JP2019173975A - Hot water storage and supply device - Google Patents
Hot water storage and supply device Download PDFInfo
- Publication number
- JP2019173975A JP2019173975A JP2018058839A JP2018058839A JP2019173975A JP 2019173975 A JP2019173975 A JP 2019173975A JP 2018058839 A JP2018058839 A JP 2018058839A JP 2018058839 A JP2018058839 A JP 2018058839A JP 2019173975 A JP2019173975 A JP 2019173975A
- Authority
- JP
- Japan
- Prior art keywords
- hot water
- water storage
- temperature
- heat source
- storage tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 401
- 238000003860 storage Methods 0.000 title claims abstract description 162
- 230000005855 radiation Effects 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 21
- 238000003303 reheating Methods 0.000 claims description 14
- 238000000265 homogenisation Methods 0.000 claims description 10
- 239000003507 refrigerant Substances 0.000 claims description 8
- 238000003756 stirring Methods 0.000 claims description 8
- 230000007423 decrease Effects 0.000 claims description 7
- 238000009833 condensation Methods 0.000 claims description 6
- 230000005494 condensation Effects 0.000 claims description 6
- 238000007599 discharging Methods 0.000 claims description 4
- 230000003213 activating effect Effects 0.000 abstract 1
- 238000010438 heat treatment Methods 0.000 description 14
- 238000002156 mixing Methods 0.000 description 7
- 238000001704 evaporation Methods 0.000 description 5
- 230000002265 prevention Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 230000008014 freezing Effects 0.000 description 3
- 238000007710 freezing Methods 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000013517 stratification Methods 0.000 description 2
- 238000003287 bathing Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/52—Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
Landscapes
- Heat-Pump Type And Storage Water Heaters (AREA)
Abstract
Description
本発明は、貯湯給湯装置に関し、特に学習制御により予測した給湯使用量を貯湯する場合に予測誤差により貯湯タンク内に残留した残留湯水を有効利用する技術に関する。 The present invention relates to a hot water storage and hot water supply apparatus, and more particularly to a technique for effectively using residual hot water remaining in a hot water storage tank due to a prediction error when hot water usage estimated by learning control is stored.
従来より、圧縮機と凝縮熱交換器と膨張手段と蒸発熱交換器とを冷媒回路で接続してなるヒートポンプ熱源機と、このヒートポンプ熱源機によって加熱された湯水を貯留するための貯湯タンクと、この貯湯タンクとヒートポンプ熱源機との間で湯水を循環させる循環ポンプと、貯湯タンクの湯水温度が低下した場合に再加熱するための補助熱源機とを備えた貯湯給湯装置は、広く実用に供されている。 Conventionally, a heat pump heat source device in which a compressor, a condensation heat exchanger, an expansion means, and an evaporation heat exchanger are connected by a refrigerant circuit, and a hot water storage tank for storing hot water heated by the heat pump heat source device, A hot water storage and hot water supply apparatus having a circulation pump that circulates hot water between the hot water storage tank and the heat pump heat source device and an auxiliary heat source device that reheats when the hot water temperature of the hot water storage tank decreases is widely used. Has been.
そして、この種の貯湯給湯装置において、給湯の使用状況を学習記憶することによって将来の給湯使用量を予測し、その給湯使用前にヒートポンプ熱源機を駆動して予測給湯使用量に相当する熱量を貯湯タンクに貯留することも広く行なわれている。 In this type of hot water storage hot water supply device, the future hot water usage is predicted by learning and storing the hot water usage, and the heat pump heat source device is driven before the hot water usage to calculate the amount of heat corresponding to the predicted hot water usage. Storage in a hot water storage tank is also widely performed.
ここで、前記予測給湯使用量よりも実際の給湯使用量が少ない場合には、1日の給湯使用終了後に、貯湯タンク内に残留湯水が残留する場合があり、この場合翌朝の最初の貯湯運転に際しては前記の残留湯水を加味して貯湯運転を行なうことが望ましい。しかし、残留湯水は放熱により温度低下するため翌日の給湯時に補助熱源機による再加熱が必要な再加熱必要 温度以上の温度を保持しているとは限らず、貯湯温度や残留湯水の湯量や外気温度によって翌日の貯湯運転時おける温度が異なる。そのため、翌日の貯湯運転時に前記の残留湯水をどのように加味して貯湯運転するのが有利であるのか難しい問題である。 Here, if the actual amount of hot water used is less than the predicted amount of hot water used, residual hot water may remain in the hot water storage tank after the end of the daily hot water use. In this case, the first hot water storage operation in the next morning At this time, it is desirable to perform the hot water storage operation in consideration of the residual hot water. However, since the temperature of the residual hot water decreases due to heat dissipation, it does not always maintain a temperature higher than the reheating required temperature that requires reheating by the auxiliary heat source machine when supplying hot water the next day. The temperature during hot water storage operation on the next day varies depending on the temperature. Therefore, it is a difficult problem how to take advantage of the residual hot water during the hot water storage operation on the next day and to perform the hot water storage operation.
特許文献1の貯湯式給湯システムにおいては、貯湯タンク内に高温層と、追い焚き有効温度以上の中温層と、低温層とがある場合には、前記の高温層と中温層を混合させることにより、前記貯湯タンク内の上部の温度を低下させ、追い焚き湯切れに対する耐力を向上させる。 In the hot water storage hot water supply system of Patent Document 1, when there are a high temperature layer, a medium temperature layer above the reheating effective temperature, and a low temperature layer in the hot water storage tank, the high temperature layer and the medium temperature layer are mixed together. The temperature of the upper part in the hot water storage tank is lowered to improve the resistance to reheating hot water.
前記のように、貯湯タンク内に残留湯水が残留した場合、その残留湯水は翌朝までに放熱により温度低下し、給湯設定温度よりも低温の中温水となる。その中温水をヒートポンプ熱源機で加熱する場合は、ヒートポンプ熱源機のCOPが低下するという問題がある。 As described above, when residual hot water remains in the hot water storage tank, the temperature of the residual hot water decreases by heat radiation until the next morning, and becomes hot water having a temperature lower than the hot water supply set temperature. When heating the medium temperature water with a heat pump heat source machine, there is a problem that the COP of the heat pump heat source machine is lowered.
本発明の目的は、残留湯水を加味した貯湯運転を行う場合のヒートポンプ熱源機のCOPを改善可能な貯湯給湯装置を提供することである。 The objective of this invention is providing the hot water storage hot-water supply apparatus which can improve COP of the heat pump heat source machine in the case of performing the hot water storage operation which considered the residual hot water.
請求項1の貯湯給湯装置は、圧縮機と凝縮熱交換器と膨張手段と蒸発熱交換器とを冷媒回路で接続してなるヒートポンプ熱源機と、このヒートポンプ熱源機によって加熱された湯水を貯留するための貯湯タンクと、このノ貯湯タンクとヒートポンプ熱源機との間で湯水を循環させる循環ポンプと、貯湯タンクの湯水温度が低下した場合に再加熱して出湯するための補助熱源機とを備えた貯湯給湯装置であって、給湯の使用状況を学習記憶することによって将来の給湯使用量を予測し、その給湯使用前にヒートポンプ熱源機を駆動して予測給湯使用量に相当する熱量を貯湯タンクに貯留する貯湯給湯装置において、前記貯湯タンク内の残留湯水の温度が次回の貯湯運転時までに放熱により温度低下する場合の温度を推定する残留温度推定手段を備え、この残留温度推定手段によって推定された残留湯水温度が次回貯湯運転時に前記補助熱源機による再加熱が必要な温度になる場合には、貯湯タンク内の温水温度の均一化を図る特定運転を行うことを特徴としている。 The hot water storage hot water supply apparatus according to claim 1 stores a heat pump heat source device in which a compressor, a condensation heat exchanger, an expansion means, and an evaporation heat exchanger are connected by a refrigerant circuit, and hot water heated by the heat pump heat source device. A hot water storage tank, a circulation pump for circulating hot water between the hot water storage tank and the heat pump heat source device, and an auxiliary heat source device for reheating and discharging hot water when the hot water temperature of the hot water storage tank decreases. A hot water storage hot water storage device that predicts the future hot water usage by learning and storing the hot water usage, and drives the heat pump heat source device before using the hot water to store the amount of heat equivalent to the predicted hot water usage. In the hot water storage and hot water storage device stored in the hot water storage device, residual temperature estimation means for estimating a temperature when the temperature of the residual hot water in the hot water storage tank decreases due to heat radiation until the next hot water storage operation is provided. If the residual hot water temperature estimated by the residual temperature estimating means becomes a temperature that needs to be reheated by the auxiliary heat source machine during the next hot water storage operation, a specific operation for equalizing the hot water temperature in the hot water storage tank is performed. It is characterized by doing.
上記の構成によれば、貯湯タンク内の残留湯水の次回貯湯運転時における温度を推定する残留温度推定手段を設け、この残留温度推定手段により推定された残留湯水温度が次回貯湯運転時に前記補助熱源機による再加熱が必要な温度 になる場合には、貯湯タンク内の温水温度の均一化を図る均一化処理を行うため、貯湯タンク内の湯水温度を全体的に均一に低下させることができ、次回の貯湯運転時におけるヒートポンプ熱源機のCOPの低下を防ぐことができる。 According to the above configuration, the residual temperature estimating means for estimating the temperature of the remaining hot water in the hot water storage tank at the next hot water storage operation is provided, and the residual hot water temperature estimated by the residual temperature estimating means is the auxiliary heat source at the next hot water storage operation. When the temperature reaches the temperature that requires reheating by the machine, the hot water temperature in the hot water storage tank is made uniform, so that the hot water temperature in the hot water storage tank can be lowered uniformly. It is possible to prevent the COP of the heat pump heat source machine from decreasing during the next hot water storage operation.
請求項2の貯湯給湯装置は、請求項1の発明において、前記均一化処理は、前記ヒートポンプ熱源機を駆動しない状態で前記循環ポンプを駆動し貯湯タンク内を攪拌することにより行うことを特徴としている。
上記の構成によれば、循環ポンプを利用して貯湯タンク内を攪拌することができる。
According to a second aspect of the present invention, there is provided the hot water storage and hot water supply apparatus according to the first aspect of the invention, wherein the equalization process is performed by driving the circulation pump and stirring the hot water storage tank without driving the heat pump heat source device. Yes.
According to said structure, the inside of a hot water storage tank can be stirred using a circulation pump.
請求項3の貯湯給湯装置は、請求項1又は2の発明において、前記次回貯湯運転時に残留湯水を前記ヒートポンプ熱源機により加熱しない場合には、前記残留温度推定手段によって推定された残留湯水温度が次回貯湯運転時に前記補助熱源機による再加熱が必要な温度であっても前記均一化処理を行わないことを特徴としている。 According to a third aspect of the present invention, in the first or second aspect of the invention, when the residual hot water is not heated by the heat pump heat source device during the next hot water storage operation, the residual hot water temperature estimated by the residual temperature estimating means is The homogenization process is not performed even at a temperature that requires reheating by the auxiliary heat source machine during the next hot water storage operation.
上記の構成によれば、例えば残留湯水の量が少ない場合には、次回貯湯運転時に残留湯水が前記ヒートポンプ熱源機により加熱されないため、残留湯水温度が次回貯湯運転時に前記補助熱源機による再加熱が必要な温度であっても、前記均一化処理を行わない方が有利である。 According to the above configuration, for example, when the amount of residual hot water is small, the residual hot water is not heated by the heat pump heat source device at the next hot water storage operation, so that the residual hot water temperature is reheated by the auxiliary heat source device at the next hot water storage operation. Even at a necessary temperature, it is advantageous not to perform the homogenization treatment.
請求項4の貯湯給湯装置は、請求項1〜3の何れか1項の発明において、前記均一化処理は、次回貯湯運転開始の直前に行うことを特徴としている。
上記の構成によれば、前記均一化処理を次回貯湯運転開始の直前に行うことで、貯湯時における貯湯タンク内の均一化状態を維持することできる。
According to a fourth aspect of the present invention, there is provided the hot water storage hot water supply apparatus according to any one of the first to third aspects, wherein the equalization process is performed immediately before the start of the next hot water storage operation.
According to said structure, the said homogenization process can be performed immediately before the next hot water storage driving | operation start, and the uniform state in the hot water storage tank at the time of hot water storage can be maintained.
以上説明したように、本願発明は種々の効果を奏する。 As described above, the present invention has various effects.
以下、本発明を実施するための形態について実施例に基づいて説明する。 Hereinafter, modes for carrying out the present invention will be described based on examples.
