JP2019127405A - Ceria-based composite hollow microparticle dispersion, production method thereof, and polishing abrasive grain dispersion comprising ceria-based composite hollow microparticle dispersion - Google Patents
Ceria-based composite hollow microparticle dispersion, production method thereof, and polishing abrasive grain dispersion comprising ceria-based composite hollow microparticle dispersion Download PDFInfo
- Publication number
- JP2019127405A JP2019127405A JP2018008782A JP2018008782A JP2019127405A JP 2019127405 A JP2019127405 A JP 2019127405A JP 2018008782 A JP2018008782 A JP 2018008782A JP 2018008782 A JP2018008782 A JP 2018008782A JP 2019127405 A JP2019127405 A JP 2019127405A
- Authority
- JP
- Japan
- Prior art keywords
- ceria
- particles
- silica
- cerium
- based composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 title claims abstract description 243
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 title claims abstract description 242
- 239000006185 dispersion Substances 0.000 title claims abstract description 240
- 239000002131 composite material Substances 0.000 title claims abstract description 197
- 238000005498 polishing Methods 0.000 title claims abstract description 184
- 238000004519 manufacturing process Methods 0.000 title claims description 43
- 239000006061 abrasive grain Substances 0.000 title description 14
- 239000011859 microparticle Substances 0.000 title description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 776
- 239000002245 particle Substances 0.000 claims abstract description 376
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 358
- 239000010419 fine particle Substances 0.000 claims abstract description 288
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 177
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims abstract description 169
- 238000000034 method Methods 0.000 claims abstract description 75
- 238000002441 X-ray diffraction Methods 0.000 claims abstract description 34
- 239000000758 substrate Substances 0.000 claims description 60
- 239000012535 impurity Substances 0.000 claims description 38
- 239000002243 precursor Substances 0.000 claims description 37
- 229910052751 metal Inorganic materials 0.000 claims description 33
- 239000002184 metal Substances 0.000 claims description 33
- 150000003839 salts Chemical class 0.000 claims description 30
- 239000002904 solvent Substances 0.000 claims description 25
- 239000004065 semiconductor Substances 0.000 claims description 21
- 229910052726 zirconium Inorganic materials 0.000 claims description 17
- 229910052742 iron Inorganic materials 0.000 claims description 13
- 229910052749 magnesium Inorganic materials 0.000 claims description 13
- 230000033116 oxidation-reduction process Effects 0.000 claims description 13
- 229910052725 zinc Inorganic materials 0.000 claims description 13
- 229910052700 potassium Inorganic