JP2019210891A - Exhaust gas temperature control method and exhaust gas purification device - Google Patents
Exhaust gas temperature control method and exhaust gas purification device Download PDFInfo
- Publication number
- JP2019210891A JP2019210891A JP2018109200A JP2018109200A JP2019210891A JP 2019210891 A JP2019210891 A JP 2019210891A JP 2018109200 A JP2018109200 A JP 2018109200A JP 2018109200 A JP2018109200 A JP 2018109200A JP 2019210891 A JP2019210891 A JP 2019210891A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- amount
- nitrogen oxide
- fuel
- exhaust gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 238000000746 purification Methods 0.000 title claims description 24
- 239000003054 catalyst Substances 0.000 claims abstract description 185
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims abstract description 179
- 239000000446 fuel Substances 0.000 claims abstract description 81
- 239000007789 gas Substances 0.000 claims abstract description 72
- 230000009467 reduction Effects 0.000 claims abstract description 59
- 238000002347 injection Methods 0.000 claims abstract description 55
- 239000007924 injection Substances 0.000 claims abstract description 55
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 53
- 239000001301 oxygen Substances 0.000 claims abstract description 53
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 53
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 45
- 230000003647 oxidation Effects 0.000 claims abstract description 43
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 36
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 26
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 25
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 22
- 238000002485 combustion reaction Methods 0.000 claims description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 230000004043 responsiveness Effects 0.000 abstract description 9
- 125000001183 hydrocarbyl group Chemical group 0.000 abstract 1
- 239000000243 solution Substances 0.000 abstract 1
- 238000006722 reduction reaction Methods 0.000 description 37
- 230000008569 process Effects 0.000 description 18
- 238000001514 detection method Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 6
- 238000004088 simulation Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 230000014509 gene expression Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000006477 desulfuration reaction Methods 0.000 description 3
- 230000023556 desulfurization Effects 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 238000010531 catalytic reduction reaction Methods 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/033—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
- F01N3/035—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0814—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0828—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
- F01N3/0842—Nitrogen oxides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/206—Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/28—Construction of catalytic reactors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/36—Arrangements for supply of additional fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N9/00—Electrical control of exhaust gas treating apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/02—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
- F01N2560/025—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/14—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Exhaust Gas After Treatment (AREA)
- Processes For Solid Components From Exhaust (AREA)
Abstract
Description
本発明は、排ガス浄化装置における排ガス温度の制御方法に係り、特に、応答性の向上、装置価格の低減等を図ったものに関する。 The present invention relates to a method for controlling exhaust gas temperature in an exhaust gas purification apparatus, and more particularly, to an apparatus for improving responsiveness, reducing apparatus cost, and the like.
ディーゼルエンジンを用いた車両等にあっては、排ガス規制に適合した排気を行うため、窒素酸化物(NOx)を吸蔵する窒素酸化物吸蔵還元触媒(NSC)や、排ガス中の排気微粒子を捕集するディーゼル微粒子捕集フィルタ(DPF)等を用いて構成された排ガス浄化装置が搭載されることは良く知られている通りである。 In vehicles using diesel engines, in order to perform exhaust that complies with exhaust gas regulations, nitrogen oxide storage and reduction catalyst (NSC) that stores nitrogen oxides (NOx) and exhaust particulates in exhaust gas are collected. It is well known that an exhaust gas purifying device configured using a diesel particulate filter (DPF) or the like is mounted.
かかる排ガス浄化装置においては、窒素酸化物吸蔵還元触媒の脱硫やディーゼル微粒子捕集フィルタの再生のために排ガスの温度制御が必要とされる。
この窒素酸化物吸蔵還元触媒の脱硫やディーゼル微粒子捕集フィルタの再生のための温度制御の方法には、様々な方法や装置が提案、実用化されているが、例えば、未燃燃料を排気工程で噴射するポスト噴射によって触媒に未燃炭化水素(HC)を供給し、酸化反応熱で排ガス温度を昇温させる方法や、排気管に直接未燃燃料を噴射して排気管内での燃料の燃焼による排気温度を昇温させる方法などが代表的な方法として知られている(例えば、特許文献1等参照)。
In such an exhaust gas purification device, exhaust gas temperature control is required for desulfurization of the nitrogen oxide storage reduction catalyst and regeneration of the diesel particulate filter.
Various methods and devices have been proposed and put into practical use for the method of temperature control for desulfurization of the nitrogen oxide storage reduction catalyst and regeneration of the diesel particulate collection filter. By supplying unburned hydrocarbons (HC) to the catalyst by post-injection, and raising the temperature of the exhaust gas by oxidation reaction heat, or injecting unburned fuel directly into the exhaust pipe and burning the fuel in the exhaust pipe As a typical method, a method of raising the exhaust temperature by the above is known (for example, see Patent Document 1).
上述のようなポスト噴射によって排ガスの温度制御を行う方法において、ポスト噴射に必要な燃料の量や排気管に直接噴射する燃料の量は、触媒自体の温度やその周辺の温度情報等を基に演算算出されることが多い。
近年、上述のような排ガスの温度制御においては、温度モデルを用いる方法などが実用に供されている。
In the method of controlling the temperature of exhaust gas by post injection as described above, the amount of fuel required for post injection and the amount of fuel directly injected into the exhaust pipe are based on the temperature of the catalyst itself and the temperature information around it. It is often calculated.
In recent years, a method using a temperature model has been put to practical use in the temperature control of exhaust gas as described above.
例えば、試験結果やシミュレーション結果に基づいて、酸化触媒又は窒素酸化物吸蔵還元触媒の温度変化をモデル化した触媒温度モデルが設定され、触媒自体の温度の算出や、必要とされる他の温度の推定値等の算出等に用いられる温度制御システムが構築され、排ガスの温度制御システムとして用いられている。
このような温度制御システムにおいて、ポスト噴射に必要な燃料量(以下、「ポスト噴射燃料量」と称する)は、下記する式1に基づいて求められる。
For example, based on the test results and simulation results, a catalyst temperature model that models the temperature change of the oxidation catalyst or nitrogen oxide storage reduction catalyst is set, and the temperature of the catalyst itself can be calculated and other temperatures required. A temperature control system used for calculating an estimated value or the like has been constructed and used as an exhaust gas temperature control system.
In such a temperature control system, the fuel amount required for post injection (hereinafter referred to as “post-injection fuel amount”) is obtained based on Equation 1 below.
dmPoI1=(dmFuOpnLop−dmFuPoI2)/(1−facPoI1cmb)・・・式1 dmPoI1 = (dmFuOpnLop-dmFuPoI2) / (1-facPoI1 cmb) Equation 1
ここで、”dmPoI1”は指示ポスト噴射燃料量、”dmFuOpnLop”は酸化触媒又は窒素酸化物吸蔵還元触媒に供給されるべき燃料の量、”facPoI1cmb”は燃料噴射された燃料の量に対して酸化触媒又は窒素酸化物吸蔵還元触媒に到達しない燃料の量の割合(以下、説明の便宜上「触媒未到達率」と称する)、”dmFuPoI2”は、メイン噴射の後に、排気温度上昇のために行われるアフター噴射の際に、燃焼することなく酸化触媒又は窒素酸化物吸蔵還元触媒に到達する燃料の量である。 Here, “dmPoI1” is the indicated post-injection fuel amount, “dmFuOpnLop” is the amount of fuel to be supplied to the oxidation catalyst or nitrogen oxide storage reduction catalyst, and “facPoI1cmb” is the amount of fuel injected against the amount of fuel injected. The ratio of the amount of fuel that does not reach the catalyst or the nitrogen oxide storage reduction catalyst (hereinafter referred to as “catalyst unreachable rate” for convenience of explanation), “dmFuPoI2” is performed to increase the exhaust temperature after the main injection. It is the amount of fuel that reaches the oxidation catalyst or the nitrogen oxide storage reduction catalyst without burning during after injection.
