[go: up one dir, main page]

JP2019157508A - Under-ground piled column and seismic base-isolated buildings - Google Patents

Under-ground piled column and seismic base-isolated buildings Download PDF

Info

Publication number
JP2019157508A
JP2019157508A JP2018045970A JP2018045970A JP2019157508A JP 2019157508 A JP2019157508 A JP 2019157508A JP 2018045970 A JP2018045970 A JP 2018045970A JP 2018045970 A JP2018045970 A JP 2018045970A JP 2019157508 A JP2019157508 A JP 2019157508A
Authority
JP
Japan
Prior art keywords
pillar
seismic isolation
structural
isolation device
upper half
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018045970A
Other languages
Japanese (ja)
Other versions
JP7106305B2 (en
Inventor
淳司 藤山
Junji Fujiyama
淳司 藤山
賀奈 青木
Kana Aoki
賀奈 青木
伸行 大和
Nobuyuki Yamato
伸行 大和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2018045970A priority Critical patent/JP7106305B2/en
Publication of JP2019157508A publication Critical patent/JP2019157508A/en
Application granted granted Critical
Publication of JP7106305B2 publication Critical patent/JP7106305B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Foundations (AREA)
  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

【課題】免震装置を備えた構真柱であって、構真柱埋設後の本設柱材への打ち替えを不要とし、かつ重量の軽減による埋設の容易化を図る事のできる構真柱を提供する。【解決手段】上記課題を解決するための構真柱10は、逆打ち工法で用いられる構真柱10であって、地下階の本設柱を構成する閉断面を有する上半部12と、基礎以深に埋設される開断面を有する下半部16とを備え、上半部12と下半部16の間に免震装置14を介装したことを特徴とする。【選択図】図1PROBLEM TO BE SOLVED: To provide a structural Shinbashira equipped with a seismic isolation device, which eliminates the need for replacement with a main pillar material after burying the structural true pillar, and can facilitate burying by reducing the weight. Provide pillars. SOLUTION: The structural pillar 10 for solving the above problem is a structural pillar 10 used in a reverse striking method, and has an upper half portion 12 having a closed cross section constituting a main pillar of a basement floor. It is provided with a lower half portion 16 having an open cross section buried deeper than the foundation, and is characterized in that a seismic isolation device 14 is interposed between the upper half portion 12 and the lower half portion 16. [Selection diagram] Fig. 1

Description

本発明は、逆打ち工法に係り、特に逆打ち工法に用いられる構真柱、およびこの構真柱を用いた免震建物に関する。   The present invention relates to a reverse striking method, and more particularly to a structural column used in the reverse striking method and a seismic isolation building using the structural column.

逆打ち工法は、地下階と地上階の工事を同時並行して行う施工法で、地下階を有する高層建物の工期短縮を図るのに有効な工法として知られている。逆打ち工法を実施する場合、一般的には、まず、地中にケーシングを打ち込んで掘削した杭穴に、建物本体の鉄骨柱、あるいはRC柱の芯材となる構真柱を仮設の柱として建て込んだ後、コンクリートを打設して杭を構築する。   The counter-striking method is a construction method in which the construction of the basement floor and the ground floor is performed in parallel, and is known as an effective construction method for shortening the construction period of a high-rise building having the basement floor. When implementing the reverse driving method, in general, the steel pillar of the main body of the building or the structural pillar that will be the core of the RC pillar is used as a temporary pillar in the pile hole that has been excavated by piercing the casing into the ground. After building, piles are constructed by placing concrete.

次に、構真柱の上部において1階の梁・床を先行して構築し、これを構台(施工床)として地下階部分を掘削しつつ、地下1階から順次下方に向かって掘削と躯体の構築を繰り返し行う。基礎の床付レベルまで掘削した後、基礎の配筋とコンクリート打設を行い、地下躯体が完成する。これらの作業を地下で行いながら、同時に地上階の建て方工事を行うことで、地下階の工事を終えてから地上階の建て方工事を行なう従来の工法(順打ち)に比べ、工期を大幅に短縮することができる。   Next, the first floor beam / floor is built in the upper part of the construction pillar, and this is used as a gantry (construction floor) to excavate the basement floor, while excavating and building down from the first basement to the bottom. Repeat the construction. After excavating to the floor level of the foundation, the foundation reinforcement is completed by placing the foundation and placing concrete. While performing these work in the basement, construction work on the ground floor is performed at the same time, so the construction period is significantly longer than the conventional construction method (ordered) where construction work on the ground floor is completed after the construction of the ground floor is completed. Can be shortened.

一方で、逆打ち工法を実施する場合、先行して構築される地上階の躯体の荷重を構真柱に支持させながら地下躯体を下方に向かって構築する。このため、建物の免震化には不向きであるとされてきた。そうした中、特許文献1や特許文献2に開示されているように、逆打ち工法を実施する場合であっても、地下階の躯体を構成する構真柱に免震装置を設置し、免震建物を構築する工法が提案されている。特許文献1には、地下躯体の基礎と基礎梁の間に仮設ジャッキを配置し、仮設ジャッキにより構真柱にかかる軸力(構築されている建物の重量)を仮受けし、構真柱を切断して免震装置を配置するという工法が開示されている。   On the other hand, when the reverse driving method is carried out, the underground structure is constructed downward while supporting the load of the structure on the ground floor, which is constructed in advance, on the construction pillar. For this reason, it has been considered unsuitable for building seismic isolation. Under such circumstances, as disclosed in Patent Document 1 and Patent Document 2, even if the reverse driving method is carried out, seismic isolation devices are installed on the structural pillars that make up the basement of the basement floor. Construction methods for building buildings have been proposed. In Patent Document 1, a temporary jack is arranged between the foundation of the underground frame and the foundation beam, and the axial force (weight of the building being built) is temporarily received by the temporary jack. A method of cutting and placing a seismic isolation device is disclosed.

また、特許文献2には、基礎に埋設される下半部と、地下階の本設柱を構成することとなる上半部との間に円形断面を有する鋼管を配置する構成の構真柱を採用することが開示されている。特許文献2に開示されている構真柱の鋼管には側面に、免震装置を挿入可能な開口部が設けられている。そして、地下躯体を構築した後に、開口部から鋼管内に免震装置を挿入し、免震装置と上半部、あるいは下半部の間の隙間をグラウト材で埋める。グラウト材が硬化した後、鋼管の側壁(開口部以外の箇所)を切断し、構真柱にかかる軸力を免震装置へ受け替えさせるということが開示されている。   Further, Patent Document 2 discloses a construction column having a structure in which a steel pipe having a circular cross section is disposed between a lower half portion embedded in a foundation and an upper half portion constituting a main pillar of an underground floor. Is disclosed. An opening part in which the seismic isolation device can be inserted is provided on the side surface of the steel pipe of the stem column disclosed in Patent Document 2. Then, after constructing the underground frame, the seismic isolation device is inserted into the steel pipe from the opening, and the gap between the seismic isolation device and the upper half or the lower half is filled with a grout material. It is disclosed that after the grout material is hardened, the side wall (a part other than the opening) of the steel pipe is cut, and the axial force applied to the structural pillar is transferred to the seismic isolation device.

確かに、特許文献1、2に開示されている工法によれば、逆打ち工法を実施する上でも、構真柱に免震装置を設置し、免震建物を構築することが可能となる。しかし、いずれの文献に開示されている工法も、構真柱の一部や鋼管部分を切断し、構真柱が負担している荷重を免震装置に受け替える必要がある。このため、狭隘な空間でのジャッキ設置や構真柱の切断作業に手間や時間がかかると共に、荷重の受け替えに伴う沈下のリスクを負うこととなる。   Certainly, according to the construction methods disclosed in Patent Documents 1 and 2, it is possible to construct a seismic isolation building by installing a seismic isolation device on the structural pillar even when the reverse driving method is implemented. However, any of the methods disclosed in any of the documents requires cutting a part of the structural column or the steel pipe portion and replacing the load borne by the structural column with a seismic isolation device. For this reason, it takes time and labor to install the jack in a narrow space and to cut the structural pillar, and to bear the risk of subsidence due to load exchange.

これに対し、特許文献3には、下半部と上半部との間に予め免震装置を配置した構真柱を用いて逆打ち工法を実施することが提案されている。先に免震装置を仕込んだ構真柱を埋設することで、上記のような問題が解消され、逆打ち工法で免震建物を安全に構築することが可能となる。   On the other hand, in Patent Document 3, it is proposed to perform the reverse driving method using a structural pillar in which a seismic isolation device is previously arranged between the lower half and the upper half. By burying a structural column that has been previously installed with a seismic isolation device, the above problems can be solved, and it is possible to safely construct a seismic isolation building by the backlash method.

特許第3648651号公報Japanese Patent No. 3648651 特許第3637945号公報Japanese Patent No. 3637945 特開平11−30053号公報Japanese Patent Laid-Open No. 11-30053

特許文献3に開示されているような構成の構真柱を用いることで、免震装置の後付けに伴う作業が必要なくなるため、設置工事の簡略化を図ることができると考えられる。しかし、特許文献3の構真柱は、段落[0016]に記載されているように断面形状については問われておらず、免震装置により隔てられる下半部と上半部を構成する柱材に同じ部材を用いた例しかない。構真柱には、一般的に開断面のクロスH形鋼(H形断面の鋼材を2方向に組合わせた部材)が用いられるが、柱材を開断面の鉄骨材にすると大きな軸力を負担できないため、階の途中に座屈止めを設けたり、1工程(サイクル)で掘れる深さが浅くなり、工程数が増加して現場での作業も増える。大きな軸耐力を有するプレキャストコンクリート構真柱も開発されているが、高軸力が作用する高層建物では、その重量が大きくなるため、クレーンによる構真柱の揚重や、地中への埋設作業が困難となる。   By using a construction pillar having a configuration as disclosed in Patent Document 3, work associated with the retrofitting of the seismic isolation device is not necessary, and it is considered that the installation work can be simplified. However, the structural pillar of Patent Document 3 is not questioned about the cross-sectional shape as described in paragraph [0016], and is a pillar material constituting the lower half and the upper half separated by the seismic isolation device. There is only an example using the same member. Generally, cross-H-shaped steel with an open cross section (a member that combines steel materials with an H-shaped cross section in two directions) is used for the structural column. Since it cannot be burdened, buckling stops are provided in the middle of the floor, and the depth that can be dug in one process (cycle) becomes shallow, and the number of processes increases and the work on site increases. Precast concrete structural pillars with large axial strength have been developed, but in high-rise buildings where high axial force acts, the weight of the high-rise building increases. It becomes difficult.

そこで本発明では、上記問題を解決する免震装置を備えた構真柱であって、高軸力の負担が可能で、かつ重量の増加を抑える事のできる構真柱、および、この構真柱を用いた免震建物を提供することを目的とする。   Therefore, in the present invention, there is a structural pillar provided with a seismic isolation device that solves the above-described problem, a structural pillar that can bear a high axial force and can suppress an increase in weight, and the structural pillar. The purpose is to provide a base-isolated building using columns.

上記目的を達成するための本発明に係る構真柱は、逆打ち工法で用いられる構真柱であって、地下階の本設柱を構成する閉断面を有する上半部と、基礎以深に埋設される開断面を有する下半部とを備え、前記上半部と前記下半部の間に免震装置を介装したことを特徴とする。このように、本設の躯体柱部分を中実断面部材とし、基礎や杭に埋設される部分を開断面部材で構成することで、揚重時のクレーンの負荷の増加を抑えつつ、高軸力を負担できる柱を合理的に構築することができる。   The structural pillar according to the present invention for achieving the above object is a structural pillar used in the reverse driving method, and has an upper half portion having a closed cross section constituting a permanent pillar in the basement floor, and a deeper foundation. And a lower half portion having an open cross section embedded therein, and a seismic isolation device is interposed between the upper half portion and the lower half portion. In this way, the main body column part is a solid cross-section member, and the part embedded in the foundation or pile is composed of an open cross-section member, thereby suppressing an increase in crane load during lifting, A pillar that can bear power can be reasonably constructed.

また、上記のような特徴を有する構真柱において、前記上半部は、下端にベースプレートを備えた鋼管柱で構成され、前記下半部は、上端にベースプレートを備えたクロスH形鋼柱で構成され、前記上半部には、設置後にコンクリートが充填される。このような特徴を有することによれば、上半部が負担する軸力を、免震装置を介して下半部へ、効率的に伝達することが可能となる。また、上半部は、揚重時には、その重量を抑制しつつ、設置後にコンクリートが充填されることで、軸力に対する耐性を高めることができる。   Further, in the structural pillar having the above-described features, the upper half is composed of a steel pipe column having a base plate at the lower end, and the lower half is a cross H-shaped steel column having a base plate at the upper end. Constructed, the upper half is filled with concrete after installation. With such a feature, the axial force borne by the upper half can be efficiently transmitted to the lower half via the seismic isolation device. Moreover, the upper half part can raise the tolerance with respect to an axial force by being filled with concrete after installation, suppressing the weight at the time of lifting.

また、上記のような特徴を有する構真柱において、前記下半部に接合されたベースプレートは、前記上半部に接合されたベースプレートより厚くなるように構成されている。これによって、ベースプレート内での軸力分散効果が大きくなり、下半部の支承面積(断面積)を上半部に比べて小さくしても、下半部への軸力(応力)の伝達を円滑に行うことができる。その結果、下半部の鋼材量を減らすことができ、コストダウンにつながることとなる。   Further, in the structural pillar having the above-described features, the base plate joined to the lower half is configured to be thicker than the base plate joined to the upper half. As a result, the axial force dispersion effect in the base plate is increased, and even if the bearing area (cross-sectional area) of the lower half is smaller than that of the upper half, the axial force (stress) is transmitted to the lower half. It can be done smoothly. As a result, the amount of steel in the lower half can be reduced, leading to cost reduction.

また、本発明に係る免震建物は、上記いずれかの構真柱を、エレベータが集中して配置されるコア部分に適用したことを特徴とする。これにより、エレベータが免震層を通過することがないため、レールや支持部材を地震時変形に追従させるような特殊な仕組みが必要ない。   In addition, the base-isolated building according to the present invention is characterized in that any one of the above described structural pillars is applied to a core portion where elevators are concentrated. Thus, since the elevator does not pass through the seismic isolation layer, a special mechanism for causing the rail and the support member to follow the deformation at the time of the earthquake is not necessary.

上記のような特徴を有する構真柱によれば、超高層建物を地下で免震構造にする場合でも、逆打ち工法で合理的に構築することができる。   According to the structural pillar having the above-described features, even when a super high-rise building has a base-isolated structure underground, it can be reasonably constructed by a reverse driving method.

実施形態に係る構真柱の構成を示す図である。It is a figure which shows the structure of the construction pillar based on embodiment. 実施形態に係る構真柱を用いて免震建物を構築する際の様子を示す図であり、構真柱を埋設した状態を示す図である。It is a figure which shows the mode at the time of constructing | isolating a seismic isolation building using the construction pillar based on embodiment, and is a figure which shows the state which embedded the construction pillar. 構真柱を埋設する工程を説明するための図である。It is a figure for demonstrating the process of burying a true pillar. 実施形態に係る構真柱を用いて免震建物を構築する際の様子を示す図であり、構真柱の上部に構台を設置した状態を示す図である。It is a figure which shows the mode at the time of constructing a seismic isolation building using the structural pillar based on embodiment, and is a figure which shows the state which installed the gantry in the upper part of the structural pillar. 実施形態に係る構真柱を用いて免震建物を構築する際の様子を示す図であり、地下部の掘削を終え、地下階の躯体と地上階の躯体の構築を進めた状態を示す図である。It is a figure which shows the mode at the time of constructing a base-isolated building using the structural pillar according to the embodiment, and is a diagram showing a state in which the excavation of the underground part is completed and the construction of the underground floor frame and the ground floor frame is advanced It is. 構真柱に仮固定部材を配置した状態を示す図である。It is a figure which shows the state which has arrange | positioned the temporary fixing member to the true pillar.

以下、本発明の構真柱、および免震建物に係る実施の形態について、図面を参照して詳細に説明する。なお、以下の実施形態に示す形態は、本発明を実施する上で好適な形態の一部であり、各要素の形態や構成部材については、その特性を逸脱しない限りにおいて、適宜変更することができる。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments according to the structural pillar and the seismic isolation building of the present invention will be described in detail below with reference to the drawings. In addition, the form shown in the following embodiment is a part of a preferred form for carrying out the present invention, and the form and constituent members of each element can be appropriately changed without departing from the characteristics thereof. it can.

まず、図1を参照して、本発明に係る構真柱の構成について説明する。なお、図1(A)は、構真柱の側面形態を示す図であり、同図(B)は、上半部の平面形態を示す図である。また、同図(C)は、免震装置の平面形態を示す図であり、同図(D)は、下半部の平面形態を示す図である。   First, with reference to FIG. 1, the structure of the construction pillar based on this invention is demonstrated. FIG. 1A is a diagram showing a side surface form of the stem column, and FIG. 1B is a diagram showing a planar form of the upper half part. Moreover, the figure (C) is a figure which shows the planar form of a seismic isolation apparatus, and the figure (D) is a figure which shows the planar form of a lower half part.

[構真柱の構造]
本実施形態に係る構真柱10は、上半部12と下半部16、および免震装置14を有する。上半部12は、地下階の本設柱を構成する要素であり、閉断面を有する部材により構成されている。具体的には、鋼管柱とすることができる。構真柱10の上半部12を構成する柱材をこのような部材とし、設置後にコンクリートを充填する構成とすることで、構真柱10を埋設し、地下階を掘削した後に柱の打ち替えを行う事なく本設柱を構成することが可能となる。また、揚重時の重量を抑制しつつ、設置後には、軸力に対する耐性を高めることができる。
[Structure of construction pillar]
The structural pillar 10 according to the present embodiment includes an upper half 12 and a lower half 16 and a seismic isolation device 14. The upper half 12 is an element constituting the main pillar of the basement floor, and is constituted by a member having a closed cross section. Specifically, it can be a steel pipe column. The column material that constitutes the upper half 12 of the structural pillar 10 is such a member and is configured to be filled with concrete after installation, so that the structural pillar 10 is buried, and after striking the underground floor, It becomes possible to configure the main pillar without replacement. Moreover, the resistance with respect to an axial force can be improved after installation, suppressing the weight at the time of lifting.

このような構成の上半部12には、その下端部に、ベースプレート12aが備えられている。ベースプレート12aは、平面形状が免震装置14を構成する上部プレート14aと一致、あるいは近似する形態となるように構成されている。このような構成とすることで、本設柱が負担する軸力を効率的に免震装置14に支承させることが可能となる。   The upper half 12 having such a configuration is provided with a base plate 12a at the lower end thereof. The base plate 12a is configured such that the planar shape matches or approximates the upper plate 14a constituting the seismic isolation device 14. By setting it as such a structure, it becomes possible to make the seismic isolation apparatus 14 support the axial force which this installation pillar bears efficiently.

