[go: up one dir, main page]

JP2019192752A - Conductive polymer composition, conductive polymer film, and electrolytic capacitor - Google Patents

Conductive polymer composition, conductive polymer film, and electrolytic capacitor Download PDF

Info

Publication number
JP2019192752A
JP2019192752A JP2018083039A JP2018083039A JP2019192752A JP 2019192752 A JP2019192752 A JP 2019192752A JP 2018083039 A JP2018083039 A JP 2018083039A JP 2018083039 A JP2018083039 A JP 2018083039A JP 2019192752 A JP2019192752 A JP 2019192752A
Authority
JP
Japan
Prior art keywords
conductive polymer
poly
quaternary ammonium
electrolytic capacitor
carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018083039A
Other languages
Japanese (ja)
Inventor
賢吾 内橋
Kengo Uchihashi
賢吾 内橋
隆宏 芝
Takahiro Shiba
隆宏 芝
比祐吾 伊藤
Hyugo Ito
比祐吾 伊藤
向井 孝夫
Takao Mukai
孝夫 向井
慶彦 赤澤
Yoshihiko Akazawa
慶彦 赤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Priority to JP2018083039A priority Critical patent/JP2019192752A/en
Publication of JP2019192752A publication Critical patent/JP2019192752A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

To provide a conductive composition which gives a conductive polymer film and an electrolytic capacitor excellent in heat resistance.SOLUTION: The conductive polymer composition is obtained by mixing: a conductive polymer (B) which contains, as a dopant, a polymer (A) comprising a monomer having an anionic group as an essential constituent monomer; and a quaternary ammonium carbonate (C). There are also provided: a conductive polymer film containing the conductive polymer composition; and an electrolytic capacitor having an anode, a solid electrolyte layer and a cathode, the solid electrolyte layer having the conductive polymer film.SELECTED DRAWING: None

Description

本発明は、導電性高分子組成物、導電性高分子膜及び電解コンデンサに関する。   The present invention relates to a conductive polymer composition, a conductive polymer film, and an electrolytic capacitor.

近年、共役ポリマーにドーパントを添加して高い電導度を発現する導電性高分子材料が開発され、電解コンデンサや帯電防止剤、透明電極、電磁波シールド材に広く用いられている。特に電解コンデンサにおいて導電性高分子を用いた固体コンデンサやハイブリッドコンデンサは、等価直列抵抗(ESR)が小さく、周波数特性に優れており、電子製品の小型化に伴って、近年求められる小型大容量の高周波用コンデンサを達成できる。   In recent years, conductive polymer materials that develop high conductivity by adding a dopant to a conjugated polymer have been developed and are widely used in electrolytic capacitors, antistatic agents, transparent electrodes, and electromagnetic shielding materials. In particular, solid capacitors and hybrid capacitors using conductive polymers in electrolytic capacitors have low equivalent series resistance (ESR) and excellent frequency characteristics, and the small and large capacity recently required with downsizing of electronic products. A high frequency capacitor can be achieved.

固体電解コンデンサやハイブリッドコンデンサは電解液を用いる一般コンデンサと比較して低いESRという点で優れているが、高温環境下での寿命が不十分であるという問題があった。   Solid electrolytic capacitors and hybrid capacitors are superior in terms of low ESR compared to general capacitors using an electrolytic solution, but have a problem that their lifespan in a high temperature environment is insufficient.

この問題点を解決するため、特許文献1では多価ヒドロキシ化合物とヒドロキシを有するアミンを併用することで成膜性が上がり、耐熱性が向上するという技術が開示されている。また、特許文献2ではアミン化合物と多価カルボン酸を併用することで耐熱性を高める技術が開示されている。しかし、これらの技術では耐熱性が不十分であった。   In order to solve this problem, Patent Document 1 discloses a technique in which film-forming properties are improved and heat resistance is improved by using a polyvalent hydroxy compound and an amine having hydroxy together. Patent Document 2 discloses a technique for improving heat resistance by using an amine compound and a polyvalent carboxylic acid in combination. However, these techniques have insufficient heat resistance.

国際公開第2011/115011号International Publication No. 2011/115011 特開2017−216317号公報JP 2017-216317 A

本発明は耐熱性に優れた導電性高分子膜や電解コンデンサを与える導電性高分子組成物を提供することを目的とする。   An object of the present invention is to provide a conductive polymer composition that provides a conductive polymer film or an electrolytic capacitor excellent in heat resistance.

本発明者らは、上記の目的を達成するべく検討を行った結果、本発明に到達した。
すなわち、本発明は、アニオン性基を有する単量体を必須構成単量体とする重合体(A)をドーパントとして含む導電性高分子(B)と、4級アンモニウムの炭酸塩(C)とを混合して得られる導電性高分子組成物である。
The inventors of the present invention have reached the present invention as a result of studies to achieve the above object.
That is, the present invention relates to a conductive polymer (B) containing, as a dopant, a polymer (A) having an anionic group-containing monomer as an essential constituent monomer, a quaternary ammonium carbonate (C), Is a conductive polymer composition obtained by mixing.

本発明の導電性高分子組成物は、導電性高分子膜や電解コンデンサの耐熱性を高めるという効果を奏する。   The conductive polymer composition of the present invention has the effect of enhancing the heat resistance of the conductive polymer film and the electrolytic capacitor.

本発明のアニオン性基を有する単量体を必須構成単量体とする重合体(A)は、アニオン性基を有する単量体を必須構成単量体とする。重合体(A)は、アニオン基を有する単量体の単独重合体であってもよいし、アニオン基を有する2種以上の共重合体であってもよい。また、アニオン基を有する単量体とアニオン基を有さない単量体との共重合体でもいい。重合体(A)は、導電性高分子にドープして、電導度を高める働きをする。
アニオン基としては、電導度の観点から、好ましくはスルホン酸基、カルボン酸基であり、更に好ましくはスルホン酸基である。
The polymer (A) having an anionic group-containing monomer of the present invention as an essential constituent monomer uses an anionic group-containing monomer as an essential constituent monomer. The polymer (A) may be a homopolymer of a monomer having an anionic group or two or more types of copolymers having an anionic group. Moreover, the copolymer of the monomer which has an anion group, and the monomer which does not have an anion group may be sufficient. The polymer (A) functions to increase conductivity by doping the conductive polymer.
The anionic group is preferably a sulfonic acid group or a carboxylic acid group, more preferably a sulfonic acid group, from the viewpoint of conductivity.

アニオン性基を有する単量体を必須構成単量体とする重合体(A)としては、スルホン酸基を有する単量体の重合体及びカルボン酸基を有する単量体の重合体等が挙げられる。
スルホン酸基を有する単量体の重合体としては、ポリスチレンスルホン酸、ポリビニルスルホン酸、ポリアリルスルホン酸、ポリアクリルスルホン酸、ポリメタクリルスルホン酸、ポリ(2−アクリルアミド−2−メチルプロパンスルホン酸)、ポリイソプレンスルホン酸、ポリスルホエチルメタクリレート、ポリ(4−スルホブチルメタクリレート)、ポリメタクリルオキシベンゼンスルホン酸等のスルホン酸基を有する重合体等が挙げられる。
Examples of the polymer (A) having a monomer having an anionic group as an essential constituent monomer include a polymer of a monomer having a sulfonic acid group and a polymer of a monomer having a carboxylic acid group. It is done.
Polymers of monomers having sulfonic acid groups include polystyrene sulfonic acid, polyvinyl sulfonic acid, polyallyl sulfonic acid, polyacryl sulfonic acid, polymethacryl sulfonic acid, poly (2-acrylamido-2-methylpropane sulfonic acid) , Polymers having a sulfonic acid group such as polyisoprene sulfonic acid, polysulfoethyl methacrylate, poly (4-sulfobutyl methacrylate), and polymethacryloxybenzene sulfonic acid.

カルボン酸基を有する単量体の重合体としては、ポリビニルカルボン酸、ポリスチレンカルボン酸、ポリアリルカルボン酸、ポリアクリルカルボン酸、ポリメタクリルカルボン酸、ポリ(2−アクリルアミド−2−メチルプロパンカルボン酸)、ポリイソプレンカルボン酸、ポリアクリル酸等のカルボン酸基を有する重合体等が挙げられる。   Polymers of monomers having a carboxylic acid group include polyvinyl carboxylic acid, polystyrene carboxylic acid, polyallyl carboxylic acid, polyacryl carboxylic acid, polymethacryl carboxylic acid, poly (2-acrylamido-2-methylpropane carboxylic acid). And polymers having a carboxylic acid group such as polyisoprene carboxylic acid and polyacrylic acid.

これらの重合体(A)のうち、導電性及び耐熱性の観点から、好ましくはスルホン酸基を有する単量体の重合体であり、更に好ましくはポリスチレンスルホン酸である。
重合体(A)の質量平均分子量は2万以上100万以下であることが好ましく、10万以上50万以下であることがより好ましい。
本明細書における質量平均分子量は、以下の条件でゲルパーミエーションクロマトグラフィを測定し、求めた値である。
装置 : 東ソー(株)製 HLC−8120
カラム : TSK GEL GMH6 2本 〔東ソー(株)製〕
測定温度 : 40℃
試料溶液 : 0.25重量%のTHF溶液
溶液注入量 : 100μl
検出装置 : 屈折率検出器
基準物質 : 東ソー製 標準ポリスチレン(TSKstandard POLYSTYRENE)12点(重量平均分子量: 500 1050 2800 5970 9100 18100 37900 96400 190000 355000 1090000 2890000)
Of these polymers (A), from the viewpoint of conductivity and heat resistance, a polymer of a monomer having a sulfonic acid group is preferred, and polystyrene sulfonic acid is more preferred.
The mass average molecular weight of the polymer (A) is preferably from 20,000 to 1,000,000, more preferably from 100,000 to 500,000.
The mass average molecular weight in this specification is a value obtained by measuring gel permeation chromatography under the following conditions.
Apparatus: HLC-8120 manufactured by Tosoh Corporation
Column: 2 TSK GEL GMH6 [manufactured by Tosoh Corporation]
Measurement temperature: 40 ° C
Sample solution: 0.25 wt% THF solution Solution injection amount: 100 μl
Detection device: Refractive index detector Reference material: 12 standard polystyrene (TSK standard POLYSYRENE) manufactured by Tosoh (weight average molecular weight: 500 1050 2800 5970 9100 18100 37900 96400 190000 355000 1090000 2890000)

本発明の導電性高分子(B)は、アニオン性基を有する単量体を必須構成単量体とする重合体(A)をドーパントとして含む導電性高分子である。
導電性高分子を構成する高分子としては、主鎖がπ共役系で構成されている有機高分子で導電性を示す高分子である。導電性を示し本発明の効果を有する限り特に制限されず、例えば、ポリピロール導電性高分子、ポリチオフェン導電性高分子、ポリアセチレン導電性高分子、ポリフェニレン導電性高分子、ポリフェニレンビニレン導電性高分子、ポリアニリン導電性高分子、ポリアセン導電性高分子、ポリチオフェンビニレン導電性高分子及びこれらの共重合体等が挙げられる。
The conductive polymer (B) of the present invention is a conductive polymer containing, as a dopant, a polymer (A) having an anionic group-containing monomer as an essential constituent monomer.
The polymer constituting the conductive polymer is an organic polymer having a main chain composed of a π-conjugated system and exhibiting conductivity. There is no particular limitation as long as it exhibits conductivity and has the effect of the present invention. For example, polypyrrole conductive polymer, polythiophene conductive polymer, polyacetylene conductive polymer, polyphenylene conductive polymer, polyphenylene vinylene conductive polymer, polyaniline Examples thereof include conductive polymers, polyacene conductive polymers, polythiophene vinylene conductive polymers, and copolymers thereof.

ポリチオフェン導電性高分子としては、ポリチオフェン、ポリ(3−メチルチオフェン)、ポリ(3−エチルチオフェン)、ポリ(3−プロピルチオフェン)、ポリ(3−ブチルチオフェン)、ポリ(3−ヘキシルチオフェン)、ポリ(3−ヘプチルチオフェン)、ポリ(3−オクチルチオフェン)、ポリ(3−デシルチオフェン)、ポリ(3−ドデシルチオフェン)、ポリ(3−オクタデシルチオフェン)、ポリ(3−ブロモチオフェン)、ポリ(3−クロロチオフェン)、ポリ(3−ヨードチオフェン)、ポリ(3−シアノチオフェン)、ポリ(3−フェニルチオフェン)、ポリ(3,4−ジメチルチオフェン)、ポリ(3,4−ジブチルチオフェン)、ポリ(3−ヒドロキシチオフェン)、ポリ(3−メトキシチオフェン)、ポリ(3−エトキシチオフェン)、ポリ(3−ブトキシチオフェン)、ポリ(3−ヘキシルオキシチオフェン)、ポリ(3−ヘプチルオキシチオフェン)、ポリ(3−オクチルオキシチオフェン)、ポリ(3−デシルオキシチオフェン)、ポリ(3−ドデシルオキシチオフェン)、ポリ(3−オクタデシルオキシチオフェン)、ポリ(3,4−ジヒドロキシチオフェン)、ポリ(3,4−ジメトキシチオフェン)、ポリ(3,4−ジエトキシチオフェン)、ポリ(3,4−ジプロポキシチオフェン)、ポリ(3,4−ジブトキシチオフェン)、ポリ(3,4−ジヘキシルオキシチオフェン)、ポリ(3,4−ジヘプチルオキシチオフェン)、ポリ(3,4−ジオクチルオキシチオフェン)、ポリ(3,4−ジデシルオキシチオフェン)、ポリ(3,4−ジドデシルオキシチオフェン)、ポリ(3,4−エチレンジオキシチオフェン)、ポリ(3,4−プロピレンジオキシチオフェン)、ポリ(3,4−ブチレンジオキシチオフェン)、ポリ(3−メチル−4−メトキシチオフェン)、ポリ(3−メチル−4−エトキシチオフェン)、ポリ(3−カルボキシチオフェン)、ポリ(3−メチル−4−カルボキシチオフェン)、ポリ(3−メチル−4−カルボキシエチルチオフェン)、ポリ(3−メチル−4−カルボキシブチルチオフェン)等が挙げられる。   Examples of the polythiophene conductive polymer include polythiophene, poly (3-methylthiophene), poly (3-ethylthiophene), poly (3-propylthiophene), poly (3-butylthiophene), poly (3-hexylthiophene), Poly (3-heptylthiophene), poly (3-octylthiophene), poly (3-decylthiophene), poly (3-dodecylthiophene), poly (3-octadecylthiophene), poly (3-bromothiophene), poly ( 3-chlorothiophene), poly (3-iodothiophene), poly (3-cyanothiophene), poly (3-phenylthiophene), poly (3,4-dimethylthiophene), poly (3,4-dibutylthiophene), Poly (3-hydroxythiophene), poly (3-methoxythiophene), poly (3 Ethoxythiophene), poly (3-butoxythiophene), poly (3-hexyloxythiophene), poly (3-heptyloxythiophene), poly (3-octyloxythiophene), poly (3-decyloxythiophene), poly ( 3-dodecyloxythiophene), poly (3-octadecyloxythiophene), poly (3,4-dihydroxythiophene), poly (3,4-dimethoxythiophene), poly (3,4-diethoxythiophene), poly (3 , 4-dipropoxythiophene), poly (3,4-dibutoxythiophene), poly (3,4-dihexyloxythiophene), poly (3,4-diheptyloxythiophene), poly (3,4-dioctyloxy) Thiophene), poly (3,4-didecyloxythiophene), poly (3,4 Didodecyloxythiophene), poly (3,4-ethylenedioxythiophene), poly (3,4-propylenedioxythiophene), poly (3,4-butylenedioxythiophene), poly (3-methyl-4- Methoxythiophene), poly (3-methyl-4-ethoxythiophene), poly (3-carboxythiophene), poly (3-methyl-4-carboxythiophene), poly (3-methyl-4-carboxyethylthiophene), poly (3-methyl-4-carboxybutylthiophene) and the like.

ポリピロール導電性高分子としては、ポリピロール、ポリ(N−メチルピロール)、ポリ(3−メチルピロール)、ポリ(3−エチルピロール)、ポリ(3−n−プロピルピロール)、ポリ(3−ブチルピロール)、ポリ(3−オクチルピロール)、ポリ(3−デシルピロール)、ポリ(3−ドデシルピロール)、ポリ(3,4−ジメチルピロール)、ポリ(3,4−ジブチルピロール)、ポリ(3−カルボキシピロール)、ポリ(3−メチル−4−カルボキシピロール)、ポリ(3−メチル−4−カルボキシエチルピロール)、ポリ(3−メチル−4−カルボキシブチルピロール)、ポリ(3−ヒドロキシピロール)、ポリ(3−メトキシピロール)、ポリ(3−エトキシピロール)、ポリ(3−ブトキシピロール)、ポリ(3−ヘキシルオキシピロール)、ポリ(3−メチル−4−ヘキシルオキシピロール)等が挙げられる。   Examples of the polypyrrole conductive polymer include polypyrrole, poly (N-methylpyrrole), poly (3-methylpyrrole), poly (3-ethylpyrrole), poly (3-n-propylpyrrole), and poly (3-butylpyrrole). ), Poly (3-octylpyrrole), poly (3-decylpyrrole), poly (3-dodecylpyrrole), poly (3,4-dimethylpyrrole), poly (3,4-dibutylpyrrole), poly (3- Carboxypyrrole), poly (3-methyl-4-carboxypyrrole), poly (3-methyl-4-carboxyethylpyrrole), poly (3-methyl-4-carboxybutylpyrrole), poly (3-hydroxypyrrole), Poly (3-methoxypyrrole), poly (3-ethoxypyrrole), poly (3-butoxypyrrole), poly (3-hexyl) Kishipiroru), poly (3-methyl-4-hexyloxy-pyrrole) and the like.

ポリアニリン導電性高分子としては、ポリアニリン、ポリ(2−メチルアニリン)、ポリ(3−イソブチルアニリン)、ポリ(2−アニリンスルホン酸)、ポリ(3−アニリンスルホン酸)等が挙げられる。   Examples of the polyaniline conductive polymer include polyaniline, poly (2-methylaniline), poly (3-isobutylaniline), poly (2-aniline sulfonic acid), poly (3-aniline sulfonic acid), and the like.

これらのうち、空気中での安定性及び耐熱性の観点からは、好ましくはポリピロール導電性高分子、ポリチオフェン及びポリアニリン導電性高分子であり、更に好ましくはポリチオフェン導電性高分子であり、導電性の観点から、特に好ましくはポリ(3,4−エチレンジオキシチオフェン)である。
前記導電性高分子は1種を単独で使用してもよいし、2種以上を併用してもよい。
Of these, from the viewpoint of stability in air and heat resistance, polypyrrole conductive polymer, polythiophene and polyaniline conductive polymer are preferable, and polythiophene conductive polymer is more preferable. From the viewpoint, poly (3,4-ethylenedioxythiophene) is particularly preferable.
The said conductive polymer may be used individually by 1 type, and may use 2 or more types together.

導電性高分子(B)の重量に対して重合体(A)の含有量は、電導度及び分散安定性の観点から、好ましくは110〜500重量%であり、更に好ましくは200〜300重量%である。   The content of the polymer (A) with respect to the weight of the conductive polymer (B) is preferably 110 to 500% by weight, more preferably 200 to 300% by weight, from the viewpoint of conductivity and dispersion stability. It is.

重合体(A)をドーパントとして含む導電性高分子(B)として好ましいものとしては、チオフェン系導電性高分子(PEDOT/PSSとも言う)があげられ、ポリ(3,4−エチレンジオキシチオフェン)とポリスチレンスルホン酸との混合物等があげられる。導電性高分子(B)は、公知の方法で得ることができるほか、メルク社等から入手できる試薬及びヘウレス社等から入手できる市販品を使用することができる。   Preferred examples of the conductive polymer (B) containing the polymer (A) as a dopant include thiophene-based conductive polymers (also referred to as PEDOT / PSS), and poly (3,4-ethylenedioxythiophene). And a mixture of polystyrene sulfonic acid and the like. The conductive polymer (B) can be obtained by a known method, as well as a reagent available from Merck and the like and a commercially available product available from Heures and the like.

本発明に用いる4級アンモニウムの炭酸塩(C)は、4級アンモニウムと、炭酸イオン及び/又は下記一般式(1)で表される陰イオンとの塩である。
ROCOO (1)
[Rは炭素数1〜4のアルキル基]
The quaternary ammonium carbonate (C) used in the present invention is a salt of quaternary ammonium and a carbonate ion and / or an anion represented by the following general formula (1).
ROCOO - (1)
[R is an alkyl group having 1 to 4 carbon atoms]

Rとしては、メチル基、エチル基、プロピル基及びブチル基が挙げられる。これらのうち、耐熱性の観点から、好ましくはメチル基及びエチル基であり、更に好ましくはエチル基である。
一般式(1)で表される陰イオンとしては、メトキシギ酸イオン、エトキシギ酸イオン等が挙げられる。
アニオン成分であるこれらの陰イオンは単独でも、併用してもよい。
Examples of R include a methyl group, an ethyl group, a propyl group, and a butyl group. Of these, from the viewpoint of heat resistance, a methyl group and an ethyl group are preferable, and an ethyl group is more preferable.
Examples of the anion represented by the general formula (1) include methoxy formate ion and ethoxy formate ion.
These anions which are anionic components may be used alone or in combination.

4級アンモニウムの炭酸塩(C)のカチオン成分である4級アンモニウムとしては、複素環式アンモニウム、芳香族4級アンモニウム及びアルキルアンモニウム等が挙げられる。   Examples of the quaternary ammonium that is a cation component of the quaternary ammonium carbonate (C) include heterocyclic ammonium, aromatic quaternary ammonium, and alkyl ammonium.

複素環式アンモニウムとして1,2,3−トリメチル−2−イミダゾリニウム、1,2,3,4−テトラメチルイミダゾリニウム、1−エチル−1-メチルプロリジニウム、5−アゾニアスピロ[4,4]ノナン、1−ブチル−1−メチルピロリジニウム、1,1−ジメチルピペリジニウム、4−エチル−4−メチルモルホリニウム、N,N,N,N―テトラメチルピペラジニウム が挙げられる。   1,2,3-trimethyl-2-imidazolinium, 1,2,3,4-tetramethylimidazolinium, 1-ethyl-1-methylprolidinium, 5-azoniaspiro [4, as heterocyclic ammonium 4] Nonane, 1-butyl-1-methylpyrrolidinium, 1,1-dimethylpiperidinium, 4-ethyl-4-methylmorpholinium, N, N, N, N-tetramethylpiperazinium It is done.

芳香族アンモニウムとしてN,N,N−トリメチルフェニルアンモニウム、N−エチル−N,N−ジメチルフェニルアンモニウム、N,N,N−トリメチルナフチルアンモニウム、N,N,N−トリメチルベンジルアンモニウムなどが挙げられる。   Aromatic ammonium includes N, N, N-trimethylphenylammonium, N-ethyl-N, N-dimethylphenylammonium, N, N, N-trimethylnaphthylammonium, N, N, N-trimethylbenzylammonium and the like.

アルキルアンモニウムとしてテトラメチルアンモニウム、テトラエチルアンモニウム、テトラブチルアンモニウム、トリエチルメチルアンモニウム、ジエチルジメチルアンモニウム、トリブチルメチルアンモニウム、エチルトリエチルアンモニウム、N,N,N,N,N,N―ヘキサメチルエチレンジアンモニウム、N,N,N,N,N―ペンタメチルエチレンアミノアンモニウム、N,N,N−トリメチルメタノールアンモニウム、N,N,N−トリメチルヘキシルアンモニウム等が挙げられる。   As alkylammonium, tetramethylammonium, tetraethylammonium, tetrabutylammonium, triethylmethylammonium, diethyldimethylammonium, tributylmethylammonium, ethyltriethylammonium, N, N, N, N, N, N-hexamethylethylenediammonium, N, N, N, N, N-pentamethylethyleneaminoammonium, N, N, N-trimethylmethanolammonium, N, N, N-trimethylhexylammonium and the like can be mentioned.

これらの4級アンモニウムのうち、電導度及び耐熱性の観点から好ましくは複素環式アンモニウム及びアルキルアンモニウムであり、更に好ましくはイミダゾリウム、ピロリジニウム及びアルキルアンモニウムである。
これらの4級アンモニウムは単独でも、併用してもよい。
Among these quaternary ammoniums, heterocyclic ammonium and alkylammonium are preferable from the viewpoint of conductivity and heat resistance, and imidazolium, pyrrolidinium and alkylammonium are more preferable.
These quaternary ammoniums may be used alone or in combination.

4級アンモニウムの炭酸塩(C)は1種を単独で使用してもよいし、2種以上を併用してもよい。   The quaternary ammonium carbonate (C) may be used alone or in combination of two or more.

4級アンモニウムの炭酸塩(C)の量は、電導度及び耐熱性の観点から、重合体(A)の重量に対して、0.01〜10重量%が好ましく、0.1〜2重量%がより好ましい。   The amount of the quaternary ammonium carbonate (C) is preferably 0.01 to 10% by weight, preferably 0.1 to 2% by weight, based on the weight of the polymer (A), from the viewpoints of conductivity and heat resistance. Is more preferable.

4級アンモニウムの炭酸塩(C)は公知の方法(特開昭63−284148号公報等に記載の方法)を用いることで合成することが出来る。例えば、アミンとジアルキルカーボネートを溶媒(メタノール等)中で合成することが出来る。   The quaternary ammonium carbonate (C) can be synthesized by using a known method (method described in JP-A-63-284148). For example, an amine and dialkyl carbonate can be synthesized in a solvent (such as methanol).

重合体(A)と4級アンモニウムの炭酸塩(C)との反応は、重合体(A)が有するアニオン性基と4級アンモニウムの炭酸塩(C)のアニオンである炭酸イオンとの塩交換反応と推定される。反応生成物は重合体(A)のアニオン性基の一部あるいは全部が4級アンモニウムで中和された塩であると推定される。   The reaction between the polymer (A) and the quaternary ammonium carbonate (C) is a salt exchange between the anionic group of the polymer (A) and the carbonate ion which is an anion of the quaternary ammonium carbonate (C). Presumed to be a reaction. The reaction product is presumed to be a salt in which part or all of the anionic group of the polymer (A) is neutralized with quaternary ammonium.

重合体(A)と4級アンモニウムの炭酸塩(C)は重合体(A)と4級アンモニウムの炭酸塩(C)とを溶液中で撹拌することで混合することができる。この反応溶液中に導電性高分子(B)に用いられる高分子を含んでいてもよい。反応温度は分散安定性の観点から0〜25℃で行うことが好ましい。   The polymer (A) and the quaternary ammonium carbonate (C) can be mixed by stirring the polymer (A) and the quaternary ammonium carbonate (C) in a solution. The reaction solution may contain a polymer used for the conductive polymer (B). The reaction temperature is preferably 0 to 25 ° C. from the viewpoint of dispersion stability.

導電性高分子組成物は、アニオン性基を有する単量体を必須構成単量体とする重合体(A)をドーパントとして含む導電性高分子(B)、4級アンモニウムの炭酸塩(C)の他に分散媒を含むことができる。分散媒を含む場合、導電性高分子組成物の固形分濃度は電導度と分散安定性の観点から導電性高分子組成物の合計重量に基づき好ましくは0.1〜10重量%であり、更に好ましくは0.5〜5重量%であり、特に好ましくは1〜3重量%である。   The conductive polymer composition includes a conductive polymer (B) containing as a dopant a polymer (A) having a monomer having an anionic group as an essential constituent monomer, and a quaternary ammonium carbonate (C). In addition, a dispersion medium can be included. When the dispersion medium is included, the solid content concentration of the conductive polymer composition is preferably 0.1 to 10% by weight based on the total weight of the conductive polymer composition from the viewpoint of conductivity and dispersion stability. Preferably it is 0.5 to 5 weight%, Most preferably, it is 1 to 3 weight%.

分散媒としては、水及び有機溶剤等が挙げられる。
分散安定性の観点から水を含むことが好ましい。分散媒に含まれる水の含有割合は好ましくは60質量%以上、更に好ましくは70質量%以上、特に好ましくは85質量%以上である。
Examples of the dispersion medium include water and organic solvents.
From the viewpoint of dispersion stability, it is preferable to contain water. The content of water contained in the dispersion medium is preferably 60% by mass or more, more preferably 70% by mass or more, and particularly preferably 85% by mass or more.

分散媒に用いることができる有機溶剤としては、アルコール溶剤、エーテル溶剤、ケトン溶剤、エステル溶剤、スルホキシド溶剤、スルホン溶剤等の有機溶剤を併用することができる。これら有機溶剤は1種を単独で使用してもよいし、2種以上を併用してもよい。
アルコール溶媒としては、例えば、メタノール、エタノール、2−プロパノール、t−ブタノール、エチレングリコール、プロピレングリコール、ジエチレングリコール等が挙げられる。
エーテル溶媒としては、ジエチルエーテル、ジメチルエーテル等が挙げられる。
ケトン溶媒としては、2−ブタノン、アセトン等が挙げられる。
エステル溶媒としては、酢酸エチル等が挙げられる。
スルホキシド溶剤としては、ジメチルスルホキシド等が挙げられる。
スルホン溶剤としては、スルホラン、エチルメチルスルホン等が挙げられる。
これら有機溶剤の中で電導度の観点から、好ましくはエチレングリコール、プロピレングリコール、ジエチレングリコール、ジメチルスルホキシド、スルホラン、エチルメチルスルホン等の高沸点溶媒であり、更に好ましくはエチレングリコール、ジエチレングリコール、ジメチルスルホキシドであり、特に好ましくはジエチレングリコールである。
As an organic solvent that can be used for the dispersion medium, an organic solvent such as an alcohol solvent, an ether solvent, a ketone solvent, an ester solvent, a sulfoxide solvent, or a sulfone solvent can be used in combination. These organic solvents may be used individually by 1 type, and may use 2 or more types together.
Examples of the alcohol solvent include methanol, ethanol, 2-propanol, t-butanol, ethylene glycol, propylene glycol, diethylene glycol and the like.
Examples of the ether solvent include diethyl ether and dimethyl ether.
Examples of the ketone solvent include 2-butanone and acetone.
Examples of the ester solvent include ethyl acetate.
Examples of the sulfoxide solvent include dimethyl sulfoxide.
Examples of the sulfone solvent include sulfolane and ethyl methyl sulfone.
Among these organic solvents, from the viewpoint of conductivity, preferred are high-boiling solvents such as ethylene glycol, propylene glycol, diethylene glycol, dimethyl sulfoxide, sulfolane, ethyl methyl sulfone, and more preferred are ethylene glycol, diethylene glycol, and dimethyl sulfoxide. Particularly preferred is diethylene glycol.

導電性高分子組成物は、アニオン性基を有する単量体を必須構成単量体とする重合体(A)をドーパントとして含む導電性高分子(B)、4級アンモニウムの炭酸塩塩(C)及び分散媒の他に添加剤を含むことができる。
添加剤としては、ポリエーテル及び界面活性剤等が挙げられる。電導度の観点から好ましくはポリエーテルであり、成膜性の観点から好ましくは界面活性剤である。
The conductive polymer composition includes a conductive polymer (B) containing a polymer (A) having an anionic group-containing monomer as an essential constituent monomer as a dopant, and a quaternary ammonium carbonate (C ) And a dispersion medium.
Examples of the additive include polyether and surfactant. From the viewpoint of electrical conductivity, polyether is preferable, and from the viewpoint of film formability, a surfactant is preferable.

ポリエーテルとしては、ポリエチレングリコール[商品名「PEG−400」、三洋化成工業(株)製、Mn=400]、ポリエチレングリコール[商品名「PEG−600」、三洋化成工業(株)製、Mn=600]等が挙げられる。   As the polyether, polyethylene glycol [trade name “PEG-400”, manufactured by Sanyo Chemical Industries, Mn = 400], polyethylene glycol [trade name “PEG-600”, manufactured by Sanyo Chemical Industries, Ltd., Mn = 600] and the like.

界面活性剤としては、ノニオン界面活性剤、アニオン界面活性剤及びカチオン界面活性剤等が挙げられる。これらの界面活性剤のうち、保存安定性の観点からノニオン界面活性剤が好ましい。   Examples of the surfactant include nonionic surfactants, anionic surfactants, and cationic surfactants. Of these surfactants, nonionic surfactants are preferred from the viewpoint of storage stability.

本発明の導電性高分子膜は、導電性高分子組成物を含む導電性高分子膜である。
導電性高分子組成物が、分散媒を含む液状である場合には分散媒を留去することより導電性高分子膜を得ることができる。組成物の塗布方法としては、例えば、浸漬(すなわち、ディップコーティング)、バーコーターやアプリケーターを用いた塗布コーティング、コンマコーティング、リバースコーティング、リップコーティング、マイクログラビアコーティング等を適用することができる。
乾燥方法としては、室温乾燥、熱風乾燥、遠赤外線乾燥など公知の手法が挙げられる。
一方で、導電性高分子組成物が、分散媒を含まない場合には、組成物を上記塗布方法と同様にして、あるいはフィルム状に成形して導電性高分子膜を得ることができる。
The conductive polymer film of the present invention is a conductive polymer film containing a conductive polymer composition.
When the conductive polymer composition is a liquid containing a dispersion medium, the conductive polymer film can be obtained by distilling off the dispersion medium. As a method for applying the composition, for example, dipping (that is, dip coating), application coating using a bar coater or an applicator, comma coating, reverse coating, lip coating, microgravure coating, and the like can be applied.
Examples of the drying method include known methods such as room temperature drying, hot air drying, and far-infrared drying.
On the other hand, when the conductive polymer composition does not contain a dispersion medium, the conductive polymer film can be obtained by molding the composition in the same manner as in the above coating method or in the form of a film.

本発明の電解コンデンサは、陽極と固体電解質層と陰極とを有する電解コンデンサであって、前記固体電解質層が導電性高分子膜を有する電解コンデンサである。電解コンデンサとしては、誘電体層及び固体電解質層を備える陽極箔に対向して、セパレータ(マニラ麻及びクラフト紙等)を介して陰極箔が配置することにより構成されたコンデンサ等が挙げられる。   The electrolytic capacitor of the present invention is an electrolytic capacitor having an anode, a solid electrolyte layer, and a cathode, wherein the solid electrolyte layer has a conductive polymer film. Examples of the electrolytic capacitor include a capacitor configured by disposing a cathode foil through a separator (manila hemp, kraft paper, etc.) facing an anode foil including a dielectric layer and a solid electrolyte layer.

前記の陽極箔としては、導電性材料を用いることができる。
前記の導電性材料としては、アルミニウム、チタン、タンタル、ニオブ及びこれらの合金等が挙げられる。
陽極箔は、エッチングにより多孔質化すること等の方法で、表面積を大きくしたものが好ましい。
As the anode foil, a conductive material can be used.
Examples of the conductive material include aluminum, titanium, tantalum, niobium, and alloys thereof.
The anode foil preferably has a larger surface area by a method such as making it porous by etching.

誘電体層は、陽極箔表面を化成処理等により陽極酸化することで形成されるため、陽極箔に用いられる導電性物質の酸化物が挙げられる。
例えば、陽極箔としてアルミニウムを用いた場合、陽極箔の表面に形成される誘電体層は、化成により生成する酸化アルミニウムである。
Since the dielectric layer is formed by anodizing the surface of the anode foil by chemical conversion or the like, an oxide of a conductive material used for the anode foil can be used.
For example, when aluminum is used as the anode foil, the dielectric layer formed on the surface of the anode foil is aluminum oxide generated by chemical conversion.

誘電体層表面に接触した固体電解質層は、前記記載の導電性高分子膜を有する層である。固体電解質層は必要によりホウ酸、ホウ酸エステル及びポリエーテルを含有する層である。   The solid electrolyte layer in contact with the surface of the dielectric layer is a layer having the conductive polymer film described above. The solid electrolyte layer is a layer containing boric acid, boric acid ester and polyether as necessary.

ホウ酸エステルとしては、ホウ酸アルキル(ホウ酸トリエチル等)及びホウ酸アリール(ホウ酸トリフェニル等)等が挙げられる。   Examples of boric acid esters include alkyl borate (such as triethyl borate) and aryl borate (such as triphenyl borate).

ポリエーテルとしては、ポリエチレングリコール[商品名「PEG−400」、三洋化成工業(株)製、Mn=400]、ポリエチレングリコール[商品名「PEG−600」、三洋化成工業(株)製、Mn=600]等が挙げられる。   As the polyether, polyethylene glycol [trade name “PEG-400”, manufactured by Sanyo Chemical Industries, Mn = 400], polyethylene glycol [trade name “PEG-600”, manufactured by Sanyo Chemical Industries, Ltd., Mn = 600] and the like.

固体電解質層は以下に記載の方法により形成させることができる。
誘電体層を有する陽極箔、セパレータを介して前記陽極に対向した陰極を有する電解コンデンサ素子に、前記の導電性高分子組成物の分散液に含浸し、その後乾燥させる方法によって、陽極箔の誘電体層に接触した導電性高分子膜を固体電解質層として形成させることができる。
The solid electrolyte layer can be formed by the method described below.
The anode foil having a dielectric layer and an electrolytic capacitor element having a cathode opposed to the anode through a separator are impregnated with a dispersion of the conductive polymer composition, and then dried. A conductive polymer film in contact with the body layer can be formed as a solid electrolyte layer.

固体電解質層形成方法においては、上記の操作を複数回実施し、導電性高分子膜を複数層形成させてもよい。
また、本発明の導電性高分子膜を複数層形成してもよいし、別の導電性高分子膜と併用してもよい。
In the solid electrolyte layer forming method, the above operation may be performed a plurality of times to form a plurality of conductive polymer films.
Moreover, the conductive polymer film of the present invention may be formed in a plurality of layers, or may be used in combination with another conductive polymer film.

本発明では前記導電性高分子膜のみを有する固体電解コンデンサとして使用してもよいし、電解液と併用してハイブリッド電解コンデンサとして使用してもよい。   In the present invention, it may be used as a solid electrolytic capacitor having only the conductive polymer film, or may be used as a hybrid electrolytic capacitor in combination with an electrolytic solution.

ハイブリッド電解コンデンサ用電解液が含有する電解質は、カチオン成分とアニオン成分とで構成され、カチオン成分としては、アンモニア、トリエチルアミン、ジメチルエチルアミン、ジエチルメチルアミン、ジメチルアミン、ジエチルアミン、1−メチルイミダゾール、1,2,3,4−テトラメチルイミダゾリニウム及び1−エチル−3−メチルイミダゾリニウム等が挙げられ、中でもESRの観点から好ましくはアンモニア、ジメチルエチルアミン、ジエチルアミン、トリエチルアミン、更に好ましくはジメチルエチルアミンである。
一方、アニオン成分としてはアジピン酸、アゼライン酸、1,6−デカンジカルボン酸、フタル酸、マレイン酸、安息香酸、リン酸及びその誘導体並びにホウ酸及びその誘導体等が挙げられ、中でもESRの観点から好ましくはフタル酸である。
電解質は、1種を単独で用いても2種以上を併用してもよい。
The electrolyte contained in the electrolytic solution for a hybrid electrolytic capacitor is composed of a cation component and an anion component. As the cation component, ammonia, triethylamine, dimethylethylamine, diethylmethylamine, dimethylamine, diethylamine, 1-methylimidazole, 1, 2,3,4-Tetramethylimidazolinium, 1-ethyl-3-methylimidazolinium and the like can be mentioned. Among them, ammonia, dimethylethylamine, diethylamine, triethylamine and more preferably dimethylethylamine are preferable from the viewpoint of ESR. .
On the other hand, examples of the anionic component include adipic acid, azelaic acid, 1,6-decanedicarboxylic acid, phthalic acid, maleic acid, benzoic acid, phosphoric acid and derivatives thereof, and boric acid and derivatives thereof. Preferred is phthalic acid.
An electrolyte may be used individually by 1 type, or may use 2 or more types together.

ハイブリッド電解コンデンサ用電解液が含有する分散媒としては、アルコール(メチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコール、エチレングリコール、エチレングリコールモノブチルエーテル、プロピレングリコール及びポリエチレングリコール(Mn:600以下)等)、アミド(N−メチルホルムアミド及びN,N−ジメチルホルムアミド等)、ラクトン(α−アセチル−γ−ブチロラクトン、β−ブチロラクトン、γ−ブチロラクトン、γ−バレロラクトン及びδ−バレロラクトン等)、ニトリル(アセトニトリル、プロピオニトリル、ブチロニトリル、アクリロニトリル、メタクリルニトリル及びベンゾニトリル等)スルホキシド(ジメチルスルホキシド、メチルエチルスルホキシド及びジエチルスルホキシド)及びスルホン(スルホラン及びエチルメチルスルホン等)等が挙げられる。
これらの分散媒の内、前記電解質の溶解性及び耐熱性の観点から好ましいのは、アルコール及びラクトンであり、更に好ましいのはエチレングリコール、プロピレングリコール及びγ−ブチロラクトンである。
分散媒は、1種を単独で用いても2種以上を併用してもよい。
As a dispersion medium contained in the electrolytic solution for a hybrid electrolytic capacitor, alcohol (methyl alcohol, ethyl alcohol, propyl alcohol, butyl alcohol, ethylene glycol, ethylene glycol monobutyl ether, propylene glycol and polyethylene glycol (Mn: 600 or less)), Amides (such as N-methylformamide and N, N-dimethylformamide), lactones (such as α-acetyl-γ-butyrolactone, β-butyrolactone, γ-butyrolactone, γ-valerolactone and δ-valerolactone), nitriles (acetonitrile, Propionitrile, butyronitrile, acrylonitrile, methacrylonitrile, benzonitrile, etc.) sulfoxide (dimethyl sulfoxide, methyl ethyl sulfoxide and diethyl sulfo) Sid) and sulfone (sulfolane and ethyl methyl sulfone) and the like.
Of these dispersion media, alcohols and lactones are preferable from the viewpoint of solubility and heat resistance of the electrolyte, and ethylene glycol, propylene glycol, and γ-butyrolactone are more preferable.
A dispersion medium may be used individually by 1 type, or may use 2 or more types together.

本発明の導電性高分子組成物及び導電性高分子組成物を含む導電性高分子膜は、高い電導度を発現する導電性高分子材料として好適に用いることができる。用途としては、電解コンデンサや帯電防止剤、透明電極、電磁波シールド材に広く用いることができ、特に電解コンデンサとして好適に用いることができる。   The conductive polymer composition of the present invention and the conductive polymer film containing the conductive polymer composition can be suitably used as a conductive polymer material that exhibits high conductivity. As an application, it can be widely used for an electrolytic capacitor, an antistatic agent, a transparent electrode, and an electromagnetic wave shielding material, and can be particularly suitably used as an electrolytic capacitor.

以下本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

<4級アンモニウムの炭酸塩(C)の合成>
<製造例1:テトラメチルアンモニウムメチルカーボネート(C−1)の合成>
攪拌式オートクレーブに炭酸ジメチル[東京化成工業(株)]17.8重量部、トリエチルアミン[東京化成工業(株)]20.0重量部及び溶媒としてメタノール[東京化成工業(株)]20.0重量部を充填し、反応温度115℃、反応圧力6.0atmで12時間反応した。反応後オートクレーブを冷却し、未反応物及び溶媒を留去して、テトラメチルアンモニウムメチルカーボネート(C−1)を得た。
<Synthesis of quaternary ammonium carbonate (C)>
<Production Example 1: Synthesis of tetramethylammonium methyl carbonate (C-1)>
In a stirring autoclave, 17.8 parts by weight of dimethyl carbonate [Tokyo Chemical Industry Co., Ltd.], 20.0 parts by weight of triethylamine [Tokyo Chemical Industry Co., Ltd.] and 20.0 parts by weight of methanol [Tokyo Chemical Industry Co., Ltd.] as a solvent The reaction was carried out at a reaction temperature of 115 ° C. and a reaction pressure of 6.0 atm for 12 hours. After the reaction, the autoclave was cooled, and unreacted substances and the solvent were distilled off to obtain tetramethylammonium methyl carbonate (C-1).

<製造例2:1,2,3−トリメチル−2−イミダゾリニウムメチルカーボネート(C−2)の合成>
製造例1において、トリエチルアミンに代えて、2−メチル−2−イミダゾリン[東京化成工業(株)製]16.5重量部を用い、反応圧力4.0atmに変更した以外は製造例1と同様にして行い1,2,3−トリメチル−2−イミダゾリニウムメチルカーボネート(C−2)を合成した。
<Production Example 2: Synthesis of 1,2,3-trimethyl-2-imidazolinium methyl carbonate (C-2)>
In Production Example 1, 16.5 parts by weight of 2-methyl-2-imidazoline [manufactured by Tokyo Chemical Industry Co., Ltd.] was used instead of triethylamine, and the reaction pressure was changed to 4.0 atm. 1,2,3-trimethyl-2-imidazolinium methyl carbonate (C-2) was synthesized.

<製造例3:1−エチル−1-メチルピロリジニウムエチルカーボネート(C−3)の合成>
製造例2において、炭酸ジメチルに代えて炭酸ジエチル[東京化成工業(株)製]23.3部、2−メチル−2−イミダゾリンに代えて1−メチルピロリジン[東京化成工業(株)製]16.6重量部を用いた以外は製造例2と同様にして行い1−エチル−1−メチルピロリジニウムエチルカーボネート(C−3)を合成した。
<Production Example 3: Synthesis of 1-ethyl-1-methylpyrrolidinium ethyl carbonate (C-3)>
In Production Example 2, diethyl carbonate [manufactured by Tokyo Chemical Industry Co., Ltd.] 23.3 parts instead of dimethyl carbonate, 1-methylpyrrolidine [manufactured by Tokyo Chemical Industry Co., Ltd.] 16 instead of 2-methyl-2-imidazoline 1-Ethyl-1-methylpyrrolidinium ethyl carbonate (C-3) was synthesized in the same manner as in Production Example 2, except that .6 parts by weight was used.

<製造例4:トリメチルヘキシルアンモニウムメチルカーボネート(C−4)の合成>
製造例2において、2−メチル−2−イミダゾリンに代えて、N,N−ジメチルヘキシルアミン[東京化成工業(株)製]25.1重量部を用いた以外は製造例2と同様にして行いトリメチルヘキシルアンモニウムメチルカーボネート(C−4)を合成した。
<Production Example 4: Synthesis of trimethylhexylammonium methyl carbonate (C-4)>
In Production Example 2, the same procedure as in Production Example 2 was conducted except that 25.1 parts by weight of N, N-dimethylhexylamine [manufactured by Tokyo Chemical Industry Co., Ltd.] was used instead of 2-methyl-2-imidazoline. Trimethylhexyl ammonium methyl carbonate (C-4) was synthesized.

<製造例5:2−ヒドロキシエチルトリメチルアンモニウムメチルカーボネート(C−5)の合成>
製造例1において、トリエチルアミンに代えて、N,N−ジメチルエタノールアミン[東京化成工業(株)製]16.8重量部を用いた以外は製造例1と同様にして行い2−ヒドロキシエチルトリメチルアンモニウムメチルカーボネート(C−5)を合成した。
<Production Example 5: Synthesis of 2-hydroxyethyltrimethylammonium methyl carbonate (C-5)>
2-hydroxyethyltrimethylammonium was prepared in the same manner as in Production Example 1 except that 16.8 parts by weight of N, N-dimethylethanolamine [manufactured by Tokyo Chemical Industry Co., Ltd.] was used instead of triethylamine in Production Example 1. Methyl carbonate (C-5) was synthesized.

<実施例1〜8、比較例1〜2>
<導電性高分子組成物の調整>
本願の実施例において、重合体(A)をドーパントとして含む導電性高分子(B)として、ポリスチレンスルホン酸(A−1)をドーパントとして含むポリ(3,4−エチレンジオキシチオフェン)である導電性高分子(B−1)の水分散液[商品名pH−500、ヘレウス(株)製、固形分濃度1.2重量%、ポリ(3,4−エチレンジオキシチオフェン):ポリスチレンスルホン酸(重量比)=1:2.5]を用いた。
表1に示した部数で導電性高分子(B−1)を含む水分散液、4級アンモニウムの炭酸塩(C−1)〜(C−5)、1−ブチル−1−メチルピロリジニウムクロリド(C’−1)[東京化成工業(株)製]、炭酸アンモニウム((C’−2)[東京化成工業(株)製]及び分散媒を配合し、20℃で10分間混合して、実施例1〜8の導電性高分子組成物(D−1)〜(D−8)及び比較例1〜2の比較用導電性高分子組成物(RD−1)〜(RD−2)を調製した。
<Examples 1-8, Comparative Examples 1-2>
<Preparation of conductive polymer composition>
In the examples of the present application, the conductive polymer (B) containing the polymer (A) as a dopant, and the conductive material being poly (3,4-ethylenedioxythiophene) containing polystyrenesulfonic acid (A-1) as a dopant. Water dispersion of a functional polymer (B-1) [trade name: pH-500, manufactured by Heraeus Co., Ltd., solid content concentration: 1.2% by weight, poly (3,4-ethylenedioxythiophene): polystyrenesulfonic acid ( Weight ratio) = 1: 2.5].
An aqueous dispersion containing the conductive polymer (B-1) in the number of parts shown in Table 1, quaternary ammonium carbonates (C-1) to (C-5), 1-butyl-1-methylpyrrolidinium Chloride (C′-1) [manufactured by Tokyo Chemical Industry Co., Ltd.], ammonium carbonate ((C′-2) [manufactured by Tokyo Chemical Industry Co., Ltd.]) and a dispersion medium are mixed and mixed at 20 ° C. for 10 minutes. The conductive polymer compositions (D-1) to (D-8) of Examples 1 to 8 and the comparative conductive polymer compositions (RD-1) to (RD-2) of Comparative Examples 1 and 2 Was prepared.

<導電性高分子膜の作成>
導電性高分子組成物(D−1)〜(D−8)及び比較用導電性高分子組成物(RD−1)〜(RD−2)をそれぞれガラス上にバーコーターを用いて塗布し、170℃の順風乾燥機で10分間乾燥させて導電性塗膜を形成させて厚さ1.0μmの導電性高分子膜(E−1)〜(E−8)及び(RE−1)〜(RE−2)を得た。
<Creation of conductive polymer film>
The conductive polymer compositions (D-1) to (D-8) and the comparative conductive polymer compositions (RD-1) to (RD-2) were respectively coated on glass using a bar coater, A conductive coating film is formed by drying for 10 minutes in a 170 ° C. normal air dryer to form conductive polymer films (E-1) to (E-8) and (RE-1) to (RE-1) RE-2) was obtained.

<導電性高分子膜の表面抵抗>
導電性高分子膜(E−1)〜(E−8)及び比較用導電性高分子膜(RE−1)〜(RE−2)の電気伝導度表面抵抗値(Ω/□)を、JIS K 7194:1994に準じて、ロレスタ-GX MCP−T700(三菱化学(株)製)を用いて四探針法により測定した。それらの結果を表1に示す。なお、表面抵抗値が低いほど導電性は高いことを示す。
<Surface resistance of conductive polymer film>
The electrical conductivity surface resistance values (Ω / □) of the conductive polymer films (E-1) to (E-8) and the comparative conductive polymer films (RE-1) to (RE-2) According to K 7194: 1994, the measurement was performed by a four-probe method using Loresta-GX MCP-T700 (manufactured by Mitsubishi Chemical Corporation). The results are shown in Table 1. In addition, it shows that electroconductivity is so high that a surface resistance value is low.

<導電性高分子膜の表面抵抗変化率>
導電性高分子膜(E−1)〜(E−8)及び比較用導電性高分子膜(RE−1)〜(RE−2)を125℃順風乾燥機で1000時間保存したのち、表面抵抗(R1000)の測定を行い、初期の表面抵抗(R)と比較したときの維持率を以下の計算式で算出した。
表面抵抗変化率(%)=(R1000−d)/R×100 (1)
それらの結果を表1に示す。変化率が小さいほど耐熱性が高いことを示す。
<Surface resistance change rate of conductive polymer film>
After the conductive polymer membranes (E-1) to (E-8) and the comparative conductive polymer membranes (RE-1) to (RE-2) are stored for 1000 hours in a 125 ° C. normal air dryer, the surface resistance (R 1000 ) was measured, and the maintenance ratio when compared with the initial surface resistance (R 0 ) was calculated by the following calculation formula.
Surface resistance change rate (%) = (R 1000 −d 0 ) / R 0 × 100 (1)
The results are shown in Table 1. The smaller the change rate, the higher the heat resistance.

Figure 2019192752
Figure 2019192752

本発明の実施例の導電性高分子膜は低い表面抵抗を示し、さらに高温環境下でも表面抵抗の増加が小さい。
比較例1では導電性高分子組成物に塩素イオンが含まれため高環境下で表面抵抗が大きく増加する。また比較例2では炭酸アンモニウムのカチオン部が4級アンモニウムでないため、導電性高分子の脱ドープが促進され、初期の表面抵抗が大きい。
The conductive polymer film of the example of the present invention exhibits a low surface resistance, and the increase in the surface resistance is small even under a high temperature environment.
In Comparative Example 1, since the conductive polymer composition contains chlorine ions, the surface resistance is greatly increased under a high environment. In Comparative Example 2, since the cation portion of ammonium carbonate is not quaternary ammonium, the dedoping of the conductive polymer is promoted, and the initial surface resistance is large.

<実施例9〜16、比較例3〜4>
<固体電解コンデンサの作成>
上記の導電性高分子組成物を用いて、定格電圧50V,静電容量30μFの巻回型の固体電解コンデンサを以下の手順で作成した。
(1)酸化アルミニウム皮膜の誘電体層を表面に有する陽極箔(化成済みアルミ箔:JCC社製、115HC9‐323Vf)と、陰極箔(未化成アルミ箔:JCC社製、80LJ11B)と、セパレータ(マニラ紙)とを一定の幅と長さに切断し、リード線を陽極、陰極にカシメによって接続した。
その後、ロール状に巻き取って円筒型にし、その外周側面を絶縁テープで固定し、コンデンサ素子(固体電解質の層なし)を完成させた。次に、切断面や欠損部を修復するためホウ酸アンモニウム水溶液中で前記素子に90Vの電圧で修復化成を行った。その後封止ゴムとリード線を通し装着させた。
(2)次に、コンデンサ素子(固体電解質の層なし)に、上記の導電性高分子組成物(D−1)〜(D−8)及び比較例1〜2の比較用導電性高分子組成物(RD−1)〜(RD−2)を含浸した後、そのコンデンサ素子を120℃の恒温槽内で1時間乾燥させた。
最後にコンデンサ素子をケースに格納し、カシメを行い、固体電解コンデンサ(F−1〜F−8)及び比較用固体電解コンデンサ(RF−1)〜(RF−2)を完成させた。
<Examples 9 to 16 and Comparative Examples 3 to 4>
<Creation of solid electrolytic capacitor>
Using the conductive polymer composition, a wound solid electrolytic capacitor having a rated voltage of 50 V and a capacitance of 30 μF was prepared by the following procedure.
(1) An anode foil having a dielectric layer of an aluminum oxide film on the surface (chemically formed aluminum foil: JHC, 115HC9-323Vf), a cathode foil (unformed aluminum foil: JCC, 80LJ11B), a separator ( (Manila paper) was cut into a certain width and length, and the lead wires were connected to the anode and cathode by caulking.
Thereafter, the product was wound into a roll shape to form a cylindrical shape, and the outer peripheral side surface thereof was fixed with an insulating tape to complete a capacitor element (no solid electrolyte layer). Next, in order to repair the cut surface and the defect, the element was subjected to repair conversion at a voltage of 90 V in an aqueous ammonium borate solution. Thereafter, the sealing rubber and the lead wire were passed through.
(2) Next, the conductive polymer compositions (D-1) to (D-8) and the comparative conductive polymer compositions of Comparative Examples 1 and 2 are used for the capacitor element (without the solid electrolyte layer). After impregnating the products (RD-1) to (RD-2), the capacitor element was dried in a constant temperature bath at 120 ° C. for 1 hour.
Finally, the capacitor element was stored in a case and crimped to complete solid electrolytic capacitors (F-1 to F-8) and comparative solid electrolytic capacitors (RF-1) to (RF-2).

<固体電解コンデンサの特性評価>
初期評価として、JIS C 5101−1:2010に準じて、3532−50 LCRハイテスタ(日置電気(株)製)を用いて静電容量、ESRを計測した。
静電容量は25℃、120Hz、ESR値は25℃、100kHzで測定した。
また25℃で定格電圧(50V)1分間印加後の電流値を計測し、これを漏れ電流とした。
それらの結果を表2に示す。
<Characteristic evaluation of solid electrolytic capacitor>
As an initial evaluation, electrostatic capacity and ESR were measured using a 3532-50 LCR HiTester (manufactured by Hioki Electric Co., Ltd.) according to JIS C 5101-1: 2010.
The capacitance was measured at 25 ° C. and 120 Hz, and the ESR value was measured at 25 ° C. and 100 kHz.
Moreover, the current value after applying a rated voltage (50V) for 1 minute at 25 degreeC was measured, and this was made into the leakage current.
The results are shown in Table 2.

<固体電解コンデンサの特性維持率>
固体電解コンデンサ(F−1)〜(F−8)及び除隊電解コンデンサ(RF−1)〜(RF−2)を125℃順風乾燥機で1000時間保存したのち、静電容量(C1000)、ESR(ESR1000)の測定を行い、初期の表面抵抗(C)、ESR(ESR)と比較したときの維持率を以下の計算式で算出した。
静電容量変化率(%)=(C1000−d)/C×100 (2)
ESR変化率(%)=(ESR1000−d)/ESR×100 (1)
それらの結果を表2に示す。変化率が小さいほど耐熱性が高いことを示す。

Figure 2019192752
<Characteristic maintenance rate of solid electrolytic capacitor>
After storing the solid electrolytic capacitors (F-1) to (F-8) and the discharge electrolytic capacitors (RF-1) to (RF-2) for 1000 hours in a 125 ° C. normal air dryer, the capacitance (C 1000 ), ESR (ESR 1000 ) was measured, and the maintenance ratio when compared with the initial surface resistance (C 0 ) and ESR (ESR 0 ) was calculated by the following calculation formula.
Capacitance change rate (%) = (C 1000 −d 0 ) / C 0 × 100 (2)
ESR change rate (%) = (ESR 1000 −d 0 ) / ESR 0 × 100 (1)
The results are shown in Table 2. The smaller the change rate, the higher the heat resistance.
Figure 2019192752

本発明の導電性高分子組成物及び導電性高分子組成物を含む導電性高分子膜は、高い電導度を発現する導電性高分子材料として好適に用いることができる。用途としては、電解コンデンサや帯電防止剤、透明電極、電磁波シールド材に広く用いることができ、特に電解コンデンサとして好適に用いることができる。   The conductive polymer composition of the present invention and the conductive polymer film containing the conductive polymer composition can be suitably used as a conductive polymer material that exhibits high conductivity. As an application, it can be widely used for an electrolytic capacitor, an antistatic agent, a transparent electrode, and an electromagnetic wave shielding material, and can be particularly suitably used as an electrolytic capacitor.

Claims (5)

アニオン性基を有する単量体を必須構成単量体とする重合体(A)をドーパントとして含む導電性高分子(B)と、4級アンモニウムの炭酸塩(C)とを混合して得られる導電性高分子組成物。   Obtained by mixing a polymer (A) containing a monomer having an anionic group as an essential constituent monomer (A) as a dopant and a quaternary ammonium carbonate (C). Conductive polymer composition. 前記4級アンモニウムの炭酸塩(C)が、イミダゾリウム、ピロリジニウム及びアルキルアンモニウムからなる群から選ばれる少なくとも1種の4級アンモニウムの炭酸塩である請求項1記載の導電性高分子組成物。   The conductive polymer composition according to claim 1, wherein the quaternary ammonium carbonate (C) is at least one quaternary ammonium carbonate selected from the group consisting of imidazolium, pyrrolidinium and alkylammonium. 前記4級アンモニウムの炭酸塩(C)が、4級アンモニウムイオンと炭酸イオン及び/又は下記一般式(1)で表される陰イオンとの塩である請求項1又は2記載の導電性高分子組成物。
ROCOO (1)
[Rは炭素数1〜4のアルキル基]
The conductive polymer according to claim 1 or 2, wherein the carbonate (C) of the quaternary ammonium is a salt of a quaternary ammonium ion and a carbonate ion and / or an anion represented by the following general formula (1). Composition.
ROCOO - (1)
[R is an alkyl group having 1 to 4 carbon atoms]
請求項1〜3のいずれかに記載の導電性高分子組成物を含む導電性高分子膜。   A conductive polymer film comprising the conductive polymer composition according to claim 1. 陽極と固体電解質層と陰極とを有する電解コンデンサであって、前記固体電解質層が請求項4記載の導電性高分子膜を有する電解コンデンサ。   An electrolytic capacitor having an anode, a solid electrolyte layer, and a cathode, wherein the solid electrolyte layer has a conductive polymer film according to claim 4.
JP2018083039A 2018-04-24 2018-04-24 Conductive polymer composition, conductive polymer film, and electrolytic capacitor Pending JP2019192752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018083039A JP2019192752A (en) 2018-04-24 2018-04-24 Conductive polymer composition, conductive polymer film, and electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018083039A JP2019192752A (en) 2018-04-24 2018-04-24 Conductive polymer composition, conductive polymer film, and electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2019192752A true JP2019192752A (en) 2019-10-31

Family

ID=68387777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018083039A Pending JP2019192752A (en) 2018-04-24 2018-04-24 Conductive polymer composition, conductive polymer film, and electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2019192752A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023032463A (en) * 2021-08-27 2023-03-09 信越ポリマー株式会社 Conductive polymer-containing liquid and conductive laminate
JP2023055024A (en) * 2021-10-05 2023-04-17 信越ポリマー株式会社 Conductive composite body particles and production method thereof, and electrode
JP7558129B2 (en) 2021-08-27 2024-09-30 信越ポリマー株式会社 Method for producing conductive polymer-containing liquid and method for producing conductive laminate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023032463A (en) * 2021-08-27 2023-03-09 信越ポリマー株式会社 Conductive polymer-containing liquid and conductive laminate
JP7558129B2 (en) 2021-08-27 2024-09-30 信越ポリマー株式会社 Method for producing conductive polymer-containing liquid and method for producing conductive laminate
JP7621222B2 (en) 2021-08-27 2025-01-24 信越ポリマー株式会社 Conductive polymer-containing liquid and conductive laminate
JP2023055024A (en) * 2021-10-05 2023-04-17 信越ポリマー株式会社 Conductive composite body particles and production method thereof, and electrode
JP7624906B2 (en) 2021-10-05 2025-01-31 信越ポリマー株式会社 Conductive composite particles, method for producing the same, and electrode

Similar Documents

Publication Publication Date Title
JP5891160B2 (en) Capacitor and manufacturing method thereof
EP3826041A1 (en) Solid electrolytic capacitor
JP2019192752A (en) Conductive polymer composition, conductive polymer film, and electrolytic capacitor
JP7071834B2 (en) Capacitor and its manufacturing method, and conductive polymer dispersion
JPWO2020059672A1 (en) Solid electrolytic capacitors
JP2017216317A (en) Conductive polymer fluid dispersion for capacitor, capacitor and method for manufacturing the same
JP6590642B2 (en) Conductive polymer dispersion, capacitor and manufacturing method thereof
JP7241658B2 (en) Capacitor, manufacturing method thereof, and conductive polymer dispersion
JP7146620B2 (en) Capacitor, manufacturing method thereof, and conductive polymer dispersion
JP6948227B2 (en) Capacitors and their manufacturing methods
JP7049127B2 (en) Capacitors, their manufacturing methods, and conductive polymer dispersions
JP7049126B2 (en) Capacitors, their manufacturing methods, and conductive polymer dispersions
JP2017216318A (en) Capacitor and method for manufacturing the same
JP6820727B2 (en) Capacitors and their manufacturing methods
JP6614927B2 (en) Capacitor and manufacturing method thereof
JP6722530B2 (en) Capacitor manufacturing method
JP7438079B2 (en) Capacitor and its manufacturing method
JP7696282B2 (en) Capacitor and manufacturing method thereof
JP2025077256A (en) Method for producing conductive polymer dispersion, method for producing conductive laminate, and method for producing capacitor
JP6900329B2 (en) Capacitor and its manufacturing method, and conductive polymer dispersion
JP2025075316A (en) Conductive composite dispersion, capacitor and conductive laminate
JP2025030132A (en) Conductive composite dispersion and manufacturing method thereof, capacitor and manufacturing method thereof, and conductive laminate and manufacturing method thereof
WO2025004905A1 (en) Conductive composite dispersion liquid and method for producing same, capacitor and method for producing same, and conductive multilayer body and method for producing same
JP2025018292A (en) Method for producing conductive polymer dispersion, capacitor, and method for producing capacitor
JP2025002559A (en) Method for producing conductive polymer dispersion and method for producing capacitor