[go: up one dir, main page]

JP2019137894A - Corrosion preventing terminal material, method of producing the same, and corrosion preventing terminal - Google Patents

Corrosion preventing terminal material, method of producing the same, and corrosion preventing terminal Download PDF

Info

Publication number
JP2019137894A
JP2019137894A JP2018022857A JP2018022857A JP2019137894A JP 2019137894 A JP2019137894 A JP 2019137894A JP 2018022857 A JP2018022857 A JP 2018022857A JP 2018022857 A JP2018022857 A JP 2018022857A JP 2019137894 A JP2019137894 A JP 2019137894A
Authority
JP
Japan
Prior art keywords
zinc
contact
layer
planned
nickel alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018022857A
Other languages
Japanese (ja)
Inventor
圭栄 樽谷
Yoshie Tarutani
圭栄 樽谷
賢治 久保田
Kenji Kubota
賢治 久保田
中矢 清隆
Kiyotaka Nakaya
清隆 中矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2018022857A priority Critical patent/JP2019137894A/en
Publication of JP2019137894A publication Critical patent/JP2019137894A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

To provide a terminal material that is hard to corrode electrically, has a good appearance, and enhances an adhesive property of a coating.SOLUTION: An corrosion preventing terminal material of this invention is stacked with a coating on a base material made of copper or copper alloy and, when molded to a terminal, is formed of a core-wire-contact-intended part that a core wire of an electric wire contacts and a contact-point-intended part which becomes a contact part. A coating to be formed on the core-wire-contact-intended part is stacked with a zinc nickel alloy layer including zinc and nickel, a tin layer made of tin or tin alloy, and a zinc metal layer in this order. A coating formed on the contact-point-intended part includes a tin layer on the base material. The zinc nickel alloy layer includes a tapered part where coating thickness becomes gradually smaller as approaching the contact-point-intended part in an edge part of the core-wire-contact-intended part adjacent to the contact-point-intended part and does not exist on a part of the contact-point-intended part that is beyond the tapered part.SELECTED DRAWING: Figure 1

Description

本発明は、アルミニウム線材からなる電線の端末に圧着される端子として用いられ、電食の生じにくい防食端子材及びその製造方法並びに防食端子に関する。   The present invention relates to an anticorrosion terminal material that is used as a terminal to be crimped to an end of an electric wire made of an aluminum wire, and to a method for producing the same and an anticorrosion terminal.

従来、銅又は銅合金で構成されている電線の端末部に、銅又は銅合金で構成された端子を圧着し、この端子を機器に設けられた端子に接続することにより、その電線を機器に接続することが行われている。また、電線の軽量化等のために、電線の心線を、銅又は銅合金に代えて、アルミニウム又はアルミニウム合金で構成している場合がある。
例えば、特許文献1には、アルミニウム合金からなる自動車ワイヤーハーネス用アルミ電線が開示されている。
Conventionally, by crimping a terminal made of copper or a copper alloy to the terminal portion of an electric wire made of copper or a copper alloy, and connecting the terminal to a terminal provided in the equipment, the electric wire is attached to the equipment. Connecting is done. Further, for the purpose of reducing the weight of the electric wire, the core of the electric wire may be made of aluminum or an aluminum alloy instead of copper or a copper alloy.
For example, Patent Document 1 discloses an aluminum wire for an automobile wire harness made of an aluminum alloy.

ところで、電線(導線)をアルミニウム又はアルミニウム合金で構成し、端子を銅又は銅合金で構成すると、水が端子と電線との圧着部に入ったときに、異金属の電位差による電食が発生することがある。そして、その電線の腐食に伴い、圧着部での電気抵抗値の上昇や圧着力の低下が生ずるおそれがある。   By the way, when an electric wire (conductive wire) is made of aluminum or an aluminum alloy and a terminal is made of copper or a copper alloy, when water enters the crimping portion between the terminal and the electric wire, electrolytic corrosion due to a potential difference between different metals occurs. Sometimes. And with the corrosion of the electric wire, there exists a possibility that the electrical resistance value in a crimping | compression-bonding part may raise or the crimping force may fall.

この腐食の防止法としては、例えば特許文献2や特許文献3記載のものがある。
特許文献2には、第1の金属材料で構成された地金部と、第1の金属材料よりも標準電極電位の値が小さい第2の金属材料で構成され、地金部の表面の少なくとも一部にめっきで薄く設けられた中間層と、第2の金属材料よりも標準電極電位の値が小さい第3の金属材料で構成され、中間層の表面の少なくとも一部にめっきで薄く設けられた表面層とを有する端子が開示されている。第1の金属材料として銅又はこの合金、第2の金属材料として鉛又はこの合金、あるいは錫又はこの合金、ニッケル又はこの合金、亜鉛又はこの合金が記載されており、第3の金属材料としてはアルミニウム又はこの合金が記載されている。
Examples of methods for preventing this corrosion include those described in Patent Document 2 and Patent Document 3.
Patent Document 2 includes a metal part made of a first metal material and a second metal material having a standard electrode potential value smaller than that of the first metal material, and at least a surface of the metal part. It is composed of an intermediate layer that is thinly provided by plating and a third metal material having a standard electrode potential smaller than that of the second metal material, and is thinly provided by plating on at least a part of the surface of the intermediate layer. A terminal having a surface layer is disclosed. The first metal material is copper or an alloy thereof, the second metal material is lead or an alloy thereof, tin or an alloy thereof, nickel or an alloy thereof, zinc or an alloy thereof, and the third metal material is Aluminum or its alloys are described.

特許文献3には、被覆電線の端末領域において、端子金具の一方端に形成されるかしめ部が被覆電線の被覆部分の外周に沿ってかしめられ、少なくともかしめ部の端部露出領域及びその近傍領域の全外周をモールド樹脂により完全に覆ってなるワイヤーハーネスの端末構造が開示されている。   In Patent Document 3, in the terminal region of the covered electric wire, the caulking portion formed at one end of the terminal metal fitting is caulked along the outer periphery of the covering portion of the covered electric wire, and at least the end exposed region of the caulking portion and the vicinity thereof A wire harness terminal structure is disclosed in which the entire outer periphery of the wire harness is completely covered with a mold resin.

特開2004−134212号公報JP 2004-134212 A 特開2013−33656号公報JP 2013-33656 A 特開2011−222243号公報JP 2011-222243 A

しかしながら、特許文献3記載の構造では腐食は防げるものの、樹脂モールド工程の追加により製造コストが増大し、さらに、樹脂による端子断面積増加によりワイヤーハーネスの小型化が妨げられるという問題があり、特許文献2記載の第3の金属材料であるアルミニウム系めっきを実施するためにはイオン性液体などを用いるため、非常にコストがかかるという問題があった。   However, although the structure described in Patent Document 3 can prevent corrosion, there is a problem that the manufacturing cost increases due to the addition of the resin molding process, and further, the miniaturization of the wire harness is hindered by the increase of the terminal cross-sectional area due to the resin. In order to carry out the aluminum-based plating that is the third metal material described in 2, an ionic liquid or the like is used, which causes a problem that it is very expensive.

そこで、本出願人は、特願2017−42713号にて、防食端子材として、電線の心線が接触される心線接触予定部に形成される皮膜を基材側から順に亜鉛ニッケル合金層と錫層と金属亜鉛層との積層構造とし、接点部となる接点予定部に形成される皮膜は少なくとも錫層を有し、亜鉛ニッケル合金層及び金属亜鉛層を有しない構造を提案した。
この場合、亜鉛ニッケル合金層を形成するための部分めっき処理には、めっきしない部分にマスキングを施す必要がある。めっきのマスキングには、一般にマスキングテープが用いられるが、その貼付作業やめっき処理後の剥離作業が煩雑で、作業性が悪く、さらにマスキングテープ材料分のコストが余分にかかる。また、心線接触予定部と接点予定部との境界線により最表面の外観が損なわれるとともに、密着性を低下させるおそれがある。
Therefore, the present applicant, in Japanese Patent Application No. 2017-42713, as the anticorrosion terminal material, the coating formed on the core wire contact planned portion where the core wire of the electric wire is contacted with the zinc-nickel alloy layer in order from the substrate side A layered structure of a tin layer and a metal zinc layer was proposed, and a film formed on the planned contact portion to be a contact portion had at least a tin layer, and a structure without a zinc nickel alloy layer and a metal zinc layer was proposed.
In this case, in the partial plating treatment for forming the zinc-nickel alloy layer, it is necessary to mask the portions that are not plated. A masking tape is generally used for masking the plating. However, the attaching work and the peeling work after the plating process are complicated, the workability is poor, and the cost for the masking tape material is excessive. Further, the outermost surface appearance is impaired by the boundary line between the core wire contact planned part and the contact point planned part, and the adhesion may be lowered.

本発明は、この防食端子材をさらに改良し、電食の生じにくい端子材であり、かつ、外観が良好で、皮膜の密着性を向上させることを目的とする。   An object of the present invention is to further improve this anticorrosion terminal material, to be a terminal material that is less susceptible to electrolytic corrosion, to have a good appearance, and to improve the adhesion of the film.

本発明の防食端子材は、銅又は銅合金からなる基材の上に皮膜が積層されているとともに、端子に成形されたときに電線の心線が接触される心線接触予定部と、接点部となる接点予定部とが形成されており、前記心線接触予定部に形成される前記皮膜は、亜鉛及びニッケルを含有する亜鉛ニッケル合金層と、錫又は錫合金からなる錫層と、金属亜鉛層とがこの順に積層されており、前記接点予定部に形成される前記皮膜は、前記基材の上に前記錫層を有しており、前記亜鉛ニッケル合金層は、前記接点予定部に隣接する前記心線接触予定部の端縁部においては前記接点予定部に接近するにしたがって漸次膜厚が小さくなる漸減部を有し、該漸減部を超えた前記接点予定部には前記亜鉛ニッケル合金層を有しない。   The anticorrosion terminal material of the present invention has a coating layer laminated on a base material made of copper or a copper alloy, and a core wire contact planned portion where a core wire of an electric wire is contacted when formed on a terminal, and a contact And the coating formed on the core wire contact planned portion includes a zinc-nickel alloy layer containing zinc and nickel, a tin layer made of tin or a tin alloy, and a metal Zinc layers are laminated in this order, and the coating formed on the planned contact portion has the tin layer on the base material, and the zinc-nickel alloy layer is formed on the planned contact portion. An adjacent edge portion of the core wire contact portion has a gradually decreasing portion that gradually decreases in thickness as the contact portion approaches the contact portion, and the contact point portion beyond the gradually decreasing portion includes the zinc nickel Does not have an alloy layer.

この防食端子材は、心線接触予定部においては、金属亜鉛層が形成されており、この金属亜鉛の腐食電位がアルミニウムと近いので、アルミニウム製心線と接触した場合の電食の発生を抑えることができる。しかも、下地に亜鉛ニッケル合金層を有しており、その亜鉛が錫層の表面に拡散してくるので、金属亜鉛層が高濃度に維持される。万一、摩耗等により金属亜鉛層や錫層の全部又は一部が消失した場合でも、その下の亜鉛ニッケル合金層により電食の発生を抑えることができる。
一方で、金属亜鉛層が錫層の表面に存在すると、高温高湿環境下において接続信頼性が損なわれることがある。このため、接点予定部のみ金属亜鉛層がない構造とし、高温高湿環境に曝された際も接触抵抗の上昇を抑えることが可能となった。接点予定部においては、下地からの亜鉛の拡散による接続信頼性の低下を抑えるために錫層の下に亜鉛ニッケル合金層は存在しない。
また、接点予定部に隣接する心線接触予定部の端縁部において、亜鉛ニッケル合金層の膜厚が漸次小さくなる漸減部を設けたので、錫層表面の外観を損なわないとともに、曲げ等の加工時に割れ等が生じにくく、したがって、皮膜の剥離が生じにくい。
In this anticorrosion terminal material, a metal zinc layer is formed in the portion where the core wire is to be contacted. Since the corrosion potential of this metal zinc is close to that of aluminum, the occurrence of electrolytic corrosion when contacting with the aluminum core wire is suppressed. be able to. In addition, the base has a zinc-nickel alloy layer, and the zinc diffuses to the surface of the tin layer, so that the metal zinc layer is maintained at a high concentration. Even if all or part of the metal zinc layer or tin layer disappears due to wear or the like, the occurrence of electrolytic corrosion can be suppressed by the zinc-nickel alloy layer therebelow.
On the other hand, when the metal zinc layer is present on the surface of the tin layer, connection reliability may be impaired in a high temperature and high humidity environment. For this reason, it is possible to suppress the increase in contact resistance even when exposed to a high-temperature and high-humidity environment with a structure in which only the planned contact portion has no metal zinc layer. In the planned contact portion, there is no zinc-nickel alloy layer under the tin layer in order to suppress a decrease in connection reliability due to diffusion of zinc from the base.
In addition, at the edge of the core contact planned portion adjacent to the planned contact portion, a gradually decreasing portion is provided in which the thickness of the zinc-nickel alloy layer is gradually reduced. During processing, cracks and the like are unlikely to occur, and therefore peeling of the film is unlikely to occur.

本発明の防食端子材の好ましい実施態様として、前記漸減部は、該漸減部以外の前記亜鉛ニッケル合金層の膜厚をtとし、tの80%の膜厚となる位置から膜厚が10%未満となる位置までの幅をWとすると、幅Wは0.5mm以上15mm以下が好ましい。
その幅Wが0.5mm未満では、漸減部の幅が小さいことから、錫層表面に漸減部の部分が線状に現われやすいとともに、曲げ加工した際に漸減部の部分で割れが生じ易い。また、幅Wが15mmを超えていると、漸減部において表面の腐食電位を卑化させる効果が乏しくなる。
As a preferred embodiment of the anticorrosion terminal material of the present invention, the gradually decreasing portion has a thickness of 10% from a position where the thickness of the zinc-nickel alloy layer other than the gradually decreasing portion is t and the thickness is 80% of t. Assuming that the width to a position that is less than W is W, the width W is preferably 0.5 mm or more and 15 mm or less.
If the width W is less than 0.5 mm, the width of the gradually decreasing portion is small, so that the portion of the gradually decreasing portion is likely to appear linearly on the surface of the tin layer, and cracking is likely to occur in the portion of the gradually decreasing portion when bent. On the other hand, if the width W exceeds 15 mm, the effect of lowering the corrosion potential of the surface in the gradually decreasing portion becomes poor.

本発明の防食端子材の好ましい実施態様として、前記基材と前記亜鉛ニッケル合金層との間に、ニッケル又はニッケル合金からなる下地層が形成されているとよい。   As a preferred embodiment of the anticorrosion terminal material of the present invention, a base layer made of nickel or a nickel alloy is preferably formed between the base material and the zinc-nickel alloy layer.

基材と亜鉛ニッケル合金層との間の下地層は熱負荷がかかった際に基材から皮膜表面へ銅が拡散し、接触抵抗が上がることを抑制する効果がある。
この場合、前記下地層の平均膜厚は0.1μm以上5.0μm以下であり、前記亜鉛ニッケル合金層の平均膜厚は0.1μm以上5.0μm以下であり、前記錫層の平均膜厚は0.1μm以上10μm以下であるとよい。
The underlayer between the base material and the zinc-nickel alloy layer has an effect of suppressing the diffusion of copper from the base material to the coating surface and increasing the contact resistance when a thermal load is applied.
In this case, the average film thickness of the underlayer is 0.1 μm or more and 5.0 μm or less, the average film thickness of the zinc-nickel alloy layer is 0.1 μm or more and 5.0 μm or less, and the average film thickness of the tin layer Is preferably 0.1 μm or more and 10 μm or less.

また、本発明の防食端子材の好ましい実施態様として、帯板状に形成されるとともに、その長さ方向に沿うキャリア部に、前記心線接触予定部及び前記接点予定部を有する端子用部材が前記キャリア部の長さ方向に間隔をおいて複数連結されている。
そして、本発明の防食端子は、上記の防食端子材からなる端子であり、本発明の電線端末部構造は、その防食端子がアルミニウム又はアルミニウム合金からなる電線の端末に圧着されている。
In addition, as a preferred embodiment of the anticorrosion terminal material of the present invention, a terminal member having the core wire contact planned portion and the contact planned portion is formed on the carrier portion along the length direction while being formed in a strip shape. A plurality of the carrier portions are connected at intervals in the length direction.
And the anticorrosion terminal of this invention is a terminal which consists of said anticorrosion terminal material, and the electric wire terminal part structure of this invention is crimped | bonded to the terminal of the electric wire which the anticorrosion terminal consists of aluminum or an aluminum alloy.

本発明の防食端子材の製造方法は、前記基材の前記心線接触予定部上に前記亜鉛ニッケル合金層を電解めっきにより形成する際に、電解めっき槽内の電極と前記基材との間で前記接点予定部に対向するように遮蔽板を配置する。   In the method for producing a corrosion-resistant terminal material of the present invention, when the zinc-nickel alloy layer is formed by electrolytic plating on the core wire contact planned portion of the base material, the electrode between the electrode in the electrolytic plating tank and the base material is used. Then, a shielding plate is disposed so as to face the planned contact point.

基材の接点予定部に遮蔽板によって亜鉛ニッケル合金層が形成されないようにしたので、マスキングテープを用いる方法に比べて、マスキングテープの除去作業等を廃止することができ、作業性がよい。この遮蔽板を用いる場合、遮蔽板の端縁部において電流が回り込むので、漸減部を効率的に形成することができる。   Since the zinc-nickel alloy layer is not formed on the planned contact portion of the base material by the shielding plate, the masking tape removal operation and the like can be eliminated compared with the method using the masking tape, and the workability is good. When this shielding plate is used, since a current flows around the edge portion of the shielding plate, the gradually decreasing portion can be efficiently formed.

本発明によれば、心線接触予定部の表面に腐食電位がアルミニウムと近い金属亜鉛層が形成されているので、アルミニウム製心線と接触した場合の電食の発生を抑えることができ、しかも、錫層の下の亜鉛ニッケル合金層から亜鉛が錫層の表面部分に拡散してくるので、金属亜鉛層を高濃度に維持することができ、長期的に耐食性に優れており、さらに、万一、摩耗等により錫層の全部又は一部が消失した場合でも、その下の亜鉛ニッケル合金層により電食の発生を抑えることができ、電気抵抗値の上昇や心線への圧着力の低下を抑制することができる。一方、接点予定部においては、金属亜鉛層がないため、高温高湿環境に曝された際も接触抵抗の上昇を抑えることができる。また、接点予定部に隣接する心線接触予定部の端縁部において亜鉛ニッケル合金層の膜厚が漸次小さくなる漸減部を設けたので、最表面の外観も滑らかで、かつ、接点予定部と心線接触予定部との間の曲げ加工による表面の剥離や亀裂の発生を抑制できる。   According to the present invention, since a zinc metal layer having a corrosion potential close to that of aluminum is formed on the surface of the core wire contact planned portion, it is possible to suppress the occurrence of electrolytic corrosion when contacting with the aluminum core wire. Since zinc diffuses from the zinc-nickel alloy layer under the tin layer to the surface portion of the tin layer, the metal zinc layer can be maintained at a high concentration, and has excellent long-term corrosion resistance. 1. Even when all or part of the tin layer disappears due to wear, etc., the zinc-nickel alloy layer below it can suppress the occurrence of electrolytic corrosion, increase the electrical resistance value, and decrease the crimping force to the core wire Can be suppressed. On the other hand, since the planned contact portion has no metallic zinc layer, an increase in contact resistance can be suppressed even when exposed to a high temperature and high humidity environment. In addition, since the thickness of the zinc-nickel alloy layer gradually decreases at the edge of the core contact planned portion adjacent to the planned contact portion, the appearance of the outermost surface is smooth, and the planned contact portion and It is possible to suppress the occurrence of surface peeling and cracking due to the bending process with the core wire contact planned portion.

本発明の防食端子材の実施形態を模式的に示す断面図である。It is sectional drawing which shows typically embodiment of the anti-corrosion terminal material of this invention. 実施形態の防食端子材の平面図である。It is a top view of the corrosion-proof terminal material of an embodiment. 実施形態の防食端子材が適用される端子の例を示す斜視図である。It is a perspective view which shows the example of the terminal to which the corrosion-proof terminal material of embodiment is applied. 図3の端子を圧着した電線の端末部を示す正面図である。It is a front view which shows the terminal part of the electric wire which crimped | bonded the terminal of FIG. 下地層を形成した基材の表面の一部に亜鉛ニッケル合金めっきを施すためのめっき槽を示す断面図である。It is sectional drawing which shows the plating tank for performing zinc nickel alloy plating to a part of surface of the base material in which the base layer was formed.

本発明の実施形態の防食端子材、防食端子及び電線端末部構造を説明する。
本実施形態の防食端子材1は、図2に全体を示したように、複数の端子を成形するための帯板状の素材(フープ材)であり、その両側部に長さ方向に沿って形成されたキャリア部21の間に、端子として成形すべき複数の端子用部材22がキャリア部21の長さ方向に間隔をおいて配置され、各端子用部材22が細幅の連結部23を介してキャリア部21に連結されている。各端子用部材22は例えば図3に示すような端子の形状に成形され、連結部23から切断されることにより、防食端子10として完成する。
The anticorrosion terminal material, anticorrosion terminal, and electric wire terminal part structure of embodiment of this invention are demonstrated.
The anticorrosion terminal material 1 of this embodiment is a strip-shaped material (hoop material) for forming a plurality of terminals, as shown in FIG. 2 as a whole, and along the length direction on both sides thereof. Between the formed carrier parts 21, a plurality of terminal members 22 to be molded as terminals are arranged at intervals in the length direction of the carrier parts 21, and each terminal member 22 has a narrow connecting part 23. Via the carrier part 21. Each terminal member 22 is formed into a terminal shape as shown in FIG. 3, for example, and is cut from the connecting portion 23 to complete the anticorrosion terminal 10.

この防食端子10は、図3の例ではメス端子を示しており、先端から、オス端子15(図4参照)が嵌合される接続部11、電線12の露出した心線12aがかしめられる心線圧着部13、電線12の被覆部12bがかしめられる被覆圧着部14がこの順で一体に形成されている。接続部11は角筒状に形成され、その先端から連続するばね片11aが折り込まれるように挿入されている(図4参照)。
図4は電線12に防食端子10をかしめた端末部構造を示しており、心線圧着部13の付近が電線12の心線12aに直接接触することになる。また、角筒状の接続部11の内面及び接続部11内に折り込まれているばね片11aにオス端子15が接触する。
したがって、図2の接続部11となる部分及びばね片11aとなる部分を接点予定部25とし、その下方の心線圧着部13を含む部分を心線接触予定部26とする。厳密には接点予定部25内の破線で示す部分がオス端子15と接触し、心線接触予定部26内の破線で示す部分が心線に接触するが、帯状素材の幅方向の一方側と他方側に分けて形成されるので、幅方向の途中位置から一方側を接点予定部25、他方側を心線接触予定部26とする。なお、接点予定部25は、ばね片11aが折り返されるので、帯状素材の両面に形成される。
The anticorrosion terminal 10 is a female terminal in the example of FIG. 3, and a connection portion 11 to which a male terminal 15 (see FIG. 4) is fitted and a core 12 a exposed from the electric wire 12 are caulked from the tip. A wire crimping portion 13 and a covering crimping portion 14 on which the covering portion 12b of the electric wire 12 is caulked are integrally formed in this order. The connecting portion 11 is formed in a rectangular tube shape, and is inserted so that a continuous spring piece 11a is folded from the tip (see FIG. 4).
FIG. 4 shows a terminal structure in which the anticorrosion terminal 10 is caulked to the electric wire 12, and the vicinity of the core wire crimping portion 13 is in direct contact with the core wire 12 a of the electric wire 12. Further, the male terminal 15 contacts the inner surface of the rectangular tube-shaped connecting portion 11 and the spring piece 11 a folded into the connecting portion 11.
Therefore, the part that becomes the connection part 11 and the part that becomes the spring piece 11a in FIG. 2 are the contact point planned part 25, and the part that includes the core wire crimping part 13 below is the core line contact scheduled part 26. Strictly speaking, a portion indicated by a broken line in the planned contact portion 25 is in contact with the male terminal 15, and a portion indicated by a broken line in the core wire contact planned portion 26 is in contact with the core wire. Since it is formed separately on the other side, one side from the midway position in the width direction is a contact planned portion 25 and the other side is a core contact planned portion 26. In addition, since the spring piece 11a is folded back, the planned contact portion 25 is formed on both surfaces of the belt-shaped material.

そして、この防食端子材1は、図1に断面(図2のA−A線に沿う断面に相当する)を模式的に示したように、銅又は銅合金からなる基材2上に皮膜8が形成されており、その皮膜8は、接点予定部25を除く部分の表面では、ニッケル又はニッケル合金からなる下地層3、亜鉛ニッケル合金層4、錫層5がこの順に積層されるとともに、さらに、錫層5の上に、その最表面に形成される酸化物層6の下に、金属亜鉛層7が形成されている。一方、接点予定部25においては、下地層3、錫層5がこの順に積層されており、亜鉛ニッケル合金層4及び金属亜鉛層7は有していない。この金属亜鉛層7は、端子10として成形された後の表面(端子用部材22の表面)の30%以上80%以下の被覆率で存在するのが望ましい。   And this anti-corrosion terminal material 1 is a film | membrane 8 on the base material 2 which consists of copper or a copper alloy so that the cross section (equivalent to the cross section along the AA line of FIG. 2) was typically shown in FIG. In the surface of the portion excluding the planned contact portion 25, the underlayer 3 made of nickel or a nickel alloy, the zinc-nickel alloy layer 4, and the tin layer 5 are laminated in this order. A zinc metal layer 7 is formed on the tin layer 5 and below the oxide layer 6 formed on the outermost surface thereof. On the other hand, in the planned contact portion 25, the base layer 3 and the tin layer 5 are laminated in this order, and the zinc-nickel alloy layer 4 and the metal zinc layer 7 are not provided. The metal zinc layer 7 is desirably present at a coverage of 30% or more and 80% or less of the surface (the surface of the terminal member 22) after being formed as the terminal 10.

この場合、亜鉛ニッケル合金層4は、心線接触予定部26の大部分においては全面に均等な膜厚で設けられているが、接点予定部25に隣接する端縁部においては、接点予定部25に接近するにしたがって漸次膜厚が小さくなる漸減部4aを有し、この漸減部4aを超えた部分の接点予定部25には設けられていない。漸減部4aは、接点予定部25に隣接する心線接触予定部26の端縁部に沿って帯状に形成されており、その幅については、漸減部4a以外の亜鉛ニッケル合金層4の膜厚をtとし、tの80%の膜厚となる位置から膜厚が10%未満となる位置までの幅をWとすると、幅Wを0.5mm以上15mm以下とするのが好ましい。   In this case, the zinc-nickel alloy layer 4 is provided with a uniform film thickness on the entire surface in most of the core wire contact planned portion 26, but in the edge portion adjacent to the contact planned portion 25, the contact planned portion 25, a gradually decreasing portion 4a having a gradually decreasing film thickness as it approaches 25 is provided, and is not provided in the contact planned portion 25 in a portion beyond the gradually decreasing portion 4a. The gradually decreasing portion 4a is formed in a strip shape along the edge of the core contact planned portion 26 adjacent to the planned contact portion 25, and the width of the zinc-nickel alloy layer 4 other than the gradually decreasing portion 4a is formed. Is W, and the width from the position where the film thickness is 80% of t to the position where the film thickness is less than 10% is W, the width W is preferably 0.5 mm or more and 15 mm or less.

基材2は、銅又は銅合金からなるものであれば、特に、その組成が限定されるものではない。
以下、皮膜8については、まず、接点予定部25を除く部分(心線接触予定部26を含む)について、層ごとに説明する。
下地層3は、平均膜厚が0.1μm以上5.0μm以下で、ニッケル含有率は80質量%以上である。この下地層3は、基材2から亜鉛ニッケル合金層4や錫層5への銅の拡散を防止する機能があり、その膜厚が0.1μm未満では銅の拡散を防止する効果に乏しく、5.0μmを超えるとプレス加工時に割れが生じ易い。下地層3の膜厚は、0.3μm以上2.0μm以下がより好ましい。
また、そのニッケル含有率は80質量%未満では銅が亜鉛ニッケル合金層4や錫層5へ拡散することを防止する効果が小さい。このニッケル含有率は90質量%以上とするのがより好ましい。
If the base material 2 consists of copper or a copper alloy, the composition in particular will not be limited.
Hereinafter, with respect to the film 8, first, a portion excluding the contact planned portion 25 (including the core contact contact portion 26) will be described for each layer.
The underlayer 3 has an average film thickness of 0.1 μm or more and 5.0 μm or less and a nickel content of 80% by mass or more. This underlayer 3 has a function of preventing the diffusion of copper from the base material 2 to the zinc-nickel alloy layer 4 or the tin layer 5, and when the film thickness is less than 0.1 μm, the effect of preventing the diffusion of copper is poor. If it exceeds 5.0 μm, cracking is likely to occur during press working. The film thickness of the underlayer 3 is more preferably 0.3 μm or more and 2.0 μm or less.
Further, when the nickel content is less than 80% by mass, the effect of preventing copper from diffusing into the zinc-nickel alloy layer 4 and the tin layer 5 is small. The nickel content is more preferably 90% by mass or more.

亜鉛ニッケル合金層4は、平均膜厚が0.1μm以上5.0μm以下であり、亜鉛、ニッケルが含有されるとともに、錫層5に接しているので錫も含有している。この亜鉛ニッケル合金層4のニッケル含有率は5質量%以上35質量%以下である。
この亜鉛ニッケル合金層4の膜厚が0.1μm未満では表面の腐食電位を卑化させる効果が乏しく、5.0μmを超えると端子10へのプレス加工時に割れが発生するおそれがある。亜鉛ニッケル合金層4の膜厚は、0.3μm以上2.0μm以下がより好ましい。
亜鉛ニッケル合金層4のニッケル含有率が5質量%未満では、錫層5を形成するための後述する錫めっき時に置換反応が発生し、錫めっき(錫層5)の密着性が低下する。亜鉛ニッケル合金層4中のニッケル含有率が35質量%を超えると表面の腐食電位を卑化させる効果が少ない。このニッケル含有率は7質量%以上20質量%以下とするのがより好ましい。亜鉛ニッケル合金層は少なくとも心線接触予定部に形成され、下地からの亜鉛拡散による接点不良を防ぐために、接点予定部には存在しないことが好ましい。
The zinc-nickel alloy layer 4 has an average film thickness of 0.1 μm or more and 5.0 μm or less, contains zinc and nickel, and also contains tin because it is in contact with the tin layer 5. The nickel content of the zinc-nickel alloy layer 4 is 5% by mass or more and 35% by mass or less.
If the thickness of the zinc-nickel alloy layer 4 is less than 0.1 μm, the effect of lowering the corrosion potential of the surface is poor, and if it exceeds 5.0 μm, there is a possibility that cracking may occur during pressing of the terminal 10. The thickness of the zinc-nickel alloy layer 4 is more preferably 0.3 μm or more and 2.0 μm or less.
When the nickel content of the zinc-nickel alloy layer 4 is less than 5% by mass, a substitution reaction occurs during the later-described tin plating for forming the tin layer 5, and the adhesion of the tin plating (tin layer 5) is lowered. When the nickel content in the zinc-nickel alloy layer 4 exceeds 35% by mass, the effect of lowering the corrosion potential of the surface is small. The nickel content is more preferably 7% by mass or more and 20% by mass or less. It is preferable that the zinc-nickel alloy layer is formed at least in the planned contact portion of the core wire and is not present in the planned contact portion in order to prevent contact failure due to zinc diffusion from the base.

錫層5は、亜鉛濃度が0.4質量%以上15質量%以下である。この錫層5の亜鉛濃度が0.4質量%未満では腐食電位を卑化してアルミニウム線を防食する効果が乏しく、15質量%を超えると錫層5の耐食性が著しく低下するため腐食環境に曝されると錫層5が腐食され接触抵抗が悪化するおそれがある。この錫層5の亜鉛濃度は、1.5質量%以上6.0質量%以下がより好ましい。
また、錫層5の平均膜厚は0.1μm以上10μm以下が好ましく、薄過ぎるとはんだ濡れ性の低下、接触抵抗の低下を招くおそれがあり、厚過ぎると、表面の動摩擦係数の増大を招き、コネクタ等での使用時の着脱抵抗が大きくなる傾向にある。
The tin layer 5 has a zinc concentration of 0.4 mass% or more and 15 mass% or less. If the zinc concentration of the tin layer 5 is less than 0.4% by mass, the corrosion potential is reduced and the effect of preventing the aluminum wire from being corroded is poor, and if it exceeds 15% by mass, the corrosion resistance of the tin layer 5 is remarkably lowered, so If so, the tin layer 5 may be corroded and contact resistance may deteriorate. The zinc concentration of the tin layer 5 is more preferably 1.5% by mass or more and 6.0% by mass or less.
Moreover, the average film thickness of the tin layer 5 is preferably 0.1 μm or more and 10 μm or less, and if it is too thin, there is a risk of lowering the solder wettability and contact resistance, and if it is too thick, the dynamic friction coefficient of the surface is increased. The attachment / detachment resistance during use with a connector or the like tends to increase.

金属亜鉛層7は、亜鉛濃度が5at%以上40at%以下で膜厚がSiO換算で1nm以上10nm以下である。この金属亜鉛層の亜鉛濃度は5at%未満では腐食電位を卑化する効果がなく、40at%を超えると接触抵抗が悪化する。この金属亜鉛層7の亜鉛濃度は、10at%以上25at%以下がより好ましい。
一方、金属亜鉛層7のSiO換算膜厚が1nm未満では腐食電位を卑化する効果が乏しく、10nmを超えると接触抵抗が悪化するおそれがある。このSiO換算膜厚は1.25nm以上3nm以下がより好ましい。
なお、金属亜鉛層7の表面には、亜鉛や錫の酸化物層6が形成される。
The metal zinc layer 7 has a zinc concentration of 5 at% to 40 at% and a film thickness of 1 nm to 10 nm in terms of SiO 2 . If the zinc concentration of the metal zinc layer is less than 5 at%, there is no effect of lowering the corrosion potential, and if it exceeds 40 at%, the contact resistance deteriorates. The zinc concentration of the metal zinc layer 7 is more preferably 10 at% or more and 25 at% or less.
On the other hand, if the SiO 2 equivalent film thickness of the metal zinc layer 7 is less than 1 nm, the effect of lowering the corrosion potential is poor, and if it exceeds 10 nm, the contact resistance may deteriorate. The SiO 2 equivalent film thickness is more preferably 1.25 nm or more and 3 nm or less.
A zinc or tin oxide layer 6 is formed on the surface of the metal zinc layer 7.

以上の層構成を有する皮膜8は、前述したように、接点予定部25を除く部分の表面に存在している。前述したように、この金属亜鉛層7を有する皮膜8は、端子10として成形されたときの表面の30%以上80%以下の被覆率で存在するのが望ましい。
一方、接点予定部25においては、その大部分に、ニッケル又はニッケル合金からなる下地層3及び錫層5のみ存在する。下地層3及び錫層5のそれぞれの組成や膜厚等は、接点予定部25を除く部分の表面に存在する皮膜8を構成するものと同じである。また、心線接触予定部26において接点予定部25と隣接する端縁部に、接点予定部25に接近するにしたがって漸次膜厚が小さくなる漸減部4aが形成されている。
As described above, the coating 8 having the above layer structure exists on the surface of the portion excluding the contact planned portion 25. As described above, the film 8 having the metal zinc layer 7 is desirably present at a coverage of 30% or more and 80% or less of the surface when formed as the terminal 10.
On the other hand, in the planned contact portion 25, only the base layer 3 and the tin layer 5 made of nickel or a nickel alloy are present in the most part. The composition, film thickness, and the like of each of the foundation layer 3 and the tin layer 5 are the same as those constituting the coating 8 existing on the surface of the portion excluding the contact planned portion 25. Further, a gradually decreasing portion 4 a that gradually decreases in thickness as it approaches the planned contact portion 25 is formed at an edge portion adjacent to the planned contact portion 25 in the planned core wire contact portion 26.

なお、亜鉛ニッケル合金層4中のニッケル含有率、錫層5中の亜鉛濃度、金属亜鉛層7中の膜厚と亜鉛濃度、金属亜鉛層7の被覆率は、以下の方法で測定できる。
亜鉛ニッケル合金層4のニッケル含有率は、セイコーインスツル株式会社製の集束イオンビーム装置:FIB(型番:SMI3050TB)を用いて、試料を100nm以下に薄化した観察試料を作製し、この観察試料を日本電子株式会社製の走査透過型電子顕微鏡:STEM(型番:JEM−2010F)を用いて、加速電圧200kVで観察を行い、STEMに付属するエネルギー分散型X線分析装置:EDS(Thermo社製)を用いて測定する。
錫層5中の亜鉛濃度は日本電子株式会社製の電子線マイクロアナライザー:EPMA(型番JXA−8530F)を用いて、加速電圧6.5V、ビーム径φ30μmとし、試料表面を測定する。
The nickel content in the zinc-nickel alloy layer 4, the zinc concentration in the tin layer 5, the film thickness and zinc concentration in the metal zinc layer 7, and the coverage of the metal zinc layer 7 can be measured by the following methods.
The nickel content of the zinc-nickel alloy layer 4 was determined by preparing an observation sample obtained by thinning the sample to 100 nm or less using a focused ion beam device: FIB (model number: SMI3050TB) manufactured by Seiko Instruments Inc. Is observed at an acceleration voltage of 200 kV using a scanning transmission electron microscope manufactured by JEOL Ltd .: STEM (model number: JEM-2010F), and an energy dispersive X-ray analyzer attached to STEM: EDS (manufactured by Thermo) ) To measure.
The zinc concentration in the tin layer 5 is measured using an electron beam microanalyzer: EPMA (model number JXA-8530F) manufactured by JEOL Ltd. with an acceleration voltage of 6.5 V and a beam diameter of 30 μm.

金属亜鉛層7の膜厚と亜鉛濃度については、各試料について、アルバック・ファイ株式会社製のXPS(X−ray Photoelectron Spectroscopy)分析装置:ULVAC PHI model−5600LSを用い、試料表面をアルゴンイオンでエッチングしながらXPS分析により測定する。その分析条件は例えば以下の通りである。
X線源:Standard MgKα 350W
パスエネルギー:187.85eV(Survey)、58.70eV(Narrow)
測定間隔:0.8eV/step(Survey)、0.125eV(Narrow

試料面に対する光電子取り出し角:45deg
分析エリア:約800μmφ
As for the thickness and zinc concentration of the metal zinc layer 7, for each sample, an XPS (X-ray Photoelectron Spectroscopy) analyzer manufactured by ULVAC-PHI Co., Ltd .: ULVAC PHI model-5600LS was used, and the sample surface was etched with argon ions. Measured by XPS analysis. The analysis conditions are as follows, for example.
X-ray source: Standard MgKα 350W
Path energy: 187.85 eV (Survey), 58.70 eV (Narrow)
Measurement interval: 0.8 eV / step (Survey), 0.125 eV (Narrow)
)
Photoelectron extraction angle with respect to sample surface: 45 deg
Analysis area: about 800μmφ

膜厚については、あらかじめ同機種で測定したSiOのエッチングレートを用いて、測定に要した時間から「SiO換算膜厚」を算出する。
SiOのエッチングレートの算出方法は、20nmの膜厚であるSiO膜を2.8×3.5mmの長方形領域でアルゴンイオンでエッチングを行い、20nmをエッチングするのに要した時間で割ることによって算出する。上記分析装置の場合には例えば8分要したためエッチングレートは2.5nm/minである。XPSは深さ分解能が約0.5nmと優れるが、Arイオンビームでエッチングされる時間は各材料により異なるため、膜厚そのものの数値を得るためには、膜厚が既知かつ平坦な試料を調達し、エッチングレートを算出しなければならない。上記は容易でないため、膜厚が既知であるSiO膜にて算出したエッチングレートで規定し、エッチングに要した時間から算出される「SiO換算膜厚」を利用する。このため「SiO換算膜厚」は実際の酸化物の膜厚と異なる点に注意が必要である。SiO換算エッチングレートで膜厚を規定すると、実際の膜厚は不明であっても、一義的であるため定量的に膜厚を評価することができる。
なお、このSiO換算膜厚は金属亜鉛濃度が所定値以上となっている部分の膜厚であり、金属亜鉛の濃度を部分的に測定できる場合でも、その層が極めて薄く分散している場合にはSiO換算膜厚としては測定できない場合がある。
For the film thickness, the “SiO 2 equivalent film thickness” is calculated from the time required for the measurement using the etching rate of SiO 2 measured in advance by the same model.
The etching rate of SiO 2 is calculated by dividing the SiO 2 film having a thickness of 20 nm by argon ions in a rectangular area of 2.8 × 3.5 mm and dividing the time required for etching 20 nm. Calculated by In the case of the above analysis apparatus, for example, it took 8 minutes, so the etching rate is 2.5 nm / min. XPS has an excellent depth resolution of about 0.5 nm, but the etching time with the Ar ion beam varies depending on the material. Therefore, to obtain a numerical value of the film thickness, a sample with a known and flat film thickness is procured. Then, the etching rate must be calculated. Since the above is not easy, the “SiO 2 equivalent film thickness” calculated from the time required for etching is defined by the etching rate calculated for the SiO 2 film whose film thickness is known. Therefore, it should be noted that the “SiO 2 equivalent film thickness” is different from the actual oxide film thickness. When the film thickness is defined by the SiO 2 conversion etching rate, even if the actual film thickness is unknown, the film thickness is unambiguous and can be quantitatively evaluated.
Note that this SiO 2 equivalent film thickness is the thickness of the portion where the metal zinc concentration is equal to or higher than the predetermined value. Even when the concentration of the metal zinc can be measured partially, the layer is extremely thinly dispersed. In some cases, it is not possible to measure the film thickness in terms of SiO 2 .

次に、この防食端子材1の製造方法について説明する。
基材2として、銅又は銅合金からなる板材を用意する。この板材に裁断、穴明け等の加工を施すことにより、図2に示すような、キャリア部21に複数の端子用部材22を連結部23を介して連結されてなる長尺な帯状素材に成形する。そして、この帯状素材に脱脂、酸洗等の処理をすることによって表面を清浄にした後、その全面に下地層3を形成するためのニッケル又はニッケル合金めっきを施した後、心線接触予定部26に亜鉛ニッケル合金層4を形成するための亜鉛ニッケル合金めっきを施し、その後、全面に錫層5を形成するための錫又は錫合金めっきを施す。
Next, the manufacturing method of this anti-corrosion terminal material 1 is demonstrated.
A plate material made of copper or a copper alloy is prepared as the substrate 2. By cutting or punching the plate material, as shown in FIG. 2, a plurality of terminal members 22 are connected to the carrier portion 21 via a connecting portion 23 to form a long strip-shaped material. To do. Then, after the surface is cleaned by performing degreasing, pickling, etc. on the belt-shaped material, nickel or nickel alloy plating for forming the underlayer 3 is applied to the entire surface, and then the cord contact planned portion 26 is subjected to zinc-nickel alloy plating for forming the zinc-nickel alloy layer 4 and then tin or tin-alloy plating for forming the tin layer 5 on the entire surface.

下地層3を形成するためのニッケル又はニッケル合金めっきは緻密なニッケル主体の膜が得られるものであれば特に限定されず、公知のワット浴やスルファミン酸浴、クエン酸浴などを用いて電気めっきにより形成することができる。ニッケル合金めっきとしてはニッケルタングステン(Ni−W)合金、ニッケルリン(Ni−P)合金、ニッケルコバルト(Ni−Co)合金、ニッケルクロム(Ni−Cr)合金、ニッケル鉄(Ni−Fe)合金、ニッケルボロン(Ni−B)合金などを利用することができる。
防食端子10へのプレス曲げ性と銅に対するバリア性を勘案すると、スルファミン酸浴から得られる純ニッケルめっきが望ましい。
The nickel or nickel alloy plating for forming the underlayer 3 is not particularly limited as long as a dense nickel-based film can be obtained, and electroplating using a known watt bath, sulfamic acid bath, citric acid bath, or the like. Can be formed. As nickel alloy plating, nickel tungsten (Ni-W) alloy, nickel phosphorus (Ni-P) alloy, nickel cobalt (Ni-Co) alloy, nickel chromium (Ni-Cr) alloy, nickel iron (Ni-Fe) alloy, A nickel boron (Ni-B) alloy or the like can be used.
Considering the press bendability to the anticorrosion terminal 10 and the barrier property against copper, pure nickel plating obtained from a sulfamic acid bath is desirable.

亜鉛ニッケル合金層4を形成するための亜鉛ニッケル合金めっきは、緻密な膜を所望の組成で得られるものであれば特に限定されず、公知の硫酸塩浴や塩化物塩浴、中性浴などを用いることができる。
この亜鉛ニッケル合金めっきを施す場合、接点予定部25に亜鉛ニッケル合金層4が形成されないように、遮蔽板を用いて電解めっき処理する。図5は、基材2に下地層3を形成した帯状素材(被めっき材)51をその長さ方向に連続的に送りながら、その表面の一部に亜鉛ニッケル合金めっきを施すためのめっき槽52を示す断面図である。めっき液53を貯留しためっき槽52の中心部に被めっき材51を長さ方向に沿って走行させ、この被めっき材51をカソードとし、その両側に配置したアノード電極54との間に電流を流して被めっき材51の表面に亜鉛ニッケル合金を付着させる。このとき、被めっき材51の接点予定部25の表面を覆うように遮蔽板55を配置しておく。
The zinc-nickel alloy plating for forming the zinc-nickel alloy layer 4 is not particularly limited as long as a dense film can be obtained with a desired composition, and a known sulfate bath, chloride salt bath, neutral bath, etc. Can be used.
When this zinc-nickel alloy plating is performed, electrolytic plating is performed using a shielding plate so that the zinc-nickel alloy layer 4 is not formed on the planned contact portion 25. FIG. 5 shows a plating tank for applying a zinc-nickel alloy plating to a part of the surface while continuously feeding a strip-shaped material (material to be plated) 51 in which the base layer 3 is formed on the base material 2 in the length direction. FIG. A plating material 51 is caused to travel along the length direction in the central portion of the plating tank 52 in which the plating solution 53 is stored. The plating material 51 is used as a cathode, and a current is passed between the anode electrodes 54 arranged on both sides thereof. The zinc nickel alloy is adhered to the surface of the material 51 to be plated. At this time, the shielding plate 55 is disposed so as to cover the surface of the contact planned portion 25 of the material 51 to be plated.

この場合、被めっき材51は幅方向を上下方向とするように配置されており、その幅の下側部分の心線接触予定部26が配置され、上側部分に接点予定部25が配置される。
遮蔽板55は、例えば導電性を有しない塩化ビニル樹脂、アクリル樹脂等からなる絶縁体でめっき液に腐食されない材料により形成されており、被めっき材51の接点予定部25の表面に若干の隙間をあけて対向し、被めっき材51と平行に配置される。被めっき材51と遮蔽板55との隙間gは、1mm以上10mm以下がよい。この隙間gが1mm未満であると、被めっき材51と遮蔽板55とが接触して、被めっき材51の表面を傷つけるおそれがあり、隙間gが10mmを超えると、遮蔽の機能が損なわれ、遮蔽板55との対向面に広い範囲でめっきされてしまう。
なお、図5には、被めっき材51の両面に対向するように遮蔽板55がそれぞれ設けられているが、心線接触部26が片面にのみ配置される場合は、その反対面はテープあるいは同様の遮蔽板により全面をマスキングしておいてもよい。
In this case, the to-be-plated material 51 is arrange | positioned so that the width direction may be made into the up-down direction, the core wire contact plan part 26 of the lower side part of the width is arrange | positioned, and the contact plan part 25 is arrange | positioned in the upper part. .
The shielding plate 55 is formed of a material which is not corroded by the plating solution with an insulator made of, for example, non-conductive vinyl chloride resin, acrylic resin or the like, and has a slight gap on the surface of the contact point planned portion 25 of the material 51 to be plated. And facing each other and arranged parallel to the material 51 to be plated. The gap g between the material to be plated 51 and the shielding plate 55 is preferably 1 mm or more and 10 mm or less. If the gap g is less than 1 mm, the material to be plated 51 and the shielding plate 55 may come into contact with each other and damage the surface of the material to be plated 51. If the gap g exceeds 10 mm, the shielding function is impaired. Then, plating is performed on the surface facing the shielding plate 55 in a wide range.
In FIG. 5, shielding plates 55 are provided so as to face both surfaces of the material 51 to be plated. However, when the core contact portion 26 is disposed only on one surface, the opposite surface is tape or The entire surface may be masked with the same shielding plate.

なお、前述したように亜鉛ニッケル合金層4の端縁部には漸減部4aが形成されるので、この漸減部4aが形成される領域を見込んで、遮蔽板55を配置する。具体的には、遮蔽板55は、被めっき材51の幅の上側部分に配置される接点予定部25の全体を覆い、さらに心線接触予定部26と接点予定部25との境界から漸減部4aが形成される幅の分だけ心線接触予定部26側に入り込んだ位置(図5の鎖線で示す位置)に遮蔽版55の端縁が配置されるように、遮蔽板55の下端縁部が心線接触予定部26の上縁部をも覆うように配置される。逆に言えば、漸減部4aが接点予定部25に形成されないように遮蔽板55の端縁の位置を設定する。   As described above, since the gradually decreasing portion 4a is formed at the edge portion of the zinc-nickel alloy layer 4, the shielding plate 55 is disposed in anticipation of the region where the gradually decreasing portion 4a is formed. Specifically, the shielding plate 55 covers the entire contact point portion 25 arranged on the upper portion of the width of the material 51 and further gradually decreases from the boundary between the core wire contact portion 26 and the contact point portion 25. 4a is formed at the lower end edge of the shielding plate 55 such that the edge of the shielding plate 55 is disposed at a position (a position indicated by a chain line in FIG. 5) that enters the core wire contact planned portion 26 side by an amount corresponding to the width formed. Is arranged so as to cover the upper edge portion of the core wire contact planned portion 26. In other words, the position of the edge of the shielding plate 55 is set so that the gradually decreasing portion 4 a is not formed on the planned contact portion 25.

このように遮蔽板55を配置して電解めっきすると、被めっき材51とアノード電極54との間に流れる電流が、遮蔽板55により覆われていない領域では高い電流密度で流れるのに対して、遮蔽板55により覆われている部分では遮蔽板55により遮蔽されて流れにくい。亜鉛ニッケル合金めっきは電流密度が低い場合には被めっき材51に付着しないので、遮蔽板55により覆われている部分には付着しない。ただし、遮蔽板55の端縁部においては電流が回り込んで流れるので、その電流密度に応じためっきが付着し、漸減部4aが形成される。
なお、膜厚分布を向上させるために有機添加剤をめっき液に添加すると、低電流密度部でも電流効率が向上し、帯状素材に一様に亜鉛ニッケル合金めっきが形成される可能性がある。そのため、亜鉛ニッケル合金めっきの漸減部を形成するために、有機添加剤の添加量を少なくするか、添加しないことが望ましい。
When the shielding plate 55 is thus arranged and electrolytic plating is performed, the current flowing between the material to be plated 51 and the anode electrode 54 flows at a high current density in a region not covered by the shielding plate 55, whereas The portion covered with the shielding plate 55 is shielded by the shielding plate 55 and hardly flows. Since the zinc-nickel alloy plating does not adhere to the material 51 to be plated when the current density is low, it does not adhere to the portion covered with the shielding plate 55. However, since the current flows around the edge of the shielding plate 55, plating according to the current density adheres to form the gradually decreasing portion 4a.
If an organic additive is added to the plating solution in order to improve the film thickness distribution, the current efficiency is improved even in the low current density portion, and the zinc-nickel alloy plating may be uniformly formed on the strip material. Therefore, it is desirable to reduce or not add the organic additive in order to form the gradually decreasing portion of the zinc-nickel alloy plating.

錫層5を形成するための錫又は錫合金めっきは、公知の方法により行うことができるが、例えば有機酸浴(例えばフェノールスルホン酸浴、アルカンスルホン酸浴又はアルカノールスルホン酸浴)、硼フッ酸浴、ハロゲン浴、硫酸浴、ピロリン酸浴等の酸性浴、或いはカリウム浴やナトリウム浴等のアルカリ浴を用いて電気めっきすることができる。   Tin or tin alloy plating for forming the tin layer 5 can be performed by a known method. For example, an organic acid bath (for example, a phenol sulfonic acid bath, an alkane sulfonic acid bath or an alkanol sulfonic acid bath), borofluoric acid Electroplating can be performed using an acidic bath such as a bath, a halogen bath, a sulfuric acid bath, or a pyrophosphoric acid bath, or an alkaline bath such as a potassium bath or a sodium bath.

このようにして、基材2の上にめっきをした後、熱処理を施す。
この熱処理は、素材の表面温度が30℃以上190℃以下となる温度で加熱する。この熱処理により、接点予定部25以外の部分では、亜鉛ニッケル合金めっき層中の亜鉛が錫めっき層内および錫めっき層上に拡散し、表面に薄く金属亜鉛層7を形成する。亜鉛の拡散は速やかに起こるため、30℃以上の温度に24時間以上晒すことで金属亜鉛層7を形成することができる。ただし、亜鉛ニッケル合金は溶融錫をはじき、錫層5に錫はじき箇所を形成するため、190℃を超える温度には加熱しない。
Thus, after plating on the base material 2, heat treatment is performed.
In this heat treatment, heating is performed at a temperature at which the surface temperature of the material becomes 30 ° C. or higher and 190 ° C. or lower. By this heat treatment, zinc in the zinc-nickel alloy plating layer diffuses in the tin plating layer and on the tin plating layer at portions other than the planned contact portion 25, and a thin metal zinc layer 7 is formed on the surface. Since zinc diffusion occurs rapidly, the metallic zinc layer 7 can be formed by exposing it to a temperature of 30 ° C. or higher for 24 hours or longer. However, since the zinc-nickel alloy repels molten tin and forms a tin repelling portion in the tin layer 5, it is not heated to a temperature exceeding 190 ° C.

このようにして製造された防食端子材1は、基材2の上にニッケル又はニッケル合金からなる下地層3が形成され、マスクにより覆っておいた接点予定部25においては、下地層3の上に錫層5が形成されており、接点予定部25以外の部分では、下地層3の上に亜鉛ニッケル合金層4、錫層5、金属亜鉛層7が形成され、その金属亜鉛層7の表面に酸化物層6が薄く形成されている。
そして、プレス加工等により帯状のまま図3に示す端子の形状に加工され、連結部23が切断されることにより、防食端子10に形成される。
図4は電線12に端子10をかしめた端末部構造を示しており、心線かしめ部13付近が電線12の心線12aに直接接触することになる。
The anticorrosion terminal material 1 manufactured in this way has a base layer 3 made of nickel or a nickel alloy formed on a base material 2, and the planned contact portion 25 covered with a mask has an upper surface of the base layer 3. A tin layer 5 is formed on the base layer 3, and a zinc-nickel alloy layer 4, a tin layer 5, and a metal zinc layer 7 are formed on the surface of the metal zinc layer 7. The oxide layer 6 is thinly formed.
And it forms in the shape of the terminal shown in FIG. 3 with a strip | belt shape by press work etc., and it forms in the corrosion-proof terminal 10 by cut | disconnecting the connection part 23. FIG.
FIG. 4 shows a terminal portion structure in which the terminal 10 is caulked to the electric wire 12, and the vicinity of the core caulking portion 13 is in direct contact with the core wire 12 a of the electric wire 12.

この防食端子10は、心線接触予定部26においては、錫層5に亜鉛を含み、錫層5の最表面の酸化物層6の下に金属亜鉛層7が形成されているので、アルミニウム製心線12aに圧着された状態であっても、金属亜鉛の腐食電位がアルミニウムと非常に近いことから、電食の発生を防止することができる。この場合、図2の帯状素材の状態でめっき処理し、熱処理したことから、端子10の端面も基材2が露出していないので、優れた防食効果を発揮することができる。
しかも、錫層5の下に亜鉛ニッケル合金層4が形成されており、その亜鉛が錫層5の表面部分に拡散してくるので、摩耗等による金属亜鉛層7の消失を抑制し、金属亜鉛層7が高濃度に維持される。また、万一、摩耗等により錫層5の全部又は一部が消失した場合でも、その下の亜鉛ニッケル合金層4はアルミニウムと腐食電位が近いので、電食の発生を抑えることができる。
In the anticorrosion terminal 10, the core wire contact portion 26 includes zinc in the tin layer 5, and the metal zinc layer 7 is formed under the outermost oxide layer 6 of the tin layer 5. Even in the state of being crimped to the core wire 12a, the corrosion potential of the metallic zinc is very close to that of aluminum, so that the occurrence of electrolytic corrosion can be prevented. In this case, since the base material 2 is not exposed on the end face of the terminal 10 because the plating treatment is performed in the state of the strip-shaped material in FIG. 2 and the heat treatment is performed, an excellent anticorrosive effect can be exhibited.
Moreover, since the zinc-nickel alloy layer 4 is formed under the tin layer 5 and the zinc diffuses into the surface portion of the tin layer 5, the disappearance of the metal zinc layer 7 due to wear or the like is suppressed, and the metal zinc Layer 7 is maintained at a high concentration. Even if all or part of the tin layer 5 disappears due to wear or the like, the zinc-nickel alloy layer 4 therebelow has a corrosion potential close to that of aluminum, so that the occurrence of electrolytic corrosion can be suppressed.

一方で、金属亜鉛層7が錫層5の表面に存在すると、高温高湿環境下において接続信頼性が損なわれることがあるが、この実施形態においては、接点予定部25には金属亜鉛層7が存在しない構造としたことにより、高温高湿環境に曝された際も接触抵抗の上昇を抑えることができる。   On the other hand, when the metal zinc layer 7 is present on the surface of the tin layer 5, connection reliability may be impaired in a high-temperature and high-humidity environment. In this embodiment, the contact point portion 25 includes the metal zinc layer 7. By adopting a structure that does not exist, an increase in contact resistance can be suppressed even when exposed to a high temperature and high humidity environment.

また、前述したように、接点予定部25に隣接する心線接触予定部26の端縁部においては、亜鉛ニッケル合金層4の膜厚が接点予定部25に接近するにしたがって漸次小さくなる漸減部4aが形成されている。このため、接点予定部25及び心線接触予定部26の全体にまたがって形成されている錫層5の表面が滑らかに形成され、接点予定部25と心線接触予定部26との境界に段差が生じることがなく、良好な外観に仕上げられる。
亜鉛ニッケル合金めっき時に接点予定部25をマスキングテープによってマスキングする場合、亜鉛ニッケル合金めっき処理後にマスキングテープを剥離したとしても、マスキングテープの粘着成分が残る場合がある。この粘着成分を除去するには有機溶剤や電解脱脂、強酸、強アルカリを用いるが、有機溶剤は安全上のリスクが高く(局所排気は有機専用が必要、引火点の問題から防爆仕様など)、薬液コストも高い。さらに、電解脱脂等などの処理は亜鉛ニッケル合金層にもダメージを与えるおそれがある。またマスキングテープを貼付する際に、材料表面を乾燥する必要があるが、乾燥させることで酸化膜が厚く生成し易いため、特にニッケルからなる下地層3を乾燥させる場合、強固なニッケル酸化膜が生成してしまい、その上のめっき(接点予定部は錫めっき、心線接触予定部は亜鉛ニッケル合金めっき)の密着性を低下させる原因となっていた。
これに対して、本実施形態の場合、遮蔽板55によってマスキングしているので、マスキングテープのようにめっき処理後の剥離作業や乾燥作業等が必要なく作業性が良いとともに、マスキングテープを用いた場合の不具合も解消され、密着性に優れた皮膜を形成することができる。
Further, as described above, at the end edge portion of the core wire contact planned portion 26 adjacent to the planned contact portion 25, the gradually decreasing portion gradually decreases as the thickness of the zinc-nickel alloy layer 4 approaches the planned contact portion 25. 4a is formed. For this reason, the surface of the tin layer 5 formed over the entirety of the contact planned portion 25 and the core wire contact planned portion 26 is formed smoothly, and a step is formed at the boundary between the contact planned portion 25 and the core wire contact planned portion 26. Is produced and a good appearance is achieved.
When the planned contact portion 25 is masked with a masking tape at the time of zinc-nickel alloy plating, the adhesive component of the masking tape may remain even if the masking tape is peeled off after the zinc-nickel alloy plating treatment. Organic solvents, electrolytic degreasing, strong acids, and strong alkalis are used to remove this adhesive component, but organic solvents have high safety risks (local exhaust requires organic only, explosion-proof specifications due to flash point issues, etc.) Chemical cost is high. Furthermore, treatments such as electrolytic degreasing may damage the zinc-nickel alloy layer. Further, when the masking tape is applied, it is necessary to dry the surface of the material. However, since a thick oxide film is easily formed by drying, particularly when the underlayer 3 made of nickel is dried, a strong nickel oxide film is formed. It has produced | generated and became the cause of reducing the adhesiveness of the plating on it (a contact point plan part is tin plating, and a core wire contact plan part is zinc nickel alloy plating).
On the other hand, in the case of this embodiment, since the masking is performed by the shielding plate 55, the workability is good because there is no need for a peeling operation or a drying operation after the plating process like the masking tape, and the masking tape is used. In this case, the problem can be solved and a film having excellent adhesion can be formed.

なお、本発明は上記実施形態に限定されることはなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   The present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

基材の銅板からなる帯状素材に、脱脂、酸洗した後、その全面にニッケルめっきを施して下地層3を形成し、その後、図5に示すように遮蔽板55を用いて接点予定部25を除き亜鉛ニッケル合金めっきを施した。このとき、帯状素材と遮蔽板55との間の隙間gは2mmから12mmと変化させ、接点予定部25と心線接触予定部26とは面積比率で1:1となるように遮蔽板55の端縁部の位置を変えて漸減部の幅の異なる複数の試料を作製した。さらに、その後、全面に錫めっきを実施した。この一連の処理は、帯状素材51を走行させながら連続的に行った。また、接点予定部25と心線接触予定部26とは面積比率で1:1となるように等しい面積に形成した。次いで、30℃〜190℃の温度で1時間〜36時間の範囲で熱処理をして亜鉛を下地から表面へ拡散させ、金属亜鉛層7を形成することにより、接点予定部25を除く部分に金属亜鉛層7を有する防食端子材1を得た。金属亜鉛層7の被覆率は50%である。
比較として、実施例と同様の方法で下地層3まで形成した帯状素材を乾燥させた後、接点予定部25に日立化成株式会社製のフィルム(K-2140B)を貼り付けて接点予定部25をマスキングし、乾燥によって下地層3表面に発生した酸化膜を除去するため、塩酸で酸洗処理を行った。次いで、亜鉛ニッケル合金層4を形成するための亜鉛ニッケル合金めっきを施した後、フィルム(以下、マスキングテープ)を剥離し、マスキングテープの粘着成分残渣を落とすため湯水により水洗した後、全面に錫層5を形成するための錫又は錫合金めっきを施した。
After degreasing and pickling the belt-shaped material made of the copper plate of the base material, the entire surface thereof is plated with nickel to form the underlayer 3, and then the contact planned portion 25 using the shielding plate 55 as shown in FIG. Zinc-nickel alloy plating was applied. At this time, the gap g between the belt-shaped material and the shielding plate 55 is changed from 2 mm to 12 mm, and the contact point planned portion 25 and the core wire contact planned portion 26 have a 1: 1 area ratio. A plurality of samples having different widths of the gradually decreasing portions were produced by changing the position of the edge portion. Further, after that, tin plating was performed on the entire surface. This series of processes was continuously performed while the belt-shaped material 51 was running. Further, the planned contact portion 25 and the planned core wire contact portion 26 were formed to have the same area so that the area ratio was 1: 1. Next, heat treatment is performed at a temperature of 30 ° C. to 190 ° C. for 1 hour to 36 hours to diffuse zinc from the base to the surface, thereby forming the metal zinc layer 7, thereby forming a metal in a portion excluding the contact planned portion 25. An anticorrosion terminal material 1 having a zinc layer 7 was obtained. The coverage of the metal zinc layer 7 is 50%.
For comparison, after drying the belt-shaped material formed up to the base layer 3 in the same manner as in the example, a film (K-2140B) manufactured by Hitachi Chemical Co., Ltd. In order to remove the oxide film generated on the surface of the base layer 3 by masking and drying, pickling with hydrochloric acid was performed. Next, after the zinc-nickel alloy plating for forming the zinc-nickel alloy layer 4 is performed, the film (hereinafter referred to as masking tape) is peeled off, washed with hot water to remove the adhesive component residue of the masking tape, and then the entire surface is tinned. Tin or tin alloy plating to form layer 5 was applied.

各めっきの条件は以下のとおりとした。
<ニッケルめっき条件>
・めっき浴組成
スルファミン酸ニッケル:300g/L
塩化ニッケル:5g/L
ホウ酸:30g/L
・浴温:45℃
・電流密度:5A/dm
The conditions for each plating were as follows.
<Nickel plating conditions>
・ Plating bath composition Nickel sulfamate: 300 g / L
Nickel chloride: 5g / L
Boric acid: 30 g / L
・ Bath temperature: 45 ℃
・ Current density: 5 A / dm 2

<亜鉛ニッケル合金めっき条件>
・めっき浴組成
硫酸亜鉛七水和物:75g/L
硫酸ニッケル六水和物:180g/L
硫酸ナトリウム:140g/L
・pH=2.0
・浴温:45℃
・電流密度:5A/dm
<Zinc-nickel alloy plating conditions>
・ Plating bath composition Zinc sulfate heptahydrate: 75 g / L
Nickel sulfate hexahydrate: 180 g / L
Sodium sulfate: 140 g / L
・ PH = 2.0
・ Bath temperature: 45 ℃
・ Current density: 5 A / dm 2

<錫めっき条件>
・めっき浴組成
メタンスルホン酸錫:200g/L
メタンスルホン酸:100g/L
光沢剤
・浴温:25℃
・電流密度:5A/dm
<Tin plating conditions>
・ Plating bath composition Tin methanesulfonate: 200 g / L
Methanesulfonic acid: 100 g / L
Brightener and bath temperature: 25 ° C
・ Current density: 5 A / dm 2

得られた試料について、下地層、亜鉛ニッケル合金層、錫層のそれぞれの平均膜厚を測定した。これらの膜厚は、走査イオン顕微鏡により断面を観察することにより測定した。
また、接点予定部と心線接触予定部の境界部の外観を目視観察した。そして、その境界が幅0.5mm未満の線として確認できるものを「×」、線として確認できないものを「〇」とした。
また、接点予定部、心線接触予定部のそれぞれについて、目視で判定できるムラがあるか否かを確認した。ムラが確認できたものを「×」、確認できなかったものを「〇」とした。このムラ発生の原因は、亜鉛ニッケル合金めっきを施す前の下地層の酸化膜の残渣によるもの、亜鉛ニッケル合金めっきを施す際に水素ガスが発生したことによるもの、錫めっきを施す前のマスキングテープ残渣によるもの、錫めっきを施す前の下地層の酸化膜の残渣によるもの、が挙げられる。
漸減部の幅については、漸減部以外の亜鉛ニッケル合金層の膜厚をtとし、tの80%の膜厚となる位置から膜厚が10%未満となる位置までの幅を測定した。また、漸減部の幅が0.1mm未満の場合は漸減部の幅の測定結果を0mmとした。
これらの結果を表1に示す。
About the obtained sample, each average film thickness of the base layer, the zinc nickel alloy layer, and the tin layer was measured. These film thicknesses were measured by observing the cross section with a scanning ion microscope.
Moreover, the external appearance of the boundary part of a contact plan part and a core wire contact plan part was visually observed. And the thing which can confirm that the boundary as a line less than 0.5 mm in width | variety is set to "x", and the thing which cannot be confirmed as a line is set to "(circle)".
In addition, it was confirmed whether or not there was unevenness that could be visually determined for each of the contact planned portion and the core wire contact planned portion. The case where the unevenness was confirmed was indicated as “×”, and the case where the unevenness was not confirmed was indicated as “◯”. The cause of this unevenness is due to the residue of the oxide film of the underlayer before the zinc-nickel alloy plating, the hydrogen gas is generated during the zinc-nickel alloy plating, the masking tape before the tin plating Examples include those caused by residues and those caused by residues of the oxide film of the base layer before tin plating.
Regarding the width of the gradually decreasing portion, the thickness of the zinc-nickel alloy layer other than the gradually decreasing portion is t, and the width from the position where the film thickness is 80% of t to the position where the film thickness is less than 10% is measured. Further, when the width of the gradually decreasing portion was less than 0.1 mm, the measurement result of the width of the gradually decreasing portion was set to 0 mm.
These results are shown in Table 1.

Figure 2019137894
Figure 2019137894

以上の試料について、皮膜の密着性を調べるために、以下のようなクロスカット試験、曲げ試験を実施した。
<クロスカット試験>
試験片から接点予定部、心線接触部をそれぞれ切り出し、JISK5600−5−6に記載のクロスカット法にて試験を行い、皮膜が剥がれなかったものを「○」、剥がれたものを「×」とした。
<曲げ試験>
試験片を幅10mmの短冊に接点予定部と心線接触予定部の面積が1:1になるように切り出し、接点予定部と心線接触予定部の境界が、曲げ部となるように、曲げ半径1.5mmの120°曲げを実施し後、曲げ戻しを行った。試料の曲げ外周部表面を光学顕微鏡(倍率50倍)で観察し、異常の有無を調べた。銅又は銅合金基材の板厚は0.3mmとした。曲げ戻し部に剥離または亀裂または割れなど、平板状態と異なる状態が見られた場合を「×」、異常が見られなかった場合を「〇」とした。
For the above samples, the following cross-cut test and bending test were performed in order to examine the adhesion of the film.
<Cross cut test>
A planned contact portion and a core wire contact portion are cut out from the test piece, tested by the cross-cut method described in JISK5600-5-6, and “○” indicates that the film was not peeled off, and “×” indicates that the film was peeled off. It was.
<Bending test>
Cut the test piece into a strip with a width of 10 mm so that the area of the planned contact portion and the planned core contact portion is 1: 1, and bend so that the boundary between the planned contact portion and the planned core contact portion is a bent portion. After 120 ° bending with a radius of 1.5 mm, bending back was performed. The surface of the bent outer peripheral portion of the sample was observed with an optical microscope (magnification 50 times) to examine whether there was any abnormality. The plate thickness of the copper or copper alloy substrate was 0.3 mm. The case where a state different from the flat plate state such as peeling, cracking or cracking was observed in the bent back portion was indicated as “X”, and the case where no abnormality was observed was indicated as “◯”.

また、試料を090型端子に成形し、純アルミニウム線をかしめた。この純アルミニウム線をかしめた端子を腐食環境、高温高湿環境、高熱環境にそれぞれ放置した後に、アルミニウム線と端子間の接触抵抗、または、端子同士を嵌合した際の端子間の接触抵抗を測定した。
<塩水環境放置試験>
純アルミニウム線をかしめた090型のメス端子を23℃の5%塩化ナトリウム水溶液に24時間浸漬後、85℃、85%RHの高温高湿下に24時間放置した。その後、アルミニウム線と端子間の接触抵抗を四端子法により測定した。電流値は10mAとした。
<腐食ガス環境放置試験>
純アルミニウム線をかしめた090型のメス端子をJIS C60068−2−42に準拠した、SOガス濃度25±5ppm、温度25±2℃、湿度75±5%、送気流量1000L/hの条件で、96時間腐食環境下に放置した。その後、090型の錫めっきを実施したオス端子を嵌合し端子間の接触抵抗を四端子法により測定した。
これらの結果を表2に示す。
Moreover, the sample was shape | molded into the 090 type | mold terminal and the pure aluminum wire was crimped. After leaving the terminals crimped with pure aluminum wires in corrosive environment, high temperature and high humidity environment, and high temperature environment, contact resistance between aluminum wires and terminals, or contact resistance between terminals when terminals are fitted together It was measured.
<Salt water environment test>
A 090 type female terminal crimped with a pure aluminum wire was immersed in a 5% sodium chloride aqueous solution at 23 ° C. for 24 hours, and then left under high temperature and high humidity at 85 ° C. and 85% RH for 24 hours. Thereafter, the contact resistance between the aluminum wire and the terminal was measured by a four-terminal method. The current value was 10 mA.
<Corrosion gas environment test>
090 type female terminal crimped with pure aluminum wire, compliant with JIS C60068-2-42, SO 2 gas concentration 25 ± 5 ppm, temperature 25 ± 2 ° C., humidity 75 ± 5%, air flow rate 1000 L / h And left in a corrosive environment for 96 hours. Then, the male terminal which implemented 090 type tin plating was fitted, and the contact resistance between terminals was measured by the four-terminal method.
These results are shown in Table 2.

Figure 2019137894
Figure 2019137894


これらの結果から、漸減幅Wが0.5mm以上15mm以下である試料1〜9は、接点予定部と心線接触予定部の境界付近の外観が滑らかで、ムラもなく、密着性も良好であった。また、漸減部における曲げ試験では剥離や亀裂、割れなどは観察されなかった。
その中でも、試料1〜7は、下地層、亜鉛ニッケル合金層、錫層の各層が十分な膜厚を有しているため、塩水環境放置試験及び腐食ガス環境放置試験で良好な結果であった。
一方、試料10、11は、漸減部の幅が大きく、塩水環境放置試験後の接触抵抗値が高かった。これは、漸減部の幅が大きいほど、亜鉛ニッケル合金層膜厚の薄い範囲が大きくなり、表面の腐食電位を卑化させる効果が乏しくなったためである。
試料12〜15は漸減部の幅が小さく、接点予定部と心線接触予定部との境界部に目視で線が確認された。特に試料12,14は界面に割れが発生した。また、接点予定部のクロスカット試験では剥がれが発生した。これは、比較工程として接点予定部にマスキングを行うために一度乾燥させた際、下地層のニッケルめっきに酸化膜が発生したことが原因と考えられる。あるいは、接点予定部から除去しきれなかったマスキングテープの粘着成分残渣によるものとも考えられる。

From these results, Samples 1 to 9 having a gradually decreasing width W of 0.5 mm or more and 15 mm or less have a smooth appearance near the boundary between the contact planned portion and the core wire contact planned portion, no unevenness, and good adhesion. there were. Moreover, peeling, cracks, cracks, and the like were not observed in the bending test at the gradually decreasing portion.
Among them, Samples 1 to 7 had satisfactory results in the salt water environment leaving test and the corrosive gas environment leaving test because each of the underlayer, the zinc nickel alloy layer, and the tin layer had a sufficient film thickness. .
On the other hand, Samples 10 and 11 had a gradually decreasing width and a high contact resistance value after the salt water environment leaving test. This is because, as the width of the gradually decreasing portion is larger, the range in which the thickness of the zinc-nickel alloy layer is thinner becomes larger, and the effect of lowering the corrosion potential on the surface is reduced.
In Samples 12 to 15, the width of the gradually decreasing portion was small, and a line was visually confirmed at the boundary portion between the contact planned portion and the core wire contact planned portion. In particular, Samples 12 and 14 were cracked at the interface. Moreover, peeling occurred in the cross-cut test of the planned contact portion. This is considered to be because an oxide film was generated in the nickel plating of the underlayer when it was once dried for masking the planned contact portion as a comparison process. Alternatively, it may be due to an adhesive component residue of the masking tape that could not be removed from the planned contact portion.

1 防食端子材
2 基材
3 下地層
4 亜鉛ニッケル合金層
5 錫層
6 酸化物層
7 金属亜鉛層
10 端子
11 接続部
12 電線
12a 心線
12b 被覆部
13 心線圧着部
14 被覆圧着部
25 接点予定部
26 心線接触予定部
51 帯状素材
52 電解めっき槽
53 めっき液
54 アノード電極
55 遮蔽板
DESCRIPTION OF SYMBOLS 1 Corrosion-proof terminal material 2 Base material 3 Base layer 4 Zinc nickel alloy layer 5 Tin layer 6 Oxide layer 7 Metal zinc layer 10 Terminal 11 Connection part 12 Electric wire 12a Core wire 12b Covering part 13 Core wire crimping part 14 Covering crimping part 25 Contact Scheduled portion 26 Core wire contact planned portion 51 Strip material 52 Electrolytic plating tank 53 Plating solution 54 Anode electrode 55 Shielding plate

Claims (7)

銅又は銅合金からなる基材の上に皮膜が積層されているとともに、端子に成形されたときに電線の心線が接触される心線接触予定部と、接点部となる接点予定部とが形成されており、前記心線接触予定部に形成される前記皮膜は、亜鉛及びニッケルを含有する亜鉛ニッケル合金層と、錫又は錫合金からなる錫層と、金属亜鉛層とがこの順に積層されており、前記接点予定部に形成される前記皮膜は、前記基材の上に前記錫層を有しており、前記亜鉛ニッケル合金層は、前記接点予定部に隣接する前記心線接触予定部の端縁部においては前記接点予定部に接近するにしたがって漸次膜厚が小さくなる漸減部を有し、該漸減部を超えた前記接点予定部には前記亜鉛ニッケル合金層を有しないことを特徴とする防食端子材。   A coating is laminated on a base made of copper or a copper alloy, and a core contact planned portion where the core of the electric wire is contacted when formed into a terminal, and a planned contact portion serving as a contact portion The coating formed on the core wire contact portion is formed by laminating a zinc-nickel alloy layer containing zinc and nickel, a tin layer made of tin or tin alloy, and a metal zinc layer in this order. The coating formed on the planned contact portion has the tin layer on the base material, and the zinc-nickel alloy layer is adjacent to the planned contact portion of the core wire. The end edge portion has a gradually decreasing portion that gradually decreases in thickness as it approaches the contact planned portion, and the contact point portion beyond the gradually decreasing portion does not have the zinc-nickel alloy layer. Corrosion-proof terminal material. 前記漸減部は、該漸減部以外の前記亜鉛ニッケル合金層の膜厚をtとし、tの80%の膜厚となる位置から膜厚が10%未満となる位置までの幅をWとすると、幅Wは0.5mm以上15mm以下であることを特徴とする請求項1記載の防食端子材。   When the thickness from the position where the film thickness of the zinc-nickel alloy layer other than the gradually decreasing part is t and the film thickness is 80% of the thickness to the position where the film thickness is less than 10% is W, The width W is 0.5 mm or more and 15 mm or less, The anticorrosion terminal material of Claim 1 characterized by the above-mentioned. 前記基材と前記亜鉛ニッケル合金層との間に、ニッケル又はニッケル合金からなる下地層が形成されていることを特徴とする請求項1又は2記載の防食端子材。   The anticorrosion terminal material according to claim 1 or 2, wherein a base layer made of nickel or a nickel alloy is formed between the base material and the zinc-nickel alloy layer. 前記下地層の平均膜厚は0.1μm以上5.0μm以下であり、前記亜鉛ニッケル合金層の平均膜厚は0.1μm以上5.0μm以下であり、前記錫層の平均膜厚は0.1μm以上10μm以下であることを特徴とする請求項3記載の防食端子材。   The undercoat layer has an average film thickness of 0.1 μm or more and 5.0 μm or less, the zinc-nickel alloy layer has an average film thickness of 0.1 μm or more and 5.0 μm or less, and the tin layer has an average film thickness of 0.00. It is 1 micrometer or more and 10 micrometers or less, The anticorrosion terminal material of Claim 3 characterized by the above-mentioned. 帯板状に形成されるとともに、その長さ方向に沿うキャリア部に、前記心線接触予定部及び前記接点予定部を有する端子用部材が前記キャリア部の長さ方向に間隔をおいて複数連結されていることを特徴とする請求項1から4のいずれか一項記載の防食端子材。   A plurality of terminal members having the core wire contact planned portion and the contact point planned portion are connected to the carrier portion along the length direction thereof at intervals in the length direction of the carrier portion. The anticorrosion terminal material according to any one of claims 1 to 4, wherein the anticorrosion terminal material is formed. 請求項1から5のいずれか一項記載の防食端子材からなることを特徴とする防食端子。   An anticorrosion terminal comprising the anticorrosion terminal material according to any one of claims 1 to 5. 請求項1から6のいずれか一項記載の防食端子材を製造する方法であって、前記基材の前記心線接触予定部上に前記亜鉛ニッケル合金層を電解めっきにより形成する際に、電解めっき槽内の電極と前記基材との間で前記接点予定部に対向するように遮蔽板を配置することを特徴とする防食端子材の製造方法。   It is a method of manufacturing the corrosion-proof terminal material as described in any one of Claim 1 to 6, Comprising: When forming the said zinc nickel alloy layer on the said core wire contact plan part of the said base material by electroplating, it is electrolysis The manufacturing method of the corrosion-proof terminal material characterized by arrange | positioning a shielding board so that the said contact scheduled part may be opposed between the electrode in a plating tank, and the said base material.
JP2018022857A 2018-02-13 2018-02-13 Corrosion preventing terminal material, method of producing the same, and corrosion preventing terminal Pending JP2019137894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018022857A JP2019137894A (en) 2018-02-13 2018-02-13 Corrosion preventing terminal material, method of producing the same, and corrosion preventing terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018022857A JP2019137894A (en) 2018-02-13 2018-02-13 Corrosion preventing terminal material, method of producing the same, and corrosion preventing terminal

Publications (1)

Publication Number Publication Date
JP2019137894A true JP2019137894A (en) 2019-08-22

Family

ID=67693516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018022857A Pending JP2019137894A (en) 2018-02-13 2018-02-13 Corrosion preventing terminal material, method of producing the same, and corrosion preventing terminal

Country Status (1)

Country Link
JP (1) JP2019137894A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7527184B2 (en) 2020-02-28 2024-08-02 シチズン時計株式会社 Manufacturing method of electroformed products and electroformed products

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005206942A (en) * 2003-12-26 2005-08-04 Fuji Denshi Kogyo Kk PRESS-BLANKING MATERIAL, AND Sn PLATING TREATMENT METHOD
JP2014164938A (en) * 2013-02-23 2014-09-08 Furukawa Electric Co Ltd:The Crimp terminal and method for manufacturing crimp terminal
WO2017090638A1 (en) * 2015-11-27 2017-06-01 三菱マテリアル株式会社 Tin-plated copper terminal material, terminal, and wire terminal part structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005206942A (en) * 2003-12-26 2005-08-04 Fuji Denshi Kogyo Kk PRESS-BLANKING MATERIAL, AND Sn PLATING TREATMENT METHOD
JP2014164938A (en) * 2013-02-23 2014-09-08 Furukawa Electric Co Ltd:The Crimp terminal and method for manufacturing crimp terminal
WO2017090638A1 (en) * 2015-11-27 2017-06-01 三菱マテリアル株式会社 Tin-plated copper terminal material, terminal, and wire terminal part structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7527184B2 (en) 2020-02-28 2024-08-02 シチズン時計株式会社 Manufacturing method of electroformed products and electroformed products

Similar Documents

Publication Publication Date Title
JP6304447B2 (en) Tin-plated copper terminal material and terminal and wire terminal structure
JP6740635B2 (en) Tin-plated copper terminal material, its manufacturing method, and wire terminal structure
TWI729129B (en) Tinned copper terminal material and terminal and wire end part structure
JP6226037B2 (en) Manufacturing method of copper terminal material with tin plating
JP6734185B2 (en) Sn plated material and manufacturing method thereof
JP6812852B2 (en) Anti-corrosion terminal material, anti-corrosion terminal, and electric wire terminal structure
KR102531227B1 (en) Corrosion-resistant terminal material, corrosion-resistant terminal, and wire end structure
JP6620897B2 (en) Tin-plated copper terminal material and terminal and wire terminal structure
TWI784076B (en) Anti-corrosion terminal material and structure of anti-corrosion terminal and wire terminal
JP7187162B2 (en) Sn-plated material and its manufacturing method
WO2018212174A1 (en) Tin-plated copper terminal material, terminal, and power cable terminal structure
JP2019137894A (en) Corrosion preventing terminal material, method of producing the same, and corrosion preventing terminal
JP6930327B2 (en) Anti-corrosion terminal material and its manufacturing method, anti-corrosion terminal and electric wire terminal structure
JP2018147778A (en) Anticorrosive terminal material, anticorrosive terminal, and wire terminal structure
JP2019011504A (en) Anticorrosion terminal material, manufacturing method thereof, anticorrosion terminal and wire terminal part structure
JP2018016878A (en) Manufacturing method of tin plating copper terminal material
JP2020056090A (en) Anticorrosive terminal material, manufacturing method therefor, and anticorrosive terminal and wire terminal part structure
WO2022168740A1 (en) Anti-corrosion terminal material for aluminum core wires, anti-corrosion terminal, and electric wire end part structure
WO2022168759A1 (en) Anticorrosive terminal material for aluminum core wire, anticorrosive terminal, and wire terminal part structure
TW202217078A (en) Anti-corrosion terminal material for aluminum core wire and manufacturing method thereof, anti-corrosion terminal and wire terminal structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220208