ここで、酸化触媒又は窒素酸化物吸蔵還元触媒に供給されるべき燃料の量”dmFuOpnLop”は、下記する式2により算出される。
Here, the amount “dmFuOpnLop” of the fuel to be supplied to the oxidation catalyst or the nitrogen oxide storage reduction catalyst is calculated by the following
dmFuOpnLop=dmFuSum/(1−rSlip)・・・式2
dmFuOpnLop = dmFuSum / (1-rSlip)
式2において、”dmFuSum”は、酸化触媒又は窒素酸化物吸蔵還元触媒の目標温度を達成するために酸化触媒又は窒素酸化物吸蔵還元触媒において燃焼させる必要がある燃料の量であり、”dmFuOpnLop”に対して、触媒で処理しきれずに触媒下流に流れてしまう未燃料量相当分を差し引いたものである。
この”dmFuSum”は、酸化触媒又は窒素酸化物吸蔵還元触媒の下流側の目標温度、酸化触媒又は窒素酸化物吸蔵還元触媒の上流側の実測温度、排ガス流量の実測値などを用いて予め試験結果やシミュレーション結果等に基づいて定められた演算式から求められる。
In
This “dmFuSum” is a test result in advance using a target temperature downstream of the oxidation catalyst or nitrogen oxide storage reduction catalyst, an actual measurement temperature upstream of the oxidation catalyst or nitrogen oxide storage reduction catalyst, an actual measurement value of the exhaust gas flow rate, and the like. Or an arithmetic expression determined on the basis of a simulation result or the like.
また、”rSlip”は、先に説明した酸化触媒又は窒素酸化物吸蔵還元触媒に供給されるべき燃料の量”dmFuOpnLop”が、酸化触媒又は窒素酸化物吸蔵還元触媒に供給された場合に、供給された燃料の量に対する燃焼されずに残る燃料の量の割合を示すスリップ率である。
このスリップ率は、試験結果やシミュレーション結果に基づいて定められた演算式に基づいて定められ、さらに、触媒温度や排ガス流量を用いた補正が施されるものとなっている。
“RSlip” is supplied when the amount of fuel “dmFuOpnLop” to be supplied to the oxidation catalyst or nitrogen oxide storage reduction catalyst described above is supplied to the oxidation catalyst or nitrogen oxide storage reduction catalyst. It is a slip ratio which shows the ratio of the quantity of the fuel which remains without being burned with respect to the quantity of the made fuel.
This slip ratio is determined based on an arithmetic expression determined based on a test result or a simulation result, and is further corrected using a catalyst temperature or an exhaust gas flow rate.
また、触媒未到達率facPoI1cmbは、例えば、試験結果やシミュレーション結果に基づいて作成されたマップによって決定されるものとなっている。かかるマップにより決定される触媒未到達率facPoI1cmbは、例えば、エンジンの運転状況に応じて定められるものとなっている。エンジンの運転状況は、具体的には、例えば、エンジン回転数やエンジントルク等であり、マップは、これらを入力として、入力に対応する触媒未到達率facPoI1cmbが読み出し可能に構成されたものである。 Further, the catalyst unreachable rate facPoI1cmb is determined by, for example, a map created based on a test result or a simulation result. The catalyst non-reaching rate facPoI1 cmb determined by such a map is determined according to the operating condition of the engine, for example. Specifically, the engine operating status is, for example, engine speed, engine torque, and the like, and the map is configured so that the catalyst non-reaching rate facPoI 1 cmb corresponding to the input can be read out using these as inputs. .
ところで、上述のような温度モデルを用いた温度制御システムにおいては、複数のセンサが用いられているが、これらの出力値にある程度の誤差や変動は不可避であり、さらに、触媒の劣化も避けがたいものである。
このため、上述のような温度制御システムにおいては、その温度制御の精度、信頼性向上等のため、センサの誤差や変動、さらに、触媒の劣化を考慮してセンサの出力値や温度モデルに対して、各種の温度情報を基に種々の補償が行われるのが通常である。具体的には、温度モデルから導き出した触媒下流の温度センサ相当の排気温度モデル値と、実際の排気温度センサによって計測された排気温度モデル値を比較し、その差分をモデル誤差として、モデルへの入力である触媒入口温度を補正する方法が知られている。
By the way, in the temperature control system using the temperature model as described above, a plurality of sensors are used. However, some errors and fluctuations are inevitable in these output values, and further, deterioration of the catalyst is also avoided. I want to.
For this reason, in the temperature control system as described above, in order to improve the accuracy and reliability of the temperature control, the sensor output value and temperature model are considered in consideration of sensor errors and fluctuations, as well as catalyst deterioration. In general, various compensations are performed based on various temperature information. Specifically, the exhaust gas temperature model value equivalent to the temperature sensor downstream of the catalyst derived from the temperature model is compared with the exhaust gas temperature model value measured by the actual exhaust gas temperature sensor, and the difference is used as a model error. A method for correcting the catalyst inlet temperature as an input is known.
一般に、温度に基づく補償は、制御全体としての適応性が比較的良好である反面、使用状況によっては所望の制御状態となるまで緩慢な変化となり、応答性、即応性の点で劣るという問題がある。
例えば、上述の触媒未到達率facPoI1cmbは、エンジンの運転状況に応じた値が定められている。しかしながら、何らかの原因によりエンジンの運転状況に急激な変化が生じた場合には、温度情報に基づく補償では応答性の良い的確な排ガス温度制御が確保できず、所望する排ガス温度制御状態から逸脱した状態に陥ってしまうという問題がある。
In general, compensation based on temperature has relatively good adaptability as a whole control, but on the other hand, depending on the usage situation, it becomes a slow change until it reaches the desired control state, and there is a problem that it is inferior in terms of responsiveness and responsiveness. is there.
For example, the above-mentioned catalyst unreachable rate facPoI1 cmb is determined according to the operating condition of the engine. However, if there is a sudden change in the operating condition of the engine for some reason, the compensation based on the temperature information cannot ensure accurate exhaust gas temperature control with good responsiveness, and deviates from the desired exhaust gas temperature control state. There is a problem of falling into.
本発明は、上記実状に鑑みてなされたもので、制御状態の急激な変動に対して応答性が良好で的確な排ガス温度制御を可能とする排ガス温度制御方法及び排ガス浄化装置を提供するものである。 The present invention has been made in view of the above circumstances, and provides an exhaust gas temperature control method and an exhaust gas purification device that are capable of accurate exhaust gas temperature control with good responsiveness to rapid fluctuations in the control state. is there.
上記本発明の目的を達成するため、本発明に係る排ガス温度制御方法は、
ポスト噴射により未燃燃料を噴射して排気浄化デバイスを所望の温度に制御する排ガス温度制御方法であって、
前記ポスト噴射により噴射される未燃燃料の量であるポスト噴射燃料量Qpostは、前記排気浄化デバイスとしての酸化触媒又は窒素酸化物吸蔵還元触媒を所望の温度とするために前記酸化触媒又は窒素酸化物吸蔵還元触媒に供給されるべき燃料の量Qnsc、ポスト噴射燃料量の内、前記窒素酸化物吸蔵還元触媒に到達しない燃料の量の前記ポスト噴射燃料量に対する割合である触媒未到達率funr、及び、アフター噴射の際に燃焼することなく前記酸化触媒又は窒素酸化物吸蔵還元触媒に到達する燃料の量Qafrを用いて、Qpost=(Qnsc−Qafr)/(1−funr)として求められて前記ポスト噴射に供される排ガス温度制御方法において、
前記触媒未到達率funrは、前記ポスト噴射燃料量Qpost、前記酸化触媒又は窒素酸化物吸蔵還元触媒で燃焼した炭化水素量である燃焼炭化水素量Qhburを用いて、funr=(Qpost−Qhbur)/Qpostと求められるものであって、
前記燃焼炭化水素量を、前記酸化触媒又は窒素酸化物吸蔵還元触媒の上流側の酸素濃度と、前記酸化触媒又は窒素酸化物吸蔵還元触媒の下流側の酸素濃度との差分として求めるように構成されてなるものである。
上記本発明の目的を達成するため、本発明に係る排ガス浄化装置は、
車両の内燃機関に接続された排気管に酸化触媒又は窒素酸化物吸蔵還元触媒とディーゼル微粒子捕集フィルタとを有する一方、
電子制御ユニットにより、前記触媒やディーゼル微粒子捕集フィルタの再生、又は、下流側に設置された窒素酸化物選択還元触媒の活性化のため、燃料噴射弁のポスト噴射による未燃燃料の噴射を実行させて排気浄化デバイスにおける温度を所望の温度に制御可能に構成されてなる排ガス浄化装置において、
前記電子制御ユニットは、
前記ポスト噴射により噴射される未燃燃料の量であるポスト噴射燃料量Qpostを、前記排気浄化デバイスとしての前記酸化触媒又は前記窒素酸化物吸蔵還元触媒を所望の温度とするために前記酸化触媒又は窒素酸化物吸蔵還元触媒に供給されるべき燃料の量Qnsc、前記ポスト噴射燃料量の内、前記窒素酸化物吸蔵還元触媒に到達しない燃料の量の前記ポスト噴射燃料量に対する割合である触媒未到達率funr、及び、アフター噴射の際に燃焼することなく前記酸化触媒又は窒素酸化物吸蔵還元触媒に到達する燃料の量Qafrを用いて、Qpost=(Qnsc−Qafr)/(1−funr)として算出し、
前記触媒未到達率funrを、前記ポスト噴射燃料量Qpost、前記酸化触媒又は窒素酸化物吸蔵還元触媒で燃焼した炭化水素量である燃焼炭化水素量Qhburを用いて、funr=(Qpost−Qhbur)/Qpostと算出する一方、
前記燃焼炭化水素量を、前記酸化触媒又は窒素酸化物吸蔵還元触媒の上流側の酸素濃度と、前記酸化触媒又は窒素酸化物吸蔵還元触媒の下流側の酸素濃度との差分として算出するよう構成されてなるものである。
In order to achieve the above object of the present invention, an exhaust gas temperature control method according to the present invention comprises:
An exhaust gas temperature control method for controlling the exhaust purification device to a desired temperature by injecting unburned fuel by post injection,
The post-injection fuel amount Qpost, which is the amount of unburned fuel injected by the post-injection, is used to set the oxidation catalyst or nitrogen oxide storage reduction catalyst as the exhaust purification device to a desired temperature. The amount of fuel Qnsc to be supplied to the physical storage reduction catalyst, the catalyst unreachable rate funr, which is the ratio of the amount of fuel that does not reach the nitrogen oxide storage reduction catalyst among the post injection fuel amount to the post injection fuel amount, And, using the amount Qafr of the fuel that reaches the oxidation catalyst or the nitrogen oxide storage reduction catalyst without burning during the after injection, it is obtained as Qpost = (Qnsc−Qafr) / (1-funr) In the exhaust gas temperature control method used for post injection,
The catalyst unreachable rate funr is calculated by using the post-injected fuel amount Qpost and the combustion hydrocarbon amount Qhbur which is the amount of hydrocarbon burned by the oxidation catalyst or the nitrogen oxide storage reduction catalyst, and funr = (Qpost−Qhbur) / Qpost is required,
The combustion hydrocarbon amount is configured to be obtained as a difference between an oxygen concentration upstream of the oxidation catalyst or the nitrogen oxide storage reduction catalyst and an oxygen concentration downstream of the oxidation catalyst or the nitrogen oxide storage reduction catalyst. It will be.
In order to achieve the above object of the present invention, an exhaust gas purifying apparatus according to the present invention comprises:
While having an oxidation catalyst or nitrogen oxide storage reduction catalyst and a diesel particulate filter in an exhaust pipe connected to the internal combustion engine of the vehicle,
The electronic control unit performs unburned fuel injection by post-injection of the fuel injection valve in order to regenerate the catalyst and diesel particulate collection filter or to activate the nitrogen oxide selective reduction catalyst installed downstream. In the exhaust gas purification apparatus configured to be able to control the temperature in the exhaust gas purification device to a desired temperature,
The electronic control unit is
In order to set the post-injected fuel amount Qpost, which is the amount of unburned fuel injected by the post injection, to the desired temperature for the oxidation catalyst or the nitrogen oxide storage reduction catalyst as the exhaust purification device, the oxidation catalyst or The amount of fuel Qnsc to be supplied to the nitrogen oxide storage reduction catalyst, and the catalyst unreachable which is the ratio of the amount of fuel not reaching the nitrogen oxide storage reduction catalyst to the post injection fuel amount in the post injection fuel amount Calculated as Qpost = (Qnsc−Qafr) / (1−funr), using the rate funr and the amount Qafr of the fuel that reaches the oxidation catalyst or the NOx storage reduction catalyst without burning during after-injection And
Using the post-injected fuel amount Qpost and the combustion hydrocarbon amount Qhbur which is the amount of hydrocarbon burned by the oxidation catalyst or the nitrogen oxide storage reduction catalyst, the catalyst unreachable rate funr is expressed as funr = (Qpost−Qhbur) / While calculating Qpost,
The combustion hydrocarbon amount is calculated as a difference between the oxygen concentration upstream of the oxidation catalyst or the nitrogen oxide storage reduction catalyst and the oxygen concentration downstream of the oxidation catalyst or the nitrogen oxide storage reduction catalyst. It will be.
本発明によれば、温度などに基づいて実験結果から予め設定した触媒未到達率を用いるのではなく、触媒未到達率を常時算出するようにしたので、制御状態の急激な変動が生じても、触媒未到達率を用いて算出されるポスト噴射燃料量を応答性良く的確な値とすることができ、制御状態の急激な変動に対して応答性が良好で的確な排ガス温度制御が実現できるという効果を奏するものである。 According to the present invention, instead of using the catalyst unreachable rate set in advance from the experimental results based on temperature or the like, the catalyst unreachable rate is always calculated, so even if a sudden change in the control state occurs In addition, the post-injection fuel amount calculated using the catalyst unreachable rate can be set to an accurate value with good responsiveness, and accurate exhaust gas temperature control can be realized with good responsiveness to sudden fluctuations in the control state. This is an effect.
以下、本発明の実施の形態について、図1乃至図5を参照しつつ説明する。
なお、以下に説明する部材、配置等は本発明を限定するものではなく、本発明の趣旨の範囲内で種々改変することができるものである。
最初に、本発明の実施の形態における排ガス温度制御方法が適用される排ガス浄化装置の構成例について、図1を参照しつつ説明する。
本発明の実施の形態における排ガス浄化装置は、排気管22の適宜な位置に設られた排気浄化デバイスとしての窒素酸化物吸蔵還元触媒(NOx Storage Catalyst)23及びディーゼル微粒子捕集フィルタ(Diesel Particulate Filter)24と、排ガスの温度制御を行う電子制御ユニット30とを有して構成されたものである。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 5.
The members and arrangements described below do not limit the present invention and can be variously modified within the scope of the gist of the present invention.
First, a configuration example of an exhaust gas purification apparatus to which an exhaust gas temperature control method according to an embodiment of the present invention is applied will be described with reference to FIG.
The exhaust gas purifying apparatus according to the embodiment of the present invention includes a nitrogen oxide storage and reduction catalyst (NOx Storage Catalyst) 23 and a diesel particulate filter (Diesel Particulate Filter) as exhaust purification devices provided at appropriate positions of the exhaust pipe 22. ) 24 and an
以下、具体的に説明すれば、先ず、ディーゼルエンジン(以下「エンジン」と称する)20のインテークマニホールド20aには、燃料燃焼に必要な空気を取り入れるための吸気管21が、また、エキゾーストマニホールド20bには、排気のための排気管22が、それぞれ接続されている。
吸気管21の適宜な位置には、吸入吸気量を計測するエアフロセンサ1が設けられている。
一方、排気管22の適宜な位置には、上流側から窒素酸化物吸蔵還元触媒 (以下「NSC」と称する)23、ディーゼル微粒子捕集フィルタ(以下「DPF」と称する)24が、順に配設されている。
More specifically, first, an
An airflow sensor 1 for measuring the intake air intake amount is provided at an appropriate position of the
On the other hand, a nitrogen oxide storage / reduction catalyst (hereinafter referred to as “NSC”) 23 and a diesel particulate filter (hereinafter referred to as “DPF”) 24 are arranged in order from the upstream side at appropriate positions of the
ここで、NSC23は、車両が通常の運転状態にある場合に窒素酸化物(NOx)を吸蔵する。そして、エンジン1における燃料燃焼の状態が、排気中の酸素濃度を減少させる燃料過多の燃焼状態とされた場合に、吸蔵された窒素酸化物を無害な窒素と酸素に還元可能に構成されており、かかる構成は、従来のものと基本的に同一である。
Here, the
また、DPF24は、例えば、セラミックス材料から構成されたハニカム構造のフィルタを用いて構成された従来と同様のものである。
Further, the
NSC23の上流側の排気管22の適宜な位置には、第1のラムダセンサ2と第1の温度センサ4が、それぞれ設けられる一方、NSC23とDPF24の間の排気管22の適宜な位置には、第2のラムダセンサ3と第2の温度センサ5が、それぞれ設けられている。
これらのセンサ1〜5の検出信号は、電子制御ユニット30に入力されるようになっている。
A
Detection signals of these sensors 1 to 5 are input to the
電子制御ユニット30は、例えば、公知・周知の構成を有してなるマイクロコンピュータを中心に、RAMやROM等の記憶素子(図示せず)を備えると共に、入出力インターフェイス回路(図示せず)を主たる構成要素として構成されてなるものである。
The
この電子制御ユニット30には、センサ1〜5の各検出信号と共に、図示されないセンサ等により検出された車両の動作制御に必要な各種の信号、例えば、大気圧、エンジン回転数、アクセル開度、エンジン冷却水温等が入力されるようになっている。
上述のように電子制御ユニット30に入力された各種の検出信号は、燃料噴射弁25の燃料噴射制御処理や、後述する本発明の実施の形態における排ガス温度制御処理等に供されるようになっている。
The
As described above, the various detection signals input to the
次に、電子制御ユニット30により実行される本発明の実施の形態における排ガス温度制御処理について、図2乃至図5を参照しつつ説明する。
最初に、前提として、本発明の実施の形態における排ガス浄化装置においては、排気浄化デバイスの活性化、すなわち、NSC23の脱硫や、DPF24の再生のため、排ガス温度が制御処理されるようになっているものとする。この排ガス温度制御は、従来同様、燃料噴射弁25によりエンジン20のシリンダ(図示せず)に未燃燃料の噴射を行い、酸化反応熱を生じさせて排ガス温度の昇温を行うものである。
Next, the exhaust gas temperature control process in the embodiment of the present invention executed by the
First, as a premise, in the exhaust gas purification apparatus according to the embodiment of the present invention, the exhaust gas temperature is controlled for activation of the exhaust gas purification device, that is, for desulfurization of the
そして、未燃燃料の噴射の際に必要とされる燃料量は、以下に再掲するように、従来同様、先に従来技術の説明において示した式1に基づいて求められるものとなっている。 The amount of fuel required for the injection of unburned fuel is obtained on the basis of Equation 1 shown in the description of the prior art as described above, as will be described later.
dmPoI1=(dmFuOpnLop−dmFuPoI2)/(1−facPoI1cmb)・・・式1 dmPoI1 = (dmFuOpnLop-dmFuPoI2) / (1-facPoI1 cmb) Equation 1
ここで、”dmPoI1”(以下、説明の便宜上「Qpost」と表す)はポスト噴射燃料量、”dmFuOpnLop”(以下、説明の便宜上「Qnsc」と表す)は窒素酸化物吸蔵還元触媒に供給されるべき燃料の量、”facPoI1cmb”(以下、説明の便宜上「funr」と表す)は触媒未到達率である。
本発明の実施の形態における燃料噴射は、メイン噴射の後に、燃え残りの燃料を燃焼させるためのアフター噴射が行われ、その後、ポスト噴射が行われる形態であること前提としている。
”dmFuPoI2”は、上述のアフター噴射の際に燃焼することなく酸化触媒又は窒素酸化物吸蔵還元触媒に到達する燃料の量である。
Here, “dmPoI1” (hereinafter referred to as “Qpost” for convenience of description) is supplied to the post-injection fuel amount, and “dmFuOpnLop” (hereinafter referred to as “Qnsc” for convenience of description) is supplied to the nitrogen oxide storage reduction catalyst. The amount of fuel to be used, “facPoI 1 cmb” (hereinafter referred to as “funr” for convenience of explanation) is the catalyst unreachable rate.
The fuel injection in the embodiment of the present invention is based on the premise that after the main injection, after injection for burning unburned fuel is performed, and then post injection is performed.
“DmFuPoI2” is the amount of fuel that reaches the oxidation catalyst or the nitrogen oxide storage reduction catalyst without burning during the above-described after injection.