最初に、図1に基づいてヒートポンプ給湯装置1の全体構成について説明する。
ヒートポンプ給湯装置1は、貯湯給湯ユニット2と、ヒートポンプ熱源機3とを有し、貯湯給湯ユニット2は、貯湯タンク4、ガス燃焼式の補助熱源機5、その他の機器(配管、バルブ、温度センサ等々)と、貯湯給湯ユニット2を覆う外装ケース2aとを備えている。この貯湯給湯ユニット2は、ヒートポンプ熱源機3を駆動して加熱した湯水を貯湯タンク4に貯留し、この貯留した湯水を給湯や浴槽6の湯張りに使用する。また、必要に応じて貯湯タンク4から取り出した湯水を補助熱源機5により加熱して給湯や風呂追焚等に使用可能である。
Initially, the whole structure of the heat pump hot-water supply apparatus 1 is demonstrated based on FIG.
The heat pump hot water supply apparatus 1 includes a hot water storage hot water supply unit 2 and a heat pump heat source unit 3, and the hot water storage hot water supply unit 2 includes a hot water storage tank 4, a gas combustion type auxiliary heat source device 5, and other devices (pipes, valves, temperature sensors). Etc.) and an exterior case 2a covering the hot water storage hot water supply unit 2. The hot water storage hot water supply unit 2 stores hot water heated by driving the heat pump heat source device 3 in a hot water storage tank 4, and uses the stored hot water for hot water supply or filling of a bathtub 6. Moreover, the hot water taken out from the hot water storage tank 4 can be heated by the auxiliary heat source device 5 as needed, and can be used for hot water supply, bath bathing, and the like.
貯湯タンク4の上部には、貯湯タンク4に貯留した湯水を出湯するための出湯通路7が接続されている。貯湯タンク4の下部には、貯湯タンク4に上水源から上水を供給するための給水通路8が接続されている。この給水通路8から分岐したバイパス通路9が出湯通路7に接続され、この接続部に出湯通路7の湯水とバイパス通路9の上水を混合する混合比率を調整可能な湯水混合弁10が介装されている。湯水混合弁10には給湯通路11が接続され、湯水混合弁10で混合された湯水は、給湯通路11を流通して図示外の給湯栓等に給湯可能であり、給湯通路11から分岐して追焚通路12に接続する湯張り通路13を介して浴槽6に湯張り可能である。湯張り通路13には、湯張り用の開閉弁13aが設けられている。 A hot water supply passage 7 for discharging hot water stored in the hot water storage tank 4 is connected to the upper part of the hot water storage tank 4. A water supply passage 8 for supplying hot water from the hot water source to the hot water storage tank 4 is connected to the lower part of the hot water storage tank 4. A bypass passage 9 branched from the water supply passage 8 is connected to the hot water passage 7, and a hot water / water mixing valve 10 capable of adjusting a mixing ratio for mixing the hot water in the hot water passage 7 and the clean water of the bypass passage 9 is provided at this connection portion. Has been. A hot water supply passage 11 is connected to the hot water mixing valve 10, and hot water mixed by the hot water mixing valve 10 can flow through the hot water supply passage 11 and supply hot water to a hot water tap or the like not shown in the figure. It is possible to fill the bathtub 6 with a hot water passage 13 connected to the memorial passage 12. The hot water filling passage 13 is provided with an open / close valve 13a for hot water filling.
貯湯タンク4の下部にはヒートポンプ熱源機3に湯水を供給する往き側湯水通路16が接続され、このヒートポンプ熱源機3で加熱された湯水を貯湯タンク4に供給する戻り側湯水通路17が貯湯タンク4の上部に接続されて、貯湯タンク4とヒートポンプ熱源機3の間で湯水が循環可能な循環加熱通路15が形成されている。 A hot water supply passage 16 for supplying hot water to the heat pump heat source unit 3 is connected to the lower part of the hot water storage tank 4, and a return side hot water passage 17 for supplying hot water heated by the heat pump heat source device 3 to the hot water storage tank 4 is connected to the hot water storage tank. 4, a circulation heating passage 15 is formed between the hot water storage tank 4 and the heat pump heat source unit 3 so that hot water can circulate.
往き側湯水通路16には、貯湯タンク4からヒートポンプ熱源機3に入水する湯水の入水温度を検知する入水温度センサ18と循環ポンプ19と切換弁20が接続されている。戻り側湯水通路17には、ヒートポンプ熱源機3で加熱された湯水の温度を検知する加熱温度センサ21が接続され、往き側湯水通路16と戻り側湯水通路17とを接続するバイパス通路22が設けられ、往き側湯水通路16とバイパス通路22との接続部には切換弁20が接続されている。ヒートポンプ熱源機3の起動直後等の加熱温度が低い場合に、切換弁20を切換えてヒートポンプ熱源機3で加熱した湯水を再びヒートポンプ熱源機3に送って再加熱することができる。 An incoming water temperature sensor 18, a circulation pump 19, and a switching valve 20 are connected to the outgoing hot water passage 16 to detect the incoming temperature of hot water entering the heat pump heat source unit 3 from the hot water storage tank 4. A heating temperature sensor 21 that detects the temperature of hot water heated by the heat pump heat source unit 3 is connected to the return side hot water passage 17, and a bypass passage 22 that connects the outgoing side hot water passage 16 and the return side hot water passage 17 is provided. The switching valve 20 is connected to the connecting portion between the outgoing hot water passage 16 and the bypass passage 22. When the heating temperature is low, such as immediately after the heat pump heat source unit 3 is started, the hot water heated by the heat pump heat source unit 3 by switching the switching valve 20 can be sent again to the heat pump heat source unit 3 to be reheated.
貯湯タンク4の外周には、貯留された湯水の温度を検知する複数の貯湯温度センサ4a〜4dが上下方向に所定間隔おきに設けられている。これら貯湯温度センサ4a〜4d及び貯湯タンク4は図示外の保温材により覆われている。出湯通路7には、湯水混合弁10に供給される湯水の出湯温度を検知するための出湯温度センサ7aが接続されている。給水通路8には、上水源から供給される上水の温度を検知するための給水温度センサ8aが接続されている。給湯通路11のうちの湯水混合弁10よりも下流側には、給湯する湯水の流量を検出する流量計11bと、給湯温度を検知するための給湯温度センサ11aが接続されている。 On the outer periphery of the hot water storage tank 4, a plurality of hot water storage temperature sensors 4 a to 4 d that detect the temperature of the stored hot water are provided at predetermined intervals in the vertical direction. These hot water storage temperature sensors 4a to 4d and the hot water storage tank 4 are covered with a heat insulating material (not shown). Connected to the hot water passage 7 is a hot water temperature sensor 7 a for detecting the hot water temperature of hot water supplied to the hot water mixing valve 10. A water supply temperature sensor 8 a for detecting the temperature of the clean water supplied from the clean water source is connected to the feed water passage 8. A flow meter 11b for detecting the flow rate of hot water to be supplied and a hot water supply temperature sensor 11a for detecting the hot water temperature are connected to the downstream side of the hot water / water mixing valve 10 in the hot water supply passage 11.
貯湯タンク4の湯水を補助熱源機5で加熱するための補助加熱通路23が、出湯通路7から分岐して補助熱源機5に接続されている。補助熱源機5で加熱した湯水を出湯するための補助出湯通路24は、補助加熱通路23の分岐部より下流側の出湯通路7に調整弁25を介して接続されている。補助出湯通路24には温度センサ24aが設けられている。
調整弁25は、補助出湯通路24を通って出湯通路7に供給される湯水流量を調整する。補助加熱通路23には、三方弁26と補助熱源機5に湯水を送るためのポンプ27が介装されている。
An auxiliary heating passage 23 for heating hot water in the hot water storage tank 4 with the auxiliary heat source unit 5 is branched from the hot water passage 7 and connected to the auxiliary heat source unit 5. An auxiliary hot water passage 24 for discharging hot water heated by the auxiliary heat source unit 5 is connected to the hot water passage 7 on the downstream side of the branching portion of the auxiliary heating passage 23 via an adjustment valve 25. The auxiliary hot water passage 24 is provided with a temperature sensor 24a.
The adjustment valve 25 adjusts the flow rate of hot water supplied to the hot water passage 7 through the auxiliary hot water passage 24. The auxiliary heating passage 23 is provided with a three-way valve 26 and a pump 27 for sending hot water to the auxiliary heat source unit 5.
補助出湯通路24から分岐した熱交換通路28は、三方弁26に接続されている。三方弁26は、貯湯タンク4の湯水又は熱交換通路28の湯水を補助熱源機5に供給可能となるように切換えられる。熱交換通路28には熱交換器29と開閉弁30と温度センサ28aが介装されている。 熱交換器29は、追焚ポンプ31の作動により追焚通路12を流れる浴槽6の湯水を補助熱源機5で加熱した湯水との熱交換により加熱する追焚運転に使用される。 A heat exchange passage 28 branched from the auxiliary hot water passage 24 is connected to the three-way valve 26. The three-way valve 26 is switched so that hot water in the hot water storage tank 4 or hot water in the heat exchange passage 28 can be supplied to the auxiliary heat source unit 5. A heat exchanger 29, an on-off valve 30, and a temperature sensor 28a are interposed in the heat exchange passage 28. The heat exchanger 29 is used for a chasing operation in which hot water in the bathtub 6 flowing through the chasing passage 12 is heated by heat exchange with hot water heated by the auxiliary heat source unit 5 by the operation of the chasing pump 31.
給水通路8には、逆止弁32と、給水通路8から分岐して熱交換通路28に接続する分岐通路部33が接続されている。バイパス通路9には逆止弁34が介装され、バイパス通路9から分岐して給湯通路11に接続された高温出湯回避通路35には、高温出湯回避電磁弁36が介装されている。尚、以上説明した種々の機器(ポンプ、弁類、センサ類)は制御部43に電気的に接続され、制御部43により制御される。 Connected to the water supply passage 8 are a check valve 32 and a branch passage portion 33 branched from the water supply passage 8 and connected to the heat exchange passage 28. A check valve 34 is interposed in the bypass passage 9, and a high temperature hot water avoidance electromagnetic valve 36 is interposed in the high temperature hot water avoidance passage 35 branched from the bypass passage 9 and connected to the hot water supply passage 11. The various devices (pumps, valves, sensors) described above are electrically connected to the control unit 43 and controlled by the control unit 43.
ヒートポンプ熱源機3は、圧縮機37と、凝縮熱交換器38と、膨張弁39と、蒸発熱交換器40とを冷媒配管41により接続してなるヒートポンプ回路を備えている。このヒートポンプ熱源機3は、冷媒配管41に封入された冷媒を圧縮機37で圧縮して昇温し、循環ポンプ19を駆動して循環加熱回路15を流通する湯水を凝縮熱交換器38において高温の冷媒との熱交換により加熱する。熱交換後の冷媒は、膨張弁39で膨張して外気より低温になり、蒸発熱交換器40において外気から吸熱した後、再び圧縮機37に導入される。 The heat pump heat source unit 3 includes a heat pump circuit in which a compressor 37, a condensation heat exchanger 38, an expansion valve 39, and an evaporating heat exchanger 40 are connected by a refrigerant pipe 41. The heat pump heat source unit 3 compresses the refrigerant sealed in the refrigerant pipe 41 with the compressor 37 to raise the temperature, and drives the circulation pump 19 to heat the hot water flowing through the circulation heating circuit 15 at a high temperature in the condensation heat exchanger 38. It heats by heat exchange with the refrigerant. The refrigerant after the heat exchange expands at the expansion valve 39 and becomes cooler than the outside air, absorbs heat from the outside air in the evaporating heat exchanger 40, and is then introduced into the compressor 37 again.
蒸発熱交換器40は、外気温度を検知する外気温センサ40aと送風機40bを備えている。ヒートポンプ熱源機3は、圧縮機37、膨張弁39、送風機40b等を制御する補助制御部42を備えている。補助制御部42は、制御部43に通信可能に接続され、制御部43らの指令に従ってヒートポンプ熱源機3を制御する。外気温センサ40aで検知された外気温度は、補助制御部42を介して制御部43に送信される。 The evaporative heat exchanger 40 includes an outside air temperature sensor 40a for detecting the outside air temperature and a blower 40b. The heat pump heat source unit 3 includes an auxiliary control unit 42 that controls the compressor 37, the expansion valve 39, the blower 40b, and the like. The auxiliary control unit 42 is communicably connected to the control unit 43 and controls the heat pump heat source unit 3 in accordance with instructions from the control unit 43 and the like. The outside air temperature detected by the outside air temperature sensor 40 a is transmitted to the control unit 43 via the auxiliary control unit 42.
次に、この貯湯給湯装置1に採用した種々の制御について説明する。
この貯湯給湯装置1においては、給湯の使用状況を学習記憶することによって将来の給湯使用量を予測し、その給湯使用前にヒートポンプ熱源機3を駆動して予測給湯使用量に相当する熱量を貯湯タンクに貯留する。尚、以下に説明するフローチャートは、制御部43に格納されており、フローチャート中の符号Si(i=1,2,・・・)は各ステップを示す。
Next, various controls employed in the hot water storage hot water supply apparatus 1 will be described.
In this hot water storage and hot water supply apparatus 1, a future hot water supply usage is predicted by learning and storing a hot water usage, and the heat pump heat source unit 3 is driven before the hot water use to store the amount of heat corresponding to the predicted hot water usage. Store in tank. In addition, the flowchart demonstrated below is stored in the control part 43, and the code | symbol Si (i = 1, 2, ...) in a flowchart shows each step.
この学習記憶(給湯使用量データ取得制御)について、図2、図3、図5に基づいて説明する。
図2において、給湯使用量データ取得制御は、貯湯給湯装置1の稼働中は常時実行される制御である。この給湯使用量データ取得制御が開始されると、S1においてセンサ類から各種信号が読み込まれ、次にS2において、60分毎の給湯使用量のデータが時系列にて演算される。
尚、給湯使用量は、温度センサ24a,7a,11a,28aや流量計11bの検出データを用いて熱量計算を介して演算される。次にS3において上記の60分毎の給湯使用量のデータが、年月日、曜日、時間帯と対応付けて所定のメモリに格納され、上記のS1〜S3が繰り返し実行される。
This learning memory (hot water supply usage data acquisition control) will be described with reference to FIGS. 2, 3, and 5.
In FIG. 2, the hot water use amount data acquisition control is a control that is always executed while the hot water storage hot water supply device 1 is in operation. When this hot water use amount data acquisition control is started, various signals are read from the sensors in S1, and then in S2, the data on the hot water use amount every 60 minutes is calculated in time series.
Note that the amount of hot water used is calculated through calorific value calculation using detection data of the temperature sensors 24a, 7a, 11a, 28a and the flow meter 11b. Next, in S3, the hot water usage amount for every 60 minutes is stored in a predetermined memory in association with the year, month, day of the week, and time zone, and the above S1 to S3 are repeatedly executed.
次に、貯湯運転制御について図3、図5に基づいて説明する。
この貯湯運転制御が開始されると、S10において、先週の対応する曜日の1日分の給湯使用量データがメモリから読み込まれ、次にS11において、S10で読み込んだ給湯使用量データに基づいて、60分毎の予測給湯使用量を時間帯別に1日分演算する。例えば、図5に示すように、給湯使用量と同様の予測給湯使用量が演算される。
Next, hot water storage operation control will be described with reference to FIGS.
When this hot water storage operation control is started, in S10, hot water usage data for one day of the corresponding day of the week is read from the memory, and in S11, based on the hot water usage data read in S10, The estimated hot water usage every 60 minutes is calculated for one day by time zone. For example, as shown in FIG. 5, a predicted hot water supply usage amount similar to the hot water supply usage amount is calculated.
次に、S12において、60分毎の予測給湯使用量に基づいて1日分の60分毎の貯湯運転スケジュールが作成される。これは、各60分毎の予測給湯使用量を給湯直前(例えば、1時間前倒し)に貯湯しておくための貯湯運転スケジュールである。 Next, in S12, a hot water storage operation schedule for every 60 minutes for one day is created based on the predicted hot water supply usage every 60 minutes. This is a hot water storage operation schedule for storing the predicted hot water usage every 60 minutes immediately before hot water supply (for example, one hour ahead).
例えば、図5に示すように、予測給湯使用量を1時間前倒しした貯湯運転湯量のスケジュールが演算される。次に、S13では、前記の貯湯運転スケジュールに基づいて、貯湯運転のタイミングか否か判定し、その判定がYesのときはS14において貯湯運転スケジュールに基づく貯湯運転が実行される。次に、S15において時刻は24時か否か判定し、その判定がNoのときはS13〜S15を繰り返し、S15の判定がYesになると制御は終了する。尚、24時に制御を終了しないで、翌日の0時からの貯湯運転制御を開始してもよい。 For example, as shown in FIG. 5, a hot water storage hot water amount schedule in which the predicted hot water supply usage amount is advanced by one hour is calculated. Next, in S13, based on the hot water storage operation schedule, it is determined whether or not it is the hot water storage operation timing. If the determination is Yes, the hot water storage operation based on the hot water storage operation schedule is executed in S14. Next, in S15, it is determined whether or not the time is 24:00. If the determination is No, S13 to S15 are repeated, and if the determination in S15 is Yes, the control ends. Note that the hot water storage operation control from 0 o'clock the next day may be started without terminating the control at 24:00.
次に、各日の給湯終了時(例えば、24時)の時点において貯湯タンク4内に残留湯水が発生した場合に行う均一化処理について、図4に基づいて説明する。
この均一化処理は、貯湯タンク4内の残留湯水の温度が次回の貯湯運転時までに放熱により温度低下する場合の温度を推定し、この推定された残留湯水温度が次回貯湯運転時に補助燃料による再加熱が必要な温度になる場合には、貯湯タンク4内の温水温度の均一化を図る処理である。
Next, the equalization process performed when the remaining hot water is generated in the hot water storage tank 4 at the end of hot water supply on each day (for example, 24:00) will be described with reference to FIG.
This equalization process estimates the temperature when the temperature of the remaining hot water in the hot water storage tank 4 is lowered due to heat radiation until the next hot water storage operation, and this estimated residual hot water temperature is determined by the auxiliary fuel during the next hot water storage operation. When the temperature needs to be reheated, the hot water temperature in the hot water storage tank 4 is made uniform.
この制御が開始されると、S20において24時の時点(各日の給湯終了時)で貯湯タンク 内に残留湯水が有りか否か判定する。この判定は貯湯タンク4の温度センサ4a〜4dの検出信号に基づいて判定する。S20の判定がNoの場合は制御が終了し、S20の判定がYesのときは、S21において残留湯水温度Trが貯湯タンク4の温度センサ4a〜4dの検出信号に基づいて検出される。 When this control is started, it is determined in S20 whether or not there is residual hot water in the hot water storage tank at the time of 24:00 (at the end of hot water supply for each day). This determination is made based on detection signals from the temperature sensors 4 a to 4 d of the hot water storage tank 4. If the determination in S20 is No, the control is terminated. If the determination in S20 is Yes, the remaining hot water temperature Tr is detected in S21 based on the detection signals of the temperature sensors 4a to 4d of the hot water storage tank 4.
次に、S22においては、翌朝の最初の貯湯運転までの待機時間を演算すると共に、その待機時間と貯湯タンク4に設定されている放熱特性に基づいて翌朝の残留湯水温度Tyが推定演算される。図6は、待機時間と、翌朝の最初の貯湯運転を示すタイムチャートである。
尚、S22のステップと制御部43が残留温度推定手段に相当する。
Next, in S22, the standby time until the first hot water storage operation of the next morning is calculated, and the remaining hot water temperature Ty of the next morning is estimated and calculated based on the standby time and the heat dissipation characteristics set in the hot water storage tank 4. . FIG. 6 is a time chart showing the standby time and the first hot water storage operation in the next morning.
Note that step S22 and the control unit 43 correspond to the residual temperature estimating means.
次に、S23において、残留湯水温度Tyが補助熱源機5による再加熱が必要な再加熱必要温度(例えば、36°C以下)以下か否か判定し、その判定がYesの場合は、S24においては、ポンプ19を駆動し、貯湯タンク4内の湯水を循環加熱通路15に循環させて貯湯タンク4内の湯水を攪拌し、湯水温度を均一化させる(これが湯水温度の均一化を図る均一化処理である)。尚、この均一化処理は、例えば、貯湯タンク4内の湯水の全量の約半分を循環加熱通路15に循環させる位の時間行なう。 Next, in S23, it is determined whether or not the residual hot water temperature Ty is equal to or lower than a reheating required temperature (for example, 36 ° C. or less) that requires reheating by the auxiliary heat source unit 5. If the determination is Yes, in S24 Drives the pump 19 and circulates hot water in the hot water storage tank 4 through the circulation heating passage 15 to stir the hot water in the hot water storage tank 4 to make the hot water temperature uniform (this makes the hot water temperature uniform) Processing). In addition, this equalization process is performed, for example, for the time of circulating about half of the total amount of hot water in the hot water storage tank 4 to the circulation heating passage 15.
上記のように、貯湯タンク4内の湯水を攪拌し、その温度を均一化して温度低下させておくと、翌朝にヒートポンプ熱源機3を作動させて貯湯運転する際に、ヒートポンプ熱源機3のCOPを高めることができる。 As described above, when the hot water in the hot water storage tank 4 is agitated and the temperature thereof is made uniform to lower the temperature, the COP of the heat pump heat source device 3 is operated when the heat pump heat source device 3 is operated and the hot water storage operation is performed the next morning. Can be increased.
すなわち、貯湯タンク4の上部に残留湯水がある場合、仮に攪拌しない場合は、翌朝の貯湯運転時に、最初貯湯タンク4内の下部の低温の湯水をヒートポンプ熱源機3に供給できるためCOPを高く維持できるものの、その後中温の残留湯水をヒートポンプ熱源機3に供給する際にはヒートポンプ熱源機3のCOPが著しく低下し、全体としてヒートポンプ熱源機3のCOPが低下することになるため、上記のような均一化処理を行う方が有利になる。 That is, if there is residual hot water in the upper part of the hot water storage tank 4 and if it is not stirred, the low temperature hot water in the lower part of the hot water storage tank 4 can be supplied to the heat pump heat source unit 3 at the time of hot water storage operation the next morning, so the COP is kept high. However, when the medium temperature residual hot water is supplied to the heat pump heat source unit 3 after that, the COP of the heat pump heat source unit 3 is remarkably lowered, and the COP of the heat pump heat source unit 3 is lowered as a whole. It is more advantageous to perform the homogenization process.
次に、S25において、温度センサ40aにより検出される外気温度が設定温度Ts(例えば、0°C)以下か否か判定し、その判定がNoの場合は制御を終了し、S25の判定がYesの場合は、貯湯タンク4内の中温の湯水を循環加熱通路15に間欠的に循環させて加熱通路15の配管の凍結を予防する凍結予防運転を行う。次に、S27において翌朝の最初の給湯運転が終了したか否か判定し、その判定がNoのうちはS25へ戻ってS25〜S27を繰り返し、S27の判定がYesになるとこの制御が終了する。 Next, in S25, it is determined whether or not the outside temperature detected by the temperature sensor 40a is equal to or lower than a set temperature Ts (for example, 0 ° C.). If the determination is No, the control is terminated, and the determination in S25 is Yes. In this case, a freeze prevention operation is performed in which the hot water in the hot water storage tank 4 is intermittently circulated through the circulation heating passage 15 to prevent the piping of the heating passage 15 from freezing. Next, in S27, it is determined whether or not the first hot water supply operation in the next morning has been completed. If the determination is No, the process returns to S25 and repeats S25 to S27. When the determination in S27 becomes Yes, this control ends.
他方、翌朝の残留湯水温度Tyが再加熱必要温度より高温で、S23の判定がNoの場合は、S28において外気温度が設定温度Ts以下か否か判定し、その判定がNoのときは制御を終了し、S28の判定がYesのときは、往き側湯水通路16とバイパス通路22が連通するように切換弁20が切換えられ、ヒートポンプ熱源機3及びポンプ19を間欠的に駆動し、加熱した湯水を凝縮熱交換器38と戻り側湯水通路17とバイパス通路22と往き側湯水通路16とに循環させる凍結予防運転を行う。次に、S30において翌朝の最初の給湯運転が終了したか否か判定し、その判定がNoのうちはS28へ戻ってS28〜S30を繰り返し、S30の判定がYesになるとこの制御が終了する。 On the other hand, when the remaining hot water temperature Ty in the next morning is higher than the reheating required temperature and the determination in S23 is No, it is determined in S28 whether or not the outside air temperature is equal to or lower than the set temperature Ts. If the determination is No, the control is performed. When the determination is YES in S28, the switching valve 20 is switched so that the outgoing hot water passage 16 and the bypass passage 22 communicate with each other, the heat pump heat source unit 3 and the pump 19 are intermittently driven, and the hot hot water is heated. The freeze prevention operation is performed in which the heat is circulated through the condensation heat exchanger 38, the return side hot water passage 17, the bypass passage 22, and the forward side hot water passage 16. Next, in S30, it is determined whether or not the first hot water supply operation in the next morning is completed. If the determination is No, the process returns to S28 and repeats S28 to S30. When the determination in S30 is Yes, this control is ended.
上記の貯湯給湯装置1の作用、効果について説明する。
図4に示すように、貯湯タンク4内の残留湯水の次回貯湯運転時における温度を推定し、この推定された残留湯水温度Tyが次回貯湯運転時に再加熱必要温度になる場合には、貯湯タンク4内の温水温度の均一化を図る均一化処理を行うため、貯湯タンク内の湯水の温度を全体的に均一に低下させ、次回の貯湯運転時におけるヒートポンプ熱源機3のCOPの低下を防ぐことができる。尚、前記均一化処理は、ヒートポンプ熱源機3を駆動しない状態で循環ポンプ19を駆動し貯湯タンク4内を攪拌することにより行う。
The operation and effect of the hot water storage hot water supply apparatus 1 will be described.
As shown in FIG. 4, when the temperature of the remaining hot water in the hot water storage tank 4 at the next hot water storage operation is estimated, and the estimated residual hot water temperature Ty becomes the reheating required temperature at the next hot water storage operation, the hot water storage tank In order to carry out a homogenization process to make the temperature of the hot water in 4 uniform, the temperature of the hot water in the hot water storage tank is uniformly reduced to prevent the COP of the heat pump heat source unit 3 from being lowered during the next hot water storage operation. Can do. In addition, the said equalization process is performed by driving the circulation pump 19 in the state which does not drive the heat pump heat-source apparatus 3, and stirring the hot water storage tank 4. FIG.
また、図4のS26に示すように、外気温が低い場合には、貯湯タンク4内の均一化された温度の中温水を循環させることで配管の凍結を予防する凍結予防運転を行うため、凍結予防のためにヒートポンプ熱源機3を作動させる必要がないから省エネルギーになる。 In addition, as shown in S26 of FIG. 4, when the outside air temperature is low, in order to perform the freeze prevention operation for preventing the pipe from freezing by circulating the medium temperature water at a uniform temperature in the hot water storage tank 4, It is not necessary to operate the heat pump heat source unit 3 to prevent freezing, thus saving energy.
また、残留湯水温度Tyが次回貯湯運転時に再加熱必要温度にならない場合には、前記均一化処理を省略することで貯湯タンク4内の温度成層を維持することができる。
この場合、S29において説明したように、ヒートポンプ熱源機3を間欠的に駆動し、バイパス通路22を利用して湯水を循環させるような凍結予防運転を行うため、貯湯タンク4内の温度成層を維持することができる。
Further, if the residual hot water temperature Ty does not reach the reheating required temperature during the next hot water storage operation, the temperature stratification in the hot water storage tank 4 can be maintained by omitting the equalization process.
In this case, as described in S29, the heat pump heat source unit 3 is intermittently driven and the freeze prevention operation is performed such that hot water is circulated using the bypass passage 22, so that the temperature stratification in the hot water storage tank 4 is maintained. can do.
次に、前記実施形態を部分的に変更する例について説明する。
1]図4の均一化処理においては、凍結予防運転を行う関係上、S24のステップを24時の直後に実行した。しかし、この特定運転実行後に数時間経過すると、高温水が上部へ移動し、低温水が下部に移動して湯水温度が不均一化する。
そこで、翌朝の最初の貯湯運転開始の直前の時点において、S24と同様のステップを繰り返して、貯湯タンク4内の湯水温度の均一化を図るようにしてもよい。
Next, an example in which the embodiment is partially changed will be described.
1] In the homogenization process of FIG. 4, the step of S24 was executed immediately after 24:00 because of the freeze prevention operation. However, when several hours elapse after the execution of the specific operation, the high temperature water moves upward, the low temperature water moves downward, and the hot water temperature becomes uneven.
Therefore, at the time immediately before the start of the first hot water storage operation in the next morning, the same step as S24 may be repeated to make the hot water temperature in the hot water storage tank 4 uniform.
2]S24を実行する条件として、残留湯水の量が所定量(例えば、貯湯タンク4の容積の1/3)以上の場合にのみS24を実行するようにし、残留湯水の量が所定量以下の場合には、S23の判定がYesであっても均一化処理を実行しないようにする。 2] As a condition for executing S24, S24 is executed only when the amount of residual hot water is not less than a predetermined amount (for example, 1/3 of the volume of the hot water storage tank 4), and the amount of residual hot water is not more than the predetermined amount. In this case, the equalization process is not executed even if the determination in S23 is Yes.
即ち、残留湯水の量が所定量以下の場合は、次回貯湯運転時に残留湯水が前記ヒートポンプ熱源機3により再加熱されない。即ち、均一化処理により貯湯タンク4内の湯水温度を均一化させたとしても、均一化による温度低下が小さく、ヒートポンプ熱源機3のCOP低下防止の効果を余り期待できないことに鑑みて、均一化処理を実行しないものとする。 That is, when the amount of residual hot water is equal to or less than a predetermined amount, the residual hot water is not reheated by the heat pump heat source unit 3 during the next hot water storage operation. That is, even if the hot water temperature in the hot water storage tank 4 is made uniform by the homogenization process, the temperature drop due to the homogenization is small, and the effect of preventing the COP reduction of the heat pump heat source unit 3 cannot be expected so much. It is assumed that no processing is executed.
3]貯湯タンク4内の湯水を攪拌可能な攪拌手段(例えば、モータで回転駆動される攪拌翼等)を設ける場合には、その攪拌手段を駆動することで前記特定運転を行うことができる。
4]その他、本発明の趣旨を逸脱することなく、前記実施形態を部分的に変更して本発明を実施可能であり、本発明はそのような変更形態も包含するものである。
3] When a stirring means (for example, a stirring blade rotated by a motor) capable of stirring hot water in the hot water storage tank 4 is provided, the specific operation can be performed by driving the stirring means.
4] In addition, the present invention can be implemented by partially modifying the embodiment without departing from the gist of the present invention, and the present invention includes such a modified form.
1 貯湯給湯装置
2 貯湯給湯ユニット
3 ヒートポンプ熱源機
4 貯湯タンク
5 補助熱源機
15 循環加熱通路
19 循環ポンプ
37 圧縮機
38 凝縮熱交換器
39 膨張手段
40 蒸発熱交換器
43 制御部
DESCRIPTION OF SYMBOLS 1 Hot water storage hot water supply apparatus 2 Hot water storage hot water supply unit 3 Heat pump heat source machine 4 Hot water storage tank 5 Auxiliary heat source machine 15 Circulation heating passage 19 Circulation pump 37 Compressor 38 Condensing heat exchanger 39 Expansion means 40 Evaporation heat exchanger 43 Control part
Claims (4)
前記貯湯タンク内の残留湯水の温度が次回の貯湯運転時までに放熱により温度低下する場合の温度を推定する残留温度推定手段を備え、
この残留温度推定手段によって推定された残留湯水温度が次回貯湯運転時に前記補助熱源機による再加熱が必要な温度になる場合には、貯湯タンク内の湯水温度の均一化を図る均一化処理を行うことを特徴とする貯湯給湯装置。 A heat pump heat source device in which a compressor, a condensation heat exchanger, an expansion means, and an evaporative heat exchanger are connected by a refrigerant circuit, a hot water storage tank for storing hot water heated by the heat pump heat source device, and this hot water storage A hot water storage and hot water supply apparatus comprising a circulation pump for circulating hot water between a tank and a heat pump heat source device, and an auxiliary heat source device for reheating and discharging hot water when the hot water temperature of the hot water storage tank decreases. In the hot water storage hot water supply device that predicts the amount of hot water used in the future by learning and storing the usage status of the hot water, and driving the heat pump heat source machine before using the hot water to store the amount of heat corresponding to the predicted hot water usage in the hot water storage tank,
A residual temperature estimating means for estimating a temperature when the temperature of the residual hot water in the hot water storage tank decreases due to heat radiation until the next hot water storage operation,
When the residual hot water temperature estimated by the residual temperature estimating means becomes a temperature that needs to be reheated by the auxiliary heat source device during the next hot water storage operation, a homogenization process is performed to equalize the hot water temperature in the hot water storage tank. A hot water storage hot water supply device characterized by that.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018058839A JP7125001B2 (en) | 2018-03-26 | 2018-03-26 | Hot water storage water heater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018058839A JP7125001B2 (en) | 2018-03-26 | 2018-03-26 | Hot water storage water heater |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019173975A true JP2019173975A (en) | 2019-10-10 |
JP7125001B2 JP7125001B2 (en) | 2022-08-24 |
Family
ID=68166760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018058839A Active JP7125001B2 (en) | 2018-03-26 | 2018-03-26 | Hot water storage water heater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7125001B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021085586A (en) * | 2019-11-26 | 2021-06-03 | 三菱電機株式会社 | Heat pump water heater |
JP2021188816A (en) * | 2020-05-28 | 2021-12-13 | リンナイ株式会社 | Hot water storage system |
WO2022145297A1 (en) * | 2020-12-28 | 2022-07-07 | ダイキン工業株式会社 | Hot water supply system |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003056908A (en) * | 2001-08-10 | 2003-02-26 | Noritz Corp | Heating method for water heater utilizing external heat source |
JP2003287278A (en) * | 2002-03-27 | 2003-10-10 | Matsushita Electric Ind Co Ltd | Heat pump water heater |
JP2009257703A (en) * | 2008-04-18 | 2009-11-05 | Chugoku Electric Power Co Inc:The | Stored hot water temperature controller, hot water storage water heater, stored hot water temperature control method, and program |
JP2009287810A (en) * | 2008-05-28 | 2009-12-10 | Aisin Seiki Co Ltd | Cogeneration system |
JP2010054131A (en) * | 2008-08-28 | 2010-03-11 | Mitsubishi Electric Corp | Storage type hot water supply device |
JP2018011465A (en) * | 2016-07-15 | 2018-01-18 | 大阪瓦斯株式会社 | Cogeneration system |
JP2018031523A (en) * | 2016-08-24 | 2018-03-01 | 株式会社ノーリツ | Storage water heater |
-
2018
- 2018-03-26 JP JP2018058839A patent/JP7125001B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003056908A (en) * | 2001-08-10 | 2003-02-26 | Noritz Corp | Heating method for water heater utilizing external heat source |
JP2003287278A (en) * | 2002-03-27 | 2003-10-10 | Matsushita Electric Ind Co Ltd | Heat pump water heater |
JP2009257703A (en) * | 2008-04-18 | 2009-11-05 | Chugoku Electric Power Co Inc:The | Stored hot water temperature controller, hot water storage water heater, stored hot water temperature control method, and program |
JP2009287810A (en) * | 2008-05-28 | 2009-12-10 | Aisin Seiki Co Ltd | Cogeneration system |
JP2010054131A (en) * | 2008-08-28 | 2010-03-11 | Mitsubishi Electric Corp | Storage type hot water supply device |
JP2018011465A (en) * | 2016-07-15 | 2018-01-18 | 大阪瓦斯株式会社 | Cogeneration system |
JP2018031523A (en) * | 2016-08-24 | 2018-03-01 | 株式会社ノーリツ | Storage water heater |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021085586A (en) * | 2019-11-26 | 2021-06-03 | 三菱電機株式会社 | Heat pump water heater |
JP7294087B2 (en) | 2019-11-26 | 2023-06-20 | 三菱電機株式会社 | heat pump water heater |
JP2021188816A (en) * | 2020-05-28 | 2021-12-13 | リンナイ株式会社 | Hot water storage system |
JP7441727B2 (en) | 2020-05-28 | 2024-03-01 | リンナイ株式会社 | hot water storage system |
WO2022145297A1 (en) * | 2020-12-28 | 2022-07-07 | ダイキン工業株式会社 | Hot water supply system |
JP2022103697A (en) * | 2020-12-28 | 2022-07-08 | ダイキン工業株式会社 | Hot water supply system |
JP7108210B2 (en) | 2020-12-28 | 2022-07-28 | ダイキン工業株式会社 | hot water system |
JP2022137204A (en) * | 2020-12-28 | 2022-09-21 | ダイキン工業株式会社 | hot water system |
JP7633534B2 (en) | 2020-12-28 | 2025-02-20 | ダイキン工業株式会社 | Hot water system |
Also Published As
Publication number | Publication date |
---|---|
JP7125001B2 (en) | 2022-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2395293B1 (en) | Hot-water supply system | |
JP6977332B2 (en) | Hot water storage and hot water supply device | |
JP5171410B2 (en) | Hot water supply system | |
JP2019173975A (en) | Hot water storage and supply device | |
JP2016017719A (en) | Heat pump hot water supply system | |
JPWO2017134743A1 (en) | Hot water system control method and hot water system | |
JP2007333332A (en) | Hot water storage type heating apparatus | |
JP2013224797A (en) | Storage water heater | |
JP2007064581A (en) | Storage hot water supply system | |
JP2018162911A (en) | Hot water storage and hot water supply device | |
JP6143093B2 (en) | Hot water storage system | |
JP2018091513A (en) | Water heater | |
JP5703926B2 (en) | Heat supply system | |
JP2010181079A (en) | Storage type hot water supply device | |
JP2015194274A (en) | water heater | |
JP5569490B2 (en) | Hot water storage water heater | |
JP2010054108A (en) | Heat pump water heater | |
JP6191352B2 (en) | Hot water storage system | |
JP4220684B2 (en) | Method for preventing freezing of heating device | |
JP2019039595A (en) | Hot water storage system | |
JP5168384B2 (en) | Heat pump water heater | |
JP5986455B2 (en) | Hot water storage water heater | |
JP5316838B2 (en) | Hot water heater | |
JP6829167B2 (en) | 1 can 3 circuit type hot water supply device | |
JPH09236317A (en) | Hot water supply system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210222 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220224 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220414 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220713 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220726 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7125001 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |