JP2019136628A - Particle management method for ultrapure water production system - Google Patents
Particle management method for ultrapure water production system Download PDFInfo
- Publication number
- JP2019136628A JP2019136628A JP2018019853A JP2018019853A JP2019136628A JP 2019136628 A JP2019136628 A JP 2019136628A JP 2018019853 A JP2018019853 A JP 2018019853A JP 2018019853 A JP2018019853 A JP 2018019853A JP 2019136628 A JP2019136628 A JP 2019136628A
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- ultrapure water
- fine particle
- mixed bed
- bed ion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/14—Ultrafiltration; Microfiltration
- B01D61/145—Ultrafiltration
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
- C02F1/32—Treatment of water, waste water, or sewage by irradiation with ultraviolet light
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
- C02F1/32—Treatment of water, waste water, or sewage by irradiation with ultraviolet light
- C02F1/325—Irradiation devices or lamp constructions
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/42—Treatment of water, waste water, or sewage by ion-exchange
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/444—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/58—Treatment of water, waste water, or sewage by removing specified dissolved compounds
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06M—COUNTING MECHANISMS; COUNTING OF OBJECTS NOT OTHERWISE PROVIDED FOR
- G06M11/00—Counting of objects distributed at random, e.g. on a surface
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/02—Non-contaminated water, e.g. for industrial water supply
- C02F2103/04—Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Toxicology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Dispersion Chemistry (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Theoretical Computer Science (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Treatment Of Water By Ion Exchange (AREA)
- Physical Water Treatments (AREA)
- Removal Of Specific Substances (AREA)
Abstract
【課題】 超純水中の微粒子数を低減化した状態に維持することの可能な超純水製造システムの微粒子管理方法を提供する。
【解決手段】 サブシテム1は、一次純水Wを貯留するためのサブタンク2と、このタンク2に貯留した一次純水Wの供給ライン3の基端部に設けられたポンプ4と、このポンプ4の後段に設けられた熱交換器5、低圧紫外線(UV)照射酸化装置6、非再生型混床式イオン交換装置7及び微粒子除去膜装置としての限外濾過膜(UF膜)分離装置8を有する。そして、UF膜分離装置8の出口側と非再生型混床式イオン交換装置7の出口側にそれぞれ切替可能に微粒子数を計測する手段である微粒子計9が設けられている。
【選択図】 図1PROBLEM TO BE SOLVED: To provide a fine particle management method for an ultra pure water production system capable of maintaining a state in which the number of fine particles in ultra pure water is reduced.
A sub-system 1 includes a sub-tank 2 for storing primary pure water W, a pump 4 provided at a base end portion of a supply line 3 of primary pure water W stored in the tank 2, and the pump 4 A heat exchanger 5, a low-pressure ultraviolet (UV) irradiation oxidizer 6, a non-regenerative mixed bed ion exchanger 7, and an ultrafiltration membrane (UF membrane) separator 8 as a particulate removal membrane device are provided at the subsequent stage. Have. A fine particle meter 9 is provided as a means for measuring the number of fine particles so as to be switched between the outlet side of the UF membrane separation device 8 and the outlet side of the non-regenerative mixed bed ion exchange device 7.
[Selection] Figure 1
Description
本発明は、超純水製造システムの微粒子管理方法に関し、特に超純水中の微粒子数を低減化した状態に維持することの可能な超純水製造システムの微粒子管理方法に関する。 The present invention relates to a particle management method for an ultrapure water production system, and more particularly to a particle management method for an ultrapure water production system that can maintain a reduced number of particles in ultrapure water.
電子産業分野で使用される超純水の製造装置は大きく分けて、工業用水や水道水など通常の水から濁質等を除去する前処理装置と、前処理装置の処理水を精製して大部分の不純物を除去した純水を製造する一次純水装置と、一次純水をさらに高度に精製して不純物をほぼ完全に除去した超純水を製造する二次純水装置(サブシステム)とからなる。 The ultrapure water production equipment used in the electronics industry is largely divided into a pretreatment device that removes turbidity from normal water such as industrial water and tap water, and a large amount of purified water from the pretreatment device. A primary pure water device for producing pure water from which impurities are partially removed, and a secondary pure water device (subsystem) for producing ultrapure water from which the primary pure water has been further refined to remove impurities completely. Consists of.