そして、窒素酸化物吸蔵還元触媒に供給されるべき燃料の量Qnscは、以下に再掲するように、従来同様、先に従来技術の説明において示した式2に基づいて求められるものとなっている。
The amount of fuel Qnsc to be supplied to the nitrogen oxide storage reduction catalyst is obtained based on the
Qnsc=dmFuSum/(1−rSlip)・・・式2
Qnsc = dmFuSum / (1-rSlip)
かかる前提の下、本発明の実施の形態における排ガス温度制御処理においては、上述の式1において用いられる、触媒未到達率funrを、従来と異なり、以下に説明する本発明特有の算出処理によって求められるものとなっている。 Under such a premise, in the exhaust gas temperature control process in the embodiment of the present invention, the catalyst unreachable rate funr used in the above-described equation 1 is obtained by a calculation process unique to the present invention described below, unlike the conventional case. It is supposed to be
以下、触媒未到達率funrの算出処理について、図2に示されたフローチャート、及び、図3乃至図5に示された機能ブロック図を適宜参酌しつつ説明する。
電子制御ユニット30による制御が開始されると、最初に、触媒上流酸素濃度及び触媒下流酸素濃度の実測値の入力が行われる(図2のステップS100参照)。
触媒上流酸素濃度には、第1のラムダセンサ2の検出値が、触媒下流酸素濃度には、第2のラムダセンサ3の検出値が、それぞれ用いられる。
ラムダセンサは、酸素濃度に応じた出力レベルの信号を出力するため、その出力信号を所望の箇所における酸素濃度として用いることが可能である。
Hereinafter, the calculation process of the catalyst unreachable rate funr will be described with appropriate reference to the flowchart shown in FIG. 2 and the functional block diagrams shown in FIGS.
When the control by the
The detected value of the
Since the lambda sensor outputs a signal having an output level corresponding to the oxygen concentration, the output signal can be used as the oxygen concentration at a desired location.
第1のラムダセンサ2により酸素濃度の検出がなされた排ガスが、下流側の第2のラムダセンサ3の位置に達するまでには伝搬の遅れが生ずる。このため、後述するように第1及び第2のラムダセンサ2,3の検出値を演算処理に用いるためには、その伝搬時間の差を補償する必要がある。
There is a propagation delay until the exhaust gas whose oxygen concentration has been detected by the
そのため、次のステップS110においては、第1のラムダセンサ2の検出値に対する伝搬時間補償が行われる(図3の符号BL3−1参照)。
図4には、伝搬時間補償の具体的処理内容を説明する機能ブロック図が示されており、以下、同図を参照しつつ、本発明の実施の形態における伝搬時間補償について説明する。
Therefore, in the next step S110, propagation time compensation is performed on the detection value of the first lambda sensor 2 (see reference numeral BL3-1 in FIG. 3).
FIG. 4 is a functional block diagram illustrating specific processing contents of propagation time compensation. Hereinafter, propagation time compensation in the embodiment of the present invention will be described with reference to FIG.
まず、エアフロセンサ1により検出された吸入空気量を基にして求められた排ガス流量に対する伝搬遅延時間の算出が行われる(図4の符号BL4−1参照)。
この伝搬遅延時間の算出は、適宜選択された実測データを基に算出される。
具体的には、例えば、1時間あたりの排ガス流量が50kg/hである場合に、排ガスが第1のラムダセンサ2から第2のラムダセンサ3に至るまでの伝搬遅延時間がA秒であったとする。
伝搬遅延時間を求める際の排ガス流量がQkg/hであったとすると、この排ガス流量における伝搬遅延時間は、伝搬遅延時間=A×(50÷Q)として算出される。
First, the propagation delay time is calculated with respect to the exhaust gas flow rate obtained based on the intake air amount detected by the airflow sensor 1 (see reference numeral BL4-1 in FIG. 4).
This propagation delay time is calculated on the basis of appropriately selected actual measurement data.
Specifically, for example, when the exhaust gas flow rate per hour is 50 kg / h, the propagation delay time until the exhaust gas reaches the second lambda sensor 3 from the
If the exhaust gas flow rate at the time of obtaining the propagation delay time is Q kg / h, the propagation delay time at this exhaust gas flow rate is calculated as propagation delay time = A × (50 ÷ Q).
ここで、上述の”A”は、予め試験により求めた固定値であって、電子制御ユニット30内の適宜な記憶領域に記憶されて、伝搬遅延時間の算出時に用いられるものである。
次いで、第1のラムダセンサ2によって得られた触媒上流側酸素濃度に対して上述のようにして求められた伝搬遅延時間の遅延が施され、遅延時間補償済みの触媒上流側酸素濃度とされる(図4の符号BL4−2参照)。
Here, “A” described above is a fixed value obtained in advance by a test, and is stored in an appropriate storage area in the
Next, the catalyst upstream oxygen concentration obtained by the
再び、図2のフローチャートの説明に戻れば、上述のように触媒上流酸素濃度に対する伝搬時間補償(図2のステップS110参照)がなされた後、伝搬時間補償後の触媒上流酸素濃度と触媒下流酸素濃度に対してフィルタリング処理が行われる(図2のステップS120、及び、図3の符号BL3−2,BL3−3参照)。かかるフィルタリング処理は、計測データの処理等において一般的に行われるもので、異常データやノイズ性のデータ等の除去を行うものである。 Returning to the description of the flowchart of FIG. 2 again, after the propagation time compensation for the catalyst upstream oxygen concentration (see step S110 in FIG. 2) is performed as described above, the catalyst upstream oxygen concentration and the catalyst downstream oxygen after the propagation time compensation are performed. A filtering process is performed on the density (see step S120 in FIG. 2 and reference symbols BL3-2 and BL3-3 in FIG. 3). Such filtering processing is generally performed in measurement data processing or the like, and removes abnormal data or noise data.
このフィルタリング処理後、伝搬時間補償後の触媒上流酸素濃度と触媒下流酸素濃度の差分が算出され(図3の符号BL3−4参照)、その差分は、次述する触媒未到達率算出処理に供される(図3の符号BL3−5参照)。ここで、伝搬時間補償後の触媒上流酸素濃度と触媒下流酸素濃度の差分は、NSC23で燃焼した炭化水素(HC)量(以下、説明の便宜上「燃焼炭化水素量」と称する)Qhburに比例する。 After the filtering process, the difference between the catalyst upstream oxygen concentration and the catalyst downstream oxygen concentration after the propagation time compensation is calculated (see reference numeral BL3-4 in FIG. 3), and the difference is used for the catalyst unreachable rate calculation process described below. (See reference numeral BL3-5 in FIG. 3). Here, the difference between the catalyst upstream oxygen concentration and the catalyst downstream oxygen concentration after propagation time compensation is proportional to the amount of hydrocarbon (HC) burned in the NSC 23 (hereinafter referred to as “burned hydrocarbon amount” for convenience of explanation) Qhbur. .
なお、ポスト噴射等により排ガスに多量の炭化水素が含まれる場合、ラムダセンサにより検出される酸素濃度は、ラムダセンサ内部の構造に起因して、真の酸素濃度よりも低い値となる傾向にあることが知られている。
そのため、上述の触媒上流酸素濃度と触媒下流酸素濃度の差分の算出に際しては、検出値と真の値との差を補償し、真の触媒上流酸素濃度と真の触媒下流酸素濃度の差分を得る必要がある。
When exhaust gas contains a large amount of hydrocarbons due to post injection or the like, the oxygen concentration detected by the lambda sensor tends to be lower than the true oxygen concentration due to the structure inside the lambda sensor. It is known.
Therefore, when calculating the difference between the catalyst upstream oxygen concentration and the catalyst downstream oxygen concentration, the difference between the detected value and the true value is compensated to obtain the difference between the true catalyst upstream oxygen concentration and the true catalyst downstream oxygen concentration. There is a need.
真の触媒上流酸素濃度と真の触媒下流酸素濃度の差分は、具体的には、次述するようにして求められる。
まず、第1のラムダセンサ2の検出値を触媒上流酸素濃度検出値と定義し、”ro2Us-m”と表記し、第2のラムダセンサ3の検出値を触媒下流酸素濃度検出値と定義し、”rO2Ds-m”と表記する。
Specifically, the difference between the true catalyst upstream oxygen concentration and the true catalyst downstream oxygen concentration is obtained as described below.
First, the detection value of the
また、真の触媒上流酸素濃度を、”rO2Us”と、真の触媒下流酸素濃度を、”rO2Ds”と、それぞれ表記する。
さらに、触媒上流側の炭化水素濃度を、”rHCUs”と、触媒下流側の炭化水素濃度を、”rHCDs”と、それぞれ表記する。
The true catalyst upstream oxygen concentration is expressed as “rO2Us”, and the true catalyst downstream oxygen concentration is expressed as “rO2Ds”.
Further, the hydrocarbon concentration on the upstream side of the catalyst is expressed as “rHCUs”, and the hydrocarbon concentration on the downstream side of the catalyst is expressed as “rHCDs”.
かかる前提の下、まず、触媒上流酸素濃度検出値及び触媒下流酸素濃度検出値と、真の触媒上流酸素濃度及び真の触媒下流酸素濃度と、触媒上流側の炭化水素濃度及び触媒下流側の炭化水素濃度の間には、下記する式3a、式3bで表される関係が成立する。 Under such a premise, first, the catalyst upstream oxygen concentration detection value and the catalyst downstream oxygen concentration detection value, the true catalyst upstream oxygen concentration and the true catalyst downstream oxygen concentration, the catalyst upstream side hydrocarbon concentration and the catalyst downstream side carbonization are detected. The relationship expressed by the following formulas 3a and 3b is established between the hydrogen concentrations.
rO2Us-m=rO2Us−f×rHCUs・・・式3a rO2Us-m = rO2Us-f * rHCUs Equation 3a
ro2Ds-m=rO2Ds−f×rHCDs・・・式3b ro2Ds-m = rO2Ds-f * rHCDs Equation 3b
ここで、fは補償係数である。この補償係数は、ラムダセンサの具体的な仕様等によって異なるものであるので、その具体的な仕様等を考慮して、試験結果やシミュレーション結果に基づいて適切な値を設定するのが好適である。
また、触媒上流側の炭化水素濃度と触媒下流側の炭化水素濃度の差分と、真の触媒上流酸素濃度と真の触媒下流酸素濃度の差分との間には、下記する式3cで表される関係が成立する。
Here, f is a compensation coefficient. Since this compensation coefficient varies depending on the specific specifications of the lambda sensor, it is preferable to set an appropriate value based on the test results and simulation results in consideration of the specific specifications. .
Further, the difference between the hydrocarbon concentration on the upstream side of the catalyst and the hydrocarbon concentration on the downstream side of the catalyst and the difference between the true catalyst upstream oxygen concentration and the true catalyst downstream oxygen concentration are expressed by the following equation 3c. A relationship is established.
rHCUs−rHCDs={4/(4+y)}×(rO2Us−rO2Ds)・・・式3c rHCUs−rHCDs = {4 / (4 + y)} × (rO2Us−rO2Ds) Equation 3c
ここで、yは、使用燃料における炭素量に対する水素量の比(H/C)である。
このyの値は、使用する燃料によって異なるものであり、本装置の使用を開始する際に、電子制御ユニット30の適宜な記憶領域に予め記憶、保持されるものとなっている。
Here, y is the ratio (H / C) of the amount of hydrogen to the amount of carbon in the fuel used.
The value of y varies depending on the fuel to be used, and is stored and held in advance in an appropriate storage area of the
これらの関係式に基づいて、真の触媒上流酸素濃度と真の触媒下流酸素濃度の差分は、下記する関係式3によって算出される。 Based on these relational expressions, the difference between the true catalyst upstream oxygen concentration and the true catalyst downstream oxygen concentration is calculated by the following relational expression 3.
rO2Us−rO2Ds={(4+y)/(4+y−4f)}×(rO2Us-m−rO2Ds-m)・・・式3 rO2Us-rO2Ds = {(4 + y) / (4 + y-4f)} * (rO2Us-m-rO2Ds-m) Equation 3
次いで、燃料噴射された燃料の量Qpostに対する触媒未到達率funrが算出される(図3の符号BL3−5参照)。
触媒未到達率funrは、funr=(Qpost−Qhbur)/Qpostとして求められる。
Next, the catalyst unreachable rate funr with respect to the amount of fuel injected Qpost is calculated (see symbol BL3-5 in FIG. 3).
The catalyst unreachable rate funr is obtained as funr = (Qpost−Qhbur) / Qpost.
なお、Qpostは、先に、本発明の実施の形態における排ガス浄化装置の前提条件として説明した従来の排ガス温度制御処理に基づいて演算算出されるものである。
また、Qhburは、先に述べたように伝搬時間補償後の触媒上流酸素濃度と触媒下流酸素濃度の差分である。
Qpost is calculated and calculated based on the conventional exhaust gas temperature control process described above as the precondition of the exhaust gas purifying apparatus in the embodiment of the present invention.
Qhbur is the difference between the catalyst upstream oxygen concentration and the catalyst downstream oxygen concentration after propagation time compensation as described above.
次いで、学習処理を開始する条件が充足されているか否かが判定される(図2のステップS140参照)。
本発明の実施の形態においては、上述のように取得された触媒未到達率funrを、学習値として記憶、保持されるようになっている。学習値としての精度、信頼性等の向上のため、取得された触媒未到達率funrを学習値として記憶、保持する学習処理を開始する所定の条件を充足しているか否かが判定される。
Next, it is determined whether or not a condition for starting the learning process is satisfied (see step S140 in FIG. 2).
In the embodiment of the present invention, the catalyst non-reaching rate funr acquired as described above is stored and held as a learning value. In order to improve accuracy, reliability, etc. as a learning value, it is determined whether or not a predetermined condition for starting a learning process for storing and holding the acquired catalyst unreached rate funr as a learning value is satisfied.
ここで、上述の所定の条件、すなわち、車両の運転状態等が、取得された触媒未到達率funrを学習値として記憶、保持するに適した状態であるか否か等は、特定の条件に限定されるものではない。実際には、適切な所定の条件は、車両や排ガス浄化装置の仕様等によって異なるものであるので、これらの具体的な仕様等を考慮し、試験結果やシミュレーション結果に基づいて適宜定めるのが好適である。 Here, whether or not the above-mentioned predetermined condition, that is, the driving state of the vehicle is a state suitable for storing and holding the acquired catalyst unreached rate funr as a learning value, is determined by a specific condition. It is not limited. Actually, the appropriate predetermined conditions vary depending on the specifications of the vehicle and the exhaust gas purification device, and therefore, it is preferable to appropriately determine them based on the test results and simulation results in consideration of these specific specifications. It is.
しかして、上述のようにして定められた学習条件を充足していると判定された場合(YESの場合)には、先のステップS130において求められた触媒未到達率funrは、学習値として電子制御ユニット30の適宜な記憶領域に確保された学習値記憶領域に確保された学習マップに記憶、保持されることとなる(図2のスッテップS150、図3の符号BL3−5、及び、図5の符号BL5−1参照)。
学習値記憶が行われた後は、先のステップS110へ戻り、新たな触媒未到達率funrの取得が行われることとなる。
Therefore, when it is determined that the learning conditions determined as described above are satisfied (in the case of YES), the catalyst unreached rate funr obtained in the previous step S130 is an electronic value as a learning value. It is stored and held in the learning map secured in the learning value storage area secured in the appropriate storage area of the control unit 30 (step S150 in FIG. 2, reference sign BL3-5 in FIG. 3, and FIG. 5). (See BL5-1).
After the learned value is stored, the process returns to the previous step S110 to acquire a new catalyst unreached rate funr.
一方、ステップS140において、学習処理を開始する条件を充足していないと判定された場合(NOの場合)には、ステップS130において取得された触媒未到達率funrは学習値として記憶、保持されずに破棄され、先のステップS110へ戻り、新たな触媒未到達率funrの取得が行われることとなる。 On the other hand, if it is determined in step S140 that the conditions for starting the learning process are not satisfied (in the case of NO), the catalyst unreached rate funr acquired in step S130 is not stored or held as a learned value. And the process returns to the previous step S110 to acquire a new catalyst unreachable rate funr.
上述した本発明の実施の形態においては、燃料噴射弁25によるポスト噴射によって未燃燃料の噴射を行うようにしたが、本発明の適用は、必ずしもこのような構成に限定される必要は無い。
例えば、排気管噴射用の専用の燃料噴射弁25Aを設けて、NSC23の上流側において21内に直接未燃燃料を噴射する構成としても良い(図1参照)。
In the embodiment of the present invention described above, the unburned fuel is injected by the post injection by the
For example, a dedicated
また、上述した本発明の実施の形態においては、NSC23とDPF24を用いて排ガス浄化を行う構成としたが、NSC23、DPF24、選択還元触媒(SCR:Selective Catalytic Reduction)を、21の上流側から順に配した構成としても好適である。
In the embodiment of the present invention described above, the exhaust gas purification is performed using the
この場合、例えば、NSC23の上流側にラムダセンサを、下流側にノックスセンサを、それぞれ配した構成としても良い。かかる構成においては、上流側のラムダセンサが第1のラムダセンサ2に、下流側のノックスセンサが第2のラムダセンサ3に、それぞれ対応するものとなる。
また、上述の構成において、NSC23に代えてディーゼル酸化触媒(DOC:Diesel Oxidation Catalyst)を用いた構成としても良い。
In this case, for example, a configuration may be adopted in which a lambda sensor is disposed upstream of the
In the above-described configuration, a diesel oxidation catalyst (DOC) may be used instead of the
制御状態の急激な変動に対して応答性の良く的確な排ガス温度制御が所望される排ガス浄化装置に適用できる。 The present invention can be applied to an exhaust gas purifying apparatus in which accurate exhaust gas temperature control with good response to a sudden change in the control state is desired.
1…エアフロセンサ
2…第1のラムダセンサ
3…第2のラムダセンサ
23…窒素酸化物吸蔵還元触媒
24…ディーゼル微粒子捕集フィルタ
30…電子制御ユニット
DESCRIPTION OF SYMBOLS 1 ...
Claims (4)
前記ポスト噴射により噴射される未燃燃料の量であるポスト噴射燃料量Qpostは、前記排気浄化デバイスとしての酸化触媒又は窒素酸化物吸蔵還元触媒を所望の温度とするために前記酸化触媒又は窒素酸化物吸蔵還元触媒に供給されるべき燃料の量Qnsc、ポスト噴射燃料量の内、前記窒素酸化物吸蔵還元触媒に到達しない燃料の量の前記ポスト噴射燃料量に対する割合である触媒未到達率funr、及び、アフター噴射の際に燃焼することなく前記酸化触媒又は窒素酸化物吸蔵還元触媒に到達する燃料の量Qafrを用いて、Qpost=(Qnsc−Qafr)/(1−funr)として求められて前記ポスト噴射に供される排ガス温度制御方法において、
前記触媒未到達率funrは、前記ポスト噴射燃料量Qpost、前記酸化触媒又は窒素酸化物吸蔵還元触媒で燃焼した炭化水素量である燃焼炭化水素量Qhburを用いて、funr=(Qpost−Qhbur)/Qpostと求められるものであって、
前記燃焼炭化水素量を、前記酸化触媒又は窒素酸化物吸蔵還元触媒における上流側の酸素濃度と、前記酸化触媒又は窒素酸化物吸蔵還元触媒の下流側の酸素濃度との差分として求めたことを特徴とする排ガス温度制御方法。 An exhaust gas temperature control method for controlling the exhaust purification device to a desired temperature by injecting unburned fuel by post injection,
The post-injection fuel amount Qpost, which is the amount of unburned fuel injected by the post-injection, is used to set the oxidation catalyst or nitrogen oxide storage reduction catalyst as the exhaust purification device to a desired temperature. The amount of fuel Qnsc to be supplied to the physical storage reduction catalyst, the catalyst unreachable rate funr, which is the ratio of the amount of fuel that does not reach the nitrogen oxide storage reduction catalyst among the post injection fuel amount to the post injection fuel amount, And, using the amount Qafr of the fuel that reaches the oxidation catalyst or the nitrogen oxide storage reduction catalyst without burning during the after injection, it is obtained as Qpost = (Qnsc−Qafr) / (1-funr) In the exhaust gas temperature control method used for post injection,
The catalyst unreachable rate funr is calculated by using the post-injected fuel amount Qpost and the combustion hydrocarbon amount Qhbur which is the amount of hydrocarbon burned by the oxidation catalyst or the nitrogen oxide storage reduction catalyst, and funr = (Qpost−Qhbur) / Qpost is required,
The combustion hydrocarbon amount is obtained as a difference between the upstream oxygen concentration in the oxidation catalyst or the nitrogen oxide storage reduction catalyst and the downstream oxygen concentration of the oxidation catalyst or the nitrogen oxide storage reduction catalyst. Exhaust gas temperature control method.
電子制御ユニットにより、前記触媒やディーゼル微粒子捕集フィルタの再生、又は、下流側に設置された窒素酸化物選択還元触媒の活性化のため、燃料噴射弁のポスト噴射による未燃燃料の噴射を実行させて排気浄化デバイスにおける温度を所望の温度に制御可能に構成されてなる排ガス浄化装置において、
前記電子制御ユニットは、
前記ポスト噴射により噴射される未燃燃料の量であるポスト噴射燃料量Qpostを、前記排気浄化デバイスとしての酸化触媒又は窒素酸化物吸蔵還元触媒を所望の温度とするために前記酸化触媒又は窒素酸化物吸蔵還元触媒に供給されるべき燃料の量Qnsc、前記ポスト噴射燃料量の内、前記窒素酸化物吸蔵還元触媒に到達しない燃料の量の前記ポスト噴射燃料量に対する割合である触媒未到達率funr、及び、アフター噴射の際に燃焼することなく前記酸化触媒又は窒素酸化物吸蔵還元触媒に到達する燃料の量Qafrを用いて、Qpost=(Qnsc−Qafr)/(1−funr)として算出し、
前記触媒未到達率funrを、前記ポスト噴射燃料量Qpost、前記酸化触媒又は窒素酸化物吸蔵還元触媒で燃焼した炭化水素量である燃焼炭化水素量Qhburを用いて、funr=(Qpost−Qhbur)/Qpostと算出する一方、
前記燃焼炭化水素量を、前記酸化触媒又は窒素酸化物吸蔵還元触媒における上流側の酸素濃度と、前記酸化触媒又は窒素酸化物吸蔵還元触媒の下流側の酸素濃度との差分として算出するよう構成されてなることを特徴とする排ガス浄化装置。 While having an oxidation catalyst or nitrogen oxide storage reduction catalyst and a diesel particulate filter in an exhaust pipe connected to the internal combustion engine of the vehicle,
The electronic control unit performs unburned fuel injection by post-injection of the fuel injection valve in order to regenerate the catalyst and diesel particulate collection filter or to activate the nitrogen oxide selective reduction catalyst installed downstream. In the exhaust gas purification apparatus configured to be able to control the temperature in the exhaust gas purification device to a desired temperature,
The electronic control unit is
In order to set the post-injected fuel amount Qpost, which is the amount of unburned fuel injected by the post injection, to the desired temperature for the oxidation catalyst or nitrogen oxide storage reduction catalyst as the exhaust purification device, the oxidation catalyst or nitrogen oxidation The amount of fuel Qnsc to be supplied to the object storage reduction catalyst, the catalyst unreachable rate funr that is the ratio of the amount of fuel that does not reach the nitrogen oxide storage reduction catalyst among the amount of post injection fuel to the amount of post injection fuel And, using the amount Qafr of the fuel that reaches the oxidation catalyst or the nitrogen oxide storage reduction catalyst without burning during the after injection, it is calculated as Qpost = (Qnsc−Qafr) / (1-funr),
Using the post-injected fuel amount Qpost and the combustion hydrocarbon amount Qhbur which is the amount of hydrocarbon burned by the oxidation catalyst or the nitrogen oxide storage reduction catalyst, the catalyst unreachable rate funr is expressed as funr = (Qpost−Qhbur) / While calculating Qpost,
The combustion hydrocarbon amount is calculated as a difference between the upstream oxygen concentration in the oxidation catalyst or the nitrogen oxide storage reduction catalyst and the downstream oxygen concentration of the oxidation catalyst or the nitrogen oxide storage reduction catalyst. An exhaust gas purification device characterized by comprising:
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018109200A JP7122873B2 (en) | 2018-06-07 | 2018-06-07 | Exhaust gas temperature control method and exhaust gas purification device |
DE102019202829.2A DE102019202829A1 (en) | 2018-06-07 | 2019-03-01 | Exhaust gas temperature control method and exhaust gas purification device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018109200A JP7122873B2 (en) | 2018-06-07 | 2018-06-07 | Exhaust gas temperature control method and exhaust gas purification device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019210891A true JP2019210891A (en) | 2019-12-12 |
JP7122873B2 JP7122873B2 (en) | 2022-08-22 |
Family
ID=68652016
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018109200A Active JP7122873B2 (en) | 2018-06-07 | 2018-06-07 | Exhaust gas temperature control method and exhaust gas purification device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7122873B2 (en) |
DE (1) | DE102019202829A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6547991B1 (en) * | 2019-02-20 | 2019-07-24 | トヨタ自動車株式会社 | Catalyst temperature estimation device, catalyst temperature estimation system, data analysis device, and control device for internal combustion engine |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006509947A (en) * | 2002-12-13 | 2006-03-23 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Catalyst temperature modeling in exothermic operation |
JP2008038737A (en) * | 2006-08-04 | 2008-02-21 | Toyota Motor Corp | Catalyst degradation detector |
JP2009036175A (en) * | 2007-08-03 | 2009-02-19 | Nissan Motor Co Ltd | Fuel supply control device of internal combustion engine |
DE102012200036A1 (en) * | 2012-01-03 | 2013-07-04 | Robert Bosch Gmbh | Method for controlling temperature of exhaust gas treatment system for e.g. diesel engine, involves correcting amount of exhaust gas supplied into treatment system based on deviation of detected dosage amount and target dosage amount |
-
2018
- 2018-06-07 JP JP2018109200A patent/JP7122873B2/en active Active
-
2019
- 2019-03-01 DE DE102019202829.2A patent/DE102019202829A1/en not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006509947A (en) * | 2002-12-13 | 2006-03-23 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Catalyst temperature modeling in exothermic operation |
JP2008038737A (en) * | 2006-08-04 | 2008-02-21 | Toyota Motor Corp | Catalyst degradation detector |
JP2009036175A (en) * | 2007-08-03 | 2009-02-19 | Nissan Motor Co Ltd | Fuel supply control device of internal combustion engine |
DE102012200036A1 (en) * | 2012-01-03 | 2013-07-04 | Robert Bosch Gmbh | Method for controlling temperature of exhaust gas treatment system for e.g. diesel engine, involves correcting amount of exhaust gas supplied into treatment system based on deviation of detected dosage amount and target dosage amount |
Also Published As
Publication number | Publication date |
---|---|
JP7122873B2 (en) | 2022-08-22 |
DE102019202829A1 (en) | 2019-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8966882B2 (en) | Differential pressure-based enablement of a particulate filter diagnostic | |
JP6593374B2 (en) | NOx sensor diagnostic device and diagnostic method | |
JP5714919B2 (en) | Method for predicting the amount of nitrogen oxides and exhaust system using the same | |
US10316716B2 (en) | Exhaust purification system and method for restoring NOx purification capacity | |
WO2012081463A1 (en) | Dpf system | |
JP6323354B2 (en) | Exhaust gas purification device for internal combustion engine | |
US20140338434A1 (en) | Adaptive soot mass estimation in a vehicle exhaust after-treatment device | |
JP2004340138A (en) | System and method for pressure sensor diagnosis by computer | |
JP2012036860A (en) | Device for diagnosing catalyst degradation | |
EP2559876A1 (en) | Exhaust gas purification device, and control method for exhaust gas purification device | |
US20120085084A1 (en) | Exhaust gas purification system of an internal combustion engine | |
JP2005140111A (en) | Pressure monitor for diesel particulate filter | |
US7478553B2 (en) | Method for detecting excessive burn | |
JP4174685B1 (en) | Exhaust gas purification device for internal combustion engine | |
EP3401522B1 (en) | Exhaust gas control system for internal combustion engine and method of controlling exhaust gas control system for internal combustion engine | |
EP3267002B1 (en) | Internal combustion engine control device | |
JP4270155B2 (en) | Exhaust purification catalyst thermal degradation state detection device | |
US20100162687A1 (en) | Method and device for the control of the operating state of the catalytic converter of the exhaust line of an internal combustion engine | |
JP6515576B2 (en) | Exhaust purification system | |
JP2020051375A (en) | Estimation device, and vehicle | |
JP7122873B2 (en) | Exhaust gas temperature control method and exhaust gas purification device | |
KR20190134944A (en) | Exhaust gas purification system and the control method thereof | |
JP4780335B2 (en) | Exhaust gas purification device for internal combustion engine | |
CN110945218B (en) | Exhaust gas purification system | |
JP4510709B2 (en) | Catalyst deterioration judgment device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210409 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220420 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220509 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220715 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220729 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220809 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7122873 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |