[go: up one dir, main page]

JP2019156719A - Method of uniformly dispersing mineral into granulated powder - Google Patents

Method of uniformly dispersing mineral into granulated powder Download PDF

Info

Publication number
JP2019156719A
JP2019156719A JP2018041007A JP2018041007A JP2019156719A JP 2019156719 A JP2019156719 A JP 2019156719A JP 2018041007 A JP2018041007 A JP 2018041007A JP 2018041007 A JP2018041007 A JP 2018041007A JP 2019156719 A JP2019156719 A JP 2019156719A
Authority
JP
Japan
Prior art keywords
powder
granulated
mineral
chelating agent
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018041007A
Other languages
Japanese (ja)
Other versions
JP7240700B2 (en
Inventor
振一 宮下
Shinichi Miyashita
振一 宮下
和三 稲垣
Kazumi Inagaki
和三 稲垣
智子 有賀
Tomoko Ariga
智子 有賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2018041007A priority Critical patent/JP7240700B2/en
Publication of JP2019156719A publication Critical patent/JP2019156719A/en
Application granted granted Critical
Publication of JP7240700B2 publication Critical patent/JP7240700B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

【課題】噴霧乾燥法等による造粒において、ミネラルを造粒粉末に均一に分散できる技術の提供。
【解決手段】造粒の基材粉末とミネラル元素の無機塩又は無機酸塩とキレート剤とを水溶媒に添加し、混合・撹拌して得られた混合液を原料溶液として用いて造粒を行うことにより、ミネラル含量が均一な造粒粉末を得る、造粒粉末へのミネラル分散方法。特に、造粒の基材粉末を水溶媒に分散させて水分散液とする第一工程;該水分散液にミネラル元素の無機塩又は無機酸塩を混合し、前記基材粉末並びに無機塩又は無機酸塩が均一分散した混合液とする第二工程;該混合液にキレート剤を添加し、弱酸性〜弱アルカリ性条件にて撹拌する第三工程;該混合液を原料溶液として用いて造粒を行うことにより、ミネラル含量が均一な造粒粉末を得る第四工程を有する方法。
【選択図】図1
The present invention provides a technique capable of uniformly dispersing minerals in a granulated powder in granulation by a spray drying method or the like.
A granulated base powder, a mineral element inorganic salt or an inorganic acid salt, and a chelating agent are added to an aqueous solvent, mixed and stirred, and the mixture is used as a raw material solution for granulation. A method for dispersing minerals in the granulated powder, wherein a granulated powder having a uniform mineral content is obtained. In particular, a first step in which a granulated base powder is dispersed in an aqueous solvent to form an aqueous dispersion; an inorganic salt or inorganic acid salt of a mineral element is mixed in the aqueous dispersion, and the base powder and the inorganic salt or Second step of preparing a mixed solution in which inorganic acid salt is uniformly dispersed; Third step of adding a chelating agent to the mixed solution and stirring under weakly acidic to weakly alkaline conditions; Granulation using the mixed solution as a raw material solution A method having a fourth step of obtaining a granulated powder having a uniform mineral content by performing
[Selection] Figure 1

Description

本発明は、食品製造及び製剤製造の技術分野に関し、具体的には、ミネラルを補給するサプリメントもしくは製剤を、噴霧乾燥法等の造粒法によって製造する技術に関する。   The present invention relates to the technical fields of food production and pharmaceutical preparation, and specifically relates to a technique for producing a supplement or pharmaceutical supplemented with minerals by a granulation method such as spray drying.

3大栄養素であるタンパク質、脂質及び炭水化物(糖質)にビタミン及びミネラルを加えた5大栄養素は、身体の機能維持や成長に必要不可欠である。これらの栄養素のうち、微量栄養素であるビタミン及びミネラルの大部分は生体内で合成することができないため、飲食物を通じて摂取する必要がある。
代表的なミネラル元素である鉄、銅及び亜鉛は、生体内での存在量が微量(体重1 g当たり1μg〜100μg程度)である微量金属元素に含まれるが、必須性が認められており、生体内では主にタンパク質との結合体として酸化還元反応などに関与している。
これらの元素は、摂取量が不足することによって貧血、皮膚障害、骨形成異常などを引き起こすため、これらが不足する場合には、これらを主成分とするサプリメント又は製剤の摂取によって不足分を補うことが行われている。例えば、鉄欠乏性貧血及び鉄不応性・銅欠乏性貧血については、それぞれ鉄剤、銅添加流動食の摂取による治療効果が報告されている。また、亜鉛欠乏時にみられる皮膚障害、創傷治癒遅延及び味覚障害については、亜鉛サプリメント又は製剤の摂取による治療効果が報告されている。
The five macronutrients, which are vitamins and minerals added to proteins, lipids and carbohydrates (carbohydrates), which are the three macronutrients, are essential for the maintenance and growth of the body's functions. Among these nutrients, most of the vitamins and minerals, which are micronutrients, cannot be synthesized in vivo and must be taken through food and drink.
Typical mineral elements such as iron, copper, and zinc are contained in trace metal elements whose abundance in the living body is very small (about 1 μg to 100 μg per 1 g body weight), but their essentiality has been recognized. In vivo, it is mainly involved in redox reactions as a conjugate with proteins.
These elements cause anemia, skin disorders, bone dysplasia, etc. due to insufficient intake. If these elements are insufficient, supplement with supplements or preparations based on these ingredients. Has been done. For example, for iron deficiency anemia and iron refractory / copper deficiency anemia, the therapeutic effects of intake of iron preparations and copper-added liquid food have been reported, respectively. In addition, regarding skin disorders, wound healing delays and taste disorders observed at the time of zinc deficiency, the therapeutic effect by ingestion of zinc supplements or preparations has been reported.

サプリメント及び製剤の形態としては、主に散剤、顆粒剤、錠剤(タブレット又は打錠とも呼ばれる)、カプセル剤等が挙げられ、これらは、原料特性及び用途を考慮して選択される。
これらは、混合法又は造粒法によって調製された粉末又は顆粒から製造される。例えば、散剤や顆粒剤の場合は、上記粉末や顆粒をそのまま用いることもできる。一方、錠剤やカプセル剤は、上記方法により調製された粉末や顆粒に対して、さらに適宜徐放成分を添加して打錠する、徐放膜で被覆する等の、放出抑制を目的とした剤形処理を施すことによって製造される。
Examples of supplements and preparations include powders, granules, tablets (also referred to as tablets or tableting), capsules, and the like, and these are selected in consideration of raw material characteristics and applications.
These are produced from powders or granules prepared by mixing or granulating methods. For example, in the case of powders and granules, the powders and granules can be used as they are. On the other hand, tablets and capsules are agents intended to control release, such as tableting with a sustained release component added to the powders and granules prepared by the above method, and coating with a sustained release film. Manufactured by applying shape treatment.

混合法は、V型混合機などを用いて複数種の粉末又は顆粒を混合する方法であり、この方法により調製された粉末・顆粒は、一般に粒子径が不均一になりやすいという特徴がある。
一方、造粒法は、粉末又は顆粒を加工することで成形性を高める方法であり、乾式顆粒圧縮法及び湿式顆粒圧縮法に大別される。
乾式顆粒圧縮法には、ローラコンパクタを用いた圧縮・破壊造粒法などがあり、湿式顆粒圧縮法には、撹拌造粒法、転動造粒法、押し出し造粒法、流動層造粒法、噴霧造粒法などがある。これらの方法は、調製した粉末・顆粒の粒子径及び形状(球状)を均一化できるという特徴があり、なかでも、試料処理速度及び微粒子化という点では噴霧造粒法が最も優れている。
代表的な噴霧造粒法である噴霧乾燥法(スプレー乾燥法)は、一般に水、有機溶媒又はそれらの混合液を溶媒とする液体原料、又は、該液体原料に賦形剤として働く粉末(以下、基材粉末と呼ぶ)を混合して得られた混合液(溶液又は懸濁液)をスプレー噴霧し、噴霧液滴を熱風乾燥することによって生成した粉末を捕集する方法である。前記基材粉末としては、例えば、でんぷん、セルロースなどが用いられる。現在、噴霧乾燥法は、製剤、電池・電子部品材料、成形加工材料及び食品の製造において、乾燥、微粒子化、非晶質化、凝集化又はマイクロカプセル化の用途で用いられている。
The mixing method is a method of mixing a plurality of types of powders or granules using a V-type mixer or the like, and powders and granules prepared by this method are generally characterized in that the particle diameter tends to be non-uniform.
On the other hand, the granulation method is a method of improving moldability by processing powder or granules, and is roughly classified into a dry granule compression method and a wet granule compression method.
Dry granule compression methods include compression and fracture granulation methods using a roller compactor, and wet granule compression methods include stirring granulation method, rolling granulation method, extrusion granulation method, fluidized bed granulation method. And spray granulation. These methods are characterized in that the particle diameter and shape (spherical shape) of the prepared powder / granules can be made uniform, and among them, the spray granulation method is most excellent in terms of sample processing speed and fine particle formation.
A spray drying method (spray drying method), which is a typical spray granulation method, is generally a liquid raw material using water, an organic solvent or a mixture thereof as a solvent, or a powder (hereinafter referred to as an excipient) for the liquid raw material. This is a method of collecting a powder produced by spray spraying a mixed solution (solution or suspension) obtained by mixing a base powder) and drying the spray droplets with hot air. Examples of the base powder include starch and cellulose. At present, the spray drying method is used for the production of preparations, battery / electronic component materials, molding materials, and foods for drying, microparticulation, amorphization, agglomeration, or microencapsulation.

噴霧乾燥法などの造粒法によって得られた造粒粉末からミネラルを含むサプリメント又は製剤を製造する場合、生体が摂取すべきミネラル量が微小であることから、ミネラル成分を基材粉末とともに造粒する必要があるが、その際、造粒粉末におけるミネラル含量の均一性確保が課題となる。すなわち、造粒粉末におけるミネラル含量が均一でないと、当該粉末の所定量をそのまま、あるいは錠剤化ないしカプセル剤化したサプリメント又は製剤の所定量に含まれるミネラル含量が不均一となり、これを摂取することにより、生体に微量の所定量のミネラル成分を補給することが困難となる。   When manufacturing supplements or preparations containing minerals from granulated powder obtained by a granulation method such as spray drying, the amount of minerals to be ingested by the living body is very small. In this case, ensuring the uniformity of the mineral content in the granulated powder becomes an issue. In other words, if the mineral content in the granulated powder is not uniform, the mineral content contained in the prescribed amount of the supplement or preparation tableted or encapsulated as it is, or ingested as it is, is taken. This makes it difficult to supply a small amount of a predetermined amount of mineral components to the living body.

噴霧乾燥法により、原料粉末に特定の元素の化合物を混合した水分散液又はスラリーを噴霧乾燥することで、前記原料粉末に前記元素を分散させる技術として、特許文献1〜5が挙げられる。例えば、特許文献1は、セラミック原料粉末の水分散液に特定の元素(マグネシウム、マンガン、ストロンチウムなど)の化合物を1種以上混合し、噴霧乾燥することによって、前記元素が粉末表面に均一分散した造粒粉末が得られることを開示している。
しかしながら、特許文献1は、セラミック原料粉末以外の粉末を用いた場合について全く記載しておらず、マグネシウム及びマンガン以外のミネラル元素(鉄、銅、亜鉛など)の分散状態について言及していない。特許文献2〜5は、特定の元素を含む原料粉末を適宜バインダー粉末とともに混合した水分散液又はスラリーを噴霧乾燥し、適宜加圧成型後に焼成することによって、目的とする複合金属酸化物焼結体が得られることを開示しているが、前記噴霧乾燥によって得られた造粒粉末における元素の分散状態については全く言及していない。
Patent Documents 1 to 5 can be cited as techniques for dispersing the element in the raw material powder by spray drying an aqueous dispersion or slurry obtained by mixing a raw material powder with a compound of a specific element by a spray drying method. For example, in Patent Document 1, one or more compounds of specific elements (magnesium, manganese, strontium, etc.) are mixed in an aqueous dispersion of ceramic raw material powder, and the elements are uniformly dispersed on the powder surface by spray drying. It discloses that a granulated powder is obtained.
However, Patent Document 1 does not describe the case where a powder other than the ceramic raw material powder is used, and does not mention the dispersion state of mineral elements (iron, copper, zinc, etc.) other than magnesium and manganese. In Patent Documents 2 to 5, the desired composite metal oxide sintering is performed by spray-drying an aqueous dispersion or slurry obtained by mixing a raw material powder containing a specific element together with a binder powder as appropriate, and firing it after appropriate pressure molding. Although it is disclosed that a body is obtained, there is no mention of the element dispersion state in the granulated powder obtained by spray drying.

特開2003−342077号公報JP 2003-342077 A 特開2002−316052号公報JP 2002-316052 A 特開2003−300719号公報JP 2003-300719 A 特開2005−330589号公報JP 2005-330589 A 特開2009−298655号公報JP 2009-298655 A

本発明は、噴霧乾燥法等による造粒において、ミネラルを造粒粉末に均一に分散する新たな方法を提供することを課題とする。   This invention makes it a subject to provide the new method of disperse | distributing a mineral uniformly to granulated powder in granulation by a spray drying method etc.

本発明者らは、前記課題を解決すべく鋭意検討した結果、噴霧乾燥法による造粒において、噴霧乾燥前の基材粉末の水分散液にミネラル及びキレート剤を混合させることにより、造粒後の粉末に特定のミネラルを均一に分散させることができることを見出した。
具体的には、本発明者らは、基材粉末である可溶性でんぷん粉末の水分散液に各種ミネラル成分金属の無機塩溶液を混合・撹拌し、これにさらにカルボキシル基を有する各種キレート剤を添加・撹拌することにより混合液を得、これを噴霧乾燥することにより得られた複数個の造粒粉末について、各種ミネラル成分の含有量の相対標準偏差(RSD)を調べたところ、キレート剤としてクエン酸塩を用いた場合は、鉄、銅、及び亜鉛について、キレート剤を用いない場合に比べてRSDが大幅に減少し、銅及び亜鉛については、システイン塩、及びヒスチジン塩においてもRSDが減少し、銅については、リンゴ酸塩、及び酒石酸塩を用いた場合においてもRSDが大幅に減少すること、また、それ以外のミネラル成分についても、用いるキレート剤の種類に応じてRSDが変化し、多くのミネラル成分について、適切なキレート剤を用いることでRSDを減少させることができることを見出した。
本発明者らは、さらに、基材粉末、ミネラル成分、及びキレート剤を水溶媒に添加、混合・撹拌して混合液を作成する際の手順を変更し、当該手順の変更が造粒後の粉末におけるミネラル成分の分散状況に与える影響を検討した。
本発明は、本発明者らによるこれらの知見に基づいてなされたものである。
As a result of diligent studies to solve the above problems, the inventors of the present invention have made it possible to mix minerals and chelating agents in an aqueous dispersion of a base powder before spray drying in granulation by spray drying. It has been found that a specific mineral can be uniformly dispersed in the powder.
Specifically, the present inventors mixed and stirred an inorganic salt solution of various mineral component metals in an aqueous dispersion of soluble starch powder as a base powder, and added various chelating agents having a carboxyl group to this.・ A mixture was obtained by stirring, and the relative standard deviation (RSD) of the contents of various mineral components was examined for a plurality of granulated powders obtained by spray drying. When using acid salts, RSD was significantly reduced for iron, copper, and zinc compared to when no chelating agent was used, and for copper and zinc, RSD was also decreased for cysteine salts and histidine salts. For copper, RSD is greatly reduced even when malate and tartrate are used, and for other mineral components, the type of chelating agent used Flip RSD is changed, the number of minerals, found that it is possible to reduce the RSD by using appropriate chelator.
The inventors further added a base powder, a mineral component, and a chelating agent to an aqueous solvent, changed the procedure when preparing a mixed solution by mixing and stirring, and the change in the procedure is performed after granulation. The effect of the mineral components in the powder on the dispersion status was examined.
The present invention has been made based on these findings by the present inventors.

上述のキレート剤を添加したことにより生じる効果は、基材粉末分散液にミネラル成分の溶液を混合し、キレート剤を添加して得られた混合溶液において、キレート剤の影響によりミネラル成分が基材粉末とより均一に混合されることによって生じるものと考えられる。
したがって、上記効果は、噴霧乾燥により造粒された造粒粉末に限らず、同様の混合溶液を用いて行う造粒方法、例えば、噴霧造粒法によるマイクロカプセル化法(例えば、上記混合液を固定液とし、これに膜材液の噴霧液滴を滴下する手法、あるいは、上記混合液を芯材液とし、膜材液で包み込みながら噴霧する手法)によって得られるマイクロカプセル化された造粒粉末をはじめ、その他の湿式造粒法(撹拌造粒法、転動造粒法、押し出し造粒法、流動層造粒法など)による造粒粉末においても、同様の混合溶液を用いる限り、同様に得られることが、合理的に予測される。
The effect produced by adding the above-mentioned chelating agent is that the mineral component is mixed with the base material powder dispersion, and the mineral component is mixed with the base material due to the influence of the chelating agent in the mixed solution obtained by adding the chelating agent. This is considered to be caused by more uniform mixing with the powder.
Therefore, the above-mentioned effect is not limited to the granulated powder granulated by spray drying, but also a granulation method performed using a similar mixed solution, for example, a microencapsulation method by the spray granulation method (for example, the above mixed liquid A microencapsulated granulated powder obtained by a technique of dropping a spray droplet of a film material liquid onto the fixing liquid, or a technique of spraying the mixed liquid as a core material liquid and wrapping with the film material liquid) As well as granulated powders by other wet granulation methods (stirring granulation method, rolling granulation method, extrusion granulation method, fluidized bed granulation method, etc.), as long as the same mixed solution is used, the same It is reasonably expected to be obtained.

すなわち、この出願は、以下の発明を提供するものである。
〈1〉造粒の基材粉末とミネラル元素の無機塩又は無機酸塩とキレート剤とを水溶媒に添加し、混合・撹拌して得られた混合液を原料溶液として用いて造粒を行うことにより、ミネラル含量が均一な造粒粉末を得ることを特徴とする、造粒粉末へのミネラル分散方法。
〈2〉造粒の基材粉末を水溶媒に分散させて水分散液とする第一工程、第一工程終了後の水分散液にミネラル元素の無機塩又は無機酸塩を混合し、前記基材粉末並びに無機塩又は無機酸塩が均一分散した混合液とする第二工程、第二工程終了後の混合液にキレート剤を添加し、弱酸性〜弱アルカリ性条件にて撹拌する第三工程、第三工程終了後の混合液を原料溶液として用いて造粒を行うことにより、ミネラル含量が均一な造粒粉末を得る第四工程を有することを特徴とする、〈1〉に記載の造粒粉末へのミネラル分散方法。
〈3〉造粒の基材粉末を水溶媒に分散させて水分散液とする第一工程、第一工程終了後の水分散液にミネラル元素の無機塩又は無機酸塩、及びキレート剤を添加し、弱酸性〜弱アルカリ性条件にて撹拌する第二工程、第二工程終了後の混合液を原料溶液として用いて造粒を行うことにより、ミネラル含量が均一な造粒粉末を得る第三工程を有することを特徴とする、〈1〉に記載の造粒粉末へのミネラル分散方法。
〈4〉キレート剤が、金属イオンの配位子として働くカルボキシル基が一つ以上ある有機酸塩又はアミノ酸塩であることを特徴とする、〈1〉〜〈3〉のいずれかに記載の方法。
〈5〉ミネラル元素が鉄、銅、及び/又は亜鉛であり、キレート剤がクエン酸塩であることを特徴とする、〈1〉〜〈3〉のいずれかに記載の方法。
〈6〉ミネラル元素が銅、及び/又は亜鉛であり、キレート剤がシステイン塩、又はヒスチジン塩であることを特徴とする、〈1〉〜〈3〉のいずれかに記載の方法。
〈7〉ミネラル元素が銅であり、キレート剤がリンゴ酸塩、又は酒石酸塩であることを特徴とする、〈1〉〜〈3〉のいずれかに記載の方法。
〈8〉噴霧乾燥法により造粒を行うことを特徴とする、〈1〉〜〈7〉のいずれかに記載の方法。
That is, this application provides the following invention.
<1> Granulation is performed using a mixed liquid obtained by adding a granulated base powder, an inorganic salt or mineral acid salt of a mineral element, and a chelating agent to a water solvent and mixing and stirring as a raw material solution. A method for dispersing minerals in a granulated powder, characterized in that a granulated powder having a uniform mineral content is obtained.
<2> The first step of dispersing the granulated base powder in an aqueous solvent to obtain an aqueous dispersion, and mixing the inorganic salt or inorganic acid salt of the mineral element in the aqueous dispersion after the completion of the first step, The second step, which is a mixed solution in which the material powder and the inorganic salt or inorganic acid salt are uniformly dispersed, the third step of adding a chelating agent to the mixed solution after completion of the second step and stirring under weakly acidic to weakly alkaline conditions, The granulation according to <1>, characterized by having a fourth step of obtaining a granulated powder having a uniform mineral content by performing granulation using the mixed solution after completion of the third step as a raw material solution. Mineral dispersion method in powder.
<3> Add the inorganic salt or inorganic acid salt of a mineral element and a chelating agent to the aqueous dispersion after the completion of the first process, in which the granulated base powder is dispersed in an aqueous solvent to form an aqueous dispersion. The second step of stirring under weakly acidic to weakly alkaline conditions, the third step of obtaining a granulated powder having a uniform mineral content by granulating using the mixed solution after the completion of the second step as a raw material solution The mineral dispersion method in the granulated powder as described in <1> characterized by having.
<4> The method according to any one of <1> to <3>, wherein the chelating agent is an organic acid salt or amino acid salt having one or more carboxyl groups that act as ligands for metal ions. .
<5> The method according to any one of <1> to <3>, wherein the mineral element is iron, copper, and / or zinc, and the chelating agent is citrate.
<6> The method according to any one of <1> to <3>, wherein the mineral element is copper and / or zinc, and the chelating agent is a cysteine salt or a histidine salt.
<7> The method according to any one of <1> to <3>, wherein the mineral element is copper and the chelating agent is malate or tartrate.
<8> The method according to any one of <1> to <7>, wherein granulation is performed by a spray drying method.

本発明によれば、噴霧乾燥法等による造粒時に、ミネラルを造粒粉末に均一に分散させることができる。
これにより、微小量のミネラル成分を均一に含む当該造粒粉末からなる、あるいはこれを所定量用いて錠剤、カプセル剤等に加工された、サプリメントないし製剤を規定量摂取することで、微小な規定量のミネラル成分を適確かつ容易に摂取することができる。
According to the present invention, minerals can be uniformly dispersed in the granulated powder during granulation by spray drying or the like.
As a result, by taking a prescribed amount of supplements or preparations consisting of the granulated powder uniformly containing a minute amount of mineral components or processed into tablets, capsules, etc. using a predetermined amount of this, a minute amount is prescribed. The amount of mineral components can be taken accurately and easily.

実施例において本発明の造粒に用いた噴霧乾燥機の模式図。The schematic diagram of the spray dryer used for the granulation of this invention in the Example.

本発明は、造粒の基材粉末とミネラル元素の無機塩又は無機酸塩とキレート剤とを水溶媒に添加し、混合・撹拌して得られた混合液を原料溶液として用いて造粒を行うことにより、ミネラル含量が均一な造粒粉末を得ることを特徴とする、造粒粉末へのミネラル分散方法を内容とするものである。
本発明者らは、後述する実施例に示すとおり、造粒の原料溶液となる上記混合液の作成手順が相違する、いくつかの態様について、本発明の効果を確認している。
以下、本発明の造粒粉末へのミネラル分散方法を、その具体的態様ごとに詳細に説明する。
The present invention adds granulated base powder, mineral element inorganic salt or inorganic acid salt and a chelating agent to an aqueous solvent, and mixes and agitates the mixture to obtain a granulation. It is intended to obtain a method for dispersing minerals in the granulated powder, which is characterized by obtaining a granulated powder having a uniform mineral content.
As shown in Examples described later, the present inventors have confirmed the effects of the present invention with respect to several aspects in which the preparation procedure of the above mixed liquid that becomes a raw material solution for granulation is different.
Hereinafter, the mineral dispersion | distribution method to the granulated powder of this invention is demonstrated in detail for every specific aspect.

本発明の第一の態様は、以下の第一工程から第四工程に分けて説明することができる。
第一工程は、造粒の基材粉末を水溶媒に分散させて水分散液とする工程である。
前記基材粉末としては、例えば、でんぷん、可溶性でんぷん、糖類(麦芽糖、乳糖など)、糖アルコール(還元麦芽糖、ソルビトールなど)、セルロース又はその誘導体が使用できるが、可溶性でんぷんが好適である。前記可溶性デンプンは、α-グルコースの重合体であるでんぷんから重合度を落として可溶化したものであり、市販試薬の可溶性でんぷん(溶性でんぷん又はでんぷん(溶性)とも呼ばれる)が使用できる。
前記基材粉末の添加濃度としては、終濃度4質量%程度が好ましい。なお、第一工程においては、前記基材粉末が前記水分散液中で均一分散していなくても問題はない。
The 1st aspect of this invention can be divided and demonstrated to the following 4th processes from the 1st process.
The first step is a step of dispersing the granulated base powder in an aqueous solvent to obtain an aqueous dispersion.
Examples of the base powder include starch, soluble starch, saccharides (malt sugar, lactose, etc.), sugar alcohols (reduced malt sugar, sorbitol, etc.), cellulose, and derivatives thereof, and soluble starch is preferred. The soluble starch is obtained by reducing the degree of polymerization from starch, which is a polymer of α-glucose, and a commercially available soluble starch (also called soluble starch or starch (soluble)) can be used.
The additive concentration of the base powder is preferably about 4% by mass final concentration. In the first step, there is no problem even if the base powder is not uniformly dispersed in the aqueous dispersion.

本発明の上記態様の第二工程は、第一工程終了後の水分散液にミネラル元素の無機塩又は無機酸塩を混合し、前記基材粉末並びに無機塩又は無機酸塩が均一分散した混合液とする工程である。
前記ミネラル元素としては、鉄、銅、亜鉛などの微量金属元素が好適である。前記無機塩又は無機酸塩としては、水溶液中で前記微量金属元素のイオン(一価〜三価のカチオン又はオキソアニオン)を生成する無機金属塩が好適である。
前記無機塩又は無機酸塩の添加濃度としては、元素としての終濃度が10μg/L〜670μg/L程度が好ましい。
前記基材粉末並びに無機塩又は無機酸塩を均一分散させるための撹拌には、マグネチックスターラーが使用できる。
In the second step of the above aspect of the present invention, the inorganic dispersion or inorganic acid salt of the mineral element is mixed in the aqueous dispersion after completion of the first step, and the base powder and the inorganic salt or inorganic acid salt are uniformly dispersed. It is the process of making a liquid.
As the mineral element, trace metal elements such as iron, copper, and zinc are suitable. As the inorganic salt or inorganic acid salt, an inorganic metal salt that generates ions (monovalent to trivalent cations or oxoanions) of the trace metal element in an aqueous solution is preferable.
As the additive concentration of the inorganic salt or inorganic acid salt, the final concentration as an element is preferably about 10 μg / L to 670 μg / L.
A magnetic stirrer can be used for stirring to uniformly disperse the base powder and the inorganic salt or inorganic acid salt.

本発明の上記態様の第三工程は、第二工程終了後の混合液にキレート剤を添加し、弱酸性〜弱アルカリ性条件にて撹拌する工程である。
前記キレート剤としては、金属イオンの配位子として働くカルボキシル基(COOH基)が一つ以上ある有機酸塩又はアミノ酸塩が好適である。具体的には、食品添加物として使用可能な可食有機酸塩であるクエン酸塩、リンゴ酸塩及び酒石酸塩、並びに、可食アミノ酸塩であるシステイン塩及びヒスチジン塩が使用でき、より好ましくはクエン酸塩である。
添加濃度としては、終濃度0.8質量%程度が好ましい。前記キレート剤添加後の混合液のpHとしては、3.0以上、9.0以下が好ましく、該pH条件での混合液の撹拌時間としては、1時間程度が好ましい。
The 3rd process of the said aspect of this invention is a process of adding a chelating agent to the liquid mixture after completion | finish of a 2nd process, and stirring on weakly acidic-weakly alkaline conditions.
As the chelating agent, an organic acid salt or amino acid salt having one or more carboxyl groups (COOH groups) acting as ligands for metal ions is preferable. Specifically, citrate, malate and tartrate, which are edible organic acid salts that can be used as food additives, and cysteine salt and histidine salt, which are edible amino acid salts, can be used, more preferably Citrate.
As the addition concentration, a final concentration of about 0.8% by mass is preferable. The pH of the mixed solution after addition of the chelating agent is preferably 3.0 or more and 9.0 or less, and the stirring time of the mixed solution under the pH condition is preferably about 1 hour.

本発明の上記態様の第四工程は、第三工程終了後の混合液を原料溶液として用いて造粒し、ミネラル含量が均一な造粒粉末を得る工程である。
造粒法としては、例えば噴霧乾燥法を用いることができる。噴霧乾燥に用いる噴霧乾燥機としては、水分蒸発能力0.5kg/h〜1.0kg/h及び試料処理速度100mL/h〜600mL/hを有するラボスケールの噴霧乾燥機が好適である。また、スプレー噴霧用ノズルとしては、ノズル孔径0.7mm及び供給ガス流量200L/h〜1000L/hを有する2流体ノズルが好適である。前記噴霧乾燥の際の乾燥塔温度としては、入口温度190℃、出口温度90℃〜100℃が好ましい。また、得られる造粒粉末の平均粒子径としては、2μm〜25μmが好ましい。ここで平均粒子径は、例えば、エアロトラックLDSA-SPR(日機装株式会社製)などのレーザー回折式粒子径分布測定装置によって測定できる。
なお、かかる噴霧乾燥によって得られる造粒粉末は、噴霧乾燥過程で非晶質化されているため、前記基材粉末と比べて水への溶解性に優れる。
The 4th process of the said aspect of this invention is a process of granulating using the liquid mixture after completion | finish of a 3rd process as a raw material solution, and obtaining the granulated powder with a uniform mineral content.
As the granulation method, for example, a spray drying method can be used. As the spray dryer used for spray drying, a lab scale spray dryer having a water evaporation capacity of 0.5 kg / h to 1.0 kg / h and a sample processing speed of 100 mL / h to 600 mL / h is suitable. As the spray nozzle, a two-fluid nozzle having a nozzle hole diameter of 0.7 mm and a supply gas flow rate of 200 L / h to 1000 L / h is suitable. As the drying tower temperature during the spray drying, an inlet temperature of 190 ° C and an outlet temperature of 90 ° C to 100 ° C are preferable. Moreover, as an average particle diameter of the granulated powder obtained, 2 micrometers-25 micrometers are preferable. Here, the average particle size can be measured by a laser diffraction particle size distribution measuring device such as Aerotrack LDSA-SPR (manufactured by Nikkiso Co., Ltd.).
In addition, since the granulated powder obtained by this spray drying is amorphized in the spray drying process, it is excellent in solubility in water as compared with the base powder.

本発明の第二の態様は、以下の第一工程から第三工程に分けて説明することができる。
この態様の第一工程は、上記第一の態様と同じく、造粒の基材粉末を水溶媒に分散させて水分散液とする工程である。
用いる基材粉末の種類、添加濃度等は、第一の態様と同様である。
この態様の第二工程は、第一工程終了後の水分散液にミネラル元素の無機塩又は無機酸塩、及びキレート剤を添加し、弱酸性〜弱アルカリ性条件にて撹拌する工程である。
用いるミネラル元素の無機塩又は無機酸塩の種類及び添加量、並びに、キレート剤の種類および添加量は、第一の態様と同様である。
ミネラル元素の無機塩又は無機酸塩、及びキレート剤は、第一工程終了後の水分散液に同時に添加してもよく、逐次的に添加してもよい。逐次的に添加する場合、第一の態様のようにミネラル元素の無機塩又は無機酸塩を添加した時点で水分散液を混合し、基材粉末並びに無機塩又は無機酸塩が均一分散した混合液とすることなく、直ちに、キレート剤を添加する。
前記キレート剤添加後の混合液のpHとしては、3.0以上、9.0以下が好ましく、該pH条件での混合液の撹拌時間としては、1時間程度が好ましい。
この態様の第三工程は、第二工程終了後の混合液を原料溶液として用いて造粒し、ミネラル含量が均一な造粒粉末を得る工程である。
造粒方法は、第一の態様と同様である。
後述する実施例3に示すとおり、第二の態様によれば、第一の態様と比べて少ない工程で、第一の態様にほぼ匹敵するミネラルの分散効果を得ることができる。
The 2nd aspect of this invention can be divided and demonstrated to the following 3rd processes from the 1st process.
The first step of this embodiment is a step of dispersing the granulated base powder in an aqueous solvent to obtain an aqueous dispersion, as in the first embodiment.
The kind of base powder to be used, the addition concentration, etc. are the same as in the first embodiment.
The second step of this embodiment is a step of adding an inorganic salt or inorganic acid salt of a mineral element and a chelating agent to the aqueous dispersion after completion of the first step, and stirring under weakly acidic to weakly alkaline conditions.
The kind and addition amount of the inorganic salt or inorganic acid salt of the mineral element to be used, and the kind and addition amount of the chelating agent are the same as in the first embodiment.
The inorganic salt or inorganic acid salt of the mineral element and the chelating agent may be added simultaneously to the aqueous dispersion after completion of the first step, or may be added sequentially. When adding sequentially, the aqueous dispersion is mixed when the inorganic salt or inorganic acid salt of the mineral element is added as in the first aspect, and the base powder and the inorganic salt or inorganic acid salt are uniformly dispersed. Immediately add chelating agent without liquid.
The pH of the mixed solution after addition of the chelating agent is preferably 3.0 or more and 9.0 or less, and the stirring time of the mixed solution under the pH condition is preferably about 1 hour.
The third step of this embodiment is a step of granulating using the mixed solution after the completion of the second step as a raw material solution to obtain a granulated powder having a uniform mineral content.
The granulation method is the same as in the first embodiment.
As shown in Example 3 to be described later, according to the second aspect, it is possible to obtain a mineral dispersion effect that is substantially comparable to the first aspect with fewer steps than the first aspect.

本発明のその他の態様としては、(1)第一工程において、水溶媒にミネラル元素の無機塩又は無機酸塩、及びキレート剤を同時、又は逐次的に添加し、第二工程において、これに造粒の基材粉末を添加して、十分に撹拌し、第三工程で、これを造粒する態様、(2)第一工程において、水溶媒にミネラル元素の無機塩又は無機酸塩を添加し、第二工程において、これに造粒の基材粉末を添加し、第三工程において、これにキレート剤を添加して、十分に撹拌し、第四工程で、これを造粒する態様、及び、(3)第一工程において、水溶媒にキレート剤を添加し、第二工程において、これに造粒の基材粉末を添加し、第三工程において、これにミネラル元素の無機塩又は無機酸塩を添加して、十分に撹拌し、第四工程で、これを造粒する態様が挙げられる。
これらの態様によるミネラルの分散効果は、一部のミネラル成分を除いて第一の態様よりも劣るものの、多くのミネラル成分において、キレート剤を用いない場合と比べて優れた分散効果が得られる。
As another aspect of the present invention, (1) In the first step, an inorganic salt or inorganic acid salt of a mineral element and a chelating agent are added simultaneously or sequentially to an aqueous solvent, and in the second step, A mode of adding granulated base powder, stirring sufficiently, and granulating this in the third step, (2) In the first step, adding an inorganic salt or inorganic acid salt of mineral element to the aqueous solvent In the second step, the granulated base powder is added thereto, in the third step, the chelating agent is added thereto, and the mixture is sufficiently stirred, and in the fourth step, the granulation is performed, (3) In the first step, a chelating agent is added to the aqueous solvent, in the second step, granulated base powder is added thereto, and in the third step, an inorganic salt or inorganic element of mineral element is added thereto. A mode in which an acid salt is added, sufficiently stirred, and granulated in the fourth step. And the like.
Although the mineral dispersion effect according to these embodiments is inferior to that of the first embodiment except for some mineral components, an excellent dispersion effect can be obtained in many mineral components as compared with the case where no chelating agent is used.

以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.

実施例1
噴霧乾燥時に基材粉末となる可溶性でんぷん粉末(10g)を終濃度が4質量%になるよう水溶媒(約230mL)に分散させ、水分散液とした。
これに、塩化ナトリウム溶液、炭酸カルシウム溶液及び二クロム酸カリウム溶液、並びに、マグネシウム、マンガン、鉄、銅、亜鉛及びセレンの硝酸塩溶液(いずれもJCSS対応金属標準液:関東化学株式会社製)の混合希釈液を添加し、それぞれの元素としての終濃度がナトリウム100μg/L、マグネシウム540μg/L、カルシウム45μg/L、クロム20μg/L、マンガン500μg/L、鉄10μg/L、銅160μg/L、亜鉛670μg/L、セレン20μg/Lとした後、固形浮遊物が視認できなくなるまで撹拌した。
これに、キレート剤としてクエン酸三ナトリウム二水和物粉末(2g)を終濃度が0.8質量%になるよう添加し、pHを6.9とした後、水溶媒により250mLに定容し、1時間撹拌した。
得られた混合液は、撹拌した状態で、日本ビュッヒ株式会社製の噴霧乾燥機(製品名:B290)によって噴霧乾燥した。その際、混合液のスプレー噴霧には2流体ノズル(ノズル孔径0.7mm)を使用し、噴霧液滴の乾燥には水溶媒用ガラス乾燥塔を使用した。また、造粒粉末の回収には接線流入型サイクロン式捕集容器を使用した。噴霧乾燥条件は、入口温度190℃、出口温度92℃〜98℃、送液量10mL/min、除湿装置通過後の空気流量35m3/h、噴霧ガス(窒素)流量600L/hとした。得られた造粒粉末(7.8g〜8.5g)は、出発粉末(可溶性でんぷん粉末及びクエン酸塩粉末)からの回収率が65質量%〜70質量%、平均粒子径が15.3μm(水分散時)、残留水分量が6.8質量%であった。
得られた造粒粉末から5個の副試料、各0.5gを分取し、マイクロ波試料分解装置を用いた高温加圧酸分解による溶液化を行った後、誘導結合プラズマ質量分析装置(ICP-MS)を用いて各元素濃度を定量し、造粒粉末における元素分布の均一性を評価した。
その結果、表1に示すとおり、5個の副試料間での元素濃度のRSDはナトリウム0.70%、マグネシウム0.20%、カルシウム1.1%、クロム0.78%、マンガン0.69%、鉄3.6%、銅1.1%、亜鉛0.79%、セレン0.95%であった。当該RSD値のうち、マグネシウム、鉄、銅、及び亜鉛の値は、前記クエン酸塩の添加なしで噴霧乾燥した場合よりも小さい値であり、クエン酸塩を用いない場合のRSD値と比べて、マグネシウム濃度で3.8分の1、鉄濃度で1.9分の1、銅濃度で2.6分の1、亜鉛濃度で2.8分の1の値に相当する。
このことから、クエン酸塩を用いることにより、得られた造粒粉末は、上記特定のミネラル成分について、ミネラル含量の均一性が向上したといえる。
Example 1
Soluble starch powder (10 g), which becomes a base powder during spray drying, was dispersed in an aqueous solvent (about 230 mL) so that the final concentration was 4% by mass to obtain an aqueous dispersion.
This is mixed with sodium chloride solution, calcium carbonate solution and potassium dichromate solution, and nitrate solution of magnesium, manganese, iron, copper, zinc and selenium (all JCSS compatible metal standard solutions: manufactured by Kanto Chemical Co., Inc.) Diluted solution added, final concentration of each element as sodium 100μg / L, magnesium 540μg / L, calcium 45μg / L, chromium 20μg / L, manganese 500μg / L, iron 10μg / L, copper 160μg / L, zinc After adjusting to 670 μg / L and selenium 20 μg / L, the mixture was stirred until no solid suspended matter was visible.
To this, trisodium citrate dihydrate powder (2 g) was added as a chelating agent so that the final concentration was 0.8% by mass, the pH was adjusted to 6.9, and the volume was adjusted to 250 mL with an aqueous solvent, and stirred for 1 hour. did.
The obtained liquid mixture was spray-dried with a spray dryer (product name: B290) manufactured by Nihon Büch Corporation while stirring. At that time, a two-fluid nozzle (nozzle hole diameter 0.7 mm) was used for spraying the mixed liquid, and a glass drying tower for an aqueous solvent was used for drying the spray droplets. In addition, a tangential inflow cyclone type collection container was used for collecting the granulated powder. The spray drying conditions were an inlet temperature of 190 ° C., an outlet temperature of 92 ° C. to 98 ° C., a liquid feed rate of 10 mL / min, an air flow rate of 35 m 3 / h after passing through a dehumidifier, and a spray gas (nitrogen) flow rate of 600 L / h. The resulting granulated powder (7.8 g to 8.5 g) has a recovery rate from the starting powder (soluble starch powder and citrate powder) of 65 mass% to 70 mass% and an average particle size of 15.3 μm (when dispersed in water) ), The residual water content was 6.8% by mass.
Five sub-samples, 0.5g each, were collected from the resulting granulated powder, and after making a solution by high-temperature pressure acid decomposition using a microwave sample decomposition apparatus, an inductively coupled plasma mass spectrometer (ICP -MS) was used to quantify the concentration of each element, and the uniformity of the element distribution in the granulated powder was evaluated.
As a result, as shown in Table 1, the RSD of the element concentration between the five sub-samples is 0.70% sodium, 0.20% magnesium, 1.1% calcium, 0.78% chromium, 0.69% manganese, 3.6% iron, 1.1% copper, They were 0.79% zinc and 0.95% selenium. Among the RSD values, the values of magnesium, iron, copper, and zinc are smaller values than when spray-dried without the addition of the citrate, and compared to the RSD value when citrate is not used. This corresponds to a value of 1 / 3.8 for the magnesium concentration, 1 / 1.9 for the iron concentration, 1 / 2.6 for the copper concentration, and 1 / 2.8 for the zinc concentration.
From this, it can be said that by using citrate, the obtained granulated powder has improved the uniformity of the mineral content with respect to the specific mineral component.

Figure 2019156719
Figure 2019156719

実施例2
第三工程で添加するキレート剤として、クエン酸三ナトリウム二水和物の代わりにL(-)-リンゴ酸ナトリウム、(+)-酒石酸ナトリウム、L-システイン塩酸塩一水和物又はL-ヒスチジン塩酸塩一水和物を用いた以外は実施例1と同様に、造粒用の原料混合液を調製し、噴霧乾燥法により造粒を行った。
得られた造粒粉末(7.7g〜8.2g)は、出発粉末(可溶性でんぷん粉末及び有機酸塩粉末又はアミノ酸塩粉末)からの回収率が64質量%〜68質量%、平均粒子径が14.0μm〜17.6μm(水分散時)、残留水分量が7.3質量%〜7.8質量%であった。
得られた造粒粉末から3個の副試料、各0.5gを分取し、マイクロ波試料分解装置を用いた高温加圧酸分解による溶液化を行った後、ICP-MSを用いて各元素濃度を定量し、造粒粉末における元素分布の均一性を評価した。
その結果、表2に示すとおり、3個の副試料間での元素濃度のRSDは、用いた有機酸塩又はアミノ酸塩に応じて、ナトリウム0.14%〜2.7%、マグネシウム0.25%〜1.7%、カルシウム0.27%〜1.6%、クロム0.20%〜2.0%、マンガン0.80%〜2.5%、鉄7.2%〜10.8%、銅0.07%〜2.1%、亜鉛1.2%〜11.3%、セレン0.68%〜1.7%の範囲で変化した。
当該RSD値のうち、以下の有機酸塩又はアミノ酸塩を用いた場合の以下のミネラル成分濃度については、当該有機酸塩又はアミノ酸塩粉末の添加なしで噴霧乾燥した場合と比べて、より小さい値となった:すなわち、リンゴ酸を用いた場合のRSD値は、用いない場合のRSD値と比べて、マグネシウム濃度で3分の1、銅濃度で17分の1の値に相当し、酒石酸を用いた場合、ナトリウム濃度で4.9分の1、マグネシウム濃度で2.2分の1、カルシウム濃度で2.9分の1、銅濃度で41分の1の値に相当し、システイン塩酸塩を用いた場合、銅濃度で2.1分の1、亜鉛濃度で1.8分の1の値に相当し、ヒスチジン塩酸塩を用いた場合、銅濃度で1.4分の1、亜鉛濃度で1.7分の1の値に相当する。
このことから、これらの有機酸塩又はアミノ酸塩を用いることにより、得られた造粒粉末は、上記特定のミネラル成分について、ミネラル含量の均一性が向上したといえる。
Example 2
As chelating agent added in the third step, L (-)-sodium malate, (+)-sodium tartrate, L-cysteine hydrochloride monohydrate or L-histidine instead of trisodium citrate dihydrate A raw material mixture for granulation was prepared in the same manner as in Example 1 except that hydrochloride monohydrate was used, and granulation was performed by a spray drying method.
The resulting granulated powder (7.7 g to 8.2 g) has a recovery rate from the starting powder (soluble starch powder and organic acid salt powder or amino acid salt powder) of 64% by mass to 68% by mass and an average particle size of 14.0 μm. ˜17.6 μm (when dispersed in water) and residual water content was 7.3% by mass to 7.8% by mass.
Three sub-samples, 0.5 g each, were collected from the resulting granulated powder, dissolved in high-temperature pressure acid decomposition using a microwave sample decomposition device, and then each element was measured using ICP-MS. The concentration was quantified and the uniformity of element distribution in the granulated powder was evaluated.
As a result, as shown in Table 2, the RSD of the element concentration among the three sub-samples is 0.14% to 2.7% sodium, 0.25% to 1.7% magnesium, and calcium according to the organic acid salt or amino acid salt used. In the range of 0.27% to 1.6%, chromium 0.20% to 2.0%, manganese 0.80% to 2.5%, iron 7.2% to 10.8%, copper 0.07% to 2.1%, zinc 1.2% to 11.3%, selenium 0.68% to 1.7% changed.
Among the RSD values, the following mineral component concentrations when using the following organic acid salt or amino acid salt are smaller than those when spray drying without adding the organic acid salt or amino acid salt powder. In other words, the RSD value when malic acid was used was equivalent to 1/3 of the magnesium concentration and 1/17 of the copper concentration, compared to the RSD value when malic acid was not used. When used, this corresponds to a sodium concentration of 4.9, magnesium concentration of 2.2, calcium concentration of 2.9, and copper concentration of 41. The concentration corresponds to a value of 2.1 / zinc, and the zinc concentration corresponds to a value of 1/1. When histidine hydrochloride is used, the copper concentration corresponds to a value of 1/1. 4 and the zinc concentration corresponds to a value of 1 / 1.7.
From this, it can be said that by using these organic acid salt or amino acid salt, the obtained granulated powder has improved uniformity of mineral content with respect to the specific mineral component.

Figure 2019156719
Figure 2019156719

実施例3
造粒用の原料混合液を作成する手順を変えた以外は実施例1と同様に、造粒用の原料混合液を調製し、噴霧乾燥法により造粒を行った。変更した手順を、実施例1における手順とともに、以下に示す。
Example 3
A raw material mixture for granulation was prepared in the same manner as in Example 1 except that the procedure for preparing the raw material mixture for granulation was changed, and granulated by a spray drying method. The changed procedure is shown below together with the procedure in the first embodiment.

Figure 2019156719
なお、この実施例においては、キレート剤として、実施例1と同様に、クエン酸三ナトリウム二水和物を用いている。
これらの手順により調製した原料混合液を噴霧乾燥することにより得られた各造粒粉末から5個の副試料、各0.5gを分取し、マイクロ波試料分解装置を用いた高温加圧酸分解による溶液化を行った後、ICP-MSを用いて各元素濃度を定量し、造粒粉末における元素分布の均一性を評価した。
その結果を、実施例1の結果と併せて、表4に示す。表4に示すとおり、5個の副試料間での元素濃度のRSDは、造粒用の混合液を作成する手順に応じて、ナトリウム0.68%〜4.7%、マグネシウム0.20 %〜0.77%、カルシウム0.64%〜1.9%、マンガン0.69%〜1.5%、鉄3.6%〜11.6%、銅0.57%〜1.4%、亜鉛0.79%〜1.5%の範囲で変化した。
当該RSD値のうち、以下の混合液作成手順を用いた場合の以下のミネラル成分濃度のRSD値については、実施例1の混合液作成手順を用いた場合と匹敵する値、あるいは、より小さい値となった:すなわち、検討パターン(1)の手順で混合液を作成した場合の鉄、銅、および亜鉛の濃度のRSD値は、実施例1の混合液作成手順を用いた場合のRSD値と比べて、鉄濃度で0.97分の1、銅濃度で1.0分の1、亜鉛濃度で0.72分の1であり、実施例1の混合液作成手順を用いた場合とほぼ匹敵した。また、検討パターン(2)の手順で混合液を作成した場合の銅、検討パターン(3)の手順で混合液を作成した場合のカルシウム、並びに、検討パターン(4)の手順で混合液を作成した場合のカルシウム、および銅の濃度のRSD値は、実施例1の混合液作成手順を用いた場合のRSD値と比べて、それぞれ1.7分の1、1.6分の1、1.7分の1、および1.9分の1であった。
これらのことから、上記手順で混合液を作成することにより、得られた造粒粉末は、上記特定のミネラル成分について、実施例1と匹敵し、あるいは、それを上回り、ミネラル含量の均一性が向上したといえる。
また、上記RSD値のうち、以下の混合液作成手順を用いた場合の以下のミネラル成分濃度のRSD値については、実施例1の混合液作成手順においてクエン酸塩を用いなかった場合より小さい値となった:検討パターン(1)の手順で混合液を作成した場合の鉄、銅、および亜鉛、検討パターン(2)の手順で混合液を作成した場合のマグネシウム、銅、および亜鉛、検討パターン(3)の手順で混合液を作成した場合のマグネシウム、カルシウム、銅、および亜鉛、並びに、検討パターン(4)の手順で混合液を作成した場合のマグネシウム、カルシウム、銅、および亜鉛。
これらのことから、上記手順で混合液を作成することにより、得られた造粒粉末は、上記特定のミネラル成分について、実施例1の混合液作成手順においてクエン酸塩を用いなかった場合よりも、ミネラル含量の均一性が向上したといえる。
Figure 2019156719
In this example, trisodium citrate dihydrate was used as the chelating agent, as in Example 1.
Five sub-samples and 0.5 g each were collected from each granulated powder obtained by spray-drying the raw material mixture prepared by these procedures, and subjected to high-temperature pressure acid decomposition using a microwave sample decomposition device After the solution was made by the method, the concentration of each element was quantified using ICP-MS, and the uniformity of the element distribution in the granulated powder was evaluated.
The results are shown in Table 4 together with the results of Example 1. As shown in Table 4, the RSD of the element concentration between the five sub-samples is 0.68% to 4.7% sodium, 0.20% to 0.77% magnesium, 0.64% calcium, depending on the procedure for preparing the mixture for granulation. It varied in the range of% ~ 1.9%, manganese 0.69% ~ 1.5%, iron 3.6% ~ 11.6%, copper 0.57% ~ 1.4%, zinc 0.79% ~ 1.5%.
Among the RSD values, the RSD value of the following mineral component concentration when using the following mixed liquid preparation procedure is a value comparable to or smaller than that when using the mixed liquid preparation procedure of Example 1. In other words, the RSD values of the iron, copper, and zinc concentrations when the mixed solution was prepared by the procedure of the examination pattern (1) are the same as the RSD values when the mixed solution preparing procedure of Example 1 was used. In comparison, the iron concentration was 0.97 / 1, the copper concentration was 1 / 1.0, and the zinc concentration was 0.72 and was almost comparable to the case of using the mixed liquid preparation procedure of Example 1. Also, copper when the mixed solution is prepared by the procedure of the examination pattern (2), calcium when the mixed solution is prepared by the procedure of the examination pattern (3), and the mixed solution by the procedure of the examination pattern (4) The RSD values of the calcium and copper concentrations when compared with the RSD values when using the mixed liquid preparation procedure of Example 1 are respectively 1.7 / 1, 1.6 / 1, 1.7 / 1, and It was 1 / 1.9.
From these facts, the granulated powder obtained by preparing the mixed solution by the above procedure is comparable to or exceeding Example 1 with respect to the specific mineral component, and the uniformity of the mineral content is It can be said that it has improved.
In addition, among the RSD values described above, the RSD value of the following mineral component concentration when using the following mixed liquid preparation procedure is smaller than that when citrate is not used in the mixed liquid preparation procedure of Example 1. It became: Iron, copper, and zinc when the mixed solution was prepared by the procedure of the examination pattern (1), magnesium, copper, and zinc when the mixed solution was prepared by the procedure of the examination pattern (2), the examination pattern Magnesium, calcium, copper, and zinc when the mixed solution is prepared by the procedure of (3), and magnesium, calcium, copper, and zinc when the mixed solution is prepared by the procedure of the examination pattern (4).
From these things, the granulated powder obtained by preparing a liquid mixture in the above procedure is more specific than the case where citrate was not used in the liquid mixture preparation procedure of Example 1 for the specific mineral component. It can be said that the uniformity of the mineral content has been improved.

Figure 2019156719
Figure 2019156719

本発明の造粒粉末へのミネラル分散技術は、噴霧乾燥法等による造粒を基本とした食品製造及び製剤製造においてミネラルを均一に分散できるため、ミネラル成分を含む一般食品(健康補助食品、栄養補助食品、栄養調整食品及び栄養療法食品を含む)、保健機能食品(特定保健用食品、栄養機能食品及び機能性表示食品)及び特別用途食品の製造、並びに、医薬品又は農薬の固形製剤(固体分散体製剤)の製造への利用が可能である。   The mineral dispersion technology in the granulated powder according to the present invention can uniformly disperse minerals in food production and preparation production based on granulation by spray drying or the like, so that general foods containing mineral components (health supplements, nutrition Manufacture of supplementary foods, nutrition-adjusted foods and nutritional therapy foods, health functional foods (special health foods, nutritional functional foods and functional labeling foods) and special-purpose foods, and solid preparations of pharmaceuticals or agricultural chemicals (solid dispersion) It can be used for the production of body preparations.

Claims (8)

造粒の基材粉末とミネラル元素の無機塩又は無機酸塩とキレート剤とを水溶媒に添加し、混合・撹拌して得られた混合液を原料溶液として用いて造粒を行うことにより、ミネラル含量が均一な造粒粉末を得ることを特徴とする、造粒粉末へのミネラル分散方法。   By adding granulated base powder, mineral element inorganic salt or inorganic acid salt and chelating agent to an aqueous solvent, mixing and stirring the mixture solution as a raw material solution, A method for dispersing minerals in a granulated powder, comprising obtaining a granulated powder having a uniform mineral content. 造粒の基材粉末を水溶媒に分散させて水分散液とする第一工程、第一工程終了後の水分散液にミネラル元素の無機塩又は無機酸塩を混合し、前記基材粉末並びに無機塩又は無機酸塩が均一分散した混合液とする第二工程、第二工程終了後の混合液にキレート剤を添加し、弱酸性〜弱アルカリ性条件にて撹拌する第三工程、第三工程終了後の混合液を原料溶液として用いて造粒を行うことにより、ミネラル含量が均一な造粒粉末を得る第四工程を有することを特徴とする、請求項1に記載の造粒粉末へのミネラル分散方法。   First step of making granulated base powder dispersed in aqueous solvent to form aqueous dispersion, mixing inorganic salt or inorganic acid salt of mineral element in aqueous dispersion after completion of first step, The second step, which is a mixed solution in which inorganic salt or inorganic acid salt is uniformly dispersed, the third step, the third step of adding a chelating agent to the mixed solution after completion of the second step, and stirring under weakly acidic to weakly alkaline conditions The granulated powder according to claim 1, comprising a fourth step of obtaining a granulated powder having a uniform mineral content by performing granulation using the mixed liquid after completion as a raw material solution. Mineral dispersion method. 造粒の基材粉末を水溶媒に分散させて水分散液とする第一工程、第一工程終了後の水分散液にミネラル元素の無機塩又は無機酸塩、及びキレート剤を添加し、弱酸性〜弱アルカリ性条件にて撹拌する第二工程、第二工程終了後の混合液を原料溶液として用いて造粒を行うことにより、ミネラル含量が均一な造粒粉末を得る第三工程を有することを特徴とする、請求項1に記載の造粒粉末へのミネラル分散方法。   1st step of dispersing granulated base powder in aqueous solvent to make aqueous dispersion, adding mineral element inorganic salt or inorganic acid salt and chelating agent to aqueous dispersion after completion of first step, weakening The second step of stirring under acidic to weakly alkaline conditions, and the third step of obtaining a granulated powder having a uniform mineral content by performing granulation using the mixed solution after completion of the second step as a raw material solution The method for dispersing minerals in the granulated powder according to claim 1. キレート剤が、金属イオンの配位子として働くカルボキシル基が一つ以上ある有機酸塩又はアミノ酸塩であることを特徴とする、請求項1〜3のいずれか一項に記載の方法。   The method according to any one of claims 1 to 3, wherein the chelating agent is an organic acid salt or amino acid salt having one or more carboxyl groups acting as ligands for metal ions. ミネラル元素が鉄、銅及び/又は亜鉛であり、キレート剤がクエン酸塩であることを特徴とする、請求項1〜3のいずれか一項に記載の方法。   The method according to claim 1, wherein the mineral element is iron, copper and / or zinc and the chelating agent is citrate. ミネラル元素が銅、及び/又は亜鉛であり、キレート剤がシステイン塩、又はヒスチジン塩であることを特徴とする、請求項1〜3のいずれか一項に記載の方法。   The method according to any one of claims 1 to 3, wherein the mineral element is copper and / or zinc, and the chelating agent is a cysteine salt or a histidine salt. ミネラル元素が銅であり、キレート剤がリンゴ酸塩、又は酒石酸塩であることを特徴とする、請求項1〜3のいずれか一項に記載の方法。   The method according to claim 1, wherein the mineral element is copper and the chelating agent is malate or tartrate. 噴霧乾燥法により造粒を行うことを特徴とする、請求項1〜7のいずれか一項に記載の方法。   The method according to claim 1, wherein the granulation is performed by a spray drying method.
JP2018041007A 2018-03-07 2018-03-07 How to evenly disperse minerals in granulated powder Active JP7240700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018041007A JP7240700B2 (en) 2018-03-07 2018-03-07 How to evenly disperse minerals in granulated powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018041007A JP7240700B2 (en) 2018-03-07 2018-03-07 How to evenly disperse minerals in granulated powder

Publications (2)

Publication Number Publication Date
JP2019156719A true JP2019156719A (en) 2019-09-19
JP7240700B2 JP7240700B2 (en) 2023-03-16

Family

ID=67995619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018041007A Active JP7240700B2 (en) 2018-03-07 2018-03-07 How to evenly disperse minerals in granulated powder

Country Status (1)

Country Link
JP (1) JP7240700B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116138351A (en) * 2021-11-23 2023-05-23 万华化学集团股份有限公司 Amino acid metal chelate mixture and preparation method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053753A (en) * 1990-11-28 1993-01-14 Morinaga Milk Ind Co Ltd Milk composition for food allergies
JPH0789722A (en) * 1993-08-30 1995-04-04 Merck Patent Gmbh Photo stabilization of titanium dioxide sol
JPH0930978A (en) * 1995-07-19 1997-02-04 Snow Brand Milk Prod Co Ltd Tight junction formation promoter
US20020037316A1 (en) * 2000-05-10 2002-03-28 Weers Jeffry G. Phospholipid-based powders for drug delivery
JP2002306968A (en) * 2001-04-13 2002-10-22 Mitsubishi Rayon Co Ltd Method for preparing composite oxide catalyst for vapor phase ammonium oxidation reaction
CN102604120A (en) * 2012-02-29 2012-07-25 福州大学 Method for preparing lignin sulfonate dispersing agent by using two-step oxidization method
CN104512907A (en) * 2013-09-26 2015-04-15 湖南理工学院 NaY zeolite containing porous material with high silicon/aluminum ratio and preparation method thereof
JP2016208992A (en) * 2010-12-02 2016-12-15 株式会社明治 Brownish-discoloration-prevented lactic food and process for production thereof
JP2017018002A (en) * 2015-07-07 2017-01-26 株式会社Mizkan Holdings Seasoning for stew, method for cooking stew and seasoning for cooked dish
JP2017095357A (en) * 2015-11-18 2017-06-01 太陽化学株式会社 Agent for inhibiting germination of heat-resistant spore-forming bacteria
CN107176799A (en) * 2017-05-25 2017-09-19 成都新柯力化工科技有限公司 A kind of graphene crystallizes the active masterbatch of waterproof and preparation method certainly

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053753A (en) * 1990-11-28 1993-01-14 Morinaga Milk Ind Co Ltd Milk composition for food allergies
JPH0789722A (en) * 1993-08-30 1995-04-04 Merck Patent Gmbh Photo stabilization of titanium dioxide sol
JPH0930978A (en) * 1995-07-19 1997-02-04 Snow Brand Milk Prod Co Ltd Tight junction formation promoter
US20020037316A1 (en) * 2000-05-10 2002-03-28 Weers Jeffry G. Phospholipid-based powders for drug delivery
JP2002306968A (en) * 2001-04-13 2002-10-22 Mitsubishi Rayon Co Ltd Method for preparing composite oxide catalyst for vapor phase ammonium oxidation reaction
JP2016208992A (en) * 2010-12-02 2016-12-15 株式会社明治 Brownish-discoloration-prevented lactic food and process for production thereof
CN102604120A (en) * 2012-02-29 2012-07-25 福州大学 Method for preparing lignin sulfonate dispersing agent by using two-step oxidization method
CN104512907A (en) * 2013-09-26 2015-04-15 湖南理工学院 NaY zeolite containing porous material with high silicon/aluminum ratio and preparation method thereof
JP2017018002A (en) * 2015-07-07 2017-01-26 株式会社Mizkan Holdings Seasoning for stew, method for cooking stew and seasoning for cooked dish
JP2017095357A (en) * 2015-11-18 2017-06-01 太陽化学株式会社 Agent for inhibiting germination of heat-resistant spore-forming bacteria
CN107176799A (en) * 2017-05-25 2017-09-19 成都新柯力化工科技有限公司 A kind of graphene crystallizes the active masterbatch of waterproof and preparation method certainly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116138351A (en) * 2021-11-23 2023-05-23 万华化学集团股份有限公司 Amino acid metal chelate mixture and preparation method thereof

Also Published As

Publication number Publication date
JP7240700B2 (en) 2023-03-16

Similar Documents

Publication Publication Date Title
KR102082752B1 (en) Powder compositions of a complex between an acid and a metal and method for preparing same
TW201127407A (en) Carnitine granulate and methods for its production
CA2661062C (en) Compositions comprising calcium citrate malate and methods for making the same
US5908647A (en) Mineral powders with enhanced chromium solubility and preparation methods therefor
JP2019156719A (en) Method of uniformly dispersing mineral into granulated powder
US7351853B2 (en) Method of manufacturing a granular mineral composition
KR20180077662A (en) Porous Mineral Manufacturing Method and Solubilized Porous Mineral Composition Manufacturing Method Using It
CN114938855A (en) Iodized salt with high uniformity and stability and preparation method thereof
TWI324989B (en) Powderous trace element, method and device for its production
JP2015514119A (en) Wet granulation method and granular material containing gum arabic
US20170232360A1 (en) Alkaline earth metal salts
EP3404014B1 (en) Production method for granules of calcium salt, and said granules
JP4762346B2 (en) Composition containing calcium citrate malate and method for producing the same
KR20190068463A (en) Metal mineral diaminate and method for manufacturing the same
JPS6236173A (en) Formed solid material and production thereof
CN119344459B (en) Preparation process of nano chelated calcium, magnesium and zinc
Kwon et al. Development of granular neutral amino acids with calcium hydroxide composition
WO2007062561A1 (en) A refining method which can improve the solubility of ferric citrate
JP7378121B2 (en) Method for producing silica-containing products
JPH0194937A (en) Manufacture of coating material for pulverized minerals
CN117731692A (en) Copper sulfate dilution and preparation method and application thereof
JPH09234001A (en) Feed additive composition for raising aquatic animal containing new phosphoric acid-amino acid-polyvalent metal complex salt
ZA200404463B (en) Powder trace element, method and device for making same.
JP2018516845A (en) Powdered composition of complex between acid and metal having high organic sulfur compound content and process for producing the same
KR20090120422A (en) Production Method of Calcium-Containing Nanoparticles by Wet Chemical Synthesis Method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220719

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230227

R150 Certificate of patent or registration of utility model

Ref document number: 7240700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150