このうち、二次純水装置(サブシステム)は、基本的には有機物を分解する低圧紫外線(UV)照射酸化装置、イオン性不純物を吸着除去するイオン交換樹脂を充填した非再生型の混床式イオン交換装置及び微粒子を完全に除去するための限外濾過膜(UF膜)分離装置を基本構成として備え、水の純度をより一層高めて超純水にする。ここで、低圧UV照射酸化装置では、低圧UVランプより出される波長185nmの紫外線によりTOCを有機酸さらにはCO2にまで分解する。分解された有機酸及びCO2は後段のイオン交換樹脂で除去される。UF膜分離装置では、イオン交換樹脂の流出粒子などの微小粒子が除去される。このように従来は、サブシステムの末端にUF膜等の微粒子除去膜を設置することで、ナノメートルサイズの微粒子除去処理を行っていたが、近年、半導体製品の高性能化、微細化の進展に伴い、微粒子管理が厳しくなっており、例えば、半導体工場ではφ50nm以上の粒子が1個/mL以下に管理値が設定されることも多い。このためサブシステムのUF膜分離装置の出口で超純水中の微粒子数を測定し、管理することが行われている。 Of these, the secondary pure water device (subsystem) is basically a low-pressure ultraviolet (UV) irradiation oxidizer that decomposes organic matter, and a non-regenerative mixed bed filled with an ion exchange resin that adsorbs and removes ionic impurities. A basic ion exchange device and an ultrafiltration membrane (UF membrane) separation device for completely removing fine particles are provided as basic components, and the purity of water is further increased to ultrapure water. Here, in the low pressure UV irradiation oxidizer, TOC is decomposed into an organic acid and further to CO 2 by ultraviolet rays having a wavelength of 185 nm emitted from a low pressure UV lamp. The decomposed organic acid and CO 2 are removed by a subsequent ion exchange resin. In the UF membrane separator, fine particles such as outflow particles of the ion exchange resin are removed. Conventionally, nanometer-size fine particle removal processing has been performed by installing a fine particle removal film such as a UF membrane at the end of the subsystem. However, in recent years, semiconductor products have become more sophisticated and refined. Accordingly, the management of fine particles is becoming stricter. For example, in a semiconductor factory, the control value is often set to 1 particle / mL or less of particles having a diameter of 50 nm or more. For this reason, the number of fine particles in ultrapure water is measured and managed at the outlet of the UF membrane separator of the subsystem.
このサブシステムの代表的な例を図5に示す。図5において、サブシステム21は、一次純水Wを貯留するためのサブタンク22と、このタンク22に貯留した一次純水Wの供給ライン23の基端部に設けられたポンプ24と、このポンプ24の後段に設けられた熱交換器25、低圧UV照射酸化装置26、非再生型混床式イオン交換装置27及びUF膜分離装置28とを有する。そして、UF膜分離装置28の出口側にオフラインモニターとしての微粒子計(PC)29が設けられている。
A typical example of this subsystem is shown in FIG. In FIG. 5, the
上述したようなサブシステム21の運転中は、ポンプ24を稼動して、サブタンク22内の一次純水Wを熱交換器25、低圧UV照射酸化装置26、非再生型混床式イオン交換装置27及びUF膜分離装置28に順次通水し、得られた超純水W1をユースポイントPOUに送る。一方、ユースポイントPOUで使用されなかった超純水W1は循環ライン23Aを経てサブタンク22に返送され、再度処理される。
During the operation of the
従来の図5に示すようなサブシステム21では、超純水W1中の微粒子数をUF膜分離装置28の出口側の微粒子計29により管理する一方、非再生型混床式イオン交換装置27は、その出口側のイオン負荷を導電率計や比抵抗計などにより計測し、これが所定の値よりも大きくなったら定期的に交換していた。しかしながら、このような管理方法によっても超純水W1中に微粒子がリークし、超純水W1中の微粒子数を低減化した状態に維持することができないことがある、という問題点があった。
In the
本発明は上記問題点に鑑みてなされたものであり、超純水中の微粒子数を低減化した状態に維持することの可能な超純水製造システムの微粒子管理方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to provide a method for managing fine particles of an ultrapure water production system capable of maintaining a state in which the number of fine particles in ultrapure water is reduced. To do.
上記目的に鑑み本発明は、一次純水システムで製造した一次純水を非再生型混床式イオン交換装置及び微粒子除去膜装置をこの順に備えたサブシステムで処理する超純水製造システムの微粒子管理方法であって、前記微粒子除去膜装置の出口の超純水中の微粒子数を微粒子数計測手段により計測することで監視する一方、前記非再生型混床式イオン交換装置の処理水の微粒子数を微粒子数計測手段により計測して、前記非再生型混床式イオン交換装置の処理水の微粒子数が所定の値を超えたら前記非再生型混床式イオン交換装置を交換する、超純水製造システムの微粒子管理方法を提供する(発明1)。 In view of the above-mentioned object, the present invention provides fine particles of an ultrapure water production system in which primary pure water produced by a primary pure water system is treated by a subsystem having a non-regenerative mixed bed ion exchange device and a fine particle removal membrane device in this order. A management method, wherein the number of fine particles in ultrapure water at the outlet of the fine particle removal membrane device is monitored by measuring the number of fine particles, and the treated water fine particles of the non-regenerative mixed bed ion exchange device A non-regenerative mixed bed ion exchanger is replaced when the number of treated water particles in the non-regenerative mixed bed ion exchanger exceeds a predetermined value. A fine particle management method for a water production system is provided (Invention 1).
かかる発明(発明1)によれば、非再生型混床式イオン交換装置の処理水の微粒子数を微粒子数計測手段により計測して管理することにより、微粒子除去膜装置の出口の超純水中の微粒子数を安定して低減化することが可能となる。これは以下のような理由によると推測される。すなわち、超純水中の微粒子を微粒子除去膜装置の出口側のみで管理した場合、微粒子除去膜装置から微粒子がリークした時点で微粒子の増加を検知することができるが、これでは基準値よりも微粒子数が増加した超純水が供給されるのを未然に防止することができない。そこで、本発明者らが非再生型混床式イオン交換装置の処理水の微粒子数と微粒子除去膜装置で処理して得られる超純水中の微粒子数の関連性を調査した結果、非再生型混床式イオン交換装置の処理水の微粒子数が増加すると、微粒子除去膜装置の出口の超純水に微粒子がリークしやすいことがわかった。そこで、この非再生型混床式イオン交換装置の処理水の微粒子の増加を管理するとともに、微粒子除去膜装置の出口の超純水中の微粒子数を確認することで、得られる超純水中の微粒子数を低減化した状態で安定して供給することができる。 According to this invention (Invention 1), by measuring and managing the number of fine particles of the treated water of the non-regenerative type mixed bed ion exchange device by the fine particle number measuring means, ultrapure water at the outlet of the fine particle removal membrane device It is possible to stably reduce the number of fine particles. This is presumed to be due to the following reasons. That is, when the fine particles in ultrapure water are managed only on the outlet side of the fine particle removal membrane device, the increase in fine particles can be detected when the fine particle leaks from the fine particle removal membrane device. The supply of ultrapure water having an increased number of fine particles cannot be prevented in advance. Therefore, as a result of investigating the relationship between the number of treated water particles in the non-regenerative mixed-bed ion exchanger and the number of particles in ultrapure water obtained by processing with the particle removal membrane device, the present inventors It was found that when the number of treated water particles in the mixed bed type ion exchanger increased, the particles easily leaked into the ultrapure water at the outlet of the particle removing membrane device. Therefore, by controlling the increase in the treated water particulates in this non-regenerative mixed bed ion exchange device, and confirming the number of particulates in the ultrapure water at the outlet of the particulate removal membrane device, Can be stably supplied with the number of fine particles reduced.
上記発明(発明1)においては、前記サブシステムが低圧紫外線(UV)照射酸化装置、非再生型混床式イオン交換装置及び前記微粒子除去膜装置としての限外濾過膜(UF膜)分離装置をこの順に備えることが好ましい(発明2)。また、上記発明(発明1)においては、前記サブシステムが低圧紫外線(UV)照射酸化装置、触媒樹脂(過酸化水素除去)装置、膜式脱気装置、非再生型混床式イオン交換装置及び前記微粒子除去膜装置としての限外濾過膜(UF膜)分離装置をこの順に備えることが好ましい(発明3)。さらに、上記発明(発明1)においては、前記サブシステムが低圧紫外線(UV)照射酸化装置、非再生型混床式イオン交換装置、膜式脱気装置及び前記微粒子除去膜装置としての限外濾過膜(UF膜)分離装置をこの順に備えることが好ましい(発明4)。 In the above invention (Invention 1), the subsystem includes a low-pressure ultraviolet (UV) irradiation oxidizer, a non-regenerative mixed bed ion exchanger, and an ultrafiltration membrane (UF membrane) separator as the particulate removal membrane device. It is preferable to prepare in this order (Invention 2). In the above invention (Invention 1), the subsystem is a low-pressure ultraviolet (UV) irradiation oxidizer, a catalyst resin (hydrogen peroxide removal) device, a membrane deaerator, a non-regenerative mixed bed ion exchanger, and It is preferable to provide an ultrafiltration membrane (UF membrane) separation device as the fine particle removal membrane device in this order (Invention 3). Furthermore, in the said invention (invention 1), the said subsystem is ultrafiltration as a low-pressure ultraviolet-ray (UV) irradiation oxidation apparatus, a non-regenerative type mixed bed type ion exchange apparatus, a membrane-type deaeration apparatus, and the said fine particle removal membrane apparatus. It is preferable to provide a membrane (UF membrane) separation device in this order (Invention 4).
かかる発明(発明2〜4)によれば、限外濾過膜(UF膜)分離装置の前段に配置された非再生型混床式イオン交換装置は、ナトリウムや塩素などのイオンに比べてコロイダルシリカなどの微粒子が破過しやすく、この微粒子が限外濾過膜(UF膜)分離装置の破断部分から流出して超純水中の微粒子数の増加をきたすので、非再生型混床式イオン交換装置の処理水の微粒子数を管理して該微粒子数が所定の値を上回ったら、非再生型混床式イオン交換装置を交換して、微粒子除去膜装置の出口の超純水中の微粒子数を確認することで、微粒子数が増加した超純水が供給されるのを未然に防止することができる。
According to such inventions (
上記発明(発明1〜4)においては、前記微粒子数計測手段が微粒子計であり、前記非再生型混床式イオン交換装置の処理水の微粒子数と前記微粒子除去膜装置の出口の超純水中の微粒子数とを1台の微粒子計を切り替えることで計測することが好ましい(発明5)。
In the above inventions (
かかる発明(発明5)によれば、1台の微粒子計で非再生型混床式イオン交換装置の処理水の微粒子数と微粒子除去膜装置の出口の超純水中の微粒子数とを計測することができる。 According to this invention (Invention 5), the number of treated water particles in the non-regenerative mixed bed ion exchanger and the number of particles in ultrapure water at the outlet of the particle removal membrane device are measured with one particle meter. be able to.
上記発明(発明1〜4)においては、前記微粒子数計測手段が微粒子計であり、前記非再生型混床式イオン交換装置の出口側及び前記微粒子除去膜装置の出口側にそれぞれ微粒子計を設けて、前記非再生型混床式イオン交換装置の処理水の微粒子数及び前記微粒子除去膜装置の出口の超純水中の微粒子数をそれぞれ計測することが好ましい(発明6)。
In the above inventions (
かかる発明(発明6)によれば、非再生型混床式イオン交換装置の処理水の微粒子数と微粒子除去膜装置の出口の超純水中の微粒子数をそれぞれ独立して計測することができる。 According to this invention (Invention 6), the number of treated water particles in the non-regenerative mixed bed ion exchanger and the number of particles in ultrapure water at the outlet of the particle removing membrane device can be measured independently. .
本発明は、非再生型混床式イオン交換装置の処理水の微粒子数を計測して、該微粒子数が所定の値を超えたら非再生型混床式イオン交換装置を交換して、微粒子除去膜装置の出口の超純水中の微粒子数を確認することで、微粒子数が増加した超純水が供給されるのを未然に防止することができる。 The present invention measures the number of fine particles of treated water in a non-regenerative type mixed bed type ion exchange device, and when the number of fine particles exceeds a predetermined value, replaces the non-regenerative type mixed bed type ion exchange device to remove fine particles. By confirming the number of fine particles in the ultrapure water at the outlet of the membrane device, it is possible to prevent the supply of ultrapure water having an increased number of fine particles.
以下、本発明の第一の実施形態による超純水製造システムの微粒子管理方法について図1を参照にして詳細に説明する。 Hereinafter, the fine particle management method of the ultrapure water production system according to the first embodiment of the present invention will be described in detail with reference to FIG.
本実施形態の超純水製造システムの微粒子管理方法を適用可能なサブシステムは、前述した図5に示すものと基本的には同じ構成を有する。すなわち、図1において、サブシテム1は、一次純水Wを貯留するためのサブタンク2と、このサブタンク2に貯留した一次純水Wの供給ライン3の基端部に設けられたポンプ4と、このポンプ4の後段に設けられた熱交換器5、低圧UV照射酸化装置6、非再生型混床式イオン交換装置7及び微粒子除去膜装置としての限外濾過膜(UF膜)分離装置8とを有する。そして、UF膜分離装置8の出口側と非再生型混床式イオン交換装置7の出口側にそれぞれ切替可能に微粒子数を計測する手段である微粒子計(PC)9が接続されている。この微粒子計9としては、栗田工業社製「K−LAMIC」(商品名)、PMS社製「UDI−50」(商品名)などを用いることができる。
The subsystem to which the particulate management method of the ultrapure water production system of this embodiment can be applied has basically the same configuration as that shown in FIG. That is, in FIG. 1, the
上述したようなサブシステム1の運転時には、ポンプ4を稼動してサブタンク2内の一次純水Wを熱交換器5、低圧UV照射酸化装置6、非再生型混床式イオン交換装置7に順次通水し、非再生型混床式イオン交換装置7の処理水W2をUF膜分離装置8に通水して超純水W1を得る。そして、得られた超純水W1をユースポイントPOUに供給する。一方、ユースポイントPOUで使用されなかった超純水W1は循環ライン3Aを経てサブタンク2に返送され、再度処理される。
During the operation of the
なお、本実施形態における超純水W1としては、抵抗率:18.1MΩ・cm以上、微粒子:粒径50nm以上で1000個/L以下、生菌:1個/L以下、TOC(Total Organic Carbon):1μg/L以下、全シリコン:0.1μg/L以下、金属類:1ng/L以下、イオン類:10ng/L以下、過酸化水素;30μg/L以下、水温:25±2℃のものが好適である。 In addition, as the ultrapure water W1 in the present embodiment, resistivity: 18.1 MΩ · cm or more, fine particles: particle size of 50 nm or more and 1000 / L or less, viable bacteria: 1 / L or less, TOC (Total Organic Carbon) ): 1 μg / L or less, Total silicon: 0.1 μg / L or less, Metals: 1 ng / L or less, Ions: 10 ng / L or less, Hydrogen peroxide: 30 μg / L or less, Water temperature: 25 ± 2 ° C. Is preferred.
次にこのような超純水製造システムの微粒子管理方法について説明する。
[通常時運転]
上述したような超純水の製造工程において、微粒子計9をUF膜分離装置8の出口側と非再生型混床式イオン交換装置7の出口側とにそれぞれ所定のタイミングで適宜切り替えることで、UF膜分離装置8の出口側の超純水W1の微粒子数と、非再生型混床式イオン交換装置7の処理水W2の微粒子数を測定する。そして、超純水W1の微粒子数が1個/mL以下であり、非再生型混床式イオン交換装置7の処理水W2の微粒子数が10個/mL以下であれば、サブシテム1の運転を継続して、超純水W1をユースポイントPOUへ供給する。
Next, a particle management method for such an ultrapure water production system will be described.
[Normal operation]
In the manufacturing process of ultrapure water as described above, the
[微粒子数管理運転]
一方、オフラインモニターである微粒子計9で計測されたUF膜分離装置8の出口側の超純水W1の微粒子数が1個/mL以下であっても、非再生型混床式イオン交換装置7の処理水W2の微粒子数が10個/mLを超えたら、サブシテム1の運転を一旦停止し、非再生型混床式イオン交換装置7を交換する。これによりUF膜分離装置8の出口側の超純水W1の微粒子数を1個/mL以下に保持することができ、微粒子数が基準値を超えた超純水W1がユースポイントPOUへ供給されるのを未然に防止することができる。なお、このような管理を行ってもUF膜分離装置8の出口側の超純水W1の微粒子数が1個/mLを超える場合には、UF膜分離装置8に破断が生じたと判断して、UF膜分離装置8を交換するなどすればよい。
[Particle count control]
On the other hand, even if the number of fine particles in the ultrapure water W1 on the outlet side of the UF
<作用機構>
このような効果が得られるのは以下のような作用機構による。すなわち、一般にイオン交換装置では、溶解性シリカは非常に除去しやすいのに対し、コロイダルシリカはホウ素よりも非常に除去しにくい(破過しやすい)ことが報告されている(「UPW Micro 2017,UPW IRDS and SEMI update」Slava Libmanら)。そして、このホウ素は、一次純水W中に含まれているナトリウムイオン(Na+)、塩素イオン(Cl−)あるいは炭酸イオン(HCO3 −)よりも非常に除去しにくい(破過しやすい)。すなわち、コロイダルシリカは、ナトリウムイオン(Na+)、塩素イオン(Cl−)、炭酸イオン(HCO3 −)よりもはるかに破過しやすいことになる。
<Action mechanism>
Such an effect is obtained by the following mechanism. That is, it is generally reported that in an ion exchange apparatus, soluble silica is very easy to remove, whereas colloidal silica is much more difficult to remove (easy to break through) than boron ("UPW Micro 2017, UPW IRDS and SEMI update "Slava Libman et al.). This boron is much more difficult to remove (easy to break through) than sodium ions (Na + ), chlorine ions (Cl − ) or carbonate ions (HCO 3 − ) contained in the primary pure water W. . That is, colloidal silica is much easier to break through than sodium ions (Na + ), chlorine ions (Cl − ), and carbonate ions (HCO 3 − ).
そこで、本発明者らが検討した結果、非再生型混床式イオン交換装置7の出口側、すなわちUF膜分離装置8の入口側における微粒子数の増加は、主にコロイダルシリカ粒子に起因することがわかった。従来、非再生型混床式イオン交換装置7は、その出口側に導電率計や比抵抗計などのイオン負荷を計測する手段を設けてイオン負荷を計測し、これが所定の値よりも大きくなったら定期的に交換していたが、これではコロイダルシリカの微粒子はUF膜分離装置8に流入してしまう。これに対し本実施形態のように非再生型混床式イオン交換装置7の処理水の微粒子数に視点をおいて管理することで、微粒子がUF膜分離装置8の出口に到達する前に非再生型混床式イオン交換装置7を交換することができるので、UF膜分離装置8の出口における超純水W1の微粒子数の安定化を図ることができる。そして、超純水W1の微粒子数が増加しないことを微粒子計9により計測して確認すればよい。
Therefore, as a result of the study by the present inventors, the increase in the number of fine particles on the outlet side of the non-regenerative mixed bed
以上、本発明の第一の実施形態について添付図面を参照して説明してきたが、本発明は前記実施形態に限らず種々の変更実施が可能である。例えば、図2に示すようにUF膜分離装置8の出口側に第一の微粒子計9Aを設けるとともに非再生型混床式イオン交換装置7の出口側に第二の微粒子計9Bを設けて、非再生型混床式イオン交換装置7の処理水W2の微粒子数と、UF膜分離装置8の出口の超純水W1の微粒子数とをそれぞれ独立して計測する構成としても良い。また、微粒子数計測手段は、微粒子計9などはオフラインモニターでなく、遠心ろ過法を利用したオンラインモニターとしても良い。
As mentioned above, although 1st embodiment of this invention has been described with reference to an accompanying drawing, this invention is not restricted to the said embodiment, A various change implementation is possible. For example, as shown in FIG. 2, the
また、サブシステム1としては、前述した第一及び第二の実施形態のものに限らず種々のサブシステムに適用可能である。例えば、図3に示すように低圧紫外線(UV)照射酸化装置6の後段に白金族金属などを担持したイオン交換樹脂を充填した触媒樹脂(過酸化水素除去)装置10、膜式脱気装置11を設け、その後段に非再生型混床式イオン交換装置7及び限外濾過膜(UF膜)分離装置8をこの順に備えるものにも好適に適用可能である。さらに、サブシステム1として、例えば、図4に示すように非再生型混床式イオン交換装置7と限外濾過膜(UF膜)分離装置8の間に膜式脱気装置12を設けたものにも好適に適用可能である。この場合、微粒子計9などの微粒子数計測手段は、非再生型混床式イオン交換装置7の出口側でUF膜分離装置8より前であれば、膜式脱気装置12などの他のエレメントが介在していてもよく、その場合、他のエレメントの出口側で微粒子数を計測してもよいし、非再生型混床式イオン交換装置7の直後で計測してもよい。
The
以下の具体的実施例により本発明をさらに詳細に説明する。 The following specific examples further illustrate the present invention.
[実験例1]
図1に示す超純水製造システムにより、市水を原水として超純水の製造を行った。なお、サブシステム1を構成する低圧UV照射酸化装置6としては日本フォトサイエンス社製品を、非再生型混床式イオン交換装置7としては栗田工業社製「KR−FM」を、UF膜分離装置8としては栗田工業社製「KU−1510−HP−H」を、微粒子計9としては栗田工業社製「K−LAMIC」をそれぞれ使用した。
[Experimental Example 1]
The ultrapure water production system shown in FIG. 1 was used to produce ultrapure water using city water as raw water. The low-pressure
上記超純水の製造システムでの超純水の製造工程において、非再生型混床式イオン交換装置7の処理水W2及びUF膜分離装置8の出口の超純水W1の微粒子数を監視し、非再生型混床式イオン交換装置7の処理水W2の微粒子数が10個/mLを超えたら、非再生型混床式イオン交換装置7を交換する作業を繰り返した結果、UF膜分離装置8の出口の超純水W1の微粒子数が1個/mLを超えることはなかった。これはUF膜分離装置8への流入する処理水W2中のコロイダルシリカなどに起因する微粒子数を抑制することができるためであると考えられる。
In the ultrapure water production process in the ultrapure water production system, the number of fine particles in the treated water W2 of the non-regenerative mixed bed
[比較例1]
実施例1において、非再生型混床式イオン交換装置7の処理水W2の微粒子数を計測することなく、比抵抗計により比抵抗値を測定し、この比抵抗値からイオン負荷を判断し、イオン負荷が所定の値を超えたら非再生型混床式イオン交換装置7を交換する作業を繰り返した結果、UF膜分離装置8の出口の超純水W1の微粒子数が時間の経過とともに1個/mLを超える傾向を示した。これはUF膜分離装置8の経時劣化により部分的に破断が生じ、コロイダルシリカがリークしたためであると考えられる。
[Comparative Example 1]
In Example 1, without measuring the number of fine particles of the treated water W2 of the non-regenerative mixed-
1 サブシテム
2 サブタンク
3 供給ライン
3A 循環ライン
4 ポンプ
5 熱交換器
6 低圧紫外線(UV)照射酸化装置
7 非再生型混床式イオン交換装置
8 限外濾過膜(UF膜)分離装置(微粒子除去膜装置)
9,9A,9B 微粒子計(微粒子数計測手段)
POU ユースポイント
W 一次純水
W1 超純水
W2 非再生型混床式イオン交換装置の処理水
DESCRIPTION OF
9, 9A, 9B Fine particle meter (particle number measuring means)
POU use point W Primary pure water W1 Ultra pure water W2 Non-regenerative mixed-bed ion exchanger treated water
Claims (6)
前記微粒子除去膜装置の出口の超純水中の微粒子数を微粒子数計測手段により計測することで監視する一方、
前記非再生型混床式イオン交換装置の処理水の微粒子数を微粒子数計測手段により計測して、前記非再生型混床式イオン交換装置の処理水の微粒子数が所定の値を超えたら前記非再生型混床式イオン交換装置を交換する、
超純水製造システムの微粒子管理方法。 A method for managing fine particles of an ultrapure water production system in which primary pure water produced by a primary pure water system is processed by a subsystem comprising a non-regenerative mixed bed ion exchange device and a fine particle removal membrane device in this order,
While monitoring the number of fine particles in ultrapure water at the outlet of the fine particle removal film device by measuring the number of fine particles,
When the number of fine particles of treated water of the non-regenerative type mixed bed ion exchange apparatus is measured by a fine particle number measuring means, and the number of fine particles of treated water of the non-regenerative type mixed bed ion exchange apparatus exceeds a predetermined value, Replacing the non-regenerative mixed bed ion exchanger
Particle management method for ultrapure water production system.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018019853A JP7143595B2 (en) | 2018-02-07 | 2018-02-07 | Particle control method for ultrapure water production system |
CN201880060242.6A CN111108069A (en) | 2018-02-07 | 2018-09-14 | Particle management method for ultrapure water production system |
PCT/JP2018/034111 WO2019155672A1 (en) | 2018-02-07 | 2018-09-14 | Fine particle management method for ultrapure water production system |
KR1020207007350A KR102613112B1 (en) | 2018-02-07 | 2018-09-14 | How to manage particulates in ultrapure water manufacturing systems |
TW107132793A TW201936513A (en) | 2018-02-07 | 2018-09-18 | Fine particle management method for ultrapure water production system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018019853A JP7143595B2 (en) | 2018-02-07 | 2018-02-07 | Particle control method for ultrapure water production system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019136628A true JP2019136628A (en) | 2019-08-22 |
JP7143595B2 JP7143595B2 (en) | 2022-09-29 |
Family
ID=67548625
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018019853A Active JP7143595B2 (en) | 2018-02-07 | 2018-02-07 | Particle control method for ultrapure water production system |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP7143595B2 (en) |
KR (1) | KR102613112B1 (en) |
CN (1) | CN111108069A (en) |
TW (1) | TW201936513A (en) |
WO (1) | WO2019155672A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7686172B1 (en) * | 2025-02-12 | 2025-05-30 | 野村マイクロ・サイエンス株式会社 | Ultrapure water production apparatus, ultrapure water production method, operation and management method for ultrapure water production apparatus, and method for measuring colloidal particles |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7496969B2 (en) * | 2020-07-20 | 2024-06-10 | オルガノ株式会社 | Operation and management method for ultrapure water production equipment |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0929251A (en) * | 1995-07-17 | 1997-02-04 | Kurita Water Ind Ltd | Ultrapure water production equipment |
JP2010069460A (en) * | 2008-09-22 | 2010-04-02 | Japan Organo Co Ltd | Method for reducing hydrogen peroxide, device for reducing the same, device for manufacturing ultrapure water and cleaning method |
JP2010227886A (en) * | 2009-03-27 | 2010-10-14 | Kurita Water Ind Ltd | Pure water production equipment |
WO2015050125A1 (en) * | 2013-10-04 | 2015-04-09 | 栗田工業株式会社 | Ultrapure water production apparatus |
WO2017164361A1 (en) * | 2016-03-25 | 2017-09-28 | 栗田工業株式会社 | Ultrapure water manufacturing system |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4406912B2 (en) * | 2003-01-23 | 2010-02-03 | 栗田工業株式会社 | Method for producing ultrapure water and ion exchange resin for producing ultrapure water used therefor |
US20080245737A1 (en) * | 2007-04-03 | 2008-10-09 | Siemens Water Technologies Corp. | Method and system for providing ultrapure water |
JP2013215679A (en) * | 2012-04-09 | 2013-10-24 | Nomura Micro Sci Co Ltd | Ultrapure water production apparatus |
JP2017200683A (en) * | 2016-05-06 | 2017-11-09 | 野村マイクロ・サイエンス株式会社 | Start-up method of ultra-pure water manufacturing apparatus |
-
2018
- 2018-02-07 JP JP2018019853A patent/JP7143595B2/en active Active
- 2018-09-14 KR KR1020207007350A patent/KR102613112B1/en active Active
- 2018-09-14 WO PCT/JP2018/034111 patent/WO2019155672A1/en active Application Filing
- 2018-09-14 CN CN201880060242.6A patent/CN111108069A/en active Pending
- 2018-09-18 TW TW107132793A patent/TW201936513A/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0929251A (en) * | 1995-07-17 | 1997-02-04 | Kurita Water Ind Ltd | Ultrapure water production equipment |
JP2010069460A (en) * | 2008-09-22 | 2010-04-02 | Japan Organo Co Ltd | Method for reducing hydrogen peroxide, device for reducing the same, device for manufacturing ultrapure water and cleaning method |
JP2010227886A (en) * | 2009-03-27 | 2010-10-14 | Kurita Water Ind Ltd | Pure water production equipment |
WO2015050125A1 (en) * | 2013-10-04 | 2015-04-09 | 栗田工業株式会社 | Ultrapure water production apparatus |
WO2017164361A1 (en) * | 2016-03-25 | 2017-09-28 | 栗田工業株式会社 | Ultrapure water manufacturing system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7686172B1 (en) * | 2025-02-12 | 2025-05-30 | 野村マイクロ・サイエンス株式会社 | Ultrapure water production apparatus, ultrapure water production method, operation and management method for ultrapure water production apparatus, and method for measuring colloidal particles |
Also Published As
Publication number | Publication date |
---|---|
JP7143595B2 (en) | 2022-09-29 |
KR102613112B1 (en) | 2023-12-12 |
KR20200117972A (en) | 2020-10-14 |
WO2019155672A1 (en) | 2019-08-15 |
CN111108069A (en) | 2020-05-05 |
TW201936513A (en) | 2019-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6119886B1 (en) | Ultrapure water production apparatus and operation method of ultrapure water production apparatus | |
JP2010187029A5 (en) | ||
WO2005095280A1 (en) | Apparatus for producing ultrapure water | |
WO2019155672A1 (en) | Fine particle management method for ultrapure water production system | |
CN100406393C (en) | Ultrapure water production system and its operation method | |
JP6722552B2 (en) | Non-regenerative ion exchange resin cleaning device and ultrapure water production system | |
JP5962135B2 (en) | Ultrapure water production equipment | |
JP6107987B1 (en) | Cleaning method of ultrapure water production system | |
JP3985500B2 (en) | Ultrapure water supply method | |
CN218089218U (en) | Ultrapure water purification system | |
CN113874328B (en) | Ultrapure water manufacturing system and ultrapure water manufacturing method | |
JP7563959B2 (en) | Ultrapure water production system and ultrapure water production method | |
JP7405066B2 (en) | Ultrapure water production equipment and ultrapure water production method | |
WO2021215099A1 (en) | Waste water treatment method, ultrapure water production method, and waste water treatment apparatus | |
JP3963319B2 (en) | Ultrapure water production equipment | |
JP7660749B1 (en) | Ultrapure water production method, ultrapure water production device, and ultrapure water production system | |
JP2020037088A (en) | Operational method of ultrapure water production apparatus | |
JP5257175B2 (en) | Ultrapure water production equipment | |
TWI883225B (en) | Ultrapure water production device | |
JP6205865B2 (en) | Operation management method for pure water production equipment | |
JP7305960B2 (en) | Operation method of ultrapure water production equipment | |
CN208964705U (en) | A kind of ultra-pure-water treatment system | |
JPH04108587A (en) | Production of ultrapure water | |
CN117085512A (en) | Method for cleaning ultrafiltration membrane module and method for managing ultrapure water production system | |
JP2023150986A (en) | Water treatment control apparatus and water quality monitoring method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201109 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211102 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211207 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20220419 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220615 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20220615 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20220624 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20220628 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220816 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220829 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7143595 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |