JP2019154114A - Integrated circuit for motor control - Google Patents
Integrated circuit for motor control Download PDFInfo
- Publication number
- JP2019154114A JP2019154114A JP2018036535A JP2018036535A JP2019154114A JP 2019154114 A JP2019154114 A JP 2019154114A JP 2018036535 A JP2018036535 A JP 2018036535A JP 2018036535 A JP2018036535 A JP 2018036535A JP 2019154114 A JP2019154114 A JP 2019154114A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- voltage
- current
- pwm
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/14—Electronic commutators
- H02P6/16—Circuit arrangements for detecting position
- H02P6/18—Circuit arrangements for detecting position without separate position detecting elements
- H02P6/182—Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/12—Stator flux based control involving the use of rotor position or rotor speed sensors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters
- H02P27/08—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters with pulse width modulation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters
- H02P27/08—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters with pulse width modulation
- H02P27/085—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/08—Arrangements for controlling the speed or torque of a single motor
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P2207/00—Indexing scheme relating to controlling arrangements characterised by the type of motor
- H02P2207/05—Synchronous machines, e.g. with permanent magnets or DC excitation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S388/00—Electricity: motor control systems
- Y10S388/923—Specific feedback condition or device
- Y10S388/9281—Counter or back emf, CEMF
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
Description
本発明の実施形態は、モータ制御用集積回路に関する。 Embodiments described herein relate generally to a motor control integrated circuit.
従来、永久磁石同期モータの回転位置を中〜高速域において推定する方法としては、例えば永久磁石同期モータの速度に比例する誘起電圧や回転子磁束を永久磁石同期モータへの入力電圧と電流とから演算し、誘起電圧に基づいて推定する方法が広く用いられている。このような推定方式では、インバータが印加するモータの駆動電圧を演算に用いるほか、算出した誘起電圧やそれに準じた信号から回転位置を算出するためにPI制御器やオブザーバを用いる必要があり、それらの制御器にゲイン等のパラメータを設計・調整する必要もある。 Conventionally, as a method for estimating the rotational position of a permanent magnet synchronous motor in a medium to high speed range, for example, an induced voltage or a rotor magnetic flux proportional to the speed of the permanent magnet synchronous motor is obtained from an input voltage and a current to the permanent magnet synchronous motor. A method of calculating and estimating based on the induced voltage is widely used. In such an estimation method, the motor drive voltage applied by the inverter is used for the calculation, and it is necessary to use a PI controller or an observer to calculate the rotational position from the calculated induced voltage or a signal corresponding thereto. It is also necessary to design and adjust parameters such as gain in the controller.
また、モータの駆動状態や設定したパラメータ次第によっては、センサレス制御が不安定化する問題があり、純粋な位置センサであるレゾルバ,エンコーダやホールセンサなどの代用とするには、高度な設計技術や経験を要する。 In addition, depending on the driving state of the motor and the set parameters, there is a problem that sensorless control becomes unstable. To replace a pure position sensor such as a resolver, encoder, or hall sensor, advanced design technology or Requires experience.
また、中〜高速域のセンサレス駆動方式として、120度通電において無通電区間に発生する誘起電圧の位相を検出し、これに基づき通電相を切り替える方式がある。この方式によれば、制御器の設計等を行うことなくセンサレス駆動が実現できる。しかし、通電方式が120度通電に限定され、モータ電流が歪んで騒音が悪化するほか、極低速域ではセンサレス駆動ができないという課題がある。 Further, as a sensorless driving method in the medium to high speed region, there is a method of detecting a phase of an induced voltage generated in a non-energized section in 120-degree energization and switching the energized phase based on this. According to this method, sensorless driving can be realized without designing the controller or the like. However, the energization method is limited to 120-degree energization, and there are problems that the motor current is distorted and noise is worsened, and that sensorless driving cannot be performed in an extremely low speed region.
特許文献1には、電圧ベクトル印加中の電流変化量を用いて位置を検出する手法が開示されている。この手法では、分解能は小さいが制御パラメータの調整無しでセンサレス正弦波駆動が可能となる。 Patent Document 1 discloses a method for detecting a position using a current change amount during application of a voltage vector. In this method, although the resolution is small, sensorless sine wave driving is possible without adjusting the control parameters.
しかしながら、特許文献1では、電流を検出するためにインバータ回路にシャント抵抗を3つ配置する必要がある。小型モータや家電分野のモータ等簡易な構成でモータドライブシステムを構築するには低コスト化が重視される。そのため、直流部に単一のシャント抵抗を配置する1シャント電流検出方式が用いられることが多く、その検出方式に対応した位置センサレス制御方式が望まれる。 However, in Patent Document 1, it is necessary to arrange three shunt resistors in the inverter circuit in order to detect current. In order to construct a motor drive system with a simple configuration such as a small motor or a motor in the home appliance field, cost reduction is important. For this reason, a single shunt current detection method in which a single shunt resistor is arranged in the DC section is often used, and a position sensorless control method corresponding to the detection method is desired.
そこで、1シャント電流検出方式に対応した位置センサレス制御を実行可能なモータ制御用集積回路を提供する。 Accordingly, an integrated circuit for motor control capable of performing position sensorless control corresponding to the single shunt current detection method is provided.
実施形態のモータ制御用集積回路は、同期電動機の相電流を検出するために直流部に配置される電流検出部と、
前記同期電動機の回転位置に追従するように、3相のPWMデューティ指令を生成するデューティ生成部と、
前記PWMデューティ指令に基づいて、各相の信号パルスを発生させる中心の位相が互いに異なる3相のPWM信号パターンを生成するPWM生成部と、
前記PWMデューティ指令に基づいて、前記相電流の検出タイミング信号を生成する検出タイミング信号生成部と、
前記電流検出部に発生した信号と前記検出タイミング信号とに基づいて前記同期電動機の相電流を検出し、更に前記相電流の変化量を検出する電流変化量検出部と、
この電流変化量検出部により検出された変化量に基づいて、前記同期電動機の回転位置に同期した信号を演算する回転位置演算部とを備える。
The integrated circuit for motor control according to the embodiment includes a current detection unit disposed in the direct current unit to detect the phase current of the synchronous motor,
A duty generator for generating a three-phase PWM duty command so as to follow the rotational position of the synchronous motor;
Based on the PWM duty command, a PWM generation unit that generates three-phase PWM signal patterns having different central phases for generating signal pulses of each phase;
A detection timing signal generating unit that generates a detection timing signal of the phase current based on the PWM duty command;
Detecting a phase current of the synchronous motor based on a signal generated in the current detection unit and the detection timing signal, and further detecting a change amount of the phase current;
A rotational position computing unit that computes a signal synchronized with the rotational position of the synchronous motor based on the amount of change detected by the current change amount detecting unit;
以下、一実施形態について図面を参照して説明する。図1は、モータ駆動制御装置の構成を示す機能ブロック図である。直流電源1は、回転子に永久磁石を備える永久磁石同期モータ2を駆動する電力源である。直流電源1は、交流電源を直流に変換したものでも良い。インバータ回路3は、6個のスイッチング素子,例えばNチャネルMOSFET4U+,4Y+,4W+,4U−,4Y−,4W−を3相ブリッジ接続して構成されており、後述するPWM生成部5で生成される3相分6つのスイッチング信号に基づいて、モータ2を駆動する電圧を生成する。 Hereinafter, an embodiment will be described with reference to the drawings. FIG. 1 is a functional block diagram showing the configuration of the motor drive control device. The DC power source 1 is a power source that drives a permanent magnet synchronous motor 2 having a permanent magnet in a rotor. The DC power source 1 may be one obtained by converting an AC power source into DC. The inverter circuit 3 is configured by connecting six switching elements, for example, N-channel MOSFETs 4U +, 4Y +, 4W +, 4U−, 4Y−, 4W−, in a three-phase bridge, and is generated by a PWM generation unit 5 described later. A voltage for driving the motor 2 is generated based on six switching signals for three phases.
電圧検出部6は、直流電源1の電圧Vdcを検出する。電流検出部7は、インバータ回路3の負側電源線と直流電源1の負側端子との間に接続されている。電流検出部7は、一般にシャント抵抗やホールCTなどを用いた電流センサ及び信号処理回路で構成され、モータ2に流れる直流電流Idcを検出する。 The voltage detector 6 detects the voltage Vdc of the DC power supply 1. The current detector 7 is connected between the negative power supply line of the inverter circuit 3 and the negative terminal of the DC power supply 1. The current detection unit 7 is generally composed of a current sensor using a shunt resistor, Hall CT, and the like and a signal processing circuit, and detects a direct current Idc flowing through the motor 2.
電流変化量検出部8は、後述する電圧セクタ及び検出タイミング信号生成部9より入力される検出タイミング信号t1〜t4に基づいて直流電流Idcを4回検出し、2回毎の検出値の差分値を変化量dIDC1,dIDC2として算出する。誘起電圧演算部10は、変化量dIDC1,dIDC2に基づいて、3相のうち何れか2相の誘起電圧をEnow,Epreとして演算する。 The current change amount detection unit 8 detects the DC current Idc four times based on detection timing signals t1 to t4 input from the voltage sector and the detection timing signal generation unit 9 which will be described later, and a difference value between the detection values every two times. Are calculated as change amounts dI DC1 and dI DC2 . The induced voltage calculation unit 10 calculates the induced voltage of any two of the three phases as E now and E pre based on the amounts of change dI DC1 and dI DC2 .
回転位置演算部11は、2相の誘起電圧Enow,Epreとから残り1相の誘起電圧を求め、得られた3相の誘起電圧からモータ2の回転位置検出値θcを算出する。3相電圧指令値生成部12は、上位の制御装置より与えられる指令値である電圧振幅指令値Vamp及び電圧位相指令値φvと回転位置θcとから、3相の電圧指令値Vu,Vv,Vwを生成する。 The rotational position calculation unit 11 obtains the remaining one-phase induced voltage from the two-phase induced voltages E now and E pre, and calculates the rotational position detection value θc of the motor 2 from the obtained three-phase induced voltage. The three-phase voltage command value generator 12 generates a three-phase voltage command value Vu, Vv, Vw from the voltage amplitude command value Vamp, the voltage phase command value φv, and the rotation position θc, which are command values given from the host controller. Is generated.
デューティ生成部13は、3相電圧指令値Vu,Vv,Vwを直流電圧Vdcで除すことで各相の変調指令,デューティ指令Du,Dv,Dwを演算する。キャリア生成部14は、PWM制御に用いるキャリア,搬送波として、図2に示すように、各相間の位相差が120度となる3相三角波信号をPWM生成部5に出力する。図2では、三角波の谷を基準として各相のPWM信号パルスを発生させている。 The duty generation unit 13 calculates the modulation command and duty command Du, Dv, Dw for each phase by dividing the three-phase voltage command values Vu, Vv, Vw by the DC voltage Vdc. As shown in FIG. 2, the carrier generation unit 14 outputs a three-phase triangular wave signal having a phase difference of 120 degrees between the phases to the PWM generation unit 5 as a carrier and a carrier used for PWM control. In FIG. 2, PWM signal pulses of each phase are generated with reference to the valley of the triangular wave.
PWM生成部5は、3相変調指令Du,Dv,Dwと、キャリア生成部14より入力される3相三角波とを比較して各相のPWM信号パルスを生成する。1相当たりのパルスにはデッドタイムが付加され、それぞれ3相上下のNチャネルMOSFET4に出力するスイッチング信号U+,U−,V+,V−,W+,W−を生成する。 The PWM generation unit 5 compares the three-phase modulation commands Du, Dv, and Dw with the three-phase triangular wave input from the carrier generation unit 14 to generate a PWM signal pulse for each phase. A dead time is added to the pulses per phase to generate switching signals U +, U−, V +, V−, W +, W− to be output to the upper and lower N-channel MOSFETs 4 respectively.
電圧セクタ及び検出タイミング信号生成部9には、3相変調指令Du,Dv,Dwが入力されている。当該信号生成部9は、3相変調指令Du,Dv,Dwに基づいて電気角周期を6等分した電圧セクタ(0)〜(5)を(1)式に示す条件で判別し、その判別結果を電流変化量検出部8,誘起電圧演算部10及び回転位置演算部11に出力する。
if Du>Dv>Dw →Sector=0
elseif Dv>Du>Dw →Sector=1
elseif Dv>Dw>Du →Sector=2
elseif Dw>Dv>Du →Sector=3
elseif Dw>Du>Dv →Sector=4
else →Sector=5 …(1)
そして、前述した検出タイミング信号t1〜t4についても、電圧セクタ(0)〜(5)の判別結果に応じて生成する。
Three-phase modulation commands Du, Dv, and Dw are input to the voltage sector and detection timing signal generation unit 9. The signal generator 9 discriminates voltage sectors (0) to (5) obtained by dividing the electrical angle period into six parts based on the three-phase modulation commands Du, Dv, Dw under the condition shown in the equation (1), and the discrimination The result is output to the current change amount detection unit 8, the induced voltage calculation unit 10, and the rotational position calculation unit 11.
if Du>Dv> Dw → Sector = 0
elseif Dv>Du> Dw → Sector = 1
elseif Dv>Dw> Du → Sector = 2
elseif Dw>Dv> Du → Sector = 3
elseif Dw>Du> Dv → Sector = 4
else → Sector = 5 (1)
The detection timing signals t1 to t4 described above are also generated according to the determination results of the voltage sectors (0) to (5).
以上の構成において、モータ2及びインバータ回路3を除いたものが、回転位置検出装置15を構成している。そして、回転位置検出装置15にインバータ回路3を加えたものがモータ駆動制御装置16を構成している。また、本実施形態では、回転位置検出装置15は、マイクロコンピュータの内部にハードウェア的に構成されている。すなわち、モータ2の速度制御や電流制御等はソフトウェアによって実現し、回転位置検出装置15をハードウェア又はそれに準じる構成としてマイクロコンピュータや集積回路の内部に設ける。 In the above configuration, the rotational position detection device 15 is configured except for the motor 2 and the inverter circuit 3. A motor drive control device 16 is configured by adding the inverter circuit 3 to the rotational position detection device 15. In the present embodiment, the rotational position detection device 15 is configured in hardware inside the microcomputer. That is, speed control, current control, and the like of the motor 2 are realized by software, and the rotational position detection device 15 is provided inside a microcomputer or an integrated circuit as hardware or a configuration equivalent thereto.
次に、本実施形態において回転位置を検出する原理を説明する。回転位置の検出は、モータの回転によって発生する誘起電圧(EMF:electromotive force)を用いる。(2)式は、永久磁石同期モータの3相電圧方程式を示している。右辺第3項が誘起電圧項であり、回転位置θの情報が含まれている。 Next, the principle of detecting the rotational position in the present embodiment will be described. The detection of the rotational position uses an induced voltage (EMF: electromotive force) generated by the rotation of the motor. Equation (2) shows the three-phase voltage equation of the permanent magnet synchronous motor. The third term on the right side is an induced voltage term and includes information on the rotational position θ.
ここで、図3に示す空間ベクトル図における各電圧ベクトル発生時の相電圧の大きさは直流電圧VDCを用いて図4に示すように表すことができる。そして、電圧ベクトルV1(100)印加時のU相電圧方程式は、(3)式となる。 Here, the magnitude of the phase voltage at the time of generation of each voltage vector in the space vector diagram shown in FIG. 3 can be expressed as shown in FIG. 4 using the DC voltage V DC . And the U-phase voltage equation at the time of voltage vector V1 (100) application becomes (3) Formula.
このとき発生する電流変化量dIuをdIu(100)と表記し、(3)式を変形すると(4)式が得られる。 The current change amount dIu generated at this time is expressed as dIu (100), and the expression (4) is obtained by modifying the expression (3).
同様に、図3に示す空間ベクトル図における電圧ベクトルV2(110)印加時のW相電流変化量をdIw(110)とすると、(5)式となる。 Similarly, if the change amount of the W-phase current when the voltage vector V2 (110) is applied in the space vector diagram shown in FIG. 3 is dIw (110), Equation (5) is obtained.
また、永久磁石の磁束に対してモータの突極性の影響が小さいと仮定して、
Lu=Lw=Lと近似する。さらに、(4)式に(5)式を加えると、相電流の総和はゼロであるから(6)式を得る。
Also, assuming that the influence of motor saliency on the magnetic flux of the permanent magnet is small,
Approximate to Lu = Lw = L. Further, when the formula (5) is added to the formula (4), the sum of the phase currents is zero, so that the formula (6) is obtained.
同様に、電圧ベクトルV2(110)及びV3(010)時の電流変化量の和は、(7)式で表せる。 Similarly, the sum of the current change amounts for the voltage vectors V2 (110) and V3 (010) can be expressed by equation (7).
更に、相電流及び誘起電圧の総和はゼロであるため、−(6)式−(7)式を演算すると、(8)式を得る。 Furthermore, since the sum total of the phase current and the induced voltage is zero, when the formulas-(6)-(7) are calculated, the formula (8) is obtained.
ここで、モータの回転速度ωがある程度速い状態では、(6),(7),(8)式の右辺は第1項≪第2項となるため、抵抗による電圧降下である右辺第1項をゼロと近似できる。これらを3相の誘起電圧Eu,Ev,Ewとして表すと(9)式が得られる。 Here, in a state where the rotational speed ω of the motor is high to some extent, the right side of the equations (6), (7), and (8) is the first term << second term, so the first term on the right side that is a voltage drop due to resistance. Can be approximated to zero. When these are expressed as three-phase induced voltages Eu, Ev, and Ew, equation (9) is obtained.
すなわち、電圧ベクトル印加中の電流変化量を用いれば、それぞれ位相差が2π/3の3相誘起電圧を検出できる。更に、検出した3相誘起電圧を(10)式で3相/2相変換し、(11)式で逆正接を演算することで回転位置θcを求めることができる。 That is, if the amount of current change during voltage vector application is used, a three-phase induced voltage having a phase difference of 2π / 3 can be detected. Furthermore, the rotational position θc can be obtained by performing three-phase / two-phase conversion on the detected three-phase induced voltage using the equation (10) and calculating the arc tangent using the equation (11).
尚、電圧ベクトルV1,V2印加時の電圧ベクトルを用いるとV相誘起電圧Evが求まるが、全ての電圧ベクトルについて一般化すると、図5に示す関係となる。すなわち、発生する電圧ベクトルに応じて検出できる誘起電圧相が切り替わる。そして、電圧セクタ毎に発生する電圧ベクトルは異なる。例えば電圧セクタ(0)で発生する電圧ベクトルは
V1(100),V2(110)のみである。このため、(9)式における電流変化量のうちdIu(100),dIw(110)のみが検出でき、dIv(010)は検出できない。尚、厳密には、他の電圧ベクトルも発生するが、ここでは、電圧セクタ毎に発生率が最も高くなる2つの電圧ベクトルを抽出している。
Note that the V-phase induced voltage Ev can be obtained by using the voltage vectors when the voltage vectors V1 and V2 are applied. However, when all voltage vectors are generalized, the relationship shown in FIG. 5 is obtained. That is, the induced voltage phase that can be detected is switched according to the generated voltage vector. The voltage vector generated for each voltage sector is different. For example, the voltage vectors generated in the voltage sector (0) are only V1 (100) and V2 (110). For this reason, only dIu (100) and dIw (110) can be detected, and dIv (010) cannot be detected among the current change amounts in the equation (9). Strictly speaking, other voltage vectors are also generated, but here, two voltage vectors having the highest occurrence rate are extracted for each voltage sector.
そこで、図3に示す空間ベクトルにおいて、電圧セクタが切り替わるタイミングに着目する。例えば電圧セクタが(0)から(1)に切り替わった直後では、電圧セクタ(1)での電圧ベクトルV2(110),V3(010)が発生する期間に電流変化量dIw(110),dIv(010)が検出できる。これらにより、今回の誘起電圧Enow=Euが検出できる。また、切り替わる前の電圧セクタは(0)であるから、電圧ベクトルV1(100),V2(110)が発生する期間に電流変化量dIu(100),dIw(110)が検出できる。これらにより誘起電圧Evが検出できる。これを前回の誘起電圧Epreとして保存しておく。 Therefore, attention is paid to the timing at which the voltage sector is switched in the space vector shown in FIG. For example, immediately after the voltage sector is switched from (0) to (1), current change amounts dIw (110) and dIv (dV (110) and V3 (010) are generated in the voltage sector (1). 010) can be detected. As a result, the current induced voltage E now = Eu can be detected. Further, since the voltage sector before switching is (0), the current change amounts dIu (100) and dIw (110) can be detected during the period in which the voltage vectors V1 (100) and V2 (110) are generated. Thus, the induced voltage Ev can be detected. This is stored as the previous induced voltage E pre .
そして、電圧セクタの切替わりに要する時間を、モータ2が回転する周期に比較して非常に速いと言える制御領域においてゼロとみなせば、Enow(Eu)とEpre(Ev)とから、(9)式に基づいて3相目の誘起電圧Ewが求まる。3相の誘起電圧が求まれば、(10),(11)式により回転位置θcが求められる。
なお、(9)式左辺の各相電流変化量は、本実施形態では直流電流IDCから(12)式に従って求める。
If the time required for switching the voltage sector is regarded as zero in a control region that can be said to be very fast compared to the rotation period of the motor 2, E now (Eu) and E pre (Ev) ) To determine the induced voltage Ew of the third phase. If the three-phase induced voltage is obtained, the rotational position θc is obtained from the equations (10) and (11).
Note that (9) of each phase current variation of Formula left side, in the present embodiment obtained in accordance with (12) from the DC current I DC.
ここで(12)式のように、3相の電流を各スイッチングパターンに応じて検出するためには、各相電流を検出するために対応する電圧ベクトルを発生させる必要がある。3相のPWM信号を生成するために一般的な三角波比較法を用いると、例えば変調率が0.3の場合、図6に示すように各電圧ベクトルが発生する。横軸は電気角,縦軸はPWM1周期中における各電圧ベクトルの発生割合である。これに対し、下記の文献に示されているような3相三角波をキャリアとして用いると、各電圧ベクトルの発生割合は図7に示すように増加する。
文献名:「電気学会半導体電力変換方式調査専門委員会:「半導体電力変換回路」,電気学会(1987)」
Here, in order to detect a three-phase current according to each switching pattern as shown in equation (12), it is necessary to generate a corresponding voltage vector in order to detect each phase current. When a general triangular wave comparison method is used to generate a three-phase PWM signal, for example, when the modulation rate is 0.3, each voltage vector is generated as shown in FIG. The horizontal axis represents the electrical angle, and the vertical axis represents the generation ratio of each voltage vector during one PWM period. On the other hand, when a three-phase triangular wave as shown in the following document is used as a carrier, the generation ratio of each voltage vector increases as shown in FIG.
Title: “Semiconductor Power Conversion System Research Expert Committee:“ Semiconductor Power Conversion Circuit ”, IEEJ (1987)”
例えば、電流変化量を検出するために必要な電圧ベクトル発生期間の割合をPWM周期の0.2として、図6中に破線で示す。この場合、単一の三角波キャリア比較法では、各電圧ベクトルV0及びV7以外は0.2に達しておらず検出できない。これに対して、3相三角波キャリアを用いると、図7に示すように、各電圧セクタにおいて対応する相の誘起電圧を検出するために必要な2つの電圧ベクトルが0.2以上となっている。これにより、必要な電流変化量が検出できるようになる。 For example, the ratio of the voltage vector generation period necessary for detecting the amount of current change is represented by a broken line in FIG. In this case, in the single triangular wave carrier comparison method, other than the voltage vectors V0 and V7 do not reach 0.2 and cannot be detected. On the other hand, when a three-phase triangular wave carrier is used, as shown in FIG. 7, the two voltage vectors necessary for detecting the induced voltage of the corresponding phase in each voltage sector are 0.2 or more. . This makes it possible to detect a necessary current change amount.
尚、電流変化量を検出するために必要な電圧ベクトルの発生期間は、インバータの仕様等によって異なる。図8は、電圧ベクトルV0(000),V1(100),V2(110)のそれぞれに対応するスイッチング状態において、U,V相の上側PWM信号と直流電流IDC,電流検出タイミングt1〜t4を示している。 It should be noted that the generation period of the voltage vector necessary for detecting the current change amount varies depending on the inverter specifications and the like. FIG. 8 shows U and V-phase upper PWM signals, DC current I DC , and current detection timings t1 to t4 in switching states corresponding to voltage vectors V0 (000), V1 (100), and V2 (110), respectively. Show.
例えば、スイッチング状態が電圧ベクトルV0からV1に変化すると、電流IDCにはスイッチングの過渡状態でリップルが発生するため、変化の時点からある程度時間が経過したタイミングt1で電流IDCの1回目のサンプリングを行う。この待ち時間をPWM周期Tpwmの0.1としている。そこから、更に周期Tpwmの0.1分経過したタイミングt2で2回目のサンプリングを行い、電流変化量ΔIDCを求める。 For example, when the switching state changes from the voltage vector V0 to V1, a ripple occurs in the current I DC in the switching transient state. Therefore, the first sampling of the current I DC is performed at a timing t1 when a certain amount of time has elapsed from the time of the change. I do. This waiting time is set to 0.1 of the PWM cycle T pwm . From there, the second sampling is performed at timing t2 when 0.1 minute of the period T pwm has passed, and the current change amount ΔI DC is obtained.
尚、タイミングt1,t2で検出されるのはU相(+)の電流変化量であり、タイミングt3,t4で検出されるのはW相(−)の電流変化量である。このように、精度良く電流IDCを検出するには、特定の電圧ベクトルが発生する期間を十分確保する必要があるが、3相三角波キャリアを用いれば必要な電圧ベクトルの発生期間を十分確保でき、回転位置θcの検出が可能になる。 Note that the amount of current change in the U phase (+) is detected at timings t1 and t2, and the amount of current change in the W phase (−) is detected at timings t3 and t4. As described above, in order to detect the current IDC with high accuracy, it is necessary to secure a sufficient period for generating a specific voltage vector. However, if a three-phase triangular wave carrier is used, a sufficient generation period for the necessary voltage vector can be ensured. The rotation position θc can be detected.
図9,図10は、従来の三角波比較法と3相三角波比較法とにおけるPWM信号波形及び直流電流IDCを示している。3相三角波比較法では120度位相差のPWM信号が生成されるので、各電圧ベクトルの発生時間が増加することで、直流電流IDCの通電時間が図9に比較して増加していることが分かる。 9, FIG. 10 shows a PWM signal waveform and the DC current I DC at the conventional triangular wave comparison method and the 3-phase triangular wave comparison method. Since the PWM signal of 120-degree phase difference with 3-phase triangular wave comparison method is generated, by the time of occurrence of each voltage vector increases, the conduction time of the direct current I DC is increased relative to FIG. 9 I understand.
次に、本実施形態の作用について図11から図13を参照して説明する。図11及び図12は、ここまで説明した原理に基いて、主として回転位置検出装置14が行う処理内容を示すフローチャートである。先ず、回転位置演算部11が図12に示す位置検出演算を行うと(S1)、デューティ生成部13が各相デューティDu,Dv,Dwを算出する(S2)。信号生成部9は、現在の電圧セクタを「前回セクタ」に代入すると(S3)、(1)式に基づき各相デューティDu,Dv,Dwから現在の電圧セクタを求める(S4)。PWM生成部5は、3相三角波キャリアと各相デューティDu,Dv,Dwとに基づき生成した各相PWM信号をインバータ回路3に出力する(S5)。 Next, the operation of the present embodiment will be described with reference to FIGS. FIG. 11 and FIG. 12 are flowcharts showing the processing contents mainly performed by the rotational position detection device 14 based on the principle described so far. First, when the rotational position calculation unit 11 performs the position detection calculation shown in FIG. 12 (S1), the duty generation unit 13 calculates each phase duty Du, Dv, Dw (S2). When the current voltage sector is substituted into the “previous sector” (S3), the signal generator 9 obtains the current voltage sector from the phase duties Du, Dv, Dw based on the equation (1) (S4). The PWM generator 5 outputs each phase PWM signal generated based on the three-phase triangular wave carrier and each phase duty Du, Dv, Dw to the inverter circuit 3 (S5).
ステップS1における位置検出演算は、図12に示すように実行される。電流変化量検出部8は、直流電流IDCから、その時点の電圧セクタに対応した2相の電流変化量dIDC1,dIDC2を求める(S11)。誘起電圧演算部10は、前回検出した誘起電圧Epreに今回検出した誘起電圧Enowを代入すると(S12)、電流変化量dIDC1,dIDC2から今回の誘起電圧Enowを検出する(S13)。 The position detection calculation in step S1 is executed as shown in FIG. The current change amount detector 8 obtains two-phase current change amounts dI DC1 and dI DC2 corresponding to the voltage sector at that time from the direct current I DC (S11). When the induced voltage E now detected this time is substituted for the previously detected induced voltage E pre (S12), the induced voltage calculation unit 10 detects the current induced voltage E now from the current change amounts dI DC1 and dI DC2 (S13). .
続いて、現在の電圧セクタと前回の電圧セクタとが異なるか否かを判断し(S14)、同じ電圧セクタであれば(NO)処理を終了する。一方、電圧セクタが異なれば(YES)、誘起電圧Enow,Epreから第3相の誘起電圧E3を求める(S15)。そして、誘起電圧Enow,Epre,E3を(10)式により3相/2相変換し、(11)式の逆正接演算を行って回転位置θcを求める(S16)。 Subsequently, it is determined whether or not the current voltage sector is different from the previous voltage sector (S14). If the voltage sector is the same (NO), the process is terminated. On the other hand, different voltage sectors (YES), the induced voltage E now, seek induced voltage E 3 of the third phase from the E pre (S15). Then, the induced voltages E now , E pre , and E 3 are subjected to three-phase / two-phase conversion by the equation (10), and the rotation position θc is obtained by performing the arctangent calculation of the equation (11) (S16).
図13は、各部の動作波形を示している。各相の変調指令に基づき、3相電流が流れモータ2が駆動されている。このとき、検出した電流変化量から誘起電圧演算部10で求めた今回の誘起電圧Enowが検出できていることが分かる。破線が各電圧セクタが切り替わるタイミングであり、電圧セクタ毎に検出した誘起電圧がEu,Ev,Ewと切り替わっている。そして、電圧セクタの切り替わりタイミングで今回の誘起電圧と前回の電圧セクタの誘起電圧から求めた回転位置がθcである。実際の回転位置θに対し、ある程度の誤差があるものの電気角1周期を6分解能で位置が検出できていることがわかる。 FIG. 13 shows an operation waveform of each part. Based on the modulation command for each phase, a three-phase current flows and the motor 2 is driven. At this time, it can be seen that the current induced voltage E now obtained by the induced voltage calculator 10 can be detected from the detected current change amount. The broken line is the timing at which each voltage sector is switched, and the induced voltage detected for each voltage sector is switched to Eu, Ev, Ew. The rotational position obtained from the current induced voltage and the previous voltage sector induced voltage at the voltage sector switching timing is θc. It can be seen that the position can be detected with six resolutions in one cycle of electrical angle, although there is a certain amount of error with respect to the actual rotational position θ.
以上のように本実施形態によれば、デューティ生成部13は、モータ2の回転位置に追従するように3相デューティ指令Du,Dv,Dwを生成し、PWM生成部5は、3相三角波をキャリアとして用い、3相デューティ指令Du,Dv,Dwより各相の信号パルスを発生させる中心の位相が120度異なる3相のPWM信号パターンを生成する。信号生成部9は、デューティ指令Du,Dv,Dwに基づき相電流の検出タイミング信号t1〜t4を生成する。 As described above, according to the present embodiment, the duty generation unit 13 generates the three-phase duty commands Du, Dv, Dw so as to follow the rotational position of the motor 2, and the PWM generation unit 5 generates the three-phase triangular wave. Used as a carrier, a three-phase PWM signal pattern that generates a signal pulse of each phase from the three-phase duty commands Du, Dv, Dw by 120 degrees is generated. The signal generator 9 generates the phase current detection timing signals t1 to t4 based on the duty commands Du, Dv, and Dw.
電流変化量検出部8は、電流検出部7に発生した信号と検出タイミング信号t1〜t4とに基づいてモータ2の相電流を検出し、更にその相電流の変化量を検出する。回転位置演算部11は、電流変化量検出部8により検出された変化量に基づいて、モータ2の回転位置に同期した信号を演算する。このように構成すれば、モータ2の定数設定や制御ゲインの調整等が不要となり、回転位置を検出した電流変化量から直接演算で求めることができる。 The current change amount detection unit 8 detects the phase current of the motor 2 based on the signal generated in the current detection unit 7 and the detection timing signals t1 to t4, and further detects the change amount of the phase current. The rotation position calculation unit 11 calculates a signal synchronized with the rotation position of the motor 2 based on the change amount detected by the current change amount detection unit 8. With this configuration, it is not necessary to set the constant of the motor 2 or adjust the control gain, and it can be obtained directly from the amount of current change detected in the rotational position.
また、誘起電圧演算部10は、相電流の変化量から3相の誘起電圧を算出すると、3相の誘起電圧を直交座標系の2相の電圧に変換し、2相の電圧について逆正接演算を行うことで回転位置を求める。具体的には、3相のPWM信号パターンにおいて、発生率が高い2つの電圧ベクトルの組に応じて電気角周期を6等分した電圧セクタ(0)〜(5)を設定し、移行前の電圧セクタにおいて第1相の誘起電圧Epreを演算し、次に移行した電圧セクタにおいて第2相の誘起電圧Enowを演算し、誘起電圧Epre,Enowから第3相の誘起電圧E3を演算する。これら3相の誘起電圧を直交座標系の2相の電圧Eα,Eβに変換し、2相の電圧について逆正接演算tan-1(Eα/Eβ)を行うことで回転位置θcを求める。これにより、回転位置θcを効率的に演算することができる。
(その他の実施形態)
In addition, when the induced voltage calculation unit 10 calculates the three-phase induced voltage from the change amount of the phase current, the induced voltage calculation unit 10 converts the three-phase induced voltage into a two-phase voltage in an orthogonal coordinate system, and performs an arctangent calculation on the two-phase voltage. To obtain the rotational position. Specifically, in the three-phase PWM signal pattern, voltage sectors (0) to (5) in which the electrical angular period is divided into six parts are set according to a set of two voltage vectors having a high occurrence rate, and before the transition In the voltage sector, the induced voltage E pre of the first phase is calculated, and in the next transferred voltage sector, the induced voltage E now of the second phase is calculated. From the induced voltages E pre and E now , the induced voltage E 3 of the third phase is calculated. Is calculated. These three-phase induced voltages are converted into two-phase voltages Eα and Eβ in an orthogonal coordinate system, and the rotation position θc is obtained by performing an arctangent calculation tan −1 (Eα / Eβ) on the two-phase voltages. Thereby, the rotational position θc can be calculated efficiently.
(Other embodiments)
3相のPWM信号を本実施形態のように発生させるには、3種のキャリアを用いずに位相シフト機能等を利用して、3相三角波を用いた場合と等価な状態を実現しても良いし、1種のキャリアにおいてデューティを設定するタイミングや、パルス発生の比較極性等を変更するなどの方法を利用しても良い。要は、各相信号パルスを発生させる中心の位相が互いに120度異なるように、3相のPWM信号パターンを発生させれば良い。
また、位相差は必ずしも120度にする必要は無く、同程度の位相差,略120度の位相差を付与すれば良い。
In order to generate a three-phase PWM signal as in the present embodiment, a state equivalent to the case of using a three-phase triangular wave can be realized by using a phase shift function or the like without using three types of carriers. It is also possible to use a method such as changing the timing for setting the duty in one type of carrier or the comparison polarity of pulse generation. In short, a three-phase PWM signal pattern may be generated so that the central phases for generating each phase signal pulse are 120 degrees different from each other.
Further, the phase difference does not necessarily need to be 120 degrees, and the same phase difference and approximately 120 degrees may be given.
また、電流を検出するタイミングはPWMキャリアの周期に一致させる必要はなく、例えばキャリア周期の2倍や4倍の周期で検出を行っても良い。したがって、電流変化量検出部に入力する電流検出タイミング信号は、キャリアから得られた信号そのものである必要はなく、別個のタイマで生成した信号であっても良い。
電流検出部はシャント抵抗でもCTでも良い。
スイッチング素子はMOSFET、IGBT,パワートランジスタ,SiC,GaN等のワイドギャップ半導体等を使用しても良い。
The timing for detecting the current does not need to coincide with the period of the PWM carrier. For example, the detection may be performed at a period twice or four times the carrier period. Therefore, the current detection timing signal input to the current change amount detection unit does not have to be the signal itself obtained from the carrier, and may be a signal generated by a separate timer.
The current detection unit may be a shunt resistor or a CT.
As the switching element, a wide gap semiconductor such as MOSFET, IGBT, power transistor, SiC, or GaN may be used.
本発明のいくつかの実施形態を説明したが、これらの実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments have been presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
図面中、2は永久磁石同期モータ、3はインバータ回路、5はPWM生成部、7は電流検出部、8は電流変化量検出部、9は電圧セクタ及び検出タイミング信号生成部、10は誘起電圧演算部、11は回転位置演算部、14はキャリア生成部、15は回転位置検出装置、16はモータ駆動制御装置を示す。 In the drawings, 2 is a permanent magnet synchronous motor, 3 is an inverter circuit, 5 is a PWM generator, 7 is a current detector, 8 is a current change detector, 9 is a voltage sector and detection timing signal generator, and 10 is an induced voltage. A calculation unit, 11 is a rotation position calculation unit, 14 is a carrier generation unit, 15 is a rotation position detection device, and 16 is a motor drive control device.
Claims (4)
前記同期電動機の回転位置に追従するように、3相のPWM(Pulse Width Modulation)デューティ指令を生成するデューティ生成部と、
前記PWMデューティ指令に基づいて、各相の信号パルスを発生させる中心の位相が互いに異なる3相のPWM信号パターンを生成するPWM生成部と、
前記PWMデューティ指令に基づいて、前記相電流の検出タイミング信号を生成する検出タイミング信号生成部と、
前記電流検出部に発生した信号と前記検出タイミング信号とに基づいて前記同期電動機の相電流を検出し、更に前記相電流の変化量を検出する電流変化量検出部と、
この電流変化量検出部により検出された変化量に基づいて、前記同期電動機の回転位置に同期した信号を演算する回転位置演算部とを備えるモータ制御用集積回路。 A current detector disposed in the direct current unit to detect the phase current of the synchronous motor;
A duty generation unit that generates a three-phase PWM (Pulse Width Modulation) duty command so as to follow the rotational position of the synchronous motor;
Based on the PWM duty command, a PWM generation unit that generates three-phase PWM signal patterns having different central phases for generating signal pulses of each phase;
A detection timing signal generating unit that generates a detection timing signal of the phase current based on the PWM duty command;
Detecting a phase current of the synchronous motor based on a signal generated in the current detection unit and the detection timing signal, and further detecting a change amount of the phase current;
A motor control integrated circuit comprising: a rotational position computing unit that computes a signal synchronized with the rotational position of the synchronous motor based on the amount of change detected by the current change amount detecting unit.
前記3相の誘起電圧を直交座標系の2相の電圧に変換し、
前記2相の電圧について逆正接演算を行うことで前記回転位置を求める請求項1又は2記載のモータ制御用集積回路。 The rotational position calculator includes an induced voltage calculator that calculates a three-phase induced voltage from the amount of change in the phase current,
Converting the three-phase induced voltage into a two-phase voltage in an orthogonal coordinate system;
The integrated circuit for motor control according to claim 1, wherein the rotational position is obtained by performing an arctangent calculation on the two-phase voltages.
前記誘起電圧演算部は、移行前の電圧セクタにおいて第1相の誘起電圧を演算し、次に移行した電圧セクタにおいて第2相の誘起電圧を演算し、前記第1相及び第2相の誘起電圧から第3相の誘起電圧を演算する請求項3記載のモータ制御用集積回路。 In the three-phase PWM signal pattern, the detection timing signal generation unit sets six voltage sectors obtained by dividing an electrical angular period into six parts in accordance with a set of two upper voltage vectors having a high occurrence rate. Output to the arithmetic unit,
The induced voltage calculation unit calculates a first phase induced voltage in the voltage sector before the transition, calculates a second phase induced voltage in the next shifted voltage sector, and induces the first phase and the second phase induction. 4. The integrated circuit for motor control according to claim 3, wherein an induced voltage of the third phase is calculated from the voltage.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018036535A JP6805197B2 (en) | 2018-03-01 | 2018-03-01 | Integrated circuit for motor control |
KR1020190009114A KR102260101B1 (en) | 2018-03-01 | 2019-01-24 | Integrated circuit for controlling motor |
CN201910085425.XA CN110224641B (en) | 2018-03-01 | 2019-01-29 | Integrated circuit for controlling motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018036535A JP6805197B2 (en) | 2018-03-01 | 2018-03-01 | Integrated circuit for motor control |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019154114A true JP2019154114A (en) | 2019-09-12 |
JP6805197B2 JP6805197B2 (en) | 2020-12-23 |
Family
ID=67822317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018036535A Active JP6805197B2 (en) | 2018-03-01 | 2018-03-01 | Integrated circuit for motor control |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6805197B2 (en) |
KR (1) | KR102260101B1 (en) |
CN (1) | CN110224641B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113978265A (en) * | 2021-10-19 | 2022-01-28 | 安徽江淮汽车集团股份有限公司 | Hybrid electric vehicle control circuit and control method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013066254A (en) * | 2011-09-15 | 2013-04-11 | Toshiba Corp | Motor controller |
WO2016157306A1 (en) * | 2015-03-27 | 2016-10-06 | 三菱電機株式会社 | Control device for ac rotating machine |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4455981B2 (en) * | 2004-11-30 | 2010-04-21 | 株式会社日立産機システム | Synchronous motor drive device |
JP2007336641A (en) | 2006-06-13 | 2007-12-27 | Denso Corp | Position sensorless driving device for synchronous motor |
JP5150585B2 (en) * | 2009-08-28 | 2013-02-20 | 株式会社日立産機システム | Permanent magnet synchronous motor drive device |
JP2011147272A (en) | 2010-01-14 | 2011-07-28 | Toshiba Elevator Co Ltd | Motor control device |
JP5534935B2 (en) * | 2010-05-20 | 2014-07-02 | 株式会社東芝 | Rotation sensorless control device |
JP5748051B2 (en) * | 2011-05-10 | 2015-07-15 | サンデンホールディングス株式会社 | Synchronous motor applied voltage electrical angle setting method and motor control device |
JP2013225979A (en) * | 2012-04-20 | 2013-10-31 | Hitachi Appliances Inc | Motor driving device, compressor driving device employing the same, and heat exchanger equipped with the same |
JP6067402B2 (en) * | 2013-02-13 | 2017-01-25 | 株式会社東芝 | Motor control device |
JP2014176157A (en) * | 2013-03-07 | 2014-09-22 | Toshiba Corp | Motor rotation position detection device, washer, and method for detecting motor rotation position |
JP6317904B2 (en) * | 2013-10-02 | 2018-04-25 | 日立ジョンソンコントロールズ空調株式会社 | Motor control device and air conditioner |
BR112017013124A2 (en) * | 2014-12-19 | 2017-12-26 | Nsk Ltd | engine control apparatus and electric power steering apparatus using the same |
JP2016163518A (en) | 2015-03-05 | 2016-09-05 | 株式会社東芝 | Rotational position detection device, motor controller and rotational position detection method |
JP6279507B2 (en) * | 2015-04-07 | 2018-02-14 | 日立オートモティブシステムズ株式会社 | Motor driving device and phase current detection method for three-phase brushless motor |
JP2017046406A (en) * | 2015-08-25 | 2017-03-02 | 株式会社東芝 | Rotation position detection device and rotation position detection method |
JP6433404B2 (en) | 2015-10-16 | 2018-12-05 | 三菱電機株式会社 | Motor control device |
-
2018
- 2018-03-01 JP JP2018036535A patent/JP6805197B2/en active Active
-
2019
- 2019-01-24 KR KR1020190009114A patent/KR102260101B1/en active Active
- 2019-01-29 CN CN201910085425.XA patent/CN110224641B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013066254A (en) * | 2011-09-15 | 2013-04-11 | Toshiba Corp | Motor controller |
WO2016157306A1 (en) * | 2015-03-27 | 2016-10-06 | 三菱電機株式会社 | Control device for ac rotating machine |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113978265A (en) * | 2021-10-19 | 2022-01-28 | 安徽江淮汽车集团股份有限公司 | Hybrid electric vehicle control circuit and control method thereof |
CN113978265B (en) * | 2021-10-19 | 2024-01-19 | 安徽江淮汽车集团股份有限公司 | Hybrid electric vehicle control circuit and control method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN110224641B (en) | 2023-04-28 |
CN110224641A (en) | 2019-09-10 |
KR20190104875A (en) | 2019-09-11 |
KR102260101B1 (en) | 2021-06-03 |
JP6805197B2 (en) | 2020-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8890450B2 (en) | Motor control device | |
JP3661642B2 (en) | Motor control device and control method thereof | |
US20070296371A1 (en) | Position sensorless control apparatus for synchronous motor | |
CN101355338A (en) | Motor control device | |
CN108574434B (en) | Integrated circuit with a plurality of transistors | |
JP5951208B2 (en) | Motor control device | |
JP2017046406A (en) | Rotation position detection device and rotation position detection method | |
JP2016163518A (en) | Rotational position detection device, motor controller and rotational position detection method | |
TWI472146B (en) | Synchronous motor drive system | |
JP6914787B2 (en) | Integrated circuit for motor control | |
WO2019031157A1 (en) | Three-phase synchronous electric motor control device and electric power steering device using same | |
KR101910012B1 (en) | Apparatus and method of re-starting sensorless brushless dc motor | |
US20200091845A1 (en) | Rotor position estimation device, motor control device, and recording medium | |
KR102260101B1 (en) | Integrated circuit for controlling motor | |
JP6348779B2 (en) | Synchronous motor drive system | |
Matsushita et al. | Sine-wave drive for PM motor controlling phase difference between voltage and current by detecting inverter bus current | |
JP6935349B2 (en) | Motor drive | |
WO2020121368A1 (en) | Motor drive device and motor drive method | |
JP7405696B2 (en) | Synchronous motor drive device and synchronous motor drive method | |
JP7467374B2 (en) | Driving device for synchronous motor and driving method for synchronous motor | |
WO2023068012A1 (en) | Motor control device | |
JP2003274688A (en) | Method and apparatus for controlling inverter | |
WO2016143120A1 (en) | Ac rotating electric machine control device and electric power steering control device | |
JP2024165415A (en) | Motor Control Device | |
JP2024104177A (en) | MOTOR DRIVE CONTROL DEVICE AND MOTOR DRIVE CONTROL METHOD |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190913 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200731 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200901 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201016 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201104 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201203 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6805197 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |