JP2019179614A - 電池用非水電解液及びリチウム二次電池 - Google Patents
電池用非水電解液及びリチウム二次電池 Download PDFInfo
- Publication number
- JP2019179614A JP2019179614A JP2018066712A JP2018066712A JP2019179614A JP 2019179614 A JP2019179614 A JP 2019179614A JP 2018066712 A JP2018066712 A JP 2018066712A JP 2018066712 A JP2018066712 A JP 2018066712A JP 2019179614 A JP2019179614 A JP 2019179614A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- carbonate
- mass
- group
- additive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Primary Cells (AREA)
Abstract
【課題】保存後の電池抵抗を低減できる電池用非水電解液を提供する。【解決手段】式(A)で表される化合物である添加剤Aと、式(B)で表される化合物である添加剤Bと、を含有する電池用非水電解液。Ra1は、少なくとも1つのフッ素原子で置換された炭素数1〜12の炭化水素基を表し、Rb1〜Rb4は、それぞれ独立に、水素原子、フッ素原子、炭素数1〜3の炭化水素基、又は炭素数1〜3のフッ化炭化水素基を表す。【選択図】なし
Description
本開示は、電池用非水電解液及びリチウム二次電池に関する。
電池用非水電解液を含む電池(例えばリチウム二次電池)の性能を改善するために、電池用非水電解液に対し、種々の添加剤を含有させることが行われている。
例えば、特許文献1には、電池の膨れが起り難い非水電解液として、分子構造中に、ビニル基、エチニル基、エチニレン基、ビニレン基、ビニリデン基、及びこれらの基を構成する炭素に結合した水素をフッ素に置換してなる基よりなる群から選択される少なくとも一つの炭素−炭素不飽和結合基を有する、炭素、フッ素及び水素からなる化合物であって、炭素に結合する水素のうち少なくとも一つがフッ素で置換されてなる、炭素数6〜16の不飽和炭化水素(a)を溶解した非水溶媒とリチウム塩からなることを特徴とする電池用非水電解液が開示されている。
また、特許文献2には、高温サイクル特性および耐酸化性に優れたリチウム二次電池用非水電解液として、(I)(A)含フッ素環状カーボネート、および(B)含フッ素不飽和炭化水素化合物を含む電解質塩溶解用溶媒であって、該電解質塩溶解用溶媒中に含フッ素環状カーボネート(A)が3体積%以上含まれ、かつ含フッ素不飽和炭化水素化合物(B)が含フッ素環状カーボネート(A)100容量部に対して0.1〜40容量部含まれている電解質塩溶解用溶媒と、(II)電解質塩とを含む、リチウム二次電池用非水電解液が開示されている。
また、特許文献3には、負極上での溶媒の分解反応が抑制され、高温保存を行なっても、電池の容量低下、ガス発生の抑制、および電池の負荷特性の劣化が抑制される非水電解液として、特定の不飽和スルトン、非水溶媒および電解質を含有する非水電解液であって、特定の不飽和スルトンの添加量が、非水電解液全体に対して0.001〜10質量%である非水電解液が開示されている。
例えば、特許文献1には、電池の膨れが起り難い非水電解液として、分子構造中に、ビニル基、エチニル基、エチニレン基、ビニレン基、ビニリデン基、及びこれらの基を構成する炭素に結合した水素をフッ素に置換してなる基よりなる群から選択される少なくとも一つの炭素−炭素不飽和結合基を有する、炭素、フッ素及び水素からなる化合物であって、炭素に結合する水素のうち少なくとも一つがフッ素で置換されてなる、炭素数6〜16の不飽和炭化水素(a)を溶解した非水溶媒とリチウム塩からなることを特徴とする電池用非水電解液が開示されている。
また、特許文献2には、高温サイクル特性および耐酸化性に優れたリチウム二次電池用非水電解液として、(I)(A)含フッ素環状カーボネート、および(B)含フッ素不飽和炭化水素化合物を含む電解質塩溶解用溶媒であって、該電解質塩溶解用溶媒中に含フッ素環状カーボネート(A)が3体積%以上含まれ、かつ含フッ素不飽和炭化水素化合物(B)が含フッ素環状カーボネート(A)100容量部に対して0.1〜40容量部含まれている電解質塩溶解用溶媒と、(II)電解質塩とを含む、リチウム二次電池用非水電解液が開示されている。
また、特許文献3には、負極上での溶媒の分解反応が抑制され、高温保存を行なっても、電池の容量低下、ガス発生の抑制、および電池の負荷特性の劣化が抑制される非水電解液として、特定の不飽和スルトン、非水溶媒および電解質を含有する非水電解液であって、特定の不飽和スルトンの添加量が、非水電解液全体に対して0.001〜10質量%である非水電解液が開示されている。
しかし、従来の電池用非水電解液及び電池に対し、保存後の電池抵抗を低減することが求められる場合がある。
従って、本開示の課題は、保存後の電池抵抗を低減できる電池用非水電解液、並びに、この電池用非水電解液を用いたリチウム二次電池を提供することである。
従って、本開示の課題は、保存後の電池抵抗を低減できる電池用非水電解液、並びに、この電池用非水電解液を用いたリチウム二次電池を提供することである。
上記課題を解決するための手段には、以下の態様が含まれる。
<1> 下記式(A)で表される化合物である添加剤Aと、
下記式(B)で表される化合物である添加剤Bと、
を含有する電池用非水電解液。
<1> 下記式(A)で表される化合物である添加剤Aと、
下記式(B)で表される化合物である添加剤Bと、
を含有する電池用非水電解液。
式(A)中、Ra1は、少なくとも1つのフッ素原子で置換された炭素数1〜12の炭化水素基を表す。
式(B)中、Rb1〜Rb4は、それぞれ独立に、水素原子、フッ素原子、炭素数1〜3の炭化水素基、又は炭素数1〜3のフッ化炭化水素基を表す。
<2> 更に、下記式(C)で表される化合物である添加剤Cを含有する電池用非水電解液。
式(C)中、Rc1及びRc2は、それぞれ独立に、水素原子、メチル基、エチル基、又はプロピル基を示す。
<3> 前記添加剤Cの含有量が、電池用非水電解液の全量に対し、0.001質量%〜10質量%である<2>に記載の電池用非水電解液。
<4> 前記添加剤Aの含有量が、電池用非水電解液の全量に対し、0.001質量%〜10質量%であり、前記添加剤Bの含有量が、電池用非水電解液の全量に対し、0.001質量%〜10質量%である<1>〜<3>のいずれか1つに記載の電池用非水電解液。
<5> 正極と、
金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属若しくは合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒素化物、及び、リチウムイオンのドープ・脱ドープが可能な炭素材料からなる群から選ばれる少なくとも1種を負極活物質として含む負極と、
<1>〜<4>のいずれか1つに記載の電池用非水電解液と、
を含むリチウム二次電池。
<6> <5>に記載のリチウム二次電池を充放電させて得られたリチウム二次電池。
<4> 前記添加剤Aの含有量が、電池用非水電解液の全量に対し、0.001質量%〜10質量%であり、前記添加剤Bの含有量が、電池用非水電解液の全量に対し、0.001質量%〜10質量%である<1>〜<3>のいずれか1つに記載の電池用非水電解液。
<5> 正極と、
金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属若しくは合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒素化物、及び、リチウムイオンのドープ・脱ドープが可能な炭素材料からなる群から選ばれる少なくとも1種を負極活物質として含む負極と、
<1>〜<4>のいずれか1つに記載の電池用非水電解液と、
を含むリチウム二次電池。
<6> <5>に記載のリチウム二次電池を充放電させて得られたリチウム二次電池。
本開示によれば、保存後の電池抵抗を低減できる電池用非水電解液、並びに、この電池用非水電解液を用いたリチウム二次電池が提供される。
本明細書において、「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
本明細書において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合は、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
本明細書において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合は、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
〔電池用非水電解液〕
本開示の電池用非水電解液(以下、単に「非水電解液」ともいう)は、下記式(A)で表される化合物である添加剤Aと、式(B)で表される化合物である添加剤Bと、
を含有する。
本開示の電池用非水電解液(以下、単に「非水電解液」ともいう)は、下記式(A)で表される化合物である添加剤Aと、式(B)で表される化合物である添加剤Bと、
を含有する。
式(A)中、Ra1は、少なくとも1つのフッ素原子で置換された炭素数1〜12の炭化水素基を表す。
式(B)中、Rb1〜Rb4は、それぞれ独立に、水素原子、フッ素原子、炭素数1〜3の炭化水素基、又は炭素数1〜3のフッ化炭化水素基を表す。
本開示の非水電解液によれば、保存後の電池抵抗を低減できる。
かかる効果が奏される理由は明らかではないが、以下のように推測される。但し、本開示の非水電解液は、以下の推定理由によって限定されるものではない。
かかる効果が奏される理由は明らかではないが、以下のように推測される。但し、本開示の非水電解液は、以下の推定理由によって限定されるものではない。
本開示の非水電解液を用いた場合、保存前の電池抵抗がある程度低く、かつ、保存により電池抵抗が更に低下する傾向が見られる。その結果として、保存後の電池抵抗が低いという効果が奏されると考えられる。添加剤Aの機能は、主として、保存前の電池抵抗をある程度低く抑えることであると考えられる。添加剤Bの機能は、主として、保存により電池抵抗を更に低下させることであると考えられる。本開示の非水電解液では、これら添加剤A及び添加剤Bの各々の機能が相まって、保存後の電池抵抗が低いという効果が奏されると考えられる。
以下、本開示の非水電解液の各成分について説明する。
<添加剤A>
添加剤Aは、下記式(A)で表される化合物である。
添加剤Aは、下記式(A)で表される化合物に該当する1種のみの化合物であってもよいし、下記式(A)で表される化合物に該当する2種以上の化合物であってもよい。
添加剤Aは、下記式(A)で表される化合物である。
添加剤Aは、下記式(A)で表される化合物に該当する1種のみの化合物であってもよいし、下記式(A)で表される化合物に該当する2種以上の化合物であってもよい。
式(A)中、Ra1は、少なくとも1つのフッ素原子で置換された炭素数1〜12の炭化水素基を表す。
式(A)中、Ra1で表される上記炭化水素基は、直鎖炭化水素基であっても分岐炭化水素基であっても環状炭化水素基であってもよい。
Ra1で表される上記炭化水素基において、少なくとも1つのフッ素原子で置換される炭素数1〜12の炭化水素基(即ち、無置換の炭素数1〜12の炭化水素基)は、アルキル基又はアルケニル基が好ましく、アルキル基がより好ましい。
Ra1で表される上記炭化水素基は、少なくとも1つのフッ素原子で置換されていればよいが、パーフルオロ炭化水素基であることが好ましく、パーフルオロアルキル基であることがより好ましい。
Ra1で表される上記炭化水素基の炭素数は、3〜10が好ましく、4〜10がより好ましく、4又は6が更に好ましく、6が特に好ましい。
式(A)中、Ra1が炭素数6のパーフルオロアルキル基である化合物は、パーフルオロヘキシルエチレン(略称PFHE)である。
Ra1で表される上記炭化水素基において、少なくとも1つのフッ素原子で置換される炭素数1〜12の炭化水素基(即ち、無置換の炭素数1〜12の炭化水素基)は、アルキル基又はアルケニル基が好ましく、アルキル基がより好ましい。
Ra1で表される上記炭化水素基は、少なくとも1つのフッ素原子で置換されていればよいが、パーフルオロ炭化水素基であることが好ましく、パーフルオロアルキル基であることがより好ましい。
Ra1で表される上記炭化水素基の炭素数は、3〜10が好ましく、4〜10がより好ましく、4又は6が更に好ましく、6が特に好ましい。
式(A)中、Ra1が炭素数6のパーフルオロアルキル基である化合物は、パーフルオロヘキシルエチレン(略称PFHE)である。
Ra1で表される「少なくとも1つのフッ素原子で置換された炭素数1〜12の炭化水素基」において、少なくとも1つのフッ素原子で置換される「炭素数1〜12の炭化水素基」(即ち、無置換の炭素数1〜12の炭化水素基)としては、例えば、
メチル基、エチル基、n−プロピル基、イソプロピル基、1−エチルプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、2−メチルブチル基、3,3−ジメチルブチル基、n−ペンチル基、イソペンチル基、ネオペンチル基、1−メチルペンチル基、n−ヘキシル基、イソヘキシル基、sec−ヘキシル基、tert−ヘキシル基、n−ヘプチル基、イソヘプチル基、sec−ヘプチル基、tert−ヘプチル基、n−オクチル基、イソオクチル基、sec−オクチル基、tert−オクチル基等のアルキル基;
ビニル基、1−プロペニル基、アリル基、1−ブテニル基、2−ブテニル基、3−ブテニル基、ペンテニル基、ヘキセニル基、イソプロペニル基、2−メチル−2−プロペニル基、1−メチル−2−プロペニル基、2−メチル−1−プロペニル基、オクタメチレン基等のアルケニル基;
等が挙げられる。
メチル基、エチル基、n−プロピル基、イソプロピル基、1−エチルプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、2−メチルブチル基、3,3−ジメチルブチル基、n−ペンチル基、イソペンチル基、ネオペンチル基、1−メチルペンチル基、n−ヘキシル基、イソヘキシル基、sec−ヘキシル基、tert−ヘキシル基、n−ヘプチル基、イソヘプチル基、sec−ヘプチル基、tert−ヘプチル基、n−オクチル基、イソオクチル基、sec−オクチル基、tert−オクチル基等のアルキル基;
ビニル基、1−プロペニル基、アリル基、1−ブテニル基、2−ブテニル基、3−ブテニル基、ペンテニル基、ヘキセニル基、イソプロペニル基、2−メチル−2−プロペニル基、1−メチル−2−プロペニル基、2−メチル−1−プロペニル基、オクタメチレン基等のアルケニル基;
等が挙げられる。
添加剤Aの含有量(添加剤Aが2種以上の化合物である場合は総含有量;以下同じ)は、非水電解液の全量に対して、0.001質量%〜10質量%が好ましく、0.001質量%〜5質量%がより好ましく、0.001質量%〜3質量%であることが更に好ましく、0.01質量%〜3質量%であることが更に好ましく、0.1〜3質量%であることが更に好ましく、0.1〜2質量%であることが更に好ましく、0.1〜1質量%であることが特に好ましい。
<添加剤B>
添加剤Bは、下記式(B)で表される化合物である。
添加剤Bは、下記式(B)で表される化合物に該当する1種のみの化合物であってもよいし、下記式(B)で表される化合物に該当する2種以上の化合物であってもよい。
添加剤Bは、下記式(B)で表される化合物である。
添加剤Bは、下記式(B)で表される化合物に該当する1種のみの化合物であってもよいし、下記式(B)で表される化合物に該当する2種以上の化合物であってもよい。
式(B)中、Rb1〜Rb4は、それぞれ独立に、水素原子、フッ素原子、炭素数1〜3の炭化水素基、又は炭素数1〜3のフッ化炭化水素基を表す。
式(B)中、Rb1〜Rb4で表される炭素数1〜3の炭化水素基としては、アルキル基、アルケニル基、又はアルキニル基が好ましく、アルキル基又はアルケニル基がより好ましく、アルキル基が特に好ましい。
式(B)中、Rb1〜Rb4で表される炭素数1〜3の炭化水素基の炭素数としては、1又は2が好ましく、1が特に好ましい。
式(B)中、Rb1〜Rb4で表される炭素数1〜3の炭化水素基の炭素数としては、1又は2が好ましく、1が特に好ましい。
式(B)中、Rb1〜Rb4で表される炭素数1〜3のフッ化炭化水素基としては、フッ化アルキル基、フッ化アルケニル基、又はフッ化アルキニル基が好ましく、フッ化アルキル基又はフッ化アルケニル基がより好ましく、フッ化アルキル基が特に好ましい。
式(B)中、Rb1〜Rb4で表される炭素数1〜3のフッ化炭化水素基の炭素数としては、1又は2が好ましく、1が特に好ましい。
式(B)中、Rb1〜Rb4で表される炭素数1〜3のフッ化炭化水素基の炭素数としては、1又は2が好ましく、1が特に好ましい。
式(B)中、Rb1〜Rb4としては、それぞれ独立に、水素原子、フッ素原子、メチル基、エチル基、トリフルオロメチル基、又はペンタフルオロエチル基が好ましく、水素原子又はメチル基がより好ましく、水素原子が特に好ましい。
式(B)で表される化合物の具体例としては、下記式(B−1)〜下記式(B−21)で表される化合物(以下、それぞれ、化合物(B−1)〜化合物(B−21)ともいう)が挙げられるが、式(B)で表される化合物は、これらの具体例には限定されない。
これらのうち、化合物(B−1)(即ち、1,3−プロペンスルトン;以下、「PRS」ともいう)が特に好ましい。
これらのうち、化合物(B−1)(即ち、1,3−プロペンスルトン;以下、「PRS」ともいう)が特に好ましい。
添加剤Bの含有量(添加剤Bが2種以上の化合物である場合は総含有量;以下同じ)は、非水電解液の全量に対して、0.001質量%〜10質量%が好ましく、0.001質量%〜5質量%がより好ましく、0.001質量%〜3質量%であることが更に好ましく、0.01質量%〜3質量%であることが更に好ましく、0.1〜3質量%であることが更に好ましく、0.1〜2質量%であることが更に好ましく、0.1〜1質量%であることが特に好ましい。
非水電解液中、添加剤Aに対する添加剤Bの含有質量比(以下、含有質量比〔添加剤B/添加剤A〕)は、本開示の非水電解液による前述した効果がより効果的に奏される観点から、好ましくは0.1以上5.0以下であり、より好ましくは0.2以上2.0以下であり、更に好ましくは0.2以上1.0未満であり、更に好ましくは0.4以上0.9以下であり、更に好ましくは0.5以上0.9以下である。
<添加剤C>
本開示の非水電解液は、更に、下記式(C)で表される化合物である添加剤Cを含有することが好ましい。
本開示の非水電解液が添加剤Cを含有する場合には、本開示の非水電解液による前述した効果がより効果的に奏される。
本開示の非水電解液は、更に、下記式(C)で表される化合物である添加剤Cを含有することが好ましい。
本開示の非水電解液が添加剤Cを含有する場合には、本開示の非水電解液による前述した効果がより効果的に奏される。
式(C)中、Rc1及びRc2は、それぞれ独立に、水素原子、メチル基、エチル基、又はプロピル基を示す。
式(C)で表される化合物としては、ビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、ブロピルビニレンカーボネート、ジメチルビニレンカーボネート、ジエチルビニレンカーボネート、ジプロピルビニレンカーボネートなどが例示される。
これらのうちでビニレンカーボネート(式(C)中、Rc1及びRc2がいずれも水素原子である化合物)が特に好ましい。
これらのうちでビニレンカーボネート(式(C)中、Rc1及びRc2がいずれも水素原子である化合物)が特に好ましい。
本開示の非水電解液が添加剤Cを含有する場合、添加剤Cの含有量は、非水電解液の全量に対し、0.001質量%〜10質量%が好ましく、0.001質量%〜5質量%がより好ましく、0.001質量%〜3質量%であることが更に好ましく、0.01質量%〜3質量%であることが更に好ましく、0.1〜3質量%であることが更に好ましく、0.1〜2質量%であることが更に好ましく、0.1〜1質量%であることが特に好ましい。
本開示の非水電解液が添加剤Cを含有する場合、非水電解液中、添加剤Aに対する添加剤Cの含有質量比(以下、含有質量比〔添加剤C/添加剤A〕)は、本開示の非水電解液による前述した効果がより効果的に奏される観点から、好ましくは0.1以上5.0以下であり、より好ましくは0.1以上2.0以下であり、更に好ましくは0.1以上1.0未満であり、更に好ましくは0.1以上0.7以下であり、更に好ましくは0.2以上0.6以下である。
本開示の非水電解液が添加剤Cを含有する場合、非水電解液中、添加剤Bに対する添加剤Cの含有質量比(以下、含有質量比〔添加剤C/添加剤B〕)は、本開示の非水電解液による前述した効果がより効果的に奏される観点から、好ましくは0.1以上5.0以下であり、より好ましくは0.2以上2.0以下であり、更に好ましくは0.2以上1.0未満であり、更に好ましくは0.4以上0.9以下であり、更に好ましくは0.5以上0.9以下である。
次に、非水電解液の他の成分について説明する。非水電解液は、一般的には、電解質と非水溶媒とを含有する。
(非水溶媒)
非水電解液は、一般的に、非水溶媒を含有する。
非水溶媒としては、種々公知のものを適宜選択することができるが、環状の非プロトン性溶媒及び鎖状の非プロトン性溶媒から選ばれる少なくとも一方を用いることが好ましい。
非水電解液は、一般的に、非水溶媒を含有する。
非水溶媒としては、種々公知のものを適宜選択することができるが、環状の非プロトン性溶媒及び鎖状の非プロトン性溶媒から選ばれる少なくとも一方を用いることが好ましい。
電池の安全性の向上のために、溶媒の引火点の向上を志向する場合は、非水溶媒として環状の非プロトン性溶媒を使用することが好ましい。
(環状の非プロトン性溶媒)
環状の非プロトン性溶媒としては、環状カーボネート、環状カルボン酸エステル、環状スルホン、環状エーテルを用いることができる。
環状の非プロトン性溶媒としては、環状カーボネート、環状カルボン酸エステル、環状スルホン、環状エーテルを用いることができる。
環状の非プロトン性溶媒は単独で使用してもよいし、複数種混合して使用してもよい。
環状の非プロトン性溶媒の非水溶媒中の混合割合は、10質量%〜100質量%、さらに好ましくは20質量%〜90質量%、特に好ましくは30質量%〜80質量%である。このような比率にすることによって、電池の充放電特性に関わる電解液の伝導度を高めることができる。
環状の非プロトン性溶媒の非水溶媒中の混合割合は、10質量%〜100質量%、さらに好ましくは20質量%〜90質量%、特に好ましくは30質量%〜80質量%である。このような比率にすることによって、電池の充放電特性に関わる電解液の伝導度を高めることができる。
環状カーボネートの例として具体的には、エチレンカーボネート、プロピレンカーボネート、1,2−ブチレンカーボネート、2,3−ブチレンカーボネート、1,2−ペンチレンカーボネート、2,3−ペンチレンカーボネートなどが挙げられる。これらのうち、誘電率が高いエチレンカーボネートとプロピレンカーボネートが好適に使用される。負極活物質に黒鉛を使用した電池の場合は、エチレンカーボネートがより好ましい。また、これら環状カーボネートは2種類以上を混合して使用してもよい。
環状カルボン酸エステルとして、具体的にはγ−ブチロラクトン、δ−バレロラクトン、あるいはメチルγ−ブチロラクトン、エチルγ−ブチロラクトン、エチルδ−バレロラクトンなどのアルキル置換体などを例示することができる。
環状カルボン酸エステルは、蒸気圧が低く、粘度が低く、かつ誘電率が高く、電解液の引火点と電解質の解離度を下げることなく電解液の粘度を下げることができる。このため、電解液の引火性を高くすることなく電池の放電特性に関わる指標である電解液の伝導度を高めることができるという特徴を有するので、溶媒の引火点の向上を指向する場合は、前記環状の非プロトン性溶媒として環状カルボン酸エステルを使用することが好ましい。γ−ブチロラクトンが最も好ましい。
環状カルボン酸エステルは、蒸気圧が低く、粘度が低く、かつ誘電率が高く、電解液の引火点と電解質の解離度を下げることなく電解液の粘度を下げることができる。このため、電解液の引火性を高くすることなく電池の放電特性に関わる指標である電解液の伝導度を高めることができるという特徴を有するので、溶媒の引火点の向上を指向する場合は、前記環状の非プロトン性溶媒として環状カルボン酸エステルを使用することが好ましい。γ−ブチロラクトンが最も好ましい。
また、環状カルボン酸エステルは、他の環状の非プロトン性溶媒と混合して使用することが好ましい。例えば、環状カルボン酸エステルと、環状カーボネート及び/または鎖状カーボネートとの混合物が挙げられる。
環状カルボン酸エステルと環状カーボネート及び/または鎖状カーボネートの組み合わせの例として、具体的には、γ−ブチロラクトンとエチレンカーボネート、γ−ブチロラクトンとエチレンカーボネートとジメチルカーボネート、γ−ブチロラクトンとエチレンカーボネートとメチルエチルカーボネート、γ−ブチロラクトンとエチレンカーボネートとジエチルカーボネート、γ−ブチロラクトンとプロピレンカーボネート、γ−ブチロラクトンとプロピレンカーボネートとジメチルカーボネート、γ−ブチロラクトンとプロピレンカーボネートとメチルエチルカーボネート、γ−ブチロラクトンとプロピレンカーボネートとジエチルカーボネート、γ−ブチロラクトンとエチレンカーボネートとプロピレンカーボネート、γ−ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネート、γ−ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネート、γ−ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジエチルカーボネート、γ−ブチロラクトンとエチレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、γ−ブチロラクトンとエチレンカーボネートとジメチルカーボネートとジエチルカーボネート、γ−ブチロラクトンとエチレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、γ−ブチロラクトンとエチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネート、γ−ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、γ−ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネート、γ−ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、γ−ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネート、γ−ブチロラクトンとスルホラン、γ−ブチロラクトンとエチレンカーボネートとスルホラン、γ−ブチロラクトンとプロピレンカーボネートとスルホラン、γ−ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとスルホラン、γ−ブチロラクトンとスルホランとジメチルカーボネートなどが挙げられる。
環状スルホンの例としては、スルホラン、2−メチルスルホラン、3―メチルスルホラン、ジメチルスルホン、ジエチルスルホン、ジプロピルスルホン、メチルエチルスルホン、メチルプロピルスルホンなどが挙げられる。
環状エーテルの例としてジオキソランを挙げることができる。
環状エーテルの例としてジオキソランを挙げることができる。
(鎖状の非プロトン性溶媒)
鎖状の非プロトン性溶媒としては、鎖状カーボネート、鎖状カルボン酸エステル、鎖状エーテル、鎖状リン酸エステルなどを用いることができる。
鎖状の非プロトン性溶媒としては、鎖状カーボネート、鎖状カルボン酸エステル、鎖状エーテル、鎖状リン酸エステルなどを用いることができる。
鎖状の非プロトン性溶媒の非水溶媒中の混合割合は、10質量%〜100質量%、さらに好ましくは20質量%〜90質量%、特に好ましくは30質量%〜80質量%である。
鎖状カーボネートとして具体的には、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、エチルプロピルカーボネート、ジプロピルカーボネート、メチルブチルカーボネート、エチルブチルカーボネート、ジブチルカーボネート、メチルペンチルカーボネート、エチルペンチルカーボネート、ジペンチルカーボネート、メチルヘプチルカーボネート、エチルヘプチルカーボネート、ジヘプチルカーボネート、メチルヘキシルカーボネート、エチルヘキシルカーボネート、ジヘキシルカーボネート、メチルオクチルカーボネート、エチルオクチルカーボネート、ジオクチルカーボネート、メチルトリフルオロエチルカーボネートなどが挙げられる。これら鎖状カーボネートは2種類以上を混合して使用してもよい。
鎖状カルボン酸エステルとして具体的には、ピバリン酸メチルなどが挙げられる。
鎖状エーテルとして具体的には、ジメトキシエタンなどが挙げられる。
鎖状リン酸エステルとして具体的には、リン酸トリメチルなどが挙げられる。
鎖状エーテルとして具体的には、ジメトキシエタンなどが挙げられる。
鎖状リン酸エステルとして具体的には、リン酸トリメチルなどが挙げられる。
(溶媒の組み合わせ)
本開示の非水電解液に含有される非水溶媒は、1種のみであってもよいし、2種以上であってもよい。
また、環状の非プロトン性溶媒のみを1種類または複数種類用いても、鎖状の非プロトン性溶媒のみを1種類または複数種類用いても、または環状の非プロトン性溶媒及び鎖状のプロトン性溶媒を混合して用いてもよい。電池の負荷特性、低温特性の向上を特に意図した場合は、非水溶媒として環状の非プロトン性溶媒と鎖状の非プロトン性溶媒を組み合わせて使用することが好ましい。
本開示の非水電解液に含有される非水溶媒は、1種のみであってもよいし、2種以上であってもよい。
また、環状の非プロトン性溶媒のみを1種類または複数種類用いても、鎖状の非プロトン性溶媒のみを1種類または複数種類用いても、または環状の非プロトン性溶媒及び鎖状のプロトン性溶媒を混合して用いてもよい。電池の負荷特性、低温特性の向上を特に意図した場合は、非水溶媒として環状の非プロトン性溶媒と鎖状の非プロトン性溶媒を組み合わせて使用することが好ましい。
さらに、電解液の電気化学的安定性から、環状の非プロトン性溶媒には環状カーボネートを、鎖状の非プロトン性溶媒には鎖状カーボネートを適用することが最も好ましい。また、環状カルボン酸エステルと環状カーボネート及び/または鎖状カーボネートの組み合わせによっても電池の充放電特性に関わる電解液の伝導度を高めることができる。
環状カーボネートと鎖状カーボネートの組み合わせとして、具体的には、エチレンカーボネートとジメチルカーボネート、エチレンカーボネートとメチルエチルカーボネート、エチレンカーボネートとジエチルカーボネート、プロピレンカーボネートとジメチルカーボネート、プロピレンカーボネートとメチルエチルカーボネート、プロピレンカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネートなどが挙げられる。
環状カーボネートと鎖状カーボネートの混合割合は、質量比で表して、環状カーボネート:鎖状カーボネートが、5:95〜80:20、さらに好ましくは10:90〜70:30、特に好ましくは15:85〜55:45である。このような比率にすることによって、電解液の粘度上昇を抑制し、電解質の解離度を高めることができるため、電池の充放電特性に関わる電解液の伝導度を高めることができる。また、電解質の溶解度をさらに高めることができる。よって、常温または低温での電気伝導性に優れた電解液とすることができるため、常温から低温での電池の負荷特性を改善することができる。
(その他の溶媒)
非水溶媒としては、上記以外のその他の溶媒も挙げられる。
その他の溶媒としては、具体的には、ジメチルホルムアミドなどのアミド、メチル−N,N−ジメチルカーバメートなどの鎖状カーバメート、N−メチルピロリドンなどの環状アミド、N,N−ジメチルイミダゾリジノンなどの環状ウレア、ほう酸トリメチル、ほう酸トリエチル、ほう酸トリブチル、ほう酸トリオクチル、ほう酸トリメチルシリル等のホウ素化合物、及び下記の一般式で表されるポリエチレングリコール誘導体などを挙げることができる。
HO(CH2CH2O)aH
HO[CH2CH(CH3)O]bH
CH3O(CH2CH2O)cH
CH3O[CH2CH(CH3)O]dH
CH3O(CH2CH2O)eCH3
CH3O[CH2CH(CH3)O]fCH3
C9H19PhO(CH2CH2O)g[CH(CH3)O]hCH3
(Phはフェニル基)
CH3O[CH2CH(CH3)O]iCO[OCH(CH3)CH2]jOCH3
前記式中、a〜fは、5〜250の整数、g〜jは2〜249の整数、5≦g+h≦250、5≦i+j≦250である。
非水溶媒としては、上記以外のその他の溶媒も挙げられる。
その他の溶媒としては、具体的には、ジメチルホルムアミドなどのアミド、メチル−N,N−ジメチルカーバメートなどの鎖状カーバメート、N−メチルピロリドンなどの環状アミド、N,N−ジメチルイミダゾリジノンなどの環状ウレア、ほう酸トリメチル、ほう酸トリエチル、ほう酸トリブチル、ほう酸トリオクチル、ほう酸トリメチルシリル等のホウ素化合物、及び下記の一般式で表されるポリエチレングリコール誘導体などを挙げることができる。
HO(CH2CH2O)aH
HO[CH2CH(CH3)O]bH
CH3O(CH2CH2O)cH
CH3O[CH2CH(CH3)O]dH
CH3O(CH2CH2O)eCH3
CH3O[CH2CH(CH3)O]fCH3
C9H19PhO(CH2CH2O)g[CH(CH3)O]hCH3
(Phはフェニル基)
CH3O[CH2CH(CH3)O]iCO[OCH(CH3)CH2]jOCH3
前記式中、a〜fは、5〜250の整数、g〜jは2〜249の整数、5≦g+h≦250、5≦i+j≦250である。
(電解質)
本開示の非水電解液は、種々公知の電解質を使用することができ、通常、非水電解液用電解質として使用されているものであれば、いずれをも使用することができる。
本開示の非水電解液は、種々公知の電解質を使用することができ、通常、非水電解液用電解質として使用されているものであれば、いずれをも使用することができる。
電解質の具体例としては、(C2H5)4NPF6、(C2H5)4NBF4、(C2H5)4NClO4、(C2H5)4NAsF6、(C2H5)4N2SiF6、(C2H5)4NOSO2CkF(2k+1)(k=1〜8の整数)、(C2H5)4NPFn[CkF(2k+1)](6−n)(n=1〜5、k=1〜8の整数)などのテトラアルキルアンモニウム塩、LiPF6、LiBF4、LiClO4、LiAsF6、Li2SiF6、LiOSO2CkF(2k+1)(k=1〜8の整数)、LiPFn[CkF(2k+1)](6−n)(n=1〜5、k=1〜8の整数)などのリチウム塩が挙げられる。また、次の一般式で表されるリチウム塩も使用することができる。
LiC(SO2R7)(SO2R8)(SO2R9)、LiN(SO2OR10)(SO2OR11)、LiN(SO2R12)(SO2R13)(ここでR7〜R13は互いに同一でも異なっていてもよく、フッ素原子又は炭素数1〜8のパーフルオロアルキル基である)。これらの電解質は単独で使用してもよく、また2種類以上を混合してもよい。
これらのうち、特にリチウム塩が望ましく、さらには、LiPF6、LiBF4、LiOSO2CkF(2k+1)(k=1〜8の整数)、LiClO4、LiAsF6、LiNSO2[CkF(2k+1)]2(k=1〜8の整数)、LiPFn[CkF(2k+1)](6−n)(n=1〜5、k=1〜8の整数)が好ましい。
これらのうち、特にリチウム塩が望ましく、さらには、LiPF6、LiBF4、LiOSO2CkF(2k+1)(k=1〜8の整数)、LiClO4、LiAsF6、LiNSO2[CkF(2k+1)]2(k=1〜8の整数)、LiPFn[CkF(2k+1)](6−n)(n=1〜5、k=1〜8の整数)が好ましい。
電解質は、通常は、非水電解液中に0.1mol/L〜3mol/L、好ましくは0.5mol/L〜2mol/Lの濃度で含まれることが好ましい。
本開示の非水電解液において、非水溶媒として、γ−ブチロラクトンなどの環状カルボン酸エステルを併用する場合には、特にLiPF6を含有することが望ましい。LiPF6は、解離度が高いため、電解液の伝導度を高めることができ、さらに負極上での電解液の還元分解反応を抑制する作用がある。LiPF6は単独で使用してもよいし、LiPF6とそれ以外の電解質を使用してもよい。それ以外の電解質としては、通常、非水電解液用電解質として使用されるものであれば、いずれも使用することができるが、前述のリチウム塩の具体例のうちLiPF6以外のリチウム塩が好ましい。
具体例としては、LiPF6とLiBF4、LiPF6とLiN[SO2CkF(2k+1)]2(k=1〜8の整数)、LiPF6とLiBF4とLiN[SO2CkF(2k+1)](k=1〜8の整数)などが例示される。
具体例としては、LiPF6とLiBF4、LiPF6とLiN[SO2CkF(2k+1)]2(k=1〜8の整数)、LiPF6とLiBF4とLiN[SO2CkF(2k+1)](k=1〜8の整数)などが例示される。
リチウム塩中に占めるLiPF6の比率は、好ましくは1質量%〜100質量%、より好ましくは10質量%〜100質量%、さらに好ましくは50質量%〜100質量%である。このような電解質は、0.1mol/L〜3mol/L、好ましくは0.5mol/L〜2mol/Lの濃度で非水電解液中に含まれることが好ましい。
本開示の非水電解液は、リチウム二次電池用の非水電解液として好適であるばかりでなく、一次電池用の非水電解液、電気化学キャパシタ用の非水電解液、電気二重層キャパシタ、アルミ電解コンデンサー用の電解液としても用いることができる。
〔リチウム二次電池〕
本開示のリチウム二次電池は、正極と、負極と、本開示の非水電解液と、を含む。
本開示のリチウム二次電池は、正極と、負極と、本開示の非水電解液と、を含む。
(負極)
負極は、負極活物質及び負極集電体を含んでもよい。
負極における負極活物質としては、金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属もしくは合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒素化物、及び、リチウムイオンのドープ・脱ドープが可能な炭素材料からなる群から選ばれた少なくとも1種(単独で用いてもよいし、これらの2種以上を含む混合物を用いてもよい)を用いることができる。
リチウム(又はリチウムイオン)との合金化が可能な金属もしくは合金としては、シリコン、シリコン合金、スズ、スズ合金などを挙げることができる。また、チタン酸リチウムでもよい。
これらの中でもリチウムイオンをドープ・脱ドープすることが可能な炭素材料が好ましい。このような炭素材料としては、カーボンブラック、活性炭、黒鉛材料(人造黒鉛、天然黒鉛)、非晶質炭素材料、等が挙げられる。上記炭素材料の形態は、繊維状、球状、ポテト状、フレーク状いずれの形態であってもよい。
負極は、負極活物質及び負極集電体を含んでもよい。
負極における負極活物質としては、金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属もしくは合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒素化物、及び、リチウムイオンのドープ・脱ドープが可能な炭素材料からなる群から選ばれた少なくとも1種(単独で用いてもよいし、これらの2種以上を含む混合物を用いてもよい)を用いることができる。
リチウム(又はリチウムイオン)との合金化が可能な金属もしくは合金としては、シリコン、シリコン合金、スズ、スズ合金などを挙げることができる。また、チタン酸リチウムでもよい。
これらの中でもリチウムイオンをドープ・脱ドープすることが可能な炭素材料が好ましい。このような炭素材料としては、カーボンブラック、活性炭、黒鉛材料(人造黒鉛、天然黒鉛)、非晶質炭素材料、等が挙げられる。上記炭素材料の形態は、繊維状、球状、ポテト状、フレーク状いずれの形態であってもよい。
上記非晶質炭素材料として具体的には、ハードカーボン、コークス、1500℃以下に焼成したメソカーボンマイクロビーズ(MCMB)、メソフェーズピッチカーボンファイバー(MCF)などが例示される。
上記黒鉛材料としては、天然黒鉛、人造黒鉛が挙げられる。人造黒鉛としては、黒鉛化MCMB、黒鉛化MCFなどが用いられる。また、黒鉛材料としては、ホウ素を含有するものなども用いることができる。また、黒鉛材料としては、金、白金、銀、銅、スズなどの金属で被覆したもの、非晶質炭素で被覆したもの、非晶質炭素と黒鉛を混合したものも使用することができる。
上記黒鉛材料としては、天然黒鉛、人造黒鉛が挙げられる。人造黒鉛としては、黒鉛化MCMB、黒鉛化MCFなどが用いられる。また、黒鉛材料としては、ホウ素を含有するものなども用いることができる。また、黒鉛材料としては、金、白金、銀、銅、スズなどの金属で被覆したもの、非晶質炭素で被覆したもの、非晶質炭素と黒鉛を混合したものも使用することができる。
これらの炭素材料は、1種類で使用してもよく、2種類以上混合して使用してもよい。
上記炭素材料としては、特にX線解析で測定した(002)面の面間隔d(002)が0.340nm以下の炭素材料が好ましい。また、炭素材料としては、真密度が1.70g/cm3以上である黒鉛又はそれに近い性質を有する高結晶性炭素材料も好ましい。以上のような炭素材料を使用すると、電池のエネルギー密度をより高くすることができる。
上記炭素材料としては、特にX線解析で測定した(002)面の面間隔d(002)が0.340nm以下の炭素材料が好ましい。また、炭素材料としては、真密度が1.70g/cm3以上である黒鉛又はそれに近い性質を有する高結晶性炭素材料も好ましい。以上のような炭素材料を使用すると、電池のエネルギー密度をより高くすることができる。
負極における負極集電体の材質には特に制限はなく、公知のものを任意に用いることができる。
負極集電体の具体例としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられる。中でも、加工しやすさの点から特に銅が好ましい。
負極集電体の具体例としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられる。中でも、加工しやすさの点から特に銅が好ましい。
(正極)
正極は、正極活物質及び正極集電体を含んでもよい。
正極における正極活物質としては、MoS2、TiS2、MnO2、V2O5などの遷移金属酸化物又は遷移金属硫化物、LiCoO2、LiMnO2、LiMn2O4、LiNiO2、LiNiXCo(1−X)O2〔0<X<1〕、α−NaFeO2型結晶構造を有するLi1+αMe1−αO2(Meは、Mn、Ni及びCoを含む遷移金属元素、1.0≦(1+α)/(1−α)≦1.6)、LiNixCoyMnzO2〔x+y+z=1、0<x<1、0<y<1、0<z<1〕(例えば、LiNi0.33Co0.33Mn0.33O2、LiNi0.5Co0.2Mn0.3O2等)、LiFePO4、LiMnPO4などのリチウムと遷移金属とからなる複合酸化物、ポリアニリン、ポリチオフェン、ポリピロール、ポリアセチレン、ポリアセン、ジメルカプトチアジアゾール、ポリアニリン複合体などの導電性高分子材料等が挙げられる。これらの中でも、特にリチウムと遷移金属とからなる複合酸化物が好ましい。負極がリチウム金属又はリチウム合金である場合は、正極として炭素材料を用いることもできる。また、正極として、リチウムと遷移金属との複合酸化物と、炭素材料と、の混合物を用いることもできる。
正極活物質は、1種類で使用してもよく、2種類以上を混合して使用してもよい。正極活物質は導電性が不充分である場合には、導電性助剤とともに使用して正極を構成することができる。導電性助剤としては、カーボンブラック、アモルファスウィスカー、グラファイトなどの炭素材料を例示することができる。
正極は、正極活物質及び正極集電体を含んでもよい。
正極における正極活物質としては、MoS2、TiS2、MnO2、V2O5などの遷移金属酸化物又は遷移金属硫化物、LiCoO2、LiMnO2、LiMn2O4、LiNiO2、LiNiXCo(1−X)O2〔0<X<1〕、α−NaFeO2型結晶構造を有するLi1+αMe1−αO2(Meは、Mn、Ni及びCoを含む遷移金属元素、1.0≦(1+α)/(1−α)≦1.6)、LiNixCoyMnzO2〔x+y+z=1、0<x<1、0<y<1、0<z<1〕(例えば、LiNi0.33Co0.33Mn0.33O2、LiNi0.5Co0.2Mn0.3O2等)、LiFePO4、LiMnPO4などのリチウムと遷移金属とからなる複合酸化物、ポリアニリン、ポリチオフェン、ポリピロール、ポリアセチレン、ポリアセン、ジメルカプトチアジアゾール、ポリアニリン複合体などの導電性高分子材料等が挙げられる。これらの中でも、特にリチウムと遷移金属とからなる複合酸化物が好ましい。負極がリチウム金属又はリチウム合金である場合は、正極として炭素材料を用いることもできる。また、正極として、リチウムと遷移金属との複合酸化物と、炭素材料と、の混合物を用いることもできる。
正極活物質は、1種類で使用してもよく、2種類以上を混合して使用してもよい。正極活物質は導電性が不充分である場合には、導電性助剤とともに使用して正極を構成することができる。導電性助剤としては、カーボンブラック、アモルファスウィスカー、グラファイトなどの炭素材料を例示することができる。
正極における正極集電体の材質には特に制限はなく、公知のものを任意に用いることができる。
正極集電体の具体例としては、例えば、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケル、チタン、タンタルなどの金属材料;カーボンクロス、カーボンペーパーなどの炭素材料;等が挙げられる。
正極集電体の具体例としては、例えば、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケル、チタン、タンタルなどの金属材料;カーボンクロス、カーボンペーパーなどの炭素材料;等が挙げられる。
(セパレータ)
本開示のリチウム二次電池は、負極と正極との間にセパレータを含むことが好ましい。
セパレータは、正極と負極とを電気的に絶縁し且つリチウムイオンを透過する膜であって、多孔性膜や高分子電解質が例示される。
多孔性膜としては微多孔性高分子フィルムが好適に使用され、材質としてポリオレフィン、ポリイミド、ポリフッ化ビニリデン、ポリエステル等が例示される。
特に、多孔性ポリオレフィンが好ましく、具体的には多孔性ポリエチレンフィルム、多孔性ポリプロピレンフィルム、又は多孔性のポリエチレンフィルムとポリプロピレンフィルムとの多層フィルムを例示することができる。多孔性ポリオレフィンフィルム上には、熱安定性に優れる他の樹脂がコーティングされてもよい。
高分子電解質としては、リチウム塩を溶解した高分子や、電解液で膨潤させた高分子等が挙げられる。
本開示の非水電解液は、高分子を膨潤させて高分子電解質を得る目的で使用してもよい。
本開示のリチウム二次電池は、負極と正極との間にセパレータを含むことが好ましい。
セパレータは、正極と負極とを電気的に絶縁し且つリチウムイオンを透過する膜であって、多孔性膜や高分子電解質が例示される。
多孔性膜としては微多孔性高分子フィルムが好適に使用され、材質としてポリオレフィン、ポリイミド、ポリフッ化ビニリデン、ポリエステル等が例示される。
特に、多孔性ポリオレフィンが好ましく、具体的には多孔性ポリエチレンフィルム、多孔性ポリプロピレンフィルム、又は多孔性のポリエチレンフィルムとポリプロピレンフィルムとの多層フィルムを例示することができる。多孔性ポリオレフィンフィルム上には、熱安定性に優れる他の樹脂がコーティングされてもよい。
高分子電解質としては、リチウム塩を溶解した高分子や、電解液で膨潤させた高分子等が挙げられる。
本開示の非水電解液は、高分子を膨潤させて高分子電解質を得る目的で使用してもよい。
(電池の構成)
本開示のリチウム二次電池は、種々公知の形状をとることができ、円筒型、コイン型、角型、ラミネート型、フィルム型その他任意の形状に形成することができる。しかし、電池の基本構造は、形状によらず同じであり、目的に応じて設計変更を施すことができる。
本開示のリチウム二次電池は、種々公知の形状をとることができ、円筒型、コイン型、角型、ラミネート型、フィルム型その他任意の形状に形成することができる。しかし、電池の基本構造は、形状によらず同じであり、目的に応じて設計変更を施すことができる。
本開示のリチウム二次電池(非水電解液二次電池)の例として、ラミネート型電池が挙げられる。
図1は、本開示のリチウム二次電池の一例であるラミネート型電池の一例を示す概略斜視図であり、図2は、図1に示すラミネート型電池に収容される積層型電極体の厚さ方向の概略断面図である。
図1に示すラミネート型電池は、内部に非水電解液(図1中では不図示)及び積層型電極体(図1中では不図示)が収納され、且つ、周縁部が封止されることにより内部が密閉されたラミネート外装体1を備える。ラミネート外装体1としては、例えばアルミニウム製のラミネート外装体が用いられる。
ラミネート外装体1に収容される積層型電極体は、図2に示されるように、正極板5と負極板6とがセパレータ7を介して交互に積層されてなる積層体と、この積層体の周囲を囲むセパレータ8と、を備える。正極板5、負極板6、セパレータ7、及びセパレータ8には、本開示の非水電解液が含浸されている。
上記積層型電極体における複数の正極板5は、いずれも正極タブを介して正極端子2と電気的に接続されており(不図示)、この正極端子2の一部が上記ラミネート外装体1の周端部から外側に突出している(図1)。ラミネート外装体1の周端部において正極端子2が突出する部分は、絶縁シール4によってシールされている。
同様に、上記積層型電極体における複数の負極板6は、いずれも負極タブを介して負極端子3と電気的に接続されており(不図示)、この負極端子3の一部が上記ラミネート外装体1の周端部から外側に突出している(図1)。ラミネート外装体1の周端部において負極端子3が突出する部分は、絶縁シール4によってシールされている。
なお、上記一例に係るラミネート型電池では、正極板5の数が5枚、負極板6の数が6枚となっており、正極板5と負極板6とがセパレータ7を介し、両側の最外層がいずれも負極板6となる配置で積層されている。しかし、ラミネート型電池における、正極板の数、負極板の数、及び配置については、この一例には限定されず、種々の変更がなされてもよいことは言うまでもない。
図1は、本開示のリチウム二次電池の一例であるラミネート型電池の一例を示す概略斜視図であり、図2は、図1に示すラミネート型電池に収容される積層型電極体の厚さ方向の概略断面図である。
図1に示すラミネート型電池は、内部に非水電解液(図1中では不図示)及び積層型電極体(図1中では不図示)が収納され、且つ、周縁部が封止されることにより内部が密閉されたラミネート外装体1を備える。ラミネート外装体1としては、例えばアルミニウム製のラミネート外装体が用いられる。
ラミネート外装体1に収容される積層型電極体は、図2に示されるように、正極板5と負極板6とがセパレータ7を介して交互に積層されてなる積層体と、この積層体の周囲を囲むセパレータ8と、を備える。正極板5、負極板6、セパレータ7、及びセパレータ8には、本開示の非水電解液が含浸されている。
上記積層型電極体における複数の正極板5は、いずれも正極タブを介して正極端子2と電気的に接続されており(不図示)、この正極端子2の一部が上記ラミネート外装体1の周端部から外側に突出している(図1)。ラミネート外装体1の周端部において正極端子2が突出する部分は、絶縁シール4によってシールされている。
同様に、上記積層型電極体における複数の負極板6は、いずれも負極タブを介して負極端子3と電気的に接続されており(不図示)、この負極端子3の一部が上記ラミネート外装体1の周端部から外側に突出している(図1)。ラミネート外装体1の周端部において負極端子3が突出する部分は、絶縁シール4によってシールされている。
なお、上記一例に係るラミネート型電池では、正極板5の数が5枚、負極板6の数が6枚となっており、正極板5と負極板6とがセパレータ7を介し、両側の最外層がいずれも負極板6となる配置で積層されている。しかし、ラミネート型電池における、正極板の数、負極板の数、及び配置については、この一例には限定されず、種々の変更がなされてもよいことは言うまでもない。
本開示のリチウム二次電池の別の一例として、コイン型電池も挙げられる。
図3は、本開示のリチウム二次電池の別の一例であるコイン型電池の一例を示す概略斜視図である。
図3に示すコイン型電池では、円盤状負極12、非水電解液を注入したセパレータ15、円盤状正極11、必要に応じて、ステンレス、又はアルミニウムなどのスペーサー板17、18が、この順序に積層された状態で、正極缶13(以下、「電池缶」ともいう)と封口板14(以下、「電池缶蓋」ともいう)との間に収納される。正極缶13と封口板14とはガスケット16を介してかしめ密封する。
この一例では、セパレータ15に注入される非水電解液として、本開示の非水電解液を用いる。
図3は、本開示のリチウム二次電池の別の一例であるコイン型電池の一例を示す概略斜視図である。
図3に示すコイン型電池では、円盤状負極12、非水電解液を注入したセパレータ15、円盤状正極11、必要に応じて、ステンレス、又はアルミニウムなどのスペーサー板17、18が、この順序に積層された状態で、正極缶13(以下、「電池缶」ともいう)と封口板14(以下、「電池缶蓋」ともいう)との間に収納される。正極缶13と封口板14とはガスケット16を介してかしめ密封する。
この一例では、セパレータ15に注入される非水電解液として、本開示の非水電解液を用いる。
なお、本開示のリチウム二次電池は、負極と、正極と、上記本開示の非水電解液と、を含むリチウム二次電池(充放電前のリチウム二次電池)を、充放電させて得られたリチウム二次電池であってもよい。
即ち、本開示のリチウム二次電池は、まず、負極と、正極と、上記本開示の非水電解液と、を含む充放電前のリチウム二次電池を作製し、次いで、この充放電前のリチウム二次電池を1回以上充放電させることによって作製されたリチウム二次電池(充放電されたリチウム二次電池)であってもよい。
即ち、本開示のリチウム二次電池は、まず、負極と、正極と、上記本開示の非水電解液と、を含む充放電前のリチウム二次電池を作製し、次いで、この充放電前のリチウム二次電池を1回以上充放電させることによって作製されたリチウム二次電池(充放電されたリチウム二次電池)であってもよい。
本開示のリチウム二次電池の用途は特に限定されず、種々公知の用途に用いることができる。例えば、ノート型パソコン、モバイルパソコン、携帯電話、ヘッドホンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、電子手帳、電卓、ラジオ、バックアップ電源用途、モーター、自動車、電気自動車、バイク、電動バイク、自転車、電動自転車、照明器具、ゲーム機、時計、電動工具、カメラ等、小型携帯機器、大型機器を問わず広く利用可能なものである。
以下、本開示の実施例を示すが、本開示は以下の実施例によって制限されるものではない。
以下の実施例において、「添加量」は、最終的に得られる非水電解液中における含有量(即ち、最終的に得られる非水電解液全量に対する量)を意味する。
また、「wt%」は、質量%を意味する。
以下の実施例において、「添加量」は、最終的に得られる非水電解液中における含有量(即ち、最終的に得られる非水電解液全量に対する量)を意味する。
また、「wt%」は、質量%を意味する。
〔実施例1〕
以下の手順にて、リチウム二次電池であるコイン型電池(試験用電池)を作製した。
<負極の作製>
アモルファスコート天然黒鉛(97質量部)、カルボキシメチルセルロース(1質量部)及びSBRラテックス(2質量部)を水溶媒で混練してペースト状の負極合剤スラリーを調製した。
次に、この負極合剤スラリーを厚さ10μmの帯状銅箔製の負極集電体に塗布し乾燥した後に、ロールプレスで圧縮して負極集電体と負極活物質層からなるシート状の負極を得た。このときの負極活物質層の塗布密度は10mg/cm2であり、充填密度は1.5g/mlであった。
以下の手順にて、リチウム二次電池であるコイン型電池(試験用電池)を作製した。
<負極の作製>
アモルファスコート天然黒鉛(97質量部)、カルボキシメチルセルロース(1質量部)及びSBRラテックス(2質量部)を水溶媒で混練してペースト状の負極合剤スラリーを調製した。
次に、この負極合剤スラリーを厚さ10μmの帯状銅箔製の負極集電体に塗布し乾燥した後に、ロールプレスで圧縮して負極集電体と負極活物質層からなるシート状の負極を得た。このときの負極活物質層の塗布密度は10mg/cm2であり、充填密度は1.5g/mlであった。
<正極の作製>
LiNi0.5Co0.2Mn0.3O2(90質量部)、アセチレンブラック(5質量部)及びポリフッ化ビニリデン(5質量部)を、N−メチルピロリジノンを溶媒として混練してペースト状の正極合剤スラリーを調製した。
次に、この正極合剤スラリーを厚さ20μmの帯状アルミ箔の正極集電体に塗布し乾燥した後に、ロールプレスで圧縮して正極集電体と正極活物質層とからなるシート状の正極を得た。このときの正極活物質層の塗布密度は30mg/cm2であり、充填密度は2.5g/mlであった。
LiNi0.5Co0.2Mn0.3O2(90質量部)、アセチレンブラック(5質量部)及びポリフッ化ビニリデン(5質量部)を、N−メチルピロリジノンを溶媒として混練してペースト状の正極合剤スラリーを調製した。
次に、この正極合剤スラリーを厚さ20μmの帯状アルミ箔の正極集電体に塗布し乾燥した後に、ロールプレスで圧縮して正極集電体と正極活物質層とからなるシート状の正極を得た。このときの正極活物質層の塗布密度は30mg/cm2であり、充填密度は2.5g/mlであった。
<非水電解液の調製>
非水溶媒として、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とメチルエチルカーボネート(EMC)とをそれぞれ30:30:40(質量比)の割合で混合し、混合溶媒を得た。
得られた混合溶媒中に、電解質としてのLiPF6を、最終的に得られる非水電解液中におけるLiPF6の濃度が1.0mol/Lとなるように溶解させた。
上記で得られた溶液に対して、
添加剤Aであるパーフルオロヘキシルエチレン(以下、「PFHE」ともいう)(添加量0.5質量%)、
添加剤Bである1,3−プロペンスルトン(以下、「PRS」ともいう)(添加量0.3質量%)、及び
添加剤Cであるビニレンカーボネート(以下、「VC」ともいう)(添加量0.2質量%)
を添加し、非水電解液を得た。
非水溶媒として、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とメチルエチルカーボネート(EMC)とをそれぞれ30:30:40(質量比)の割合で混合し、混合溶媒を得た。
得られた混合溶媒中に、電解質としてのLiPF6を、最終的に得られる非水電解液中におけるLiPF6の濃度が1.0mol/Lとなるように溶解させた。
上記で得られた溶液に対して、
添加剤Aであるパーフルオロヘキシルエチレン(以下、「PFHE」ともいう)(添加量0.5質量%)、
添加剤Bである1,3−プロペンスルトン(以下、「PRS」ともいう)(添加量0.3質量%)、及び
添加剤Cであるビニレンカーボネート(以下、「VC」ともいう)(添加量0.2質量%)
を添加し、非水電解液を得た。
<コイン型電池の作製>
上述の負極を直径14mmで、上述の正極を直径13mmで、それぞれ円盤状に打ち抜き、コイン状の負極及びコイン状の正極をそれぞれ得た。また、厚さ20μmの微多孔性ポリエチレンフィルムを直径17mmの円盤状に打ち抜き、セパレータを得た。
得られたコイン状の負極、セパレータ、及びコイン状の正極を、この順序でステンレス製の電池缶(2032サイズ)内に積層し、次いで、この電池缶内に、上述の非水電解液20μLを注入し、セパレータと正極と負極とに含漬させた。
次に、正極上にアルミニウム製の板(厚さ1.2mm、直径16mm)及びバネを乗せ、ポリプロピレン製のガスケットを介して、電池缶蓋をかしめることにより電池を密封した。
以上により、直径20mm、高さ3.2mmの図3で示す構成を有するコイン型電池(即ち、コイン型のリチウム二次電池)を得た。
上述の負極を直径14mmで、上述の正極を直径13mmで、それぞれ円盤状に打ち抜き、コイン状の負極及びコイン状の正極をそれぞれ得た。また、厚さ20μmの微多孔性ポリエチレンフィルムを直径17mmの円盤状に打ち抜き、セパレータを得た。
得られたコイン状の負極、セパレータ、及びコイン状の正極を、この順序でステンレス製の電池缶(2032サイズ)内に積層し、次いで、この電池缶内に、上述の非水電解液20μLを注入し、セパレータと正極と負極とに含漬させた。
次に、正極上にアルミニウム製の板(厚さ1.2mm、直径16mm)及びバネを乗せ、ポリプロピレン製のガスケットを介して、電池缶蓋をかしめることにより電池を密封した。
以上により、直径20mm、高さ3.2mmの図3で示す構成を有するコイン型電池(即ち、コイン型のリチウム二次電池)を得た。
<電池抵抗の評価>
得られたコイン型電池に対し、コンディショニングを施し、コンディショニング後のコイン型電池について、電池抵抗の評価を行った。
ここで、「コンディショニング」とは、コイン型電池を、恒温槽内で25℃にて、2.75Vと4.2Vとの間で充放電を三回繰り返すことを指す。
以下、「高温保存」とは、コイン型電池を、恒温槽内で、80℃で48時間保存する操作を意味する。
以下、電池抵抗(DCIR)は、25℃及び−20℃の2つの温度条件の各々にて測定した。
得られたコイン型電池に対し、コンディショニングを施し、コンディショニング後のコイン型電池について、電池抵抗の評価を行った。
ここで、「コンディショニング」とは、コイン型電池を、恒温槽内で25℃にて、2.75Vと4.2Vとの間で充放電を三回繰り返すことを指す。
以下、「高温保存」とは、コイン型電池を、恒温槽内で、80℃で48時間保存する操作を意味する。
以下、電池抵抗(DCIR)は、25℃及び−20℃の2つの温度条件の各々にて測定した。
(高温保存前の電池抵抗(DCIR)の測定)
コンディショニング後のコイン型電池のSOC(State of Charge)を80%に調整し、次いで、以下の方法により、コイン型電池の高温保存前のDCIR(Direct current internal resistance;直流抵抗)を測定した。
上述のSOC80%に調整されたコイン型電池を用い、放電レート0.2CでのCC10s放電、300秒間の休止、放電レート1CでのCC10s放電、300秒間の休止、放電レート2CでのCC10s放電、300秒間の休止、及び、放電レート5CでのCC10s放電をこの順に行った。
なお、CC10s放電とは、定電流(Constant Current)にて10秒間放電することを意味する。
各放電レートと、各放電レートでの放電開始後10秒目の電圧と、の関係に基づき直流抵抗を求め、得られた直流抵抗(Ω)を、コイン型電池の高温保存前の電池抵抗(Ω)とした。
結果を表1(「保存前」欄)に示す。
コンディショニング後のコイン型電池のSOC(State of Charge)を80%に調整し、次いで、以下の方法により、コイン型電池の高温保存前のDCIR(Direct current internal resistance;直流抵抗)を測定した。
上述のSOC80%に調整されたコイン型電池を用い、放電レート0.2CでのCC10s放電、300秒間の休止、放電レート1CでのCC10s放電、300秒間の休止、放電レート2CでのCC10s放電、300秒間の休止、及び、放電レート5CでのCC10s放電をこの順に行った。
なお、CC10s放電とは、定電流(Constant Current)にて10秒間放電することを意味する。
各放電レートと、各放電レートでの放電開始後10秒目の電圧と、の関係に基づき直流抵抗を求め、得られた直流抵抗(Ω)を、コイン型電池の高温保存前の電池抵抗(Ω)とした。
結果を表1(「保存前」欄)に示す。
(高温保存後の電池抵抗(DCIR)の測定)
コンディショニング後であってSOCを80%に調整する前のコイン型電池に対し、恒温槽内で25℃にて充電レート0.2Cで4.25VまでCC−CV充電し、次いで高温保存を施す操作を追加したこと以外は前述の高温保存前の電池抵抗の測定と同様にして、高温保存後の電池抵抗(Ω)を測定した。
結果を表1(「保存後」欄)に示す。
ここで、CC−CV充電とは、定電流定電圧(Constant Current - Constant Voltage)を意味する。
コンディショニング後であってSOCを80%に調整する前のコイン型電池に対し、恒温槽内で25℃にて充電レート0.2Cで4.25VまでCC−CV充電し、次いで高温保存を施す操作を追加したこと以外は前述の高温保存前の電池抵抗の測定と同様にして、高温保存後の電池抵抗(Ω)を測定した。
結果を表1(「保存後」欄)に示す。
ここで、CC−CV充電とは、定電流定電圧(Constant Current - Constant Voltage)を意味する。
(比率〔保存後/保存前〕(−20℃)の算出)
下記式により、比率〔保存後/保存前〕(−20℃)を求めた。
比率〔保存後/保存前〕 = 高温保存後の電池抵抗(−20℃)(Ω)/高温保存前の電池抵抗(−20℃)(Ω)
この比率〔保存後/保存前〕が小さい程、高温保存による電池抵抗低下の度合いが大きく、電池特性として望ましいことを意味する。
結果を表1(「保存後/保存前」欄)に示す。
下記式により、比率〔保存後/保存前〕(−20℃)を求めた。
比率〔保存後/保存前〕 = 高温保存後の電池抵抗(−20℃)(Ω)/高温保存前の電池抵抗(−20℃)(Ω)
この比率〔保存後/保存前〕が小さい程、高温保存による電池抵抗低下の度合いが大きく、電池特性として望ましいことを意味する。
結果を表1(「保存後/保存前」欄)に示す。
(高温保存前の放電容量(0.2C);保存前容量)
コンディショニング後のコイン型電池を恒温槽内で25℃にて充電レート0.2Cで4.25VまでCC−CV充電し、次いで、25℃にて、放電レート0.2Cにて、高温保存後の放電容量(0.2C)(mAh)を測定した。
結果を表1(「保存前」欄)に示す。
コンディショニング後のコイン型電池を恒温槽内で25℃にて充電レート0.2Cで4.25VまでCC−CV充電し、次いで、25℃にて、放電レート0.2Cにて、高温保存後の放電容量(0.2C)(mAh)を測定した。
結果を表1(「保存前」欄)に示す。
(高温保存後の放電容量(残存容量;0.2C))
上記で得られたコイン型電池に対し、コンディショニングを施した。
コンディショニング後のコイン型電池を恒温槽内で25℃にて充電レート0.2Cで4.25VまでCC−CV充電した後、高温保存した。
高温保存後のコイン型電池について、25℃で、放電レート0.2CにてCC放電させて高温保存後の放電容量(残存容量;0.2C)を測定した。
結果を表1(「残存」欄)に示す。
上記で得られたコイン型電池に対し、コンディショニングを施した。
コンディショニング後のコイン型電池を恒温槽内で25℃にて充電レート0.2Cで4.25VまでCC−CV充電した後、高温保存した。
高温保存後のコイン型電池について、25℃で、放電レート0.2CにてCC放電させて高温保存後の放電容量(残存容量;0.2C)を測定した。
結果を表1(「残存」欄)に示す。
(高温保存後の放電容量(回復容量;0.2C))
上記で得られたコイン型電池に上記のコンディショニングを施した。
コンディショニング後のコイン型電池を恒温槽内で25℃にて充電レート0.2Cで4.25VまでCC−CV充電した後、コイン型電池を高温保存した。
高温保存後のコイン型電池を、恒温槽内で25℃にて、SOCが0%となるまで放電レート0.2CでCC放電させ、次いで充電レート0.2Cで4.2VまでCC−CV充電し、次いで放電レート0.2CにてCC放電させて高温保存後の放電容量(回復容量;0.2C)を測定した。
結果を表1(「回復」欄)に示す。
上記で得られたコイン型電池に上記のコンディショニングを施した。
コンディショニング後のコイン型電池を恒温槽内で25℃にて充電レート0.2Cで4.25VまでCC−CV充電した後、コイン型電池を高温保存した。
高温保存後のコイン型電池を、恒温槽内で25℃にて、SOCが0%となるまで放電レート0.2CでCC放電させ、次いで充電レート0.2Cで4.2VまでCC−CV充電し、次いで放電レート0.2CにてCC放電させて高温保存後の放電容量(回復容量;0.2C)を測定した。
結果を表1(「回復」欄)に示す。
(高温保存前の放電容量(1C);保存前容量)
高温保存前の放電容量(0.2C)に対し、充電レート及び放電レートをそれぞれ1Cに変更したこと以外は同様にして、高温保存前の放電容量(1C)を測定した。
結果を表1(「保存前」欄)に示す。
高温保存前の放電容量(0.2C)に対し、充電レート及び放電レートをそれぞれ1Cに変更したこと以外は同様にして、高温保存前の放電容量(1C)を測定した。
結果を表1(「保存前」欄)に示す。
(高温保存後の放電容量(回復容量;1C))
高温保存後の放電容量(回復容量;0.2C)に対し、充電レート及び放電レートをそれぞれ1Cに変更したこと以外は同様にして、高温保存後の放電容量(回復容量;1C)を測定した。
結果を表1(「回復」欄)に示す。
高温保存後の放電容量(回復容量;0.2C)に対し、充電レート及び放電レートをそれぞれ1Cに変更したこと以外は同様にして、高温保存後の放電容量(回復容量;1C)を測定した。
結果を表1(「回復」欄)に示す。
(高温保存後のOCV低下(mV))
上記で得られたコイン型電池に上記のコンディショニングを施した。
コンディショニング後のコイン型電池を恒温槽内で25℃にて充電レート0.2Cで4.25VまでCC−CV充電した後、コイン型電池を高温保存した。
高温保存後のコイン型電池について、25℃にて、コイン型電池の開放電圧(Open Circuit Voltage;OCV)[V]を測定し、下式によりOCV低下(mV)を計算した。
結果を表1に示す。
OCV低下(mV)=4250(mV)−高温保存後の開放電圧(mV)
上記で得られたコイン型電池に上記のコンディショニングを施した。
コンディショニング後のコイン型電池を恒温槽内で25℃にて充電レート0.2Cで4.25VまでCC−CV充電した後、コイン型電池を高温保存した。
高温保存後のコイン型電池について、25℃にて、コイン型電池の開放電圧(Open Circuit Voltage;OCV)[V]を測定し、下式によりOCV低下(mV)を計算した。
結果を表1に示す。
OCV低下(mV)=4250(mV)−高温保存後の開放電圧(mV)
〔比較例1〕
非水電解液の調製において、添加剤AであるPFHEを用いなかったこと以外は実施例1と同様の操作を行った。
結果を表1に示す。
非水電解液の調製において、添加剤AであるPFHEを用いなかったこと以外は実施例1と同様の操作を行った。
結果を表1に示す。
〔比較例2〕
非水電解液の調製において、添加剤BであるPRS及び添加剤CであるVCを用いなかったこと以外は実施例1と同様の操作を行った。
結果を表1に示す。
非水電解液の調製において、添加剤BであるPRS及び添加剤CであるVCを用いなかったこと以外は実施例1と同様の操作を行った。
結果を表1に示す。
表1に示すように、非水電解液が添加剤A及び添加剤Bを両方含有する実施例1では、非水電解液が添加剤Aを含有しない比較例1、及び、非水電解液が添加剤Bを含有しない比較例2と比較して、保存後の電池抵抗が低減されていた。
詳細には、実施例1では、保存前の電池抵抗がある程度低く、かつ、保存による電池抵抗の低下の度合いが大きい(即ち、「保存後/保存前」が小さい)結果、保存後の電池抵抗が効果的に低減されていた。
更に、実施例1は、比較例1及び2と比較して、電池容量も同等又はそれ以上であり、かつ、開放電圧(OCV)低下も軽減されていた。
詳細には、実施例1では、保存前の電池抵抗がある程度低く、かつ、保存による電池抵抗の低下の度合いが大きい(即ち、「保存後/保存前」が小さい)結果、保存後の電池抵抗が効果的に低減されていた。
更に、実施例1は、比較例1及び2と比較して、電池容量も同等又はそれ以上であり、かつ、開放電圧(OCV)低下も軽減されていた。
1 ラミネート外装体
2 正極端子
3 負極端子
4 絶縁シール
5 正極板
6 負極板
7、8 セパレータ
11 正極
12 負極
13 正極缶
14 封口板
15 セパレータ
16 ガスケット
17、18 スペーサー板
2 正極端子
3 負極端子
4 絶縁シール
5 正極板
6 負極板
7、8 セパレータ
11 正極
12 負極
13 正極缶
14 封口板
15 セパレータ
16 ガスケット
17、18 スペーサー板
Claims (6)
- 下記式(A)で表される化合物である添加剤Aと、
下記式(B)で表される化合物である添加剤Bと、
を含有する電池用非水電解液。
〔式(A)中、Ra1は、少なくとも1つのフッ素原子で置換された炭素数1〜12の炭化水素基を表す。〕
〔式(B)中、Rb1〜Rb4は、それぞれ独立に、水素原子、フッ素原子、炭素数1〜3の炭化水素基、又は炭素数1〜3のフッ化炭化水素基を表す。〕 - 更に、下記式(C)で表される化合物である添加剤Cを含有する電池用非水電解液。
〔式(C)中、Rc1及びRc2は、それぞれ独立に、水素原子、メチル基、エチル基、又はプロピル基を示す。〕 - 前記添加剤Cの含有量が、電池用非水電解液の全量に対し、0.001質量%〜10質量%である請求項2に記載の電池用非水電解液。
- 前記添加剤Aの含有量が、電池用非水電解液の全量に対し、0.001質量%〜10質量%であり、
前記添加剤Bの含有量が、電池用非水電解液の全量に対し、0.001質量%〜10質量%である請求項1〜請求項3のいずれか1項に記載の電池用非水電解液。 - 正極と、
金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属若しくは合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒素化物、及び、リチウムイオンのドープ・脱ドープが可能な炭素材料からなる群から選ばれる少なくとも1種を負極活物質として含む負極と、
請求項1〜請求項4のいずれか1項に記載の電池用非水電解液と、
を含むリチウム二次電池。 - 請求項5に記載のリチウム二次電池を充放電させて得られたリチウム二次電池。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018066712A JP2019179614A (ja) | 2018-03-30 | 2018-03-30 | 電池用非水電解液及びリチウム二次電池 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018066712A JP2019179614A (ja) | 2018-03-30 | 2018-03-30 | 電池用非水電解液及びリチウム二次電池 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2019179614A true JP2019179614A (ja) | 2019-10-17 |
Family
ID=68278779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018066712A Pending JP2019179614A (ja) | 2018-03-30 | 2018-03-30 | 電池用非水電解液及びリチウム二次電池 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2019179614A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112701351A (zh) * | 2020-12-29 | 2021-04-23 | 中国科学院宁波材料技术与工程研究所 | 一种非水性电解液及其制备方法以及一种锂离子电池 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002329528A (ja) * | 2001-03-01 | 2002-11-15 | Mitsui Chemicals Inc | 非水電解液、それを用いた二次電池、および電解液用添加剤 |
JP2004172101A (ja) * | 2002-10-28 | 2004-06-17 | Mitsui Chemicals Inc | 非水電解液およびそれを用いた二次電池 |
JP2012123989A (ja) * | 2010-12-07 | 2012-06-28 | Daikin Ind Ltd | リチウム二次電池用非水電解液 |
JP2015072865A (ja) * | 2013-10-04 | 2015-04-16 | 旭化成株式会社 | 非水電解液、リチウムイオン二次電池用電解液、及びリチウムイオン二次電池 |
JP2016081645A (ja) * | 2014-10-14 | 2016-05-16 | ソニー株式会社 | 二次電池用電解液、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器 |
-
2018
- 2018-03-30 JP JP2018066712A patent/JP2019179614A/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002329528A (ja) * | 2001-03-01 | 2002-11-15 | Mitsui Chemicals Inc | 非水電解液、それを用いた二次電池、および電解液用添加剤 |
JP2004172101A (ja) * | 2002-10-28 | 2004-06-17 | Mitsui Chemicals Inc | 非水電解液およびそれを用いた二次電池 |
JP2012123989A (ja) * | 2010-12-07 | 2012-06-28 | Daikin Ind Ltd | リチウム二次電池用非水電解液 |
JP2015072865A (ja) * | 2013-10-04 | 2015-04-16 | 旭化成株式会社 | 非水電解液、リチウムイオン二次電池用電解液、及びリチウムイオン二次電池 |
JP2016081645A (ja) * | 2014-10-14 | 2016-05-16 | ソニー株式会社 | 二次電池用電解液、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112701351A (zh) * | 2020-12-29 | 2021-04-23 | 中国科学院宁波材料技术与工程研究所 | 一种非水性电解液及其制备方法以及一种锂离子电池 |
CN112701351B (zh) * | 2020-12-29 | 2022-08-19 | 中国科学院宁波材料技术与工程研究所 | 一种非水性电解液及其制备方法以及一种锂离子电池 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6368501B2 (ja) | 電池用非水電解液、及びリチウム二次電池 | |
JP7264899B2 (ja) | 電池用非水電解液及びリチウム二次電池 | |
US12095037B2 (en) | Non-aqueous electrolyte solution for battery and lithium secondary battery | |
WO2018181369A1 (ja) | 電池用非水電解液及びリチウム二次電池 | |
JP7115724B2 (ja) | 電池用非水電解液及びリチウム二次電池 | |
JP7103713B2 (ja) | 電池用非水電解液及びリチウム二次電池 | |
JP7669616B2 (ja) | 電池用非水電解液及びリチウム二次電池 | |
JP7168158B2 (ja) | 電池用非水電解液及びリチウム二次電池 | |
JP7060190B2 (ja) | 電池用非水電解液及びリチウム二次電池 | |
JP6957179B2 (ja) | 電池用非水電解液及びリチウム二次電池 | |
JP7216805B2 (ja) | 電池用非水電解液及びリチウム二次電池 | |
JP7326681B2 (ja) | 電池用非水電解液及びリチウム二次電池 | |
JP7395816B2 (ja) | 電池用非水電解液及びリチウム二次電池 | |
JP2018170237A (ja) | 電池用非水電解液及びリチウム二次電池 | |
JP2019179614A (ja) | 電池用非水電解液及びリチウム二次電池 | |
JP7200465B2 (ja) | 電池用非水電解液及びリチウム二次電池 | |
JP6980502B2 (ja) | 電池用非水電解液及びリチウム二次電池 | |
JP6894751B2 (ja) | 電池用非水電解液、電池用添加剤、及びリチウム二次電池 | |
JP7070978B2 (ja) | 電池用非水電解液及びリチウム二次電池 | |
JP7206556B2 (ja) | 電池用非水電解液及びリチウム二次電池 | |
JP7070979B2 (ja) | 電池用非水電解液及びリチウム二次電池 | |
JP7706243B2 (ja) | 非水電解液、リチウム二次電池前駆体、リチウム二次電池、及びリチウム二次電池の製造方法 | |
JP7347768B2 (ja) | 電池用非水電解液及びリチウム二次電池 | |
JP2019179613A (ja) | 電池用非水電解液及びリチウム二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210104 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211130 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20220607 |