下半部16は、基礎と、この基礎に埋設される杭(ケーシング20内にコンクリート22を充填して構成されるもの(図2参照))の中(基礎以深)に埋設される要素であり、開断面を有する部材により構成されている。具体的には、クロスH形鋼柱などを挙げることができる。構真柱10の下半部16を構成する柱材をこのような構成とすることで、構真柱10全体としての重量を低減(抑制)することができる。このため、逆打ち工法を実施する際、構真柱10を吊下した状態で揚重し、ケーシング20内に装填、埋設することが可能となる。   The lower half portion 16 is an element embedded in the foundation (pile deeper than the foundation) within a foundation and a pile embedded in the foundation (contained by filling the casing 22 with concrete 22 (see FIG. 2)). It is comprised by the member which has an open cross section. Specifically, a cross H-shaped steel column can be used. By setting the column material constituting the lower half portion 16 of the structural pillar 10 to such a configuration, the weight of the structural pillar 10 as a whole can be reduced (suppressed). For this reason, when carrying out the reverse driving method, it is possible to lift the built-up pillar 10 in a suspended state, and to load and embed it in the casing 20.

このような構成の下半部16には、その上端部に、ベースプレート16aが備えられている。ベースプレート16aは、平面形状が免震装置14を構成する下部プレート14cと一致、あるいは近似する形態となるように構成されている。このような構成とすることで、免震装置14を介して伝達される本設柱(上半部12)が負担する軸力を効率的に下半部16に伝達し、これを支承させることが可能となる。   The lower half 16 having such a configuration is provided with a base plate 16a at the upper end thereof. The base plate 16a is configured such that the planar shape matches or approximates the lower plate 14c constituting the seismic isolation device 14. By having such a configuration, the axial force borne by the main pillar (upper half 12) transmitted through the seismic isolation device 14 can be efficiently transmitted to the lower half 16 and supported. Is possible.

免震装置14は、上半部12と下半部16との間における振動の縁切りを担う要素であり、少なくとも水平方向に対する振動を縁切りすることができる要素であると良い。具体的には、積層ゴム型構造体や、すべり支承構造体、および転がり支承構造体などを挙げることができる。例えば、図1に示す例の免震装置14は、積層ゴム型構造体であり、上部プレート14aと下部プレート14cの間に積層ゴム14bが備えられている。   The seismic isolation device 14 is an element that bears the edge of vibration between the upper half 12 and the lower half 16, and may be an element that can at least edge vibration in the horizontal direction. Specific examples include a laminated rubber type structure, a sliding support structure, and a rolling support structure. For example, the seismic isolation device 14 of the example shown in FIG. 1 is a laminated rubber type structure, and a laminated rubber 14b is provided between the upper plate 14a and the lower plate 14c.

上半部12と下半部16の間に免震装置14が備えられる事により、上半部12と下半部16の断面形状やサイズが異なる場合であっても、大きな軸力の伝達を成すための緩衝領域の役割を、免震装置14に担わせることができる。   By providing the seismic isolation device 14 between the upper half 12 and the lower half 16, even when the upper half 12 and the lower half 16 have different cross-sectional shapes and sizes, a large axial force can be transmitted. The seismic isolation device 14 can be made to play the role of the buffer region for achieving.

また、本実施形態の構真柱10では、上半部12のベースプレート12aよりも下半部16のベースプレート16aの方が、その厚みが厚くなるように構成している。このような構成とすることで、ベースプレート16a内での軸力分散効果が大きくなり、下半部16を構成する開断面部材の支承面の面積(断面積)が、上半部12を構成する部材、あるいは免震装置14の下部プレート14cに比べて大幅に小さい場合であっても、下半部16への軸力(応力)の伝達を円滑に行うことができる。また、応力集中に伴い、免震装置14の下部プレート14cにダメージを与える虞も無い。   Further, in the structural pillar 10 of the present embodiment, the base plate 16a of the lower half portion 16 is configured to be thicker than the base plate 12a of the upper half portion 12. With such a configuration, the axial force dispersion effect in the base plate 16 a is increased, and the area (cross-sectional area) of the support surface of the open cross-section member constituting the lower half portion 16 constitutes the upper half portion 12. Even when the member or the lower plate 14c of the seismic isolation device 14 is significantly smaller, the axial force (stress) can be smoothly transmitted to the lower half 16. Further, there is no possibility of damaging the lower plate 14c of the seismic isolation device 14 due to the stress concentration.

[作用、効果]
このような構成の構真柱10によれば、柱に免震装置14が介装されているため、構真柱10設置後に免震装置14を設置する必要が無い。また、上半部は、地下躯体の本設柱として構成可能な柱材により構成しているため、地下階を掘削した後に、柱材の打ち替えを行う必要もない。さらに、下半部16は、開断面の鉄骨により構成しているため、構真柱10全体としての軽量化を図ることができる。これにより、構真柱10の埋設作業が容易となる。
[Action, effect]
According to the true pillar 10 having such a configuration, since the base isolation device 14 is interposed in the column, it is not necessary to install the base isolation device 14 after the base pillar 10 is installed. Moreover, since the upper half part is comprised with the pillar material which can be comprised as a permanent pillar of an underground frame, it is not necessary to replace a pillar material after excavating an underground floor. Furthermore, since the lower half part 16 is comprised with the steel frame of an open cross section, the weight reduction as the whole structure pillar 10 can be achieved. Thereby, the embedding work of the structural pillar 10 becomes easy.

また、上半部12と下半部16の間に免震装置14を介在させている事により、両者間における軸力の伝達を効率的に行うことが可能となる。   Further, since the seismic isolation device 14 is interposed between the upper half 12 and the lower half 16, it is possible to efficiently transmit the axial force between the two.

[免震建物への適用例]
次に、上記のような構成の構真柱を採用した免震建物について、図2から図5を参照して説明する。本実施形態に係る免震建物は、高層建物を構築するにあたり、エレベータが集中して配置されるコア部分に、上述した構真柱10を配置するというものである。地下階を有する高層建物において、エレベータシャフトは、地下階の躯体32から、地上階の躯体30の上部まで延設される空間である。このため、地下階と地上階との境界部に免震装置を配置した場合には、地震発生時に、地下階の躯体32と地上階の躯体30との間に位相のズレが生じ、エレベータシャフトに歪みが生ずる虞がある。このため、エレベータを構成するレールや支持部材には、地震発生時のエレベータシャフトの変形に追従させるような特殊な仕組みが必要となる。
[Example of application to seismic isolation buildings]
Next, a base-isolated building that employs a structural pillar having the above-described configuration will be described with reference to FIGS. In constructing a high-rise building, the seismic isolated building according to the present embodiment is such that the above-described structural pillar 10 is arranged in a core portion where elevators are concentrated and arranged. In a high-rise building having a basement floor, the elevator shaft is a space extending from the basement housing 32 to the upper part of the ground basement 30. For this reason, when the seismic isolation device is arranged at the boundary between the underground floor and the ground floor, a phase shift occurs between the underground floor housing 32 and the ground floor housing 30 when an earthquake occurs, and the elevator shaft There is a risk of distortion. For this reason, the rail and support member which comprise an elevator require a special mechanism which makes it follow the deformation | transformation of the elevator shaft at the time of the occurrence of an earthquake.

本実施形態のように、エレベータシャフトの下端となる部分に免震装置14を配置することで、エレベータシャフトは、地上階の躯体と同様に免震効果を得ることができ、地震発生時のダメージを軽減することができる。よって、上記のような特殊な仕組みも必要なくなる。   By arranging the seismic isolation device 14 at the lower end of the elevator shaft as in the present embodiment, the elevator shaft can obtain the seismic isolation effect in the same manner as the chassis on the ground floor, and damage when an earthquake occurs. Can be reduced. Therefore, the special mechanism as described above is not necessary.

このような構成の免震建物は、逆打ち工法を採用して構築する場合、例えば次のように上記実施形態に係る構真柱を適用すれば良い。まず、図2に示すように、地中に構真柱10を埋設する。構真柱10の埋設は、通常の逆打ち工法と同様に行うことができる。具体的には、図3(A)に示すように、ケーシング20を地中に打ち込み、内部を掘削する。次に、図3(B)に示すように、図示しない鉄筋を配してケーシング20内にコンクリート22を充填した杭穴に構真中10を挿入し、コンクリート22の硬化を待つ(図3(C))。コンクリート22が硬化した後、構真柱10の座屈を防止するため、図3(D)に示すように、ケーシング20内を埋め戻す。   When the seismic isolation building having such a configuration is constructed by adopting the reverse driving method, for example, the structural pillar according to the above-described embodiment may be applied as follows. First, as shown in FIG. 2, the true pillar 10 is buried in the ground. The embedding of the structural pillar 10 can be performed in the same manner as a normal reverse driving method. Specifically, as shown in FIG. 3A, the casing 20 is driven into the ground and the inside is excavated. Next, as shown in FIG. 3 (B), a reinforcing bar (not shown) is arranged, and the construction medium 10 is inserted into the pile hole filled with the concrete 22 in the casing 20, and the concrete 22 is awaited to be cured (FIG. 3 (C). )). After the concrete 22 is hardened, the inside of the casing 20 is refilled as shown in FIG.

ここで、図2中破線Aで示すコア部以外の部位に埋設する構真柱10aは、免震装置14を備えない通常の構真柱とすれば良い。   Here, the structural pillar 10 a embedded in a portion other than the core portion indicated by the broken line A in FIG. 2 may be a normal structural pillar that does not include the seismic isolation device 14.

次に、図4に示すように、構真柱10,10aの上部に、1階部分の床を構成する梁、床面を構築し、構台24を構成する。ここで、コア部以外の部位に埋設した構真柱10aの上端(地上階の躯体との境界部分)には、免震装置14を配置し、構台24は、免震装置14の上部に位置するように構成する。構台24を構成した後、地上階の躯体30の構築を進めると共に、地下階の躯体32を構築するための掘削作業を行う。   Next, as shown in FIG. 4, beams and floor surfaces constituting the floor of the first floor portion are constructed on the upper part of the structural pillars 10 and 10 a to constitute the gantry 24. Here, the seismic isolation device 14 is arranged at the upper end of the structural pillar 10a embedded in a portion other than the core portion (boundary portion with the frame on the ground floor), and the gantry 24 is positioned above the seismic isolation device 14. To be configured. After constructing the gantry 24, the construction of the ground floor housing 30 is advanced, and excavation work for constructing the underground floor housing 32 is performed.

地下階の掘削作業は、図5に示すように、構真柱10に設けられた免震装置14が露出し、下半部16が基礎に埋設された状態となるように行われ、免震装置14の上部にコアとなる躯体32aを構築する。このような方法で免震建物40を構築する場合、構真柱10を構成する下半部16と上半部12の間に配置した免震装置14に対し、図6に示すような仮固定部材18を設置した状態で、構真柱10の埋設を行うと良い。   As shown in FIG. 5, excavation work on the basement floor is performed so that the seismic isolation device 14 provided in the structural pillar 10 is exposed and the lower half 16 is embedded in the foundation. A housing 32a serving as a core is constructed on the upper part of the device. When the seismic isolation building 40 is constructed by such a method, temporary fixing as shown in FIG. 6 is performed on the seismic isolation device 14 disposed between the lower half portion 16 and the upper half portion 12 constituting the structural pillar 10. It is preferable to bury the structural pillar 10 in a state where the member 18 is installed.

仮固定部材18は、下半部16と上半部12が水平方向に相対的にズレる事を防止すると共に、構真柱10を吊下した際、自重、および下半部12の重量により、免震装置14が垂直方向に延びる事を防止する役割を担う。このため、仮固定部材18を備えることで、実施形態に係る構真柱10を吊下した状態で揚重し、ケーシング20内に挿入したとしても、上半部12と下半部16にズレが生じたり、免震装置14に引っ張り荷重が加わる事による悪影響が生じる虞が無い。   The temporary fixing member 18 prevents the lower half portion 16 and the upper half portion 12 from being displaced relative to each other in the horizontal direction, and when the stem 10 is suspended, due to its own weight and the weight of the lower half portion 12, It plays a role of preventing the seismic isolation device 14 from extending in the vertical direction. For this reason, by providing the temporary fixing member 18, even when the structural pillar 10 according to the embodiment is lifted in a suspended state and inserted into the casing 20, the upper half 12 and the lower half 16 are displaced. There is no possibility that an adverse effect will occur due to the occurrence of a tensile load on the seismic isolation device 14.

上記実施形態に係る構真柱10を用いて逆打ち工法を実施し、免震建物40を構築することによれば、構真柱10の荷重の受け替え等が不要となり、免震装置14の設置を容易化することができる。また、免震装置14に軸力が負荷された状態で工事が進むため、荷重を受け替える方法に比べてゴム部の圧縮に伴う急激な沈下のリスクが少ない。   According to the construction of the seismic isolation building 40 by carrying out the reverse driving method using the structural pillar 10 according to the above embodiment, it is not necessary to replace the load of the structural pillar 10, and the seismic isolation device 14 Installation can be facilitated. In addition, since the construction proceeds in a state where the seismic isolation device 14 is loaded with an axial force, the risk of abrupt settlement due to the compression of the rubber portion is less than a method of changing the load.

10,10a………構真柱、12………上半部、12a………ベースプレート、14………免震装置、14a………上部プレート、14b………積層ゴム、14c………下部プレート、16………下半部、16a………ベースプレート、18………仮固定部材、20………ケーシング、22………コンクリート、24………構台、30………躯体、32………躯体、32a………躯体、40………免震建物。 10, 10a ......... structural pillar, 12 ... upper half, 12a ... base plate, 14 seismic isolation device, 14a ... upper plate, 14b ... laminated rubber, 14c ... Lower plate, 16 ......... Lower half, 16a ......... Base plate, 18 ......... Temporary fixing member, 20 ......... Case, 22 ......... Concrete, 24 ...... Gantry, 30 ...... Housing, 32 ……… Housing, 32a ……… Housing, 40 ……… Seismic isolation building.

Claims (4)

逆打ち工法で用いられる構真柱であって、
地下階の本設柱を構成する閉断面を有する上半部と、
基礎以深に埋設される開断面を有する下半部とを備え、
前記上半部と前記下半部の間に免震装置を介装したことを特徴とする構真柱。
It is a structural pillar used in the reverse driving method,
An upper half having a closed cross-section constituting the main pillar of the basement,
A lower half portion having an open cross section buried deeper than the foundation,
A structural pillar comprising a seismic isolation device interposed between the upper half and the lower half.
前記上半部は、下端にベースプレートを備えた鋼管柱で構成され、
前記下半部は、上端にベースプレートを備えたクロスH形鋼柱で構成され、
前記上半部には、設置後にコンクリートが充填されることを特徴とする請求項1に記載の構真柱。
The upper half is composed of a steel pipe column with a base plate at the lower end,
The lower half is composed of a cross H-shaped steel column having a base plate at the upper end,
The construction pillar according to claim 1, wherein the upper half is filled with concrete after installation.
前記下半部に接合されたベースプレートは、前記上半部に接合されたベースプレートより厚いことを特徴とする請求項2に記載の構真柱。   The base column according to claim 2, wherein the base plate joined to the lower half is thicker than the base plate joined to the upper half. 請求項1乃至請求項3のいずれか1項に記載の構真柱を、エレベータが集中して配置されるコア部分に適用したことを特徴とする免震建物。   A seismic isolation building, wherein the structural pillar according to any one of claims 1 to 3 is applied to a core portion where elevators are concentrated.
JP2018045970A 2018-03-13 2018-03-13 Structural columns and seismically isolated buildings Active JP7106305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018045970A JP7106305B2 (en) 2018-03-13 2018-03-13 Structural columns and seismically isolated buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018045970A JP7106305B2 (en) 2018-03-13 2018-03-13 Structural columns and seismically isolated buildings

Publications (2)

Publication Number Publication Date
JP2019157508A true JP2019157508A (en) 2019-09-19
JP7106305B2 JP7106305B2 (en) 2022-07-26

Family

ID=67995892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018045970A Active JP7106305B2 (en) 2018-03-13 2018-03-13 Structural columns and seismically isolated buildings

Country Status (1)

Country Link
JP (1) JP7106305B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111270700A (en) * 2020-02-21 2020-06-12 青岛理工大学 Steel-wood combined shock insulation pad foundation and mounting method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1130053A (en) * 1997-07-10 1999-02-02 Shimizu Corp Construction method of seismic isolation building
JP2000291031A (en) * 1999-04-07 2000-10-17 Toda Constr Co Ltd Construction method of seismic isolation structure
JP2007063853A (en) * 2005-08-31 2007-03-15 Takenaka Komuten Co Ltd Technique for transmitting supporting reaction of additional wall
JP2013159986A (en) * 2012-02-06 2013-08-19 Taisei Corp True pillar
JP2014020116A (en) * 2012-07-18 2014-02-03 Taisei Corp Pile concrete placing method
JP2014218862A (en) * 2013-05-10 2014-11-20 株式会社大林組 Method and system for adjusting plumbing of inverted support

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1130053A (en) * 1997-07-10 1999-02-02 Shimizu Corp Construction method of seismic isolation building
JP2000291031A (en) * 1999-04-07 2000-10-17 Toda Constr Co Ltd Construction method of seismic isolation structure
JP2007063853A (en) * 2005-08-31 2007-03-15 Takenaka Komuten Co Ltd Technique for transmitting supporting reaction of additional wall
JP2013159986A (en) * 2012-02-06 2013-08-19 Taisei Corp True pillar
JP2014020116A (en) * 2012-07-18 2014-02-03 Taisei Corp Pile concrete placing method
JP2014218862A (en) * 2013-05-10 2014-11-20 株式会社大林組 Method and system for adjusting plumbing of inverted support

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111270700A (en) * 2020-02-21 2020-06-12 青岛理工大学 Steel-wood combined shock insulation pad foundation and mounting method thereof
CN111270700B (en) * 2020-02-21 2021-09-03 青岛理工大学 Steel-wood combined shock insulation pad foundation and mounting method thereof

Also Published As

Publication number Publication date
JP7106305B2 (en) 2022-07-26

Similar Documents

Publication Publication Date Title
KR101070426B1 (en) Improved Underpinning Method Using the micro pile
JP5285254B2 (en) Rebuilding method
KR100967497B1 (en) Method for constructing an underground structure
CN100357554C (en) Method for supporting and replacing bed plate foundation
JP5038170B2 (en) How to rebuild a structure
JP2001311314A (en) Existing building seismic isolation method
JP2000352296A (en) Method o constructing passage just under underground structure
JP2017214722A (en) Construction method of base structure, and base structure
JP5465086B2 (en) Construction method of underground structure
JP7338119B2 (en) Floating control structure and reversed construction method
JP7106305B2 (en) Structural columns and seismically isolated buildings
JP5367452B2 (en) Underground wall construction method and underground wall body
JP4228308B2 (en) Reinforcement method for existing floors and seismic isolation method for existing buildings
JP3807113B2 (en) Construction method of seismic isolation structure
JP5852475B2 (en) Pile foundation reconstruction method
JP6710999B2 (en) Temporary receiving method for existing structures
JP5316897B2 (en) Seismic isolation method
JP4624867B2 (en) Seismic isolation repair method for existing buildings
JP7193065B2 (en) Reverse construction method
JP6534026B2 (en) Seismic isolation building and its construction method
JP2017186760A (en) Pile foundation structure
JP2008303587A (en) Top-down construction method for base-isolated building
JP4546357B2 (en) A method to renovate the underfloor part of the projecting frame of an existing structure
JP6000414B2 (en) Pile foundation reconstruction method and pile foundation structure
JP7565256B2 (en) How to rebuild a building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220713

R150 Certificate of patent or registration of utility model

Ref document number: 7106305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150