intermittently. And since the said solid electrolyte nanoparticle aggregate | assembly (b) does not produce separation of a constituent material easily, it can carry | support on the surface of an electrode active material particle (A), hold | maintaining the said specific shape.

本発明における固体電解質ナノアレイ(b)、又は固体電解質ナノ粒子列(c)が表面に担持された全固体二次電池用電極活物質、特に全固体リチウムイオン二次電池用電極活物質は、本発明の範囲が当該推測のメカニズムに限定されるものではないが、その表面の固体電解質ナノアレイ(b)、又は固体電解質ナノ粒子列(c)の担持による微小な凹凸構造によって、たとえば、充放電によって電極活物質の膨張、収縮が繰り返し生じた場合であっても、電極活物質粒子(A)と、その表面に担持された固体電解質ナノアレイ(b)、又は固体電解質ナノ粒子列(c)との間の接合は十分に効果的なまま残存し、さらに、電極活物質粒子(A)の表面には、被覆している微小な固体電解質ナノアレイ(b)、又は固体電解質ナノ粒子列(c)が形成する微小な凹凸を有する表面構造が形成され、電極活物質粒子(A)の表面に担持されるそれら固体電解質と、二次電池内において電極活物質粒子(A)に接して存在する固体電解質粒子との間に常に多量の有効な接合点が存在しうる状態を保持できることにより、これらを用いて得られる全固体二次電池、特に全固体リチウムイオン二次電池は、電極活物質粒子と固体電解質粒子間の界面抵抗が十分に低減されて、良好な充放電容量を発現しうると推測している。   The electrode active material for an all-solid secondary battery, in particular the electrode active material for an all-solid lithium ion secondary battery, on which the solid electrolyte nanoarray (b) or the solid electrolyte nanoparticle array (c) is supported on the surface, Although the scope of the invention is not limited to the presumed mechanism, the microscopic uneven structure by the support of the solid electrolyte nanoarray (b) or the solid electrolyte nanoparticle array (c) on the surface, for example, by charging and discharging Even when the electrode active material is repeatedly expanded and contracted, the electrode active material particles (A) and the solid electrolyte nanoarray (b) supported on the surface thereof or the solid electrolyte nanoparticle array (c) The bonding between them remains sufficiently effective, and on the surface of the electrode active material particles (A), the coated fine solid electrolyte nanoarray (b) or solid electrolyte nanoparticle array (c) A solid structure formed on the surface of the electrode active material particles (A) and a solid that is in contact with the electrode active material particles (A) in the secondary battery. By being able to maintain a state in which a large amount of effective joints can always exist between the electrolyte particles, all-solid secondary batteries obtained using these, particularly all-solid lithium ion secondary batteries, have electrode active material particles and It is presumed that the interfacial resistance between the solid electrolyte particles is sufficiently reduced and a good charge / discharge capacity can be expressed.

なお、上記電極活物質粒子(A)の表面上の上記固体電解質ナノアレイ(b)、又は上記電極活物質粒子(A)の表面上の上記固体電解質ナノ粒子列(c)の担持状態は、必ずしも物理的、又は化学的に強固である必要はない。なぜなら、たとえば、上述のとおり、充放電によって基材である電極活物質粒子が膨張、収縮を繰り返すために、強固な担持状態では電極活物質の体積変化によって固体電解質ナノアレイの破壊が生じる場合があるためや、全固体リチウムイオン二次電池の製造では、正極活物質層、固体電解質層、及び負極活物質層の積層構造をプレスして電池とするため、かかる圧縮力によって固体電解質ナノアレイ(b)を介して電極活物質粒子(A)と固体電解質粒子との間、又は固体電解質ナノ粒子列(c)を介して電極活物質粒子(A)と固体電解質粒子との間には、良好な接触状態が形成されうるからである。   The supported state of the solid electrolyte nanoarray (b) on the surface of the electrode active material particles (A) or the solid electrolyte nanoparticle array (c) on the surface of the electrode active material particles (A) is not necessarily limited. It need not be physically or chemically strong. This is because, for example, as described above, the electrode active material particles that are the base material repeatedly expand and contract due to charge and discharge, so that the solid electrolyte nanoarray may be destroyed due to the volume change of the electrode active material in a strong support state. For this reason, in the production of an all-solid-state lithium ion secondary battery, the laminated structure of the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer is pressed to form a battery. Good contact between the electrode active material particles (A) and the solid electrolyte particles via the electrode, or between the electrode active material particles (A) and the solid electrolyte particles via the solid electrolyte nanoparticle array (c) This is because a state can be formed.

また、本発明に用いる電極活物質粒子(A)は、全固体二次電池、特に全固体リチウムイオン二次電池に用いることができるものであって、かつ、後述する製造方法における焼成工程において固体電解質相の原料化合物と固相反応を生じ難いものであれば、その種類に制限はない。具体的には、たとえば、正極活物質としては、層状酸化物系のLiNi1−x−yCoMn、LiNi1−x−yCoAl、オリビン系のLiMPO(M=Ni、Co、Fe、Mn)、LiMSiO(M=Ni、Co、Fe、Mn)等をあげることができる。また、負極活物質としては、酸化物系のSiO、チタン酸化物系のLiTi12等をあげることができる。また、本発明の電極活物質粒子(A)は、LiNi1−x−yCoMn、LiNi1−x−yCoAl、LiMPO(M=Ni、Co、Fe、Mn)、LiMSiO(M=Ni、Co、Fe、Mn)、SiO、及びLiTi12からなる群のうち少なくとも1種以上を含むものであってもよい。 The electrode active material particles (A) used in the present invention can be used for an all-solid secondary battery, particularly an all-solid lithium ion secondary battery, and are solid in the firing step in the production method described later. There is no limitation on the type of the material as long as it is difficult to cause a solid phase reaction with the raw material compound of the electrolyte phase. Specifically, for example, as the positive electrode active material, layered oxide-based LiNi 1-xy Co x Mn y O 2 , LiNi 1-xy Co x Al y O 2 , olivine-based LiMPO 4 ( M = Ni, Co, Fe, Mn), Li 2 MSiO 4 (M = Ni, Co, Fe, Mn), and the like. Examples of the negative electrode active material include oxide-based SiO x , titanium oxide-based Li 4 Ti 5 O 12, and the like. The electrode active material particles (A) of the present invention, LiNi 1-x-y Co x Mn y O 2, LiNi 1-x-y Co x Al y O 2, LiMPO 4 (M = Ni, Co, Fe , Mn), Li 2 MSiO 4 (M = Ni, Co, Fe, Mn), SiO x , and Li 4 Ti 5 O 12 may be included.

上記全固体二次電池用電極活物質の一次粒子の平均粒径は、好ましくは500nm以下であり、より好ましくは400nm以下であり、さらに好ましくは、300nm以下である。このように、電極活物質の一次粒子の平均粒径を少なくとも500nm以下にすることで、リチウムイオンの挿入、及び脱離に伴う上記電極活物質粒子の膨張収縮量を抑制することができる。なお、上記一次粒子の平均粒径の下限値は特に限定されないが、ハンドリングの観点から、10nm以上が好ましい。   The average particle diameter of the primary particles of the electrode active material for an all-solid secondary battery is preferably 500 nm or less, more preferably 400 nm or less, and still more preferably 300 nm or less. As described above, when the average particle diameter of the primary particles of the electrode active material is at least 500 nm or less, the amount of expansion and contraction of the electrode active material particles accompanying the insertion and desorption of lithium ions can be suppressed. The lower limit of the average particle size of the primary particles is not particularly limited, but is preferably 10 nm or more from the viewpoint of handling.

また、上記一次粒子が凝集して形成する上記電極活物質粒子(A)の二次粒子の平均粒径は、好ましくは50nm〜50μmであり、より好ましくは50nm〜25μmであり、特に好ましくは50nm〜20μmであり、また、40nm〜30μmであってもよい。かかる二次粒子の平均粒径が50μm以下であると、得られる全固体二次電池の内部において、固体電解質粒子と空隙率の小さい良好なパッキング状態を構成することができる。   The average particle diameter of the secondary particles of the electrode active material particles (A) formed by aggregation of the primary particles is preferably 50 nm to 50 μm, more preferably 50 nm to 25 μm, and particularly preferably 50 nm. ˜20 μm, or 40 nm to 30 μm. When the average particle diameter of the secondary particles is 50 μm or less, a good packing state having a small porosity with the solid electrolyte particles can be formed inside the obtained all-solid-state secondary battery.

ここで、本発明における平均粒径とは、SEM、又はTEMの電子顕微鏡を用いた観察における、数十個の粒子の粒径(長軸の長さ)の測定値の平均値を意味する。また、上記平均値の算出は、たとえば、10個の粒子の測定値を用いて行う。   Here, the average particle diameter in the present invention means an average value of measured values of particle diameters (lengths of major axes) of several tens of particles in observation using an SEM or TEM electron microscope. The average value is calculated using, for example, measured values of 10 particles.

本発明の固体電解質ナノアレイ(b)を構成するセルロースナノファイバー由来の炭素鎖の原料となるセルロースナノファイバーとは、全ての植物細胞壁の約5割を占める骨格成分であって、上記細胞壁を構成する植物繊維をナノサイズまで解繊等することにより得ることができる軽量高強度繊維であり、水への良好な分散性も有している。また、セルロースナノファイバーを構成するセルロース分子鎖は、炭素による周期的構造が形成されていることから、還元条件下での焼成などして得られるセルロースナノファイバーが炭化されて形成される鎖状の炭素は、良好な導電パスとして、電極活物質粒子(A)の表面に担持される固体電解質ナノアレイ(b)中に一部または全部が内包されうる。   Cellulose nanofibers, which are raw materials for carbon chains derived from cellulose nanofibers constituting the solid electrolyte nanoarray (b) of the present invention, are skeletal components that occupy about 50% of all plant cell walls, and constitute the cell walls. It is a lightweight, high-strength fiber that can be obtained by defibrating plant fibers to the nano size and has good dispersibility in water. In addition, since the cellulose molecular chain constituting the cellulose nanofiber has a periodic structure formed of carbon, the cellulose nanofiber obtained by baking under reducing conditions is carbonized to form a chain shape. Carbon can be partially or wholly included in the solid electrolyte nanoarray (b) supported on the surface of the electrode active material particles (A) as a good conductive path.

また、当然のことながら、酸素雰囲気下の焼成においては、上記セルロースナノファイバーは二酸化炭素ならびに水となって焼失するので、原料CNFの一部、又は全部を内包する固体電解質ナノ粒子集合体(d)(以後、「CNF内包固体電解質ナノ粒子集合体(d)」と称す場合もある。)、又は原料CNFの一部、又は全部を内包する上記固体電解質の前駆体からなるナノ粒子集合体(e)(以後、「CNF内包前駆体ナノ粒子集合体(e)」と称す場合もある。)を酸素雰囲気焼成することによって、CNF内包固体電解質ナノ粒子集合体(d)又はCNF内包前駆体ナノ粒子集合体(e)からセルロースナノファイバーが除去されて得られるナノアレイでの整列状態を保持した固体電解質ナノ粒子列(c)のみを、電極活物質粒子(A)の表面に担持させることが可能である。   In addition, as a matter of course, in the firing in an oxygen atmosphere, the cellulose nanofibers are burnt down as carbon dioxide and water, and therefore, a solid electrolyte nanoparticle aggregate (d) containing a part or all of the raw material CNF ) (Hereinafter also referred to as “CNF-encapsulated solid electrolyte nanoparticle aggregate (d)”), or a nanoparticle aggregate composed of a precursor of the solid electrolyte encapsulating part or all of the raw material CNF ( e) (hereinafter, also referred to as “CNF-encapsulated precursor nanoparticle aggregate (e)”) is fired in an oxygen atmosphere to obtain a CNF-encapsulated solid electrolyte nanoparticle aggregate (d) or CNF-encapsulated precursor nanoparticle. Only the solid electrolyte nanoparticle array (c) having the aligned state in the nanoarray obtained by removing the cellulose nanofibers from the particle assembly (e) is used as the electrode active material particles. It is possible to be supported on the surface of A).

なお、本発明において、「内包」とは、対象物の一部、又は全部を、断片的に、又は連続的に、覆っている状態を意味する。本発明においては、たとえば、上記CNF内包固体電解質ナノ粒子集合体(d)とは、原料CNFの一部、又は全部を、少なくとも固体電解質ナノ粒子(a)が線状、又は塊状に、連続して、又は断続的に覆っている状態にあり、また、上記CNF内包前駆体ナノ粒子集合体(e)とは、原料CNFの一部、又は全部を、少なくとも上記固体電解質の前駆体からなるナノ粒子が線状、又は塊状に、連続して、又は断続的に覆っている状態にある。   In the present invention, the “inclusive” means a state in which a part or the whole of an object is covered in a fragmentary manner or continuously. In the present invention, for example, the CNF-encapsulated solid electrolyte nanoparticle aggregate (d) refers to a part or all of the raw material CNF, and at least the solid electrolyte nanoparticles (a) are continuously linear or massive. In addition, the CNF-encapsulating precursor nanoparticle aggregate (e) is a nanoparticle composed of at least a part of the raw material CNF and a precursor of the solid electrolyte. The particles are covered linearly or in a lump, continuously or intermittently.

本発明に用いるセルロースナノファイバーの平均長さは、固体電解質ナノ粒子(a)が線状に、連続して、又は断続的な、担持されることを可能としつつ、電極活物質粒子(A)との良好な担持を確保する観点から、好ましくは50nm〜200μmであり、より好ましくは50nm〜150μmであり、さらに好ましくは50nm〜100μmである。また、同様の観点から、用いるセルロースナノファイバーの平均繊維径は、好ましくは5nm〜50nm、より好ましくは5nm〜30nmであり、さらに好ましくは5nm〜20nmである。   The average length of the cellulose nanofibers used in the present invention is such that the solid electrolyte nanoparticles (a) can be supported linearly, continuously or intermittently while the electrode active material particles (A) From the viewpoint of ensuring good loading, it is preferably 50 nm to 200 μm, more preferably 50 nm to 150 μm, and still more preferably 50 nm to 100 μm. From the same viewpoint, the average fiber diameter of the cellulose nanofiber used is preferably 5 nm to 50 nm, more preferably 5 nm to 30 nm, and further preferably 5 nm to 20 nm.

また、上記セルロースナノファイバーが炭化されてなる、セルロースナノファイバー由来の炭素鎖の平均長さは、固体電解質ナノ粒子(a)が線状に、連続して、又は断続的な、担持されることを可能としつつ、効果的に充放電容量を高め得る形状を呈するのを確保する観点から、好ましくは50nm〜10μmであり、より好ましくは50nm〜5μmであり、さらに好ましくは50nm〜1μmである。   Moreover, the average length of the carbon chain derived from the cellulose nanofiber obtained by carbonizing the cellulose nanofiber is such that the solid electrolyte nanoparticle (a) is supported linearly, continuously, or intermittently. From the viewpoint of ensuring a shape that can effectively increase the charge / discharge capacity while enabling the above-mentioned, it is preferably 50 nm to 10 μm, more preferably 50 nm to 5 μm, and still more preferably 50 nm to 1 μm.

また、上記セルロースナノファイバー由来の炭素鎖の平均繊維径は、50nm以下であって、好ましくは40nm以下であり、より好ましくは30nm以下である。セルロースナノファイバー由来の炭素鎖の平均繊維径の下限値については特に制限はないが、通常、5nm以上である。   Moreover, the average fiber diameter of the carbon chain derived from the cellulose nanofiber is 50 nm or less, preferably 40 nm or less, and more preferably 30 nm or less. Although there is no restriction | limiting in particular about the lower limit of the average fiber diameter of the carbon chain derived from a cellulose nanofiber, Usually, it is 5 nm or more.

本発明の、固体電解質ナノアレイ(b)、又は固体電解質ナノ粒子列(c)を構成する固体電解質ナノ粒子(a)は、全固体二次電池、特に全固体リチウムイオン二次電池に用いることができるものであり、かつ、後述する製造方法における焼成工程において用いる原料化合物が、同時に焼成される電極活物質相と固相反応を生じないものであれば、その種類に制限は生じない。さらに、全固体二次電池の形成する際の固体電解質粒子と必ずしも同じである必要はない。具体的には、酸化物系固体電解質を用いることができ、たとえば、LiPO‐LiSiO、Li7−xLaZr2−xTa12、La0.51Li0.34TiO2.94、Li1.3Al0.3Ti1.7(PO、LiLaZr12、50LiSiO・50LiBO等をあげることができる。また、本発明における固体電解質ナノアレイ(b)、又は固体電解質ナノ粒子列(c)を構成する固体電解質として、LiPO‐LiSiO、Li7−xLaZr2−xTa12、La0.51Li0.34TiO2.94、Li1.3Al0.3Ti1.7(PO、LiLaZr12、及び50LiSiO・50LiBOからなる群のうち少なくとも1種以上を含むものであってもよい。 The solid electrolyte nanoarray (b) or the solid electrolyte nanoparticle (a) constituting the solid electrolyte nanoparticle array (c) of the present invention may be used for an all-solid secondary battery, particularly an all-solid lithium ion secondary battery. If the raw material compound used in the firing step in the production method described later is a material that does not cause a solid phase reaction with the electrode active material phase that is fired at the same time, the type of the compound is not limited. Furthermore, it is not necessarily the same as the solid electrolyte particles when forming an all-solid secondary battery. Specifically, it is possible to use an oxide-based solid electrolyte, for example, Li 3 PO 4 -Li 4 SiO 4, Li 7-x La 3 Zr 2-x Ta x O 12, La 0.51 Li 0. 34 TiO 2.94 , Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 , Li 7 La 3 Zr 2 O 12 , 50Li 4 SiO 4 .50Li 3 BO 3 and the like can be mentioned. Further, as the solid electrolyte constituting the solid electrolyte Nanoarrays in the present invention (b), or a solid electrolyte nanoparticles column (c), Li 3 PO 4 -Li 4 SiO 4, Li 7-x La 3 Zr 2-x Ta x O 12 , La 0.51 Li 0.34 TiO 2.94 , Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 , Li 7 La 3 Zr 2 O 12 , and 50Li 4 SiO 4 .50Li It may contain at least one or more of the group consisting of 3 BO 3 .

そして、上記電極活物質と上記固体電解質の組合せにおいて、好適な組み合わせとしては以下が例示される。
(正極活物質)
LiNi1−x−yCoMn−Li7−xLaZr2−xTa12
LiNi1−x−yCoMn−LiLaZr12
LiNi1−x−yCoAl−Li7−xLaZr2−xTa12
LiNi1−x−yCoAl−LiLaZr12
LiMPO(M=Ni、Co、Mn)−LiPO‐LiSiO
LiMPO(M=Ni、Co、Mn)−Li1.3Al0.3Ti1.7(PO
LiMSiO(M=Ni、Co、Mn)−LiPO‐LiSiO
LiMSiO(M=Ni、Co、Mn)−50LiSiO・50LiBO
(負極活物質)
SiO−50LiSiO・50LiBO
LiTi12−La0.51Li0.34TiO2.94
これら正極活物質、負極活物質は、各々単独で使用してもよく、また各々2種以上を混合して使用してもよい。
In the combination of the electrode active material and the solid electrolyte, examples of suitable combinations include the following.
(Positive electrode active material)
LiNi 1-x-y Co x Mn y O 2 -Li 7-x La 3 Zr 2-x Ta x O 12,
LiNi 1-x-y Co x Mn y O 2 -Li 7 La 3 Zr 2 O 12,
LiNi 1-x-y Co x Al y O 2 -Li 7-x La 3 Zr 2-x Ta x O 12,
LiNi 1-x-y Co x Al y O 2 -Li 7 La 3 Zr 2 O 12,
LiMPO 4 (M = Ni, Co, Mn) -Li 3 PO 4 -Li 4 SiO 4 ,
LiMPO 4 (M = Ni, Co, Mn) —Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 ,
Li 2 MSiO 4 (M = Ni, Co, Mn) -Li 3 PO 4 -Li 4 SiO 4 ,
Li 2 MSiO 4 (M = Ni, Co, Mn) -50Li 4 SiO 4 .50Li 3 BO 3 ,
(Negative electrode active material)
SiO x -50Li 4 SiO 4 · 50Li 3 BO 3 ,
Li 4 Ti 5 O 12 -La 0.51 Li 0.34 TiO 2.94
These positive electrode active materials and negative electrode active materials may be used alone or in combination of two or more.

上記固体電解質ナノアレイ(b)、又は固体電解質ナノ粒子列(c)を構成する固体電解質ナノ粒子(a)の平均粒径は、電極活物質等との良好な界面を形成する観点、及びセルロースナノファイバー由来の炭素鎖に良好に担持する観点から、0.5nm〜100nmが好ましく、1nm〜80nmがより好ましく、1nm〜50nmが特に好ましい。   The average particle diameter of the solid electrolyte nanoarray (b) or the solid electrolyte nanoparticle (a) constituting the solid electrolyte nanoparticle array (c) has a viewpoint of forming a good interface with the electrode active material, etc. From the viewpoint of favorably supporting the carbon chain derived from the fiber, 0.5 nm to 100 nm is preferable, 1 nm to 80 nm is more preferable, and 1 nm to 50 nm is particularly preferable.

また、上記固体電解質ナノアレイ(b)、又は固体電解質ナノ粒子列(c)を構成する固体電解質のナノ粒子の形状(晶癖)としては、特に限定されないが、板状、針状、立方体、直方体、六角柱状等をあげることができる。なかでも、セルロースナノファイバー由来の炭素鎖への担持をより強固にする観点からは、上記炭素鎖の軸長方向に伸延した直方体粒子が好ましい。   Moreover, the shape (crystal habit) of the solid electrolyte nanoparticles constituting the solid electrolyte nanoarray (b) or the solid electrolyte nanoparticle array (c) is not particularly limited, but is a plate, needle, cube, cuboid And hexagonal columnar shape. Among these, from the viewpoint of further strengthening the support to the carbon chains derived from cellulose nanofibers, the cuboid particles extending in the axial length direction of the carbon chains are preferable.

上記セルロースナノファイバー由来の炭素鎖と上記固体電解質ナノ粒子(a)から構成される固体電解質ナノアレイ(b)の平均長さは、特異な形状を呈することによる充放電容量の効果的な向上を確保する観点から、好ましくは50nm〜10μmであり、より好ましくは50nm〜5μmであり、さらに好ましくは50nm〜1μmである。   The average length of the solid electrolyte nanoarray (b) composed of the carbon chains derived from the cellulose nanofibers and the solid electrolyte nanoparticles (a) ensures effective improvement of the charge / discharge capacity by exhibiting a unique shape. In view of the above, it is preferably 50 nm to 10 μm, more preferably 50 nm to 5 μm, and still more preferably 50 nm to 1 μm.

本発明の全固体二次電池用電極活物質における、上記電極活物質粒子(A)と、上記固体電解質ナノ粒子集合体(b)、上記固体電解質ナノ粒子列(c)、又はその両方を含む場合にはその合計量、との質量割合は、全固体二次電池内で電極活物質粒子と固体電解質粒子とのパッキング構造において界面抵抗が十分に低減された良好な界面を形成する観点、及び全固体二次電池のエネルギー密度を高める観点から、電極活物質粒子(A):(固体電解質ナノアレイ(b)+固体電解質ナノ粒子列(c)(ただし、固体電解質ナノアレイ(b)と固体電解質ナノ粒子列(c)は、いずれか一方しか含まない場合は、その一方のみ。))(質量比)=99.9:0.1〜70:30であるのが好ましく、99:1〜80:20であるのがより好ましい。   In the electrode active material for an all-solid-state secondary battery of the present invention, the electrode active material particles (A), the solid electrolyte nanoparticle aggregate (b), the solid electrolyte nanoparticle array (c), or both are included. In the case of the total amount, the mass ratio of the total amount, the viewpoint of forming a good interface in which the interface resistance is sufficiently reduced in the packing structure of the electrode active material particles and the solid electrolyte particles in the all-solid secondary battery, and From the viewpoint of increasing the energy density of the all-solid-state secondary battery, electrode active material particles (A): (solid electrolyte nanoarray (b) + solid electrolyte nanoparticle array (c) (provided that solid electrolyte nanoarray (b) and solid electrolyte nano In the case where only one of the particle rows (c) is included, only one of them.)) (Mass ratio) = preferably 99.9: 0.1 to 70:30, 99: 1 to 80: More preferred is 20 There.

また、本発明の全固体二次電池用電極活物質において、上記線状とは、直線状、又は略直線状であるとすることができる。なお、線状とは、細長く線形のものをいい、直線的なもののみならず、曲線状や鎖状のものも含む。また、直線状とは、上記固体電解質ナノ粒子(a)の集合体(b)又は列(c)の(概)長軸方向において、直線部分が長さ比で概ね70%以上であるものであってもよく、80%以上であるものであってもよく、90%以上であるものであってもよい。また、略直線状とは、上記固体電解質ナノ粒子(a)の集合体(b)又は列(c)の(概)軸長方向において、多少の湾曲や近似計算上の誤差のある線状を含む。   In the electrode active material for an all-solid-state secondary battery of the present invention, the linear shape may be a linear shape or a substantially linear shape. The linear shape means an elongated and linear shape and includes not only a linear shape but also a curved shape or a chain shape. In addition, the term “linear” means that the straight portion has a length ratio of approximately 70% or more in the (approximately) major axis direction of the aggregate (b) or row (c) of the solid electrolyte nanoparticles (a). It may be 80% or more, or 90% or more. Further, the substantially linear shape means a linear shape having a slight curvature or an error in approximate calculation in the (approximately) axial length direction of the aggregate (b) or the row (c) of the solid electrolyte nanoparticles (a). Including.

また、本発明の全固体二次電池用電極活物質において、上記全固体リチウムイオン二次電池用であるとすることができる。また、本明細書中における全固体二次電池用電極活物質に関する各構成成分や固体電解質等は、特にリチウムイオンに関する特記をしていないものでも、適宜、全固体リチウムイオン二次電池用として用いられうる。   Moreover, the electrode active material for an all-solid-state secondary battery of the present invention can be used for the all-solid-state lithium ion secondary battery. In addition, each component, solid electrolyte, etc. relating to the electrode active material for an all solid secondary battery in the present specification is appropriately used for an all solid lithium ion secondary battery, even if not specifically mentioned for lithium ions. Can be.

〔全固体二次電池用電極活物質の製造方法〕
一方、本発明の全固体二次電池用電極活物質は、次の工程(II)〜(III):
少なくとも1種の固体電解質の原料化合物、アルカリ溶液、及びセルロースナノファイバーを含有するスラリーを、温度が100℃以上、圧力が0.3MPa〜0.9MPaの水熱反応に付して、CNF内包固体電解質ナノ粒子集合体(d)、CNF内包前駆体ナノ粒子集合体(e)、又はその両方、を製造する工程(II)、並びに、
少なくとも、工程(II)で得られた上記CNF内包固体電解質ナノ粒子集合体(d)、上記CNF内包前駆体ナノ粒子集合体(e)及び上記CNF内包前駆体ナノ粒子集合体(e)と反応して固体電解質ナノ粒子集合体(b)若しくは固体電解質ナノ粒子列(c)を生成するための残余の原料化合物、又はその両方を焼成する工程(III)、
を含む製造方法により、得ることができうる。
[Method for producing electrode active material for all-solid-state secondary battery]
On the other hand, the electrode active material for an all-solid-state secondary battery of the present invention includes the following steps (II) to (III):
A slurry containing at least one solid electrolyte raw material compound, an alkaline solution, and cellulose nanofibers is subjected to a hydrothermal reaction at a temperature of 100 ° C. or higher and a pressure of 0.3 MPa to 0.9 MPa to obtain a CNF-encapsulated solid. A step (II) of producing an electrolyte nanoparticle aggregate (d), a CNF-encapsulated precursor nanoparticle aggregate (e), or both, and
Reaction with at least the CNF-encapsulated solid electrolyte nanoparticle aggregate (d), the CNF-encapsulated precursor nanoparticle aggregate (e), and the CNF-encapsulated precursor nanoparticle aggregate (e) obtained in step (II) And firing the remaining raw material compound for producing the solid electrolyte nanoparticle aggregate (b) or the solid electrolyte nanoparticle array (c), or both (III),
Can be obtained by a production method comprising

また、他の本発明の全固体二次電池用電極活物質の製造方法として、
次の工程(II)〜(III’):
少なくとも1種の固体電解質の原料化合物、アルカリ溶液、及びセルロースナノファイバーを含有するスラリーを、温度が100℃以上、圧力が0.3MPa〜0.9MPaの水熱反応に付して、CNF内包固体電解質ナノ粒子集合体(d)、CNF内包前駆体ナノ粒子集合体(e)、又はその両方、を製造する工程(II)、並びに、
少なくとも、工程(II)で得られた上記CNF内包固体電解質ナノ粒子集合体(d)、上記CNF内包前駆体ナノ粒子集合体(e)及び上記CNF内包前駆体ナノ粒子集合体(e)と反応して固体電解質ナノ粒子集合体(b)を生成するための残余の原料化合物、又はその両方を、還元雰囲気下で焼成する工程(III’)、
を含む製造方法を適宜用いることができうる。
In addition, as another method for producing an electrode active material for an all-solid-state secondary battery of the present invention,
Next steps (II) to (III ′):
A slurry containing at least one solid electrolyte raw material compound, an alkaline solution, and cellulose nanofibers is subjected to a hydrothermal reaction at a temperature of 100 ° C. or higher and a pressure of 0.3 MPa to 0.9 MPa to obtain a CNF-encapsulated solid. A step (II) of producing an electrolyte nanoparticle aggregate (d), a CNF-encapsulated precursor nanoparticle aggregate (e), or both, and
Reaction with at least the CNF-encapsulated solid electrolyte nanoparticle aggregate (d), the CNF-encapsulated precursor nanoparticle aggregate (e), and the CNF-encapsulated precursor nanoparticle aggregate (e) obtained in step (II) Step (III ′) of firing the remaining raw material compound for producing the solid electrolyte nanoparticle aggregate (b), or both in a reducing atmosphere,
Can be used as appropriate.

さらに、他の本発明の全固体二次電池用電極活物質の製造方法として、
次の工程(II)〜(III’’):
少なくとも1種の固体電解質の原料化合物、アルカリ溶液、及びセルロースナノファイバーを含有するスラリーを、温度が100℃以上、圧力が0.3MPa〜0.9MPaの水熱反応に付して、CNF内包固体電解質ナノ粒子集合体(d)、CNF内包前駆体ナノ粒子集合体(e)、又はその両方、を製造する工程(II)、並びに、
少なくとも、工程(II)で得られた上記CNF内包固体電解質ナノ粒子集合体(d)、上記CNF内包前駆体ナノ粒子集合体(e)及び上記CNF内包前駆体ナノ粒子集合体(e)と反応して固体電解質ナノ粒子列(c)を生成するための残余の原料化合物、又はその両方を、酸化雰囲気下で焼成する工程(III’’)、
を含む製造方法を適宜用いることができうる。
Furthermore, as another method for producing an electrode active material for an all-solid-state secondary battery of the present invention,
Next steps (II) to (III ″):
A slurry containing at least one solid electrolyte raw material compound, an alkaline solution, and cellulose nanofibers is subjected to a hydrothermal reaction at a temperature of 100 ° C. or higher and a pressure of 0.3 MPa to 0.9 MPa to obtain a CNF-encapsulated solid. A step (II) of producing an electrolyte nanoparticle aggregate (d), a CNF-encapsulated precursor nanoparticle aggregate (e), or both, and
Reaction with at least the CNF-encapsulated solid electrolyte nanoparticle aggregate (d), the CNF-encapsulated precursor nanoparticle aggregate (e), and the CNF-encapsulated precursor nanoparticle aggregate (e) obtained in step (II) Step (III ″) of firing the remaining raw material compounds for producing the solid electrolyte nanoparticle array (c), or both in an oxidizing atmosphere,
Can be used as appropriate.

また、本発明の全固体二次電池用電極活物質の製造方法において、
さらに、工程(III)、(III’)、又は(III’’)に先立ち、上記電極活物質粒子(A)を製造する工程(I)、を含む製造方法を適宜用いることができうる。
Moreover, in the method for producing an electrode active material for an all-solid-state secondary battery of the present invention,
Furthermore, prior to the step (III), (III ′) or (III ″), a production method including the step (I) for producing the electrode active material particles (A) can be appropriately used.

工程(I)は、全固体二次電池用電極活物質粒子(A)を得る工程である。上記電極活物質粒子(A)について、得られる電極活物質粒子(A)の平均粒径が50nm〜50μmとなるような、既存の、任意の製造方法を用いて製造すればよい。具体的には、たとえば、正極活物質の層状酸化物系では、固相法と必要に応じた粉砕と分級を、また、オリビン系には水熱法又は共沈法が、好適に用いられる。また、負極活物質の酸化物系及びチタン酸化物系には、固相法、又は水熱法が好適に用いられる。   Step (I) is a step of obtaining electrode active material particles (A) for all-solid-state secondary batteries. What is necessary is just to manufacture about the said electrode active material particle (A) using the existing arbitrary manufacturing methods that the average particle diameter of the electrode active material particle (A) obtained will be 50 nm-50 micrometers. Specifically, for example, for the layered oxide system of the positive electrode active material, a solid phase method and pulverization and classification as required are used, and for the olivine system, a hydrothermal method or a coprecipitation method is preferably used. In addition, a solid phase method or a hydrothermal method is suitably used for the oxide type and titanium oxide type negative electrode active materials.

また、工程(I)で得られる特定の電極活物質、具体的には、正極活物質のオリビン系には、必要に応じて当該電極活物質粒子表面に導電性物質を担持させてもよい。   In addition, the specific electrode active material obtained in step (I), specifically, the olivine system of the positive electrode active material, may carry a conductive material on the surface of the electrode active material particles as necessary.

上記導電性物質としては、炭素、又は金属フッ化物が挙げられ、より具体的には、炭素としては、水溶性炭素材料由来の炭素、セルロースナノファイバー由来の炭素以外の水不溶性導電性炭素材料、及びセルロースナノファイバー由来の炭素をあげることができる。   Examples of the conductive substance include carbon or metal fluorides. More specifically, examples of carbon include water-insoluble conductive carbon materials other than carbon derived from water-soluble carbon materials and carbon derived from cellulose nanofibers. And carbon derived from cellulose nanofibers.

また、上記導電性物質の担持量は、導電性物質が担持されてなる電極活物質粒子(A)の全量100質量%中に、0.1質量%〜20質量%であることが好ましく、0.3質量%〜15質量%であることがより好ましく、0.5質量%〜10質量%であることが特に好ましい。   The amount of the conductive material supported is preferably 0.1% by mass to 20% by mass in 100% by mass of the total amount of the electrode active material particles (A) on which the conductive material is supported, More preferably, the content is 3% by mass to 15% by mass, and particularly preferably 0.5% by mass to 10% by mass.

上記の水溶性炭素材料由来の炭素の炭素源となる水溶性炭素材料とは、25℃の水100gに、水溶性炭素材料の炭素原子換算量で0.4g以上、好ましくは1.0g以上溶解する炭素材料を意味し、炭化されることで炭素として上記電極活物質粒子の表面に存在することとなる。   The water-soluble carbon material used as the carbon source of carbon derived from the water-soluble carbon material is dissolved in 100 g of water at 25 ° C. in an amount of 0.4 g or more, preferably 1.0 g or more in terms of carbon atom of the water-soluble carbon material. This means a carbon material that is carbonized, so that it is present as carbon on the surface of the electrode active material particles.

上記水溶性炭素材料としては、たとえば、糖類、ポリオール、ポリエーテル、及び有機酸から選ばれる1種又は2種以上をあげることができる。より具体的には、たとえば、グルコース、フルクトース、ガラクトース、マンノース等の単糖類;マルトース、スクロース、セロビオース等の二糖類;デンプン、デキストリン等の多糖類;エチレングリコール、プロピレングリコール、ジエチレングリコール、ポリエチレングリコール、ブタンジオール、プロパンジオール、ポリビニルアルコール、グリセリン等のポリオールやポリエーテル;クエン酸、酒石酸、アスコルビン酸等の有機酸をあげることができる。なかでも、溶媒への溶解性、及び分散性を高めて炭素材料として効果的に機能させる観点から、グルコース、フルクトース、スクロース、デキストリンが好ましく、グルコースがより好ましい。これらは単独で使用してもよく、また2種以上を混合して使用してもよい。   Examples of the water-soluble carbon material include one or more selected from saccharides, polyols, polyethers, and organic acids. More specifically, for example, monosaccharides such as glucose, fructose, galactose and mannose; disaccharides such as maltose, sucrose and cellobiose; polysaccharides such as starch and dextrin; ethylene glycol, propylene glycol, diethylene glycol, polyethylene glycol and butane Examples thereof include polyols and polyethers such as diol, propanediol, polyvinyl alcohol, and glycerin; and organic acids such as citric acid, tartaric acid, and ascorbic acid. Of these, glucose, fructose, sucrose, and dextrin are preferred, and glucose is more preferred from the viewpoint of enhancing solubility in a solvent and dispersibility to effectively function as a carbon material. These may be used singly or in combination of two or more.

上記のセルロースナノファイバー由来の炭素以外の水不溶性導電性炭素材料としては、グラファイト、非晶質カーボン(ケッチェンブラック、アセチレンブラック等)、ナノカーボン(グラフェン、フラーレン等)、導電性ポリマー粉末(ポリアニリン粉末、ポリアセチレン粉末、ポリチオフェン粉末、ポリピロール粉末等)等の1種または2種以上をあげることができる。なかでも、電極活物質粒子と固帯電解質粒子の接触の程度を補強させる観点から、グラファイト、アセチレンブラック、グラフェン、ポリアニリン粉末が好ましく、グラファイトがより好ましい。グラファイトとしては、人造グラファイト(鱗片状、塊状、土状、グラフェン)、天然グラファイトのいずれであってもよい。これらは単独で使用してもよく、また2種以上を混合して使用してもよい。   Examples of water-insoluble conductive carbon materials other than carbon derived from cellulose nanofiber include graphite, amorphous carbon (Ketjen black, acetylene black, etc.), nanocarbon (graphene, fullerene, etc.), conductive polymer powder (polyaniline). Powder, polyacetylene powder, polythiophene powder, polypyrrole powder, etc.) and the like. Of these, graphite, acetylene black, graphene, and polyaniline powder are preferred, and graphite is more preferred from the viewpoint of reinforcing the degree of contact between the electrode active material particles and the solid electrolyte particles. The graphite may be any of artificial graphite (scaly, massive, earthy, graphene) or natural graphite. These may be used singly or in combination of two or more.

セルロースナノファイバー由来の炭素以外の水不溶性導電性炭素材料の平均粒子径は、電極活物質の二次粒子に良好に担持される観点から、好ましくは0.5〜20μmであり、より好ましくは1.0〜15μmである。   The average particle diameter of the water-insoluble conductive carbon material other than carbon derived from cellulose nanofibers is preferably 0.5 to 20 μm, more preferably 1 from the viewpoint of being favorably supported on the secondary particles of the electrode active material. 0.0 to 15 μm.

上記セルロースナノファイバー由来の炭素とは、上記のセルロースナノファイバー由来の炭素鎖を指す。   The carbon derived from the cellulose nanofiber refers to a carbon chain derived from the cellulose nanofiber.

なお、電極活物質粒子(A)の表面に存在する、水溶性炭素材料由来の炭素又、はセルロースナノファイバー由来の炭素の原子換算量(炭素の担持量)は、上記電極活物質粒子について炭素・硫黄分析装置を用いて測定した炭素量として、確認することができる。   In addition, the atomic conversion amount (carbon carrying amount) of carbon derived from water-soluble carbon material or carbon derived from cellulose nanofiber existing on the surface of the electrode active material particles (A) is the carbon for the electrode active material particles. -It can be confirmed as the amount of carbon measured using a sulfur analyzer.

上記金属フッ化物の金属としては、Li、Na、Mg、Ca、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Zr、Nb、Mo、Ta、Sn、W、K、Ba、Srをあげることができる。なかでも、Liイオン伝導性を向上させる観点から、Li、Na、Mg、Ca、及びAlから選ばれる金属であることが好ましく、Li、及びMgから選ばれる金属であることがより好ましい。   As the metal of the metal fluoride, Li, Na, Mg, Ca, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ta, Sn, W, K , Ba, and Sr. Among these, from the viewpoint of improving Li ion conductivity, a metal selected from Li, Na, Mg, Ca, and Al is preferable, and a metal selected from Li and Mg is more preferable.

工程(II)は、少なくとも1種の固体電解質の原料化合物、アルカリ溶液、及びセルロースナノファイバーを含有するスラリーを、温度が100℃以上、圧力が0.3MPa〜0.9MPaの水熱反応に付して、CNF内包固体電解質ナノ粒子集合体(d)、CNF内包前駆体ナノ粒子集合体(e)、又はその両方、を製造する工程である。   In step (II), a slurry containing at least one solid electrolyte raw material compound, an alkali solution, and cellulose nanofibers is subjected to a hydrothermal reaction at a temperature of 100 ° C. or higher and a pressure of 0.3 MPa to 0.9 MPa. Then, the CNF-encapsulating solid electrolyte nanoparticle aggregate (d), the CNF-encapsulating precursor nanoparticle aggregate (e), or both are produced.

この工程(II)で得られる水熱反応物は、製造対象とする固体電解質によってCNF内包固体電解質ナノ粒子集合体(d)、CNF内包前駆体ナノ粒子集合体(e)、又はその両方であったりする。具体的には、たとえば、上記固体電解質において、LiPO‐LiSiO及び50LiSiO・50LiBOは、工程(II)の1回の水熱反応によってCNF内包固体電解質ナノ粒子集合体(d)を得ることができるが、一方、Li7−xLaZr2−xTa12、La0.51Li0.34TiO2.94、Li1.3Al0.3Ti1.7(PO、及びLiLaZr12は1回の水熱反応でCNF内包固体電解質ナノ粒子集合体(d)を得ることが困難なので、工程(II)の水熱反応ではCNF内包前駆体ナノ粒子集合体(e)を得うる。 The hydrothermal reactant obtained in this step (II) is CNF-encapsulated solid electrolyte nanoparticle aggregate (d), CNF-encapsulated precursor nanoparticle aggregate (e), or both depending on the solid electrolyte to be produced. Or Specifically, for example, in a solid-state electrolyte, Li 3 PO 4 -Li 4 SiO 4 and 50Li 4 SiO 4 · 50Li 3 BO 3 is, CNF containing solid electrolyte nano by one hydrothermal reaction step (II) Although it is possible to obtain particles aggregates (d), whereas, Li 7-x La 3 Zr 2-x Ta x O 12, La 0.51 Li 0.34 TiO 2.94, Li 1.3 Al 0. 3 Ti 1.7 (PO 4 ) 3 and Li 7 La 3 Zr 2 O 12 are difficult to obtain a CNF-encapsulated solid electrolyte nanoparticle aggregate (d) by one hydrothermal reaction, and therefore, step (II) In the hydrothermal reaction, a CNF-encapsulated precursor nanoparticle aggregate (e) can be obtained.

ここで、固体電解質の前駆体とは、たとえば、Li7−xLaZr2−xTa12では、LiTaO、La0.51Li0.34TiO2.94では、TiO、Li1.3Al0.3Ti1.7(POでは、LiPO、また、LiLaZr12では、ZrOである。これらは単独で使用してもよく、また2種以上を混合して使用してもよい。 Here, the precursor of the solid electrolyte is, for example, Li 7-x La 3 Zr 2-x Ta x O 12 , LiTaO 3 , La 0.51 Li 0.34 TiO 2.94 , TiO 2 , Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 is Li 3 PO 4 , and Li 7 La 3 Zr 2 O 12 is ZrO 2 . These may be used singly or in combination of two or more.

工程(II)における、少なくとも1種の固体電解質の原料化合物の使用量は、製造対象とする固体電解質、又は固体電解質の前駆体に応じて所定割合の原料化合物を準備することができる。   In the step (II), the amount of the raw material compound of at least one solid electrolyte used can prepare a predetermined proportion of the raw material compound depending on the solid electrolyte to be produced or the precursor of the solid electrolyte.

この固体電解質の原料化合物としては、具体的には、たとえば、ジルコニウム化合物、チタン化合物、アルミニウム化合物、ケイ素化合物等をあげることができる。なかでも、これら元素の硫酸塩、硝酸塩、炭酸塩、酢酸塩、シュウ酸塩、酸化物、水酸化物、ハロゲン化物等を好適に使用することができる。これらは単独で使用してもよく、また2種以上を混合して使用してもよい。   Specific examples of the solid electrolyte raw material compound include a zirconium compound, a titanium compound, an aluminum compound, and a silicon compound. Of these, sulfates, nitrates, carbonates, acetates, oxalates, oxides, hydroxides, halides, and the like of these elements can be preferably used. These may be used singly or in combination of two or more.

上記原料化合物、及びセルロースナノファイバーを混合してスラリーを調製する際、通常、水を用いる。上記水の使用量は、各原料化合物の溶解性、又は分散性、撹拌の容易性、及び水熱反応の効率等の点から、上記原料化合物の金属元素1モルに対して、10モル〜300モルであることが好ましく、さらに50モル〜200モルであることが好ましい。   When preparing the slurry by mixing the raw material compound and cellulose nanofiber, water is usually used. The amount of water used is from 10 mol to 300 mol with respect to 1 mol of the metal element of the raw material compound from the viewpoints of solubility or dispersibility of each raw material compound, easiness of stirring, efficiency of hydrothermal reaction, and the like. It is preferable that it is mol, and it is further preferable that it is 50 mol-200 mol.

工程(II)で用いられるアルカリ溶液としては、たとえば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、アンモニア等の水溶液をあげることができる。なかでも、水熱反応の効率を高める観点、及び得られるCNF内包固体電解質ナノ粒子集合体(d)、又はCNF内包前駆体ナノ粒子集合体(e)を微小にする観点から、水酸化ナトリウム、炭酸ナトリウム又はそれらの混合溶液を用いるのが好ましい。また、スラリーへのアルカリ溶液の使用量は、上記スラリーのpHを7〜12に保持するのに充分な量を滴下する量を用いればよい。また、これらは単独で使用してもよく、また2種以上を混合して使用してもよい。   Examples of the alkaline solution used in step (II) include aqueous solutions of sodium hydroxide, potassium hydroxide, sodium carbonate, ammonia and the like. Among these, from the viewpoint of increasing the efficiency of the hydrothermal reaction, and from the viewpoint of making the resulting CNF-encapsulated solid electrolyte nanoparticle aggregate (d) or CNF-encapsulated precursor nanoparticle aggregate (e) fine, sodium hydroxide, It is preferable to use sodium carbonate or a mixed solution thereof. Moreover, what is necessary is just to use the quantity which dripped the quantity sufficient to hold | maintain the pH of the said slurry to 7-12 as the usage-amount of the alkaline solution to a slurry. These may be used alone or in combination of two or more.

また、スラリー中におけるセルロースナノファイバーの含有量は、スラリー中の水100質量部に対し、炭素原子換算量で、好ましくは0.01質量部〜10質量部であり、より好ましくは0.05質量部〜8質量部である。   Moreover, content of the cellulose nanofiber in a slurry is a carbon atom conversion amount with respect to 100 mass parts of water in a slurry, Preferably it is 0.01 mass part-10 mass parts, More preferably, it is 0.05 mass. Part to 8 parts by mass.

これらの原料の添加順序は、特に限定されない。添加した後、混合する時間は、好ましくは1分間〜12時間であり、より好ましくは5分間〜6時間である。また、混合する温度は、好ましくは5℃〜60℃であり、より好ましくは5℃〜50℃である。   The order of adding these raw materials is not particularly limited. After the addition, the mixing time is preferably 1 minute to 12 hours, more preferably 5 minutes to 6 hours. Moreover, the temperature to mix becomes like this. Preferably it is 5 to 60 degreeC, More preferably, it is 5 to 50 degreeC.

なお、上記スラリーの混合では、セルロースナノファイバーを充分に分散させる観点から、分散機(ホモジナイザー)を用いた処理により、凝集しているセルロースナノファイバーを解砕することが好ましい。上記分散機としては、たとえば、離解機、叩解機、低圧ホモジナイザー、高圧ホモジナイザー、グラインダー、カッターミル、ボールミル、ジェットミル、短軸押出機、2軸押出機、超音波攪拌機、家庭用ジューサーミキサー等をあげることができる。なかでも、分散効率の観点から、超音波攪拌機が好ましい。得られたスラリーの分散均一性の程度は、たとえば、UV・可視光分光装置を使用した光線透過率や、E型粘度計を使用した粘度で定量的に評価することもでき、また目視によって白濁度が均一であることを確認することによっても、簡便に評価することができる。分散機で処理する時間は、好ましくは30秒間〜6分間であり、より好ましくは2分間〜5分間である。   In the mixing of the slurry, from the viewpoint of sufficiently dispersing the cellulose nanofibers, it is preferable to crush the aggregated cellulose nanofibers by a treatment using a disperser (homogenizer). Examples of the disperser include a disaggregator, a beater, a low pressure homogenizer, a high pressure homogenizer, a grinder, a cutter mill, a ball mill, a jet mill, a short shaft extruder, a twin screw extruder, an ultrasonic stirrer, a household juicer mixer, and the like. I can give you. Among these, an ultrasonic stirrer is preferable from the viewpoint of dispersion efficiency. The degree of dispersion uniformity of the obtained slurry can be quantitatively evaluated by, for example, light transmittance using a UV / visible light spectroscope or viscosity using an E-type viscometer. It can also be easily evaluated by confirming that the degree is uniform. The processing time with the disperser is preferably 30 seconds to 6 minutes, more preferably 2 minutes to 5 minutes.

上記スラリーは、未だ凝集状態にあるセルロースナノファイバーを有効に取り除く観点から、さらに、湿式分級することが好ましい。湿式分級には、篩や市販の湿式分級機を使用することができる。篩の目開きは、用いるセルロースナノファイバーの繊維長により変動し得るが、作業効率の観点から、25μm〜160μmであるのが好ましい。   The slurry is preferably further subjected to wet classification from the viewpoint of effectively removing cellulose nanofibers that are still in an aggregated state. A sieve or a commercially available wet classifier can be used for wet classification. The opening of the sieve may vary depending on the fiber length of the cellulose nanofiber to be used, but is preferably 25 μm to 160 μm from the viewpoint of work efficiency.

次に、得られたスラリーを、水熱反応に付す。水熱反応は、100℃以上であればよく、130℃〜180℃が好ましい。水熱反応は耐圧容器中で行うのが好ましく、130℃〜180℃で反応を行う場合、この時の圧力は0.3MPa〜0.9MPaであるのが好ましく、140℃〜160℃で反応を行う場合の圧力は0.3MPa〜0.6MPaであるのが好ましい。水熱反応時間は0.5時間〜24時間が好ましく、さらに0.5時間〜15時間が好ましい。   Next, the obtained slurry is subjected to a hydrothermal reaction. Hydrothermal reaction should just be 100 degreeC or more, and 130 to 180 degreeC is preferable. The hydrothermal reaction is preferably performed in a pressure vessel. When the reaction is performed at 130 ° C to 180 ° C, the pressure at this time is preferably 0.3 MPa to 0.9 MPa, and the reaction is performed at 140 ° C to 160 ° C. The pressure in carrying out is preferably 0.3 MPa to 0.6 MPa. The hydrothermal reaction time is preferably 0.5 hours to 24 hours, more preferably 0.5 hours to 15 hours.

得られた水熱反応物は、セルロースナノファイバーと固体電解質、又はセルロースナノファイバーと固体電解質の前駆体からなる複合体であり、ろ過後、水で洗浄し、リパルプ(再懸濁)する。なお、ろ過手段には、減圧ろ過、加圧ろ過、遠心ろ過等を用いることができるが、操作の簡便性等からフィルタープレス等の加圧ろ過が好ましい。   The obtained hydrothermal reaction product is a composite composed of cellulose nanofibers and a solid electrolyte, or a cellulose nanofiber and a solid electrolyte precursor, and after filtration, washed with water and repulped (resuspended). The filtration means may be vacuum filtration, pressure filtration, centrifugal filtration or the like, but pressure filtration such as a filter press is preferred from the viewpoint of simplicity of operation.

ろ過後の複合体を水で洗浄する際、複合体1質量部に対し、水を5質量部〜100質量部用いるのが好ましい。   When the complex after filtration is washed with water, it is preferable to use 5 to 100 parts by mass of water with respect to 1 part by mass of the complex.

次に、水洗された複合体をリパルプする。次工程の工程(III)、(III’)、又は(III’’)で均一な固体電解質ナノ粒子からなる固体電解質ナノアレイ(b)、又は固体電解質ナノ粒子列(c)を生成させる観点から、リパルプして得られるスラリー中の複合体の含有率は0.5質量%〜20質量%であることが好ましく、より好ましくは1質量%〜15質量%であり、さらに好ましくは1.5質量%〜12質量%である。   Next, the washed composite is repulped. From the viewpoint of generating a solid electrolyte nanoarray (b) or a solid electrolyte nanoparticle array (c) consisting of uniform solid electrolyte nanoparticles in the next step (III), (III ′) or (III ″), The content of the composite in the slurry obtained by repulping is preferably 0.5% by mass to 20% by mass, more preferably 1% by mass to 15% by mass, and even more preferably 1.5% by mass. ˜12% by mass.

工程(III)、(III’)、及び(III’’)は、各々、電極活物質粒子(A)(工程(I)を含む場合には工程(I)で得られた電極活物質粒子(A))、上記CNF内包前駆体ナノ粒子集合体(e)、及び上記CNF内包前駆体ナノ粒子集合体(e)と反応して固体電解質ナノ粒子集合体(b)若しくは固体電解質ナノ粒子列(c)を生成するための残余の原料化合物、又はその両方、を所定量混合して焼成する工程である。   Steps (III), (III ′), and (III ″) are each an electrode active material particle (A) (if the step (I) is included, the electrode active material particles obtained in step (I) ( A)), the CNF inclusion precursor nanoparticle aggregate (e), and the CNF inclusion precursor nanoparticle aggregate (e) to react with the solid electrolyte nanoparticle aggregate (b) or the solid electrolyte nanoparticle array ( This is a step of mixing a predetermined amount of the remaining raw material compounds for producing c), or both, and baking them.

上記工程(III)、(III’)、又は(III’’)により、上記固体電解質ナノアレイ(b)、又は直線的に配列した複数の固体電解質のナノ粒子列(c)が、上記全固体二次電池用電極活物質粒子(A)の表面に担持されることとなる。さらに、この焼成により、全固体二次電池用固体電解質粒子(b)、及び固体電解質のナノ粒子列(c)の双方の結晶性を向上させることができるため、得られる全固体二次電池用電極活物質における充放電特性を有効に高めることができる。   By the step (III), (III ′), or (III ″), the solid electrolyte nanoarray (b) or the nanoparticle array (c) of a plurality of linearly arranged solid electrolytes is converted into the all solid state It will carry | support on the surface of the electrode active material particle (A) for secondary batteries. Furthermore, since the crystallinity of both the solid electrolyte particles (b) for an all-solid secondary battery and the nanoparticle array (c) of the solid electrolyte can be improved by this firing, the obtained all-solid-state secondary battery use The charge / discharge characteristics of the electrode active material can be effectively enhanced.

ここで、上記全固体二次電池用電極活物質粒子(A)の表面に担持される固体電解質が、セルロースナノファイバー由来の炭素鎖を軸又は基材として、これに特定の固体電解質ナノ粒子(a)が複数連なって線状に担持又は配列してなる特異な形状を呈する固体電解質ナノ粒子集合体(固体電解質ナノアレイ)(b)であるか、又は線状に連続して配列した複数の固体電解質ナノ粒子列(c)であるかは、上記焼成における焼成雰囲気で決まる。不活性雰囲気下や還元雰囲気下で焼成される場合には、工程(II)で得られたCNF内包固体電解質ナノ粒子集合体(d)又はCNF内包前駆体ナノ粒子集合体(e)が担持するセルロースナノファイバーが、炭化してセルロースナノファイバー由来の炭素鎖となって固体電解質ナノアレイ(b)が得られうる。これに対し、酸素雰囲気下で焼成される場合には、上記セルロースナノファイバーが焼失して特異な配列をした複数の固体電解質ナノ粒子列(c)が得られうる。なお、本発明の固体電解質として、得られた固体電解質ナノ粒子集合体(固体電解質ナノアレイ)(b)と固体電解質ナノ粒子列(c)とを適宜組み合わせて用いてもよい。   Here, the solid electrolyte supported on the surface of the electrode active material particle (A) for the all-solid-state secondary battery is a specific solid electrolyte nanoparticle (with a carbon chain derived from cellulose nanofiber as a shaft or a base material) a) is a solid electrolyte nanoparticle aggregate (solid electrolyte nanoarray) (b) having a unique shape formed by supporting or arranging a plurality of lines in a line, or a plurality of solids continuously arranged in a line Whether it is the electrolyte nanoparticle array (c) is determined by the firing atmosphere in the firing. When firing in an inert atmosphere or a reducing atmosphere, the CNF-encapsulated solid electrolyte nanoparticle aggregate (d) or CNF-encapsulated precursor nanoparticle aggregate (e) obtained in step (II) is supported. The cellulose nanofiber is carbonized to become a carbon chain derived from the cellulose nanofiber, and the solid electrolyte nanoarray (b) can be obtained. In contrast, when firing in an oxygen atmosphere, a plurality of solid electrolyte nanoparticle arrays (c) in which the cellulose nanofibers are burned out and have a unique arrangement can be obtained. As the solid electrolyte of the present invention, the obtained solid electrolyte nanoparticle aggregate (solid electrolyte nanoarray) (b) and solid electrolyte nanoparticle array (c) may be used in appropriate combination.

上記焼成における雰囲気は、上記電極活物質粒子(A)(工程(I)を含む場合には工程(I)で得られた電極活物質粒子(A))の耐酸化性によって定まり、たとえば、正極活物質のオリビン系では、不活性雰囲気下が好ましく、また、正極活物質の層状酸化物系や負極活物質の酸化物系及びチタン酸化物系では、酸素雰囲気下が好ましい。   The atmosphere in the firing is determined by the oxidation resistance of the electrode active material particles (A) (or the electrode active material particles (A) obtained in the step (I) when the step (I) is included). In the olivine system of the active material, an inert atmosphere is preferable, and in the layered oxide system of the positive electrode active material, the oxide system of the negative electrode active material, and the titanium oxide system, an oxygen atmosphere is preferable.

工程(III)は、より詳細には、次の工程(III−1)〜(III−3):
上記電極活物質粒子(A)(工程(I)を含む場合には工程(I)で得られた電極活物質粒子(A))、及び工程(II)で得られたCNF内包固体電解質ナノ粒子集合体(d)を混合するか、
上記電極活物質粒子(A)(工程(I)を含む場合には工程(I)で得られた電極活物質粒子(A))、工程(II)で得られたCNF内包前駆体ナノ粒子集合体(e)を含むスラリー及び固体電解質の残りの原料化合物を混合するか、又は、
上記電極活物質粒子(A)(工程(I)を含む場合には工程(I)で得られた電極活物質粒子(A))、並びに、工程(II)で得られたCNF内包固体電解質ナノ粒子集合体(d)、CNF内包前駆体ナノ粒子集合体(e)を含むスラリー及び固体電解質の残りの原料化合物を混合して、スラリーとする工程(III−1)、
工程(III−1)で得られたスラリーを乾燥して、全固体二次電池用電極活物質粒子(A)及びCNF内包固体電解質ナノ粒子集合体(d)からなる混合物か、
全固体二次電池用電極活物質粒子(A)、CNF内包前駆体ナノ粒子集合体(e)及び固体電解質の残りの原料化合物からなる混合物か、又は、
全固体二次電池用電極活物質粒子(A)、CNF内包固体電解質ナノ粒子集合体(d)、並びにCNF内包前駆体ナノ粒子集合体(e)及び固体電解質の残りの原料化合物からなる混合物を得る工程(III−2)、並びに、
工程(III−2)で得られた混合物を焼成して、全固体二次電池用電極活物質を得る工程(III−3)、を含む。
More specifically, the step (III) includes the following steps (III-1) to (III-3):
The electrode active material particles (A) (the electrode active material particles (A) obtained in the step (I) when the step (I) is included) and the CNF-encapsulated solid electrolyte nanoparticles obtained in the step (II) Mixing the assembly (d),
Electrode active material particles (A) (electrode active material particles (A) obtained in step (I) when step (I) is included), CNF-encapsulated precursor nanoparticle aggregates obtained in step (II) Mixing the slurry containing the body (e) and the remaining raw material compound of the solid electrolyte, or
The electrode active material particles (A) (the electrode active material particles (A) obtained in the step (I) when the step (I) is included) and the CNF-encapsulated solid electrolyte nanoparticle obtained in the step (II) A step (III-1) of mixing a slurry containing the particle assembly (d), the CNF inclusion precursor nanoparticle assembly (e) and the remaining raw material compound of the solid electrolyte to form a slurry (III-1);
The slurry obtained in the step (III-1) is dried, and is a mixture composed of the electrode active material particles for all-solid-state secondary battery (A) and the CNF-encapsulated solid electrolyte nanoparticle aggregate (d),
A mixture of electrode active material particles for all solid state secondary battery (A), CNF-encapsulated precursor nanoparticle aggregate (e) and the remaining raw material compound of the solid electrolyte, or
A mixture comprising electrode active material particles (A) for all-solid-state secondary batteries, CNF-encapsulated solid electrolyte nanoparticle aggregates (d), and CNF-encapsulated precursor nanoparticle aggregates (e) and the remaining raw material compounds of the solid electrolyte Obtaining step (III-2), and
Calcination of the mixture obtained in step (III-2) to obtain an electrode active material for an all-solid-state secondary battery (III-3).

工程(III−1)は、具体的には、工程(II)で得られたスラリーに、電極活物質粒子(A)(工程(I)を含む場合には工程(I)で得られた電極活物質粒子(A))を、又はさらに固体電解質の残りの原料化合物を混合して、スラリーとすればよい。また、上記スラリーには電極活物質粒子(A)を含む場合の全固体二次電池用電極活物質の製造方法例が記載されているが、電極活物質粒子(A)以外の成分で、固体電解質ナノアレイ(b)、又は固体電解質ナノ粒子列(c)を製造した上で、適宜、公知の手法を組み合わせて、それらのいずれか一方、又は両方を、電極活物質粒子(A)の表面に担持して全固体二次電池用電極活物質を得てもよい。   Specifically, in the step (III-1), in the slurry obtained in the step (II), the electrode active material particles (A) (the electrode obtained in the step (I) when the step (I) is included) The active material particles (A)) or the remaining raw material compound of the solid electrolyte may be mixed to form a slurry. Moreover, although the manufacturing method example of the electrode active material for all-solid-state secondary batteries in case the electrode active material particle (A) is included in the said slurry is described, it is solid with components other than electrode active material particle (A). After the electrolyte nanoarray (b) or the solid electrolyte nanoparticle array (c) is produced, any one or both of them are appropriately combined on the surface of the electrode active material particles (A) by combining known methods. It may be supported to obtain an electrode active material for an all-solid secondary battery.

また、工程(II)で得られたスラリーと全固体二次電池用電極活物質粒子(A)の混合割合は、最終的に得られる全固体二次電池用電極活物質中の電極活物質粒子(A)と、上記固体電解質ナノ粒子集合体(b)、上記固体電解質ナノ粒子列(c)、又はその両方を含む場合にはその合計量、との質量割合(電極活物質粒子(A):固体電解質ナノ粒子集合体(b)+固体電解質ナノ粒子列(c)(ただし、固体電解質ナノ粒子集合体(b)と固体電解質ナノ粒子列(c)は、いずれか一方しか含まない場合は、その一方のみ。))が、99.9:0.1〜70:30であるようにすることが好ましい。   Moreover, the mixing ratio of the slurry obtained in the step (II) and the electrode active material particles (A) for all-solid-state secondary batteries is the electrode active material particles in the electrode active material for all-solid-state secondary batteries finally obtained. (A) and the total amount of the solid electrolyte nanoparticle aggregate (b), the solid electrolyte nanoparticle array (c), or a combination thereof, if included (electrode active material particles (A) : Solid electrolyte nanoparticle aggregate (b) + solid electrolyte nanoparticle array (c) (However, when solid electrolyte nanoparticle aggregate (b) and solid electrolyte nanoparticle array (c) contain only one of them) , Only one of them.))) Is preferably 99.9: 0.1 to 70:30.

上記CNF内包前駆体ナノ粒子集合体(e)と共に工程(II)で得られたスラリーに混合される固体電解質の残りの原料化合物は、所定の元素の硝酸塩、炭酸塩、酢酸塩、シュウ酸塩、酸化物、水酸化物等を好適に使用することができる。これらは単独で使用してもよく、また2種以上を混合して使用してもよい。   The remaining raw material compound of the solid electrolyte mixed with the slurry obtained in the step (II) together with the CNF inclusion precursor nanoparticle aggregate (e) is nitrate, carbonate, acetate, oxalate of a predetermined element Oxides, hydroxides and the like can be preferably used. These may be used singly or in combination of two or more.

これらの原料の工程(II)で得られたスラリーへの添加順序は、特に限定されない。添加した後、混合する時間は、好ましくは1分間〜12時間であり、より好ましくは5分間〜6時間である。また、混合する温度は、好ましくは5℃〜60℃であり、より好ましくは5℃〜50℃である。   The order of adding these raw materials to the slurry obtained in step (II) is not particularly limited. After the addition, the mixing time is preferably 1 minute to 12 hours, more preferably 5 minutes to 6 hours. Moreover, the temperature to mix becomes like this. Preferably it is 5 to 60 degreeC, More preferably, it is 5 to 50 degreeC.

続く工程(III−2)では、工程(III−1)で得られたスラリーを、乾燥して、全固体二次電池用電極活物質粒子(A)及びCNF内包固体電解質ナノ粒子集合体(d)からなる混合物か、
全固体二次電池用電極活物質粒子(A)、CNF内包前駆体ナノ粒子集合体(e)及び固体電解質の残りの原料化合物からなる混合物か、又は、
全固体二次電池用電極活物質粒子(A)、CNF内包固体電解質ナノ粒子集合体(d)、並びにCNF内包前駆体ナノ粒子集合体(e)及び固体電解質の残りの原料化合物からなる混合物を得る。
In the subsequent step (III-2), the slurry obtained in the step (III-1) is dried to collect the electrode active material particles for all solid state secondary battery (A) and the CNF-encapsulated solid electrolyte nanoparticle aggregate (d Or a mixture of
A mixture of electrode active material particles for all solid state secondary battery (A), CNF-encapsulated precursor nanoparticle aggregate (e) and the remaining raw material compound of the solid electrolyte, or
A mixture comprising electrode active material particles (A) for all-solid-state secondary batteries, CNF-encapsulated solid electrolyte nanoparticle aggregates (d), and CNF-encapsulated precursor nanoparticle aggregates (e) and the remaining raw material compounds of the solid electrolyte obtain.

乾燥により得られる混合物の粒径は、レーザー回折・散乱法に基づく粒度分布におけるD50値で、好ましくは5nm〜50μmであり、より好ましくは5nm〜25μmである。ここで、粒度分布測定におけるD50値とは、レーザー回折・散乱法に基づく体積基準の粒度分布により得られる値であり、D50値は累積50%での粒径(メジアン径)を意味する。 The particle size of the mixture obtained by drying is a D 50 value in the particle size distribution based on the laser diffraction / scattering method, preferably 5 nm to 50 μm, more preferably 5 nm to 25 μm. Here, the D 50 value in the particle size distribution measurement is a value obtained by a volume-based particle size distribution based on the laser diffraction / scattering method, and the D 50 value means a particle size (median diameter) at a cumulative 50%. .

乾燥方法としては、噴霧乾燥、箱型乾燥、流動床乾燥、外熱式乾燥、媒体流動乾燥、凍結乾燥、真空乾燥等をあげることができる。なかでも、得られる混合物の粒子が必要以上に増大するのを有効に制御して微細化を図る観点から、凍結乾燥、凍結乾燥、又は噴霧乾燥が好ましい。   Examples of the drying method include spray drying, box drying, fluidized bed drying, external heat drying, medium fluidized drying, freeze drying, and vacuum drying. Of these, freeze-drying, freeze-drying, or spray-drying is preferred from the viewpoint of effectively controlling the increase in the particles of the resulting mixture more than necessary to achieve finer particles.

続く工程(III−3)では、工程(III−2)で得られた混合物を焼成して、全固体二次電池用電極活物質を得る。この焼成により、複合体に含まれるセルロースナノファーバーを炭化させるか焼失させると共に、CNF内包前駆体ナノ粒子集合体(e)及び固体電解質の残りの原料化合物を含む場合には、固体電解質ナノ粒子(a)を生成する固相反応も生じて、固体電解質ナノアレイ(b)、又は固体電解質ナノ粒子列(c)が表面に担持された全固体二次電池用電極活物質を得ることができる。   In the subsequent step (III-3), the mixture obtained in the step (III-2) is fired to obtain an electrode active material for an all-solid secondary battery. By this carbonization, carbon nanofibers contained in the composite are carbonized or burnt out, and when the CNF inclusion precursor nanoparticle aggregate (e) and the remaining raw material compound of the solid electrolyte are included, solid electrolyte nanoparticles ( A solid-phase reaction that generates a) also occurs, and an electrode active material for an all-solid-state secondary battery in which the solid electrolyte nanoarray (b) or the solid electrolyte nanoparticle array (c) is supported on the surface can be obtained.

焼成は、任意の焼成雰囲気下で行われ、焼成温度は、好ましくは500℃〜1200℃であり、より好ましくは600℃〜1100℃である。また焼成時間は、好ましくは10分間〜12時間であり、より好ましくは30分間〜8時間である。   Firing is performed under any firing atmosphere, and the firing temperature is preferably 500 ° C to 1200 ° C, more preferably 600 ° C to 1100 ° C. The firing time is preferably 10 minutes to 12 hours, more preferably 30 minutes to 8 hours.

また、工程(III’)、及び工程(III’’)についても、上述の工程(III)を適宜読み替えて行うことができうる。   Further, the step (III ′) and the step (III ″) can be performed by appropriately replacing the above-described step (III).

〔全固体二次電池〕
本発明の全固体二次電池ないし全固体リチウムイオン二次電池は、上記全固体二次電池用電極活物質を備える。
[All-solid secondary battery]
The all-solid-state secondary battery or the all-solid-state lithium ion secondary battery of the present invention includes the above-described electrode active material for an all-solid-state secondary battery.

本発明の全固体二次電池ないし全固体リチウムイオン二次電池においては、上述の全固体二次電池用電極活物質を適宜適用できる。また、本発明の全固体二次電池ないし全固体リチウムイオン二次電池の構成、及び製造方法は、本発明の全固体二次電池用電極活物質を用いる他は、公知の手法を適宜組み合わせることができる。また、本発明の全固体二次電池用電極活物質を適宜適用できる全固体二次電池としては、正極と負極と固体電解質を必須構成とするものであって、正極活物質層、固体電解質層、及び負極活物質層の順に積層配置された積層体が形成されるものであれば特に限定されない。   In the all solid state secondary battery or the all solid state lithium ion secondary battery of the present invention, the above-described electrode active material for all solid state secondary batteries can be appropriately applied. In addition, the configuration and manufacturing method of the all-solid secondary battery or all-solid lithium ion secondary battery of the present invention are appropriately combined with known methods except that the electrode active material for the all-solid secondary battery of the present invention is used. Can do. The all-solid-state secondary battery to which the electrode active material for an all-solid-state secondary battery of the present invention can be applied as appropriate has a positive electrode, a negative electrode, and a solid electrolyte as essential components, and includes a positive electrode active material layer, a solid electrolyte layer , And the negative electrode active material layer are not particularly limited as long as a laminated body is formed in the order of lamination.

この正極活物質層、固体電解質層、及び負極活物質層の順に積層配置された積層体の製造においては、たとえば、固体電解質層として、平均繊維径が50nm以下のセルロースナノファイバー由来の炭素鎖に複数の固体電解質ナノ粒子(a)が線状に担持してなる固体電解質ナノ粒子集合体(b)が、固体電解質粒子の表面に担持されてなる、固体電解質、若しくは平均繊維径が50nm以下のセルロースナノファイバーに誘導されて固体電解質ナノ粒子(a)が線状に連続して配列した固体電解質ナノ粒子列(c)が、固体電解質粒子の表面に担持されてなる固体電解質、またはその両方を用いることもできうる。上記いずれかの構成を有する場合、充放電容量や耐久性等をより一層高めた全固体リチウムイオン二次電池となりうる。   In the production of a laminate in which the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer are laminated in this order, for example, as the solid electrolyte layer, carbon fibers derived from cellulose nanofibers having an average fiber diameter of 50 nm or less are used. A solid electrolyte nanoparticle aggregate (b) formed by linearly supporting a plurality of solid electrolyte nanoparticles (a) is supported on the surface of the solid electrolyte particles, or a solid electrolyte having an average fiber diameter of 50 nm or less The solid electrolyte nanoparticle array (c), in which the solid electrolyte nanoparticles (a) are linearly arranged in a linear manner induced by cellulose nanofibers, is supported on the surface of the solid electrolyte particles, or both. It can also be used. In the case of having any of the above-described configurations, the all-solid-state lithium ion secondary battery can be further improved in charge / discharge capacity, durability, and the like.

上述の、平均繊維径が50nm以下のセルロースナノファイバー由来の炭素鎖に複数の固体電解質ナノ粒子(a)が線状に担持してなる固体電解質ナノ粒子集合体(b)が、固体電解質粒子の表面に担持されてなる、固体電解質、及び平均繊維径が50nm以下のセルロースナノファイバーに誘導されて固体電解質ナノ粒子(a)が線状に連続して配列した固体電解質ナノ粒子列(c)が、固体電解質粒子の表面に担持されてなる固体電解質における、各成分、すなわち、固体電解質ナノ粒子(a)、固体電解質ナノ粒子集合体(b)、固体電解質ナノ粒子列(c)、固体電解質粒子、及びそれらの製造方法や各種条件等は、上述した本願発明における記載を適宜読み替えて行うことができうる。   The solid electrolyte nanoparticle aggregate (b) in which a plurality of solid electrolyte nanoparticles (a) are linearly supported on a carbon chain derived from cellulose nanofibers having an average fiber diameter of 50 nm or less is the solid electrolyte particles. A solid electrolyte nanoparticle array (c) in which solid electrolyte nanoparticles and a solid electrolyte nanoparticle (a) are continuously arranged in a linear form are guided by cellulose nanofibers having an average fiber diameter of 50 nm or less. Each component in the solid electrolyte supported on the surface of the solid electrolyte particles, that is, the solid electrolyte nanoparticles (a), the solid electrolyte nanoparticle aggregate (b), the solid electrolyte nanoparticle array (c), and the solid electrolyte particles These manufacturing methods, various conditions, and the like can be performed by appropriately replacing the description in the present invention described above.

上記の構成を有する全固体二次電池、特に全固体リチウムイオン二次電池の形状としては、特に制限を受けるものではなく、コイン型、円筒型,角型等種々の形状や、ラミネート外装体に封入した不定形状であってもよい。   The shape of the all-solid-state secondary battery having the above-described configuration, particularly the all-solid-state lithium ion secondary battery, is not particularly limited, and various shapes such as a coin shape, a cylindrical shape, and a square shape, and a laminate exterior body can be used. The enclosed irregular shape may be sufficient.

以下、本発明について、実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples.

[製造例1](LiNi1/3Co1/3Mn1/3正極活物質粒子の製造)
Ni:Co:Mnのモル比が1:1:1となるように、硫酸ニッケル六水和物263g、硫酸コバルト七水和物281g、硫酸マンガン五水和物241g、及び水3Lを混合した後、かかる混合液に25%アンモニア水を、滴下速度300ml/分で滴下して、pHが11の金属複合水酸化物を含むスラリーA1を得た。
[Production Example 1] (Production of LiNi 1/3 Co 1/3 Mn 1/3 O 2 positive electrode active material particles)
After mixing 263 g of nickel sulfate hexahydrate, 281 g of cobalt sulfate heptahydrate, 241 g of manganese sulfate pentahydrate, and 3 L of water so that the molar ratio of Ni: Co: Mn is 1: 1: 1. Then, 25% aqueous ammonia was added dropwise to the mixture at a dropping rate of 300 ml / min to obtain a slurry A1 containing a metal composite hydroxide having a pH of 11.

次いで、得られたスラリーA1に炭酸リチウム37gを混合し、得られたスラリーB1をろ過、乾燥して、金属複合水酸化物の混合物C1を得た   Next, 37 g of lithium carbonate was mixed with the obtained slurry A1, and the obtained slurry B1 was filtered and dried to obtain a metal composite hydroxide mixture C1.

得られた混合物C1を、空気雰囲気下で800℃で5時間仮焼成して解砕した後、本焼成として空気雰囲気下で800℃で10時間焼成し、NCM系複合酸化物(LiNi1/3Co1/3Mn1/3)の二次粒子を得た。(NCM系複合酸化物二次粒子の平均粒径:10μm) The obtained mixture C1 was calcined at 800 ° C. for 5 hours in an air atmosphere and pulverized, and then calcined at 800 ° C. for 10 hours in the air atmosphere as main firing, to obtain an NCM complex oxide (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) secondary particles were obtained. (Average particle diameter of NCM-based composite oxide secondary particles: 10 μm)

[製造例2](LiLaZr12固体電解質粒子の製造)
炭酸リチウム5.17g、水酸化ランタン11.40g、及び酸化ジルコニウム4.93gを、遊星ボールミルで200rpmで2時間粉砕混合して混合物A2を得た。得られた混合物A2をペレットに成形した後、空気雰囲気下で900℃で12時間焼成した後、乳鉢で解砕して、LLZ(LiLaZr12)固体電解質粒子を得た。(LLZ固体電解質粒子Bの平均粒径:1μm)
[Production Example 2] (Production of Li 7 La 3 Zr 2 O 12 solid electrolyte particles)
Lithium carbonate 5.17 g, lanthanum hydroxide 11.40 g, and zirconium oxide 4.93 g were pulverized and mixed at 200 rpm for 2 hours in a planetary ball mill to obtain a mixture A2. The obtained mixture A2 was formed into pellets, calcined at 900 ° C. for 12 hours in an air atmosphere, and then crushed in a mortar to obtain LLZ (Li 7 La 3 Zr 2 O 12 ) solid electrolyte particles. (Average particle size of LLZ solid electrolyte particles B: 1 μm)

〔実施例1〕(NMC+固体電解質ナノアレイからなる全固体リチウムイオン二次電池用電極活物質)
硫酸ジルコニウム四水和物1.81g、セルロースナノファイバー19.29g(スギノマシン社製、TMa−10002、含水量98質量%)、及び水55mLを60分間混合してスラリーA3を作製した。得られたスラリーA3に、10質量%濃度のNaOH水溶液12.0gを添加し、5分間混合してスラリーB3を作製した。得られたスラリーB3をオートクレーブに投入し、140℃で1時間水熱反応を行った。得られた水熱反応生成物C3を放冷した後、ろ過、水洗、水でリパルプして、セルロースナノファイバーに複数のZrOナノ粒子が直線的に担持されたZrOナノアレイを10質量%含有したスラリーD3を得た。
[Example 1] (Electrode active material for an all solid lithium ion secondary battery comprising NMC + solid electrolyte nanoarray)
A slurry A3 was prepared by mixing 1.81 g of zirconium sulfate tetrahydrate, 19.29 g of cellulose nanofiber (manufactured by Sugino Machine Co., Ltd., TMa-1202, water content 98 mass%), and 55 mL of water for 60 minutes. To the obtained slurry A3, 12.0 g of a 10 mass% NaOH aqueous solution was added and mixed for 5 minutes to prepare a slurry B3. The obtained slurry B3 was put into an autoclave and subjected to a hydrothermal reaction at 140 ° C. for 1 hour. The obtained hydrothermal reaction product C3 is allowed to cool, then filtered, washed with water, repulped with water, and contains 10% by mass of ZrO 2 nanoarrays in which a plurality of ZrO 2 nanoparticles are linearly supported on cellulose nanofibers. A slurry D3 was obtained.

得られたスラリーD3全量に、硝酸リチウム1.21g、硝酸ランタン六水和物3.25g、および製造例1で得られたNCM系複合酸化物二次粒子39.7gを混合し、スラリーE3を得た。得られたスラリーE3を凍結乾燥して、原料混合粉末F3を得た。原料混合粉末F3を大気雰囲気下1100℃で1時間焼成することにより、NCM系複合酸化物二次粒子の表面に複数のLLZ固体電解質ナノ粒子が直線的に連続して担持されてなる全固体リチウムイオン二次電池用電極活物質Aを得た。得られた全固体リチウムイオン二次電池用電極活物質A100質量%中のLLZ固体電解質ナノ粒子の含有率は、5質量%であった。   The total amount of slurry D3 obtained was mixed with lithium nitrate 1.21 g, lanthanum nitrate hexahydrate 3.25 g, and 39.7 g of NCM composite oxide secondary particles obtained in Production Example 1 to obtain slurry E3. Obtained. The obtained slurry E3 was freeze-dried to obtain a raw material mixed powder F3. All-solid lithium in which a plurality of LLZ solid electrolyte nanoparticles are supported linearly and continuously on the surface of NCM composite oxide secondary particles by firing raw material mixed powder F3 at 1100 ° C. for 1 hour in an air atmosphere An electrode active material A for ion secondary batteries was obtained. The content rate of the LLZ solid electrolyte nanoparticle in 100 mass% of obtained electrode active materials A for all-solid-state lithium ion secondary batteries was 5 mass%.

得られた全固体リチウムイオン二次電池用電極活物質Aの、表面部のTEM写真を図1に示す。なお、使用したTEMは、日本電子株式会社製JEM−ARM200Fであった。   FIG. 1 shows a TEM photograph of the surface portion of the obtained electrode active material A for an all solid lithium ion secondary battery. The TEM used was JEM-ARM200F manufactured by JEOL Ltd.

〔比較例1〕
製造例1で得たNCM系複合酸化物二次粒子を、そのまま全固体リチウムイオン二次電池用電極活物質Bとして用いた。
[Comparative Example 1]
The NCM composite oxide secondary particles obtained in Production Example 1 were used as the electrode active material B for an all solid lithium ion secondary battery as it was.

≪全固体リチウムイオン二次電池における放電容量の評価≫
実施例1ならびに比較例1で得られた全固体リチウムイオン二次電池用正極活物質と、製造例2で得られたLLZ固体電解質粒子を用い、全固体リチウムイオン電池用正極を作製した。より具体的には、全固体リチウムイオン二次電池用正極活物質と固体電解質を同じ比率にするため、全固体リチウムイオン二次電池用電極活物質Aを用いた実施例1では、電極活物質:固体電解質(質量比)を75:25に、全固体リチウムイオン二次電池用電極活物質Bを用いた比較例1では、電極活物質:固体電解質(質量比)を71.3:28.7の配合割合で混合後、プレス用冶具に投入して正極活物質層とし、その上にLLZ固体電解質粒子のみをさらに投入して固体電解質層として積層させた後、ハンドプレスを用いて16MPaで2分間プレスして、φ14mmの円盤状の正極を得た。次いで、負極としてリチウム箔を固体電解質層側に取り付けることで、全固体リチウムイオン二次電池を作製した。
≪Evaluation of discharge capacity in all solid-state lithium ion secondary battery≫
Using the positive electrode active material for an all solid lithium ion secondary battery obtained in Example 1 and Comparative Example 1 and the LLZ solid electrolyte particles obtained in Production Example 2, a positive electrode for an all solid lithium ion battery was produced. More specifically, in Example 1 using the electrode active material A for all-solid-state lithium ion secondary battery in order to make the positive electrode active material for all-solid-state lithium ion secondary battery and the solid electrolyte have the same ratio, In the first comparative example in which the solid electrolyte (mass ratio) was 75:25 and the electrode active material B for an all solid lithium ion secondary battery was used, the electrode active material: solid electrolyte (mass ratio) was 71.3: 28. After mixing at a blending ratio of 7, the mixture was put into a pressing jig to form a positive electrode active material layer, and only LLZ solid electrolyte particles were further added thereon to form a solid electrolyte layer, which was then stacked at 16 MPa using a hand press. It pressed for 2 minutes and obtained the disk-shaped positive electrode of (phi) 14mm. Next, an all-solid lithium ion secondary battery was fabricated by attaching a lithium foil as the negative electrode to the solid electrolyte layer side.

作製した全固体リチウムイオン二次電池を用いて、充電条件を10mA/g、電圧4.2Vの定電流充電、放電条件を10mA/g、終止電圧3.0Vの定電流放電とした場合の、10mA/gにおける放電容量を求めた。なお、充放電試験は全て45℃で行った。   Using the produced all solid lithium ion secondary battery, the charging condition is 10 mA / g, constant current charging with a voltage of 4.2 V, the discharging condition is 10 mA / g, and the constant current discharging with a final voltage of 3.0 V is performed. The discharge capacity at 10 mA / g was determined. All charge / discharge tests were conducted at 45 ° C.

上記評価の結果を表1に示す。   The results of the evaluation are shown in Table 1.

表1から明らかなように、実施例1の、粒子表面に固体電解質ナノ粒子が担持された正極活物質を使用した全固体リチウムイオン二次電池用正極活物質粒子による全固体リチウムイオン二次電池は、比較例1の、固体電解質ナノ粒子を担持していない一般的な正極活物質を使用した全固体リチウムイオン二次電池用正極活物質粒子による全固体リチウムイオン二次電池と比べ、放電容量が非常に大きくなっていることがわかる。   As is clear from Table 1, the all-solid-state lithium ion secondary battery using positive-electrode active material particles for the all-solid-state lithium ion secondary battery using the positive-electrode active material in which solid electrolyte nanoparticles are supported on the particle surface of Example 1 Compared with the all-solid-state lithium ion secondary battery using the positive electrode active material particles for the all-solid-state lithium ion secondary battery using the general cathode active material not supporting the solid electrolyte nanoparticles in Comparative Example 1, the discharge capacity Can be seen to be very large.

Claims (11)

平均繊維径が50nm以下のセルロースナノファイバー由来の炭素鎖に複数の固体電解質ナノ粒子(a)が線状に担持してなる固体電解質ナノ粒子集合体(b)が、電極活物質粒子(A)の表面に担持されてなる、全固体二次電池用電極活物質。   A solid electrolyte nanoparticle aggregate (b) in which a plurality of solid electrolyte nanoparticles (a) are linearly supported on a carbon chain derived from cellulose nanofibers having an average fiber diameter of 50 nm or less is an electrode active material particle (A). An electrode active material for an all-solid-state secondary battery, which is supported on the surface of the battery. 平均繊維径が50nm以下のセルロースナノファイバーに誘導されて固体電解質ナノ粒子(a)が線状に連続して配列した固体電解質ナノ粒子列(c)が、電極活物質粒子(A)の表面に担持されてなる、全固体二次電池用電極活物質。   A solid electrolyte nanoparticle array (c) in which the solid electrolyte nanoparticles (a) are linearly arranged in a linear manner and are induced by cellulose nanofibers having an average fiber diameter of 50 nm or less is formed on the surface of the electrode active material particles (A). An electrode active material for an all-solid secondary battery, which is supported. 前記電極活物質粒子(A)の平均二次粒子径が、50nm〜50μmである、請求項1又は2に記載の全固体二次電池用電極活物質。   The electrode active material for an all-solid-state secondary battery according to claim 1 or 2, wherein an average secondary particle diameter of the electrode active material particles (A) is 50 nm to 50 µm. 前記固体電解質ナノ粒子(a)の平均粒子径が、0.5nm〜100nmである請求項1〜3のいずれかに記載の全固体二次電池用電極活物質。   4. The electrode active material for an all-solid-state secondary battery according to claim 1, wherein an average particle size of the solid electrolyte nanoparticles (a) is 0.5 nm to 100 nm. 前記電極活物質粒子(A)と、前記固体電解質ナノ粒子集合体(b)、前記固体電解質ナノ粒子列(c)、又はその両方を含む場合にはその合計量、との質量割合が、99.9:0.1〜70:30である請求項1〜4のいずれかに記載の全固体二次電池用電極活物質。   When the electrode active material particles (A) and the solid electrolyte nanoparticle aggregate (b), the solid electrolyte nanoparticle array (c), or both are included, the mass ratio thereof is 99. It is 9: 0.1-70: 30, The electrode active material for all-solid-state secondary batteries in any one of Claims 1-4. 前記電極活物質粒子(A)が、LiNi1−x−yCoMn、LiNi1−x−yCoAl、LiMPO(M=Ni、Co、Fe、Mn)、LiMSiO(M=Ni、Co、Fe、Mn)、SiO、及びLiTi12からなる群のうち少なくとも1種以上を含む、請求項1〜5のいずれかに記載の全固体二次電池用電極活物質。 The electrode active material particles (A) is, LiNi 1-x-y Co x Mn y O 2, LiNi 1-x-y Co x Al y O 2, LiMPO 4 (M = Ni, Co, Fe, Mn), The whole of any one of claims 1 to 5, comprising at least one of the group consisting of Li 2 MSiO 4 (M = Ni, Co, Fe, Mn), SiO x , and Li 4 Ti 5 O 12. Electrode active material for solid secondary batteries. 前記固体電解質ナノ粒子(a)が、LiPO‐LiSiO、Li7−xLaZr2−xTa12、La0.51Li0.34TiO2.94、Li1.3Al0.3Ti1.7(PO、LiLaZr12、及び50LiSiO・50LiBOからなる群のうち少なくとも1種以上を含む、請求項1〜6のいずれかに記載の全固体二次電池用電極活物質。 The solid electrolyte nanoparticles (a) is, Li 3 PO 4 -Li 4 SiO 4, Li 7-x La 3 Zr 2-x Ta x O 12, La 0.51 Li 0.34 TiO 2.94, Li 1 .3 Al 0.3 Ti 1.7 (PO 4 ) 3 , Li 7 La 3 Zr 2 O 12 , and 50Li 4 SiO 4 .50Li 3 BO 3. The electrode active material for all-solid-state secondary batteries in any one of -6. 前記線状が、直線状、又は略直線状である、請求項1〜7のいずれかに記載の全固体二次電池用電極活物質。   The electrode active material for an all-solid-state secondary battery according to any one of claims 1 to 7, wherein the linear shape is linear or substantially linear. 全固体リチウムイオン二次電池用である、請求項1〜8のいずれかに記載の全固体二次電池用電極活物質。   The electrode active material for an all-solid-state secondary battery according to any one of claims 1 to 8, which is used for an all-solid-state lithium ion secondary battery. 請求項1〜9のいずれかに記載の全固体二次電池用電極活物質を備える、全固体二次電池。   An all-solid secondary battery comprising the electrode active material for an all-solid secondary battery according to claim 1. 前記二次電池が、全固体リチウムイオン二次電池である、請求項10に記載の全固体二次電池。   The all-solid-state secondary battery of Claim 10 whose said secondary battery is an all-solid-state lithium ion secondary battery.
JP2019161173A 2017-03-16 2019-09-04 Electrode active material for all-solid-state secondary battery, its manufacturing method, and all-solid-state secondary battery Active JP7061101B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017051281 2017-03-16
JP2017051281 2017-03-16

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018047662A Division JP6625153B2 (en) 2017-03-16 2018-03-15 Electrode active material for all-solid secondary battery, method for producing the same, and all-solid secondary battery

Publications (2)

Publication Number Publication Date
JP2019212637A true JP2019212637A (en) 2019-12-12
JP7061101B2 JP7061101B2 (en) 2022-04-27

Family

ID=63715695

Family Applications (12)

Application Number Title Priority Date Filing Date
JP2017157812A Active JP6442574B2 (en) 2017-03-16 2017-08-18 Nanoparticle aggregate, nanoparticle fired product, and production method thereof
JP2017181024A Active JP6505181B2 (en) 2017-03-16 2017-09-21 Catalyst for purifying automobile exhaust gas and method for producing the same
JP2018037045A Active JP6527258B2 (en) 2017-03-16 2018-03-02 Method of manufacturing positive electrode active material for nano-array like lithium ion secondary battery
JP2018042464A Active JP6646092B2 (en) 2017-03-16 2018-03-09 Oxide semiconductor nanoparticle aggregate for resistance type oxygen sensor and method for producing the same
JP2018044275A Active JP6590967B2 (en) 2017-03-16 2018-03-12 Oxide semiconductor for carbon monoxide gas sensor and method for producing the same
JP2018044274A Active JP6602908B2 (en) 2017-03-16 2018-03-12 Zirconia slurry for thin film formation and manufacturing method thereof
JP2018044276A Active JP6590968B2 (en) 2017-03-16 2018-03-12 Oxide semiconductor for ammonia gas sensor and manufacturing method thereof
JP2018044694A Active JP6595028B2 (en) 2017-03-16 2018-03-12 Method for producing exhaust gas purification catalyst
JP2018047660A Active JP6622838B2 (en) 2017-03-16 2018-03-15 Solid electrolyte for all solid state secondary battery, method for producing the same, and all solid state secondary battery
JP2018047662A Active JP6625153B2 (en) 2017-03-16 2018-03-15 Electrode active material for all-solid secondary battery, method for producing the same, and all-solid secondary battery
JP2019161035A Active JP7061100B2 (en) 2017-03-16 2019-09-04 Solid electrolytes for all-solid-state secondary batteries, their manufacturing methods, and all-solid-state secondary batteries
JP2019161173A Active JP7061101B2 (en) 2017-03-16 2019-09-04 Electrode active material for all-solid-state secondary battery, its manufacturing method, and all-solid-state secondary battery

Family Applications Before (11)

Application Number Title Priority Date Filing Date
JP2017157812A Active JP6442574B2 (en) 2017-03-16 2017-08-18 Nanoparticle aggregate, nanoparticle fired product, and production method thereof
JP2017181024A Active JP6505181B2 (en) 2017-03-16 2017-09-21 Catalyst for purifying automobile exhaust gas and method for producing the same
JP2018037045A Active JP6527258B2 (en) 2017-03-16 2018-03-02 Method of manufacturing positive electrode active material for nano-array like lithium ion secondary battery
JP2018042464A Active JP6646092B2 (en) 2017-03-16 2018-03-09 Oxide semiconductor nanoparticle aggregate for resistance type oxygen sensor and method for producing the same
JP2018044275A Active JP6590967B2 (en) 2017-03-16 2018-03-12 Oxide semiconductor for carbon monoxide gas sensor and method for producing the same
JP2018044274A Active JP6602908B2 (en) 2017-03-16 2018-03-12 Zirconia slurry for thin film formation and manufacturing method thereof
JP2018044276A Active JP6590968B2 (en) 2017-03-16 2018-03-12 Oxide semiconductor for ammonia gas sensor and manufacturing method thereof
JP2018044694A Active JP6595028B2 (en) 2017-03-16 2018-03-12 Method for producing exhaust gas purification catalyst
JP2018047660A Active JP6622838B2 (en) 2017-03-16 2018-03-15 Solid electrolyte for all solid state secondary battery, method for producing the same, and all solid state secondary battery
JP2018047662A Active JP6625153B2 (en) 2017-03-16 2018-03-15 Electrode active material for all-solid secondary battery, method for producing the same, and all-solid secondary battery
JP2019161035A Active JP7061100B2 (en) 2017-03-16 2019-09-04 Solid electrolytes for all-solid-state secondary batteries, their manufacturing methods, and all-solid-state secondary batteries

Country Status (1)

Country Link
JP (12) JP6442574B2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10840543B2 (en) * 2017-03-31 2020-11-17 The Regents Of The University Of Michigan System and method for the formation of facile lithium metal anode interface with a solid state electrolyte
CN111095438B (en) * 2017-09-28 2021-11-16 富士胶片株式会社 Solid electrolyte composition, solid electrolyte-containing sheet, all-solid-state secondary battery, and methods for producing both
JP6962883B2 (en) * 2018-08-24 2021-11-05 株式会社三共 Pachinko machine
JP2020028577A (en) * 2018-08-24 2020-02-27 株式会社三共 Game machine
JP7165569B2 (en) * 2018-12-03 2022-11-04 太平洋セメント株式会社 Positive electrode paste for lithium ion secondary battery and method for producing the same
JP7152945B2 (en) * 2018-12-10 2022-10-13 太平洋セメント株式会社 Method for producing nanoparticle aggregate for negative electrode active material of lithium ion secondary battery
JP7165048B2 (en) * 2018-12-21 2022-11-02 太平洋セメント株式会社 METHOD FOR MANUFACTURING LISICON-TYPE CRYSTAL PARTICLES FOR SOLID ELECTROLYTE FOR LITHIUM-ION SECONDARY BATTERY
JP7189006B2 (en) * 2018-12-21 2022-12-13 太平洋セメント株式会社 Method for producing NASICON-type oxide particles for solid electrolyte of lithium-ion secondary battery
JP7224170B2 (en) * 2018-12-21 2023-02-17 太平洋セメント株式会社 LISICON type crystal particles for solid electrolyte of lithium ion secondary battery and method for producing the same
JP7224171B2 (en) * 2018-12-21 2023-02-17 太平洋セメント株式会社 Method for producing LISICON type crystal particles for solid electrolyte of lithium ion secondary battery
JP7114161B2 (en) * 2019-02-13 2022-08-08 Semitec株式会社 Gas detection device and gas detection method
JP7165608B2 (en) * 2019-03-19 2022-11-04 太平洋セメント株式会社 Positive electrode active material composite for lithium ion secondary battery and method for producing the same
CN113543880B (en) * 2019-03-26 2023-10-03 樱花工业株式会社 Catalyst layer forming material, catalyst device constituent material, catalyst device, and method for producing the same
JP7385859B2 (en) * 2019-08-26 2023-11-24 国立大学法人東京工業大学 Gas sensor with nanogap electrode and manufacturing method thereof
JP7340995B2 (en) * 2019-09-02 2023-09-08 太平洋セメント株式会社 Method for producing chain-like lithium lanthanum titanate crystal particle aggregate for solid electrolyte
JP7403289B2 (en) * 2019-11-27 2023-12-22 太平洋セメント株式会社 Positive electrode active material composite for lithium ion secondary battery and method for manufacturing the same
KR102411149B1 (en) 2019-11-28 2022-06-17 삼성전기주식회사 All solid battery
JP7351736B2 (en) * 2019-12-11 2023-09-27 太平洋セメント株式会社 Method for producing lithium lanthanum zirconium oxide crystal particle aggregate for solid electrolyte
JP2021124405A (en) * 2020-02-06 2021-08-30 アズビル株式会社 CO2 sensor system
US11532813B2 (en) 2020-02-20 2022-12-20 Samsung Electronics Co., Ltd. Composite cathode active material, preparation method thereof, cathode layer including the same, and all-solid secondary battery including the cathode layer
CN111977658B (en) * 2020-08-26 2021-03-02 成都新柯力化工科技有限公司 Method for continuously producing silicon-carbon negative electrode material of lithium battery
CN112499678B (en) * 2020-11-23 2021-12-28 山东国瓷功能材料股份有限公司 Nano zirconium oxide powder, preparation method thereof, dispersion liquid obtained by preparation method and optical film
JP7586048B2 (en) 2021-10-18 2024-11-19 トヨタ自動車株式会社 All-solid-state battery system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004319186A (en) * 2003-04-14 2004-11-11 Sony Corp Nonaqueous electrolyte battery
JP2015153460A (en) * 2014-02-10 2015-08-24 古河機械金属株式会社 Solid electrolyte sheet, all solid-state lithium ion battery, and method for producing solid electrolyte sheet
JP2016058277A (en) * 2014-09-10 2016-04-21 トヨタ自動車株式会社 Positive electrode mixture, positive electrode, solid state battery, and production method thereof
US20160248118A1 (en) * 2013-09-11 2016-08-25 Candace Chan Nanowire-based solid electrolytes and lithium-ion batteries including the same
JP2016184569A (en) * 2015-03-26 2016-10-20 太平洋セメント株式会社 Positive electrode active material for secondary battery and method for producing the same
JP2016207418A (en) * 2015-04-21 2016-12-08 トヨタ自動車株式会社 Electrode mixture
WO2016199805A1 (en) * 2015-06-08 2016-12-15 富士フイルム株式会社 Solid electrolyte composition, electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing electrode sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3903181B2 (en) * 2002-06-27 2007-04-11 独立行政法人産業技術総合研究所 Resistance oxygen sensor, oxygen sensor device using the same, and air-fuel ratio control system
KR100534708B1 (en) * 2003-10-15 2005-12-07 현대자동차주식회사 Oxygen sensor heating control method of vehicle
JP2007139669A (en) * 2005-11-21 2007-06-07 Ngk Spark Plug Co Ltd Gas sensor
KR100812357B1 (en) * 2005-12-23 2008-03-11 한국과학기술연구원 Ultra-sensitive metal oxide gas sensor and fbrication method thereof
JP2007229640A (en) * 2006-03-01 2007-09-13 Nissan Motor Co Ltd Catalyst for purification of exhaust gas and its manufacturing method
JP5147687B2 (en) * 2006-04-03 2013-02-20 日産自動車株式会社 Exhaust gas purification catalyst and method for producing the same
WO2007140573A1 (en) * 2006-04-24 2007-12-13 Axcelon Biopolymers Corporation Nanosilver coated bacterial cellulose
JP2008121127A (en) * 2006-11-08 2008-05-29 Ehime Prefecture Method for producing pulp
JP5551329B2 (en) * 2006-11-14 2014-07-16 日産自動車株式会社 Exhaust gas purification catalyst and method for producing the same
JP5661989B2 (en) * 2007-04-20 2015-01-28 日産自動車株式会社 High heat resistant catalyst and process for producing the same
JP2009014610A (en) * 2007-07-06 2009-01-22 Yamaha Motor Co Ltd Resistance oxygen sensor, air-fuel ratio controller, and transport machine
CA2638410A1 (en) * 2008-07-28 2010-01-28 Hydro-Quebec Composite electrode material
JP5272738B2 (en) * 2009-01-05 2013-08-28 コニカミノルタ株式会社 Polymer film with cellulose coating film
WO2010095574A1 (en) * 2009-02-18 2010-08-26 国立大学法人 九州大学 Complex comprising cellulose nanofibers and metal nanoparticles, and process for producing same
US9577249B2 (en) * 2011-04-28 2017-02-21 Showa Denko K.K. Cathode material for lithium secondary battery, and method of producing said cathode material
SE536780C2 (en) * 2011-10-26 2014-08-05 Stora Enso Oyj Process for preparing a dispersion comprising nanoparticles and a dispersion prepared according to the process
CA2861563C (en) * 2012-02-10 2020-04-21 Cellutech Ab Cellulose nanofibrils bearing a uniform coating of magnetic nanoparticles and methods for preparing same
JP5895600B2 (en) * 2012-03-01 2016-03-30 日産自動車株式会社 Exhaust gas purification catalyst and method for producing the same
JP2013209779A (en) * 2012-03-30 2013-10-10 Toppan Printing Co Ltd Formed body and method for producing the same
JP5921960B2 (en) * 2012-06-04 2016-05-24 第一工業製薬株式会社 Composition containing inorganic fine particles and film using the same
JP2014026809A (en) * 2012-07-26 2014-02-06 Toyota Motor Corp Fibrous oxide solid electrolyte, all solid battery, and method for manufacturing the same
JP5896034B2 (en) * 2012-09-19 2016-03-30 信越化学工業株式会社 Visible light responsive photocatalyst fine particle dispersion, method for producing the same, and member having photocatalytic thin film on surface
JP6224311B2 (en) * 2012-11-06 2017-11-01 Nissha株式会社 Semiconductor gas sensor element
JP6345925B2 (en) * 2013-10-03 2018-06-20 中越パルプ工業株式会社 Nanocomposite and method for producing nanocomposite
JP5802811B1 (en) * 2014-08-27 2015-11-04 株式会社ジーエル・マテリアルズホールディングス Method for producing nanoparticles
WO2016043146A1 (en) * 2014-09-17 2016-03-24 国立大学法人名古屋大学 Thermally conductive composition and method for producing same
KR101610354B1 (en) * 2014-09-18 2016-04-11 재단법인대구경북과학기술원 Production method of a metal oxide supported carbon nano fiber electrode using electro deposition method, and an energy storage device and a filter using the same
JP6193505B2 (en) * 2014-09-26 2017-09-06 太平洋セメント株式会社 Positive electrode active material for secondary battery and method for producing the same
JP2016069616A (en) * 2014-09-28 2016-05-09 第一工業製薬株式会社 Inorganic fine particle-containing composition and coating using the same
JP6243372B2 (en) * 2015-03-27 2017-12-06 トヨタ自動車株式会社 Exhaust gas purification catalyst
KR101745128B1 (en) * 2015-09-01 2017-06-08 현대자동차주식회사 Chemochromic nanoparticles, method for manufacturing the same, and hydrogen sensor comprising the same
JP6910026B2 (en) * 2016-10-03 2021-07-28 国立研究開発法人産業技術総合研究所 Composite materials and their manufacturing methods and thermally conductive materials

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004319186A (en) * 2003-04-14 2004-11-11 Sony Corp Nonaqueous electrolyte battery
US20160248118A1 (en) * 2013-09-11 2016-08-25 Candace Chan Nanowire-based solid electrolytes and lithium-ion batteries including the same
JP2015153460A (en) * 2014-02-10 2015-08-24 古河機械金属株式会社 Solid electrolyte sheet, all solid-state lithium ion battery, and method for producing solid electrolyte sheet
JP2016058277A (en) * 2014-09-10 2016-04-21 トヨタ自動車株式会社 Positive electrode mixture, positive electrode, solid state battery, and production method thereof
JP2016184569A (en) * 2015-03-26 2016-10-20 太平洋セメント株式会社 Positive electrode active material for secondary battery and method for producing the same
JP2016207418A (en) * 2015-04-21 2016-12-08 トヨタ自動車株式会社 Electrode mixture
WO2016199805A1 (en) * 2015-06-08 2016-12-15 富士フイルム株式会社 Solid electrolyte composition, electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing electrode sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIBO DENG, ET AL.: "Carbon nanofibres produced from electrospun cellulose nanofibres", CARBON, vol. 58, JPN6019005163, 2013, pages 66 - 75, XP028579257, ISSN: 0004725168, DOI: 10.1016/j.carbon.2013.02.032 *

Also Published As

Publication number Publication date
JP7061100B2 (en) 2022-04-27
JP2018156940A (en) 2018-10-04
JP2018154550A (en) 2018-10-04
JP2018155748A (en) 2018-10-04
JP2018153794A (en) 2018-10-04
JP2019204800A (en) 2019-11-28
JP6505181B2 (en) 2019-04-24
JP6646092B2 (en) 2020-02-14
JP7061101B2 (en) 2022-04-27
JP6590968B2 (en) 2019-10-16
JP6622838B2 (en) 2019-12-18
JP6625153B2 (en) 2019-12-25
JP2018156941A (en) 2018-10-04
JP2018155749A (en) 2018-10-04
JP2018156935A (en) 2018-10-04
JP2018154545A (en) 2018-10-04
JP6442574B2 (en) 2018-12-19
JP6590967B2 (en) 2019-10-16
JP6602908B2 (en) 2019-11-06
JP2018155746A (en) 2018-10-04
JP6595028B2 (en) 2019-10-23
JP6527258B2 (en) 2019-06-05
JP2018153803A (en) 2018-10-04

Similar Documents

Publication Publication Date Title
JP7061101B2 (en) Electrode active material for all-solid-state secondary battery, its manufacturing method, and all-solid-state secondary battery
JP6527201B2 (en) Method of manufacturing positive electrode active material complex for lithium ion secondary battery
JP6922035B2 (en) Method of manufacturing lithium secondary battery electrode
JP7366662B2 (en) Positive electrode active material composite for lithium ion secondary battery and method for manufacturing the same
JP5670104B2 (en) Positive electrode active material and lithium secondary battery
WO2014034933A1 (en) Electrode material for lithium ion secondary batteries, method for producing electrode material for lithium ion secondary batteries, and lithium ion secondary battery
JP7409922B2 (en) Positive electrode active material for multilayer lithium ion secondary battery and method for producing the same
JP7320418B2 (en) Mixed positive electrode active material for lithium ion secondary battery and method for manufacturing positive electrode for lithium ion secondary battery
KR20220127517A (en) Method of manufacturing cathode active material for lithium secondary battery
JP7654979B2 (en) Active material for secondary battery electrodes and secondary battery using same
JP2021051830A (en) Mixed type positive electrode active material for lithium ion secondary battery, and method for manufacturing positive electrode for lithium ion secondary battery
JP6535063B2 (en) Method of manufacturing positive electrode active material complex for lithium ion secondary battery
JP5670105B2 (en) Positive electrode active material and lithium secondary battery
JP2021150130A (en) Cathode active material for multilayer type lithium ion secondary battery and manufacturing method of the same
JP2021136206A (en) Method for manufacturing positive electrode active material composite for lithium ion secondary battery
JP7675517B2 (en) Positive electrode active material for lithium-ion secondary batteries
JP7299119B2 (en) Mixed positive electrode active material for lithium ion secondary battery and method for manufacturing positive electrode for lithium ion secondary battery
JP7366663B2 (en) Positive electrode active material composite for all-solid-state secondary battery and method for manufacturing the same
JP7152974B2 (en) Method for producing composite positive electrode active material particles for all-solid lithium ion secondary battery
JP7165569B2 (en) Positive electrode paste for lithium ion secondary battery and method for producing the same
WO2014034696A1 (en) Process for producing composite material of metal oxide with conductive carbon
JP7594898B2 (en) Positive electrode active material for lithium-ion secondary batteries
JP7602359B2 (en) Positive electrode active material for lithium-ion secondary batteries
JP7675516B2 (en) Positive electrode active material for lithium-ion secondary batteries
JP7549491B2 (en) Lithium-based polyanion particle aggregate for use as a positive electrode active material in secondary batteries and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220415

R150 Certificate of patent or registration of utility model

Ref document number: 7061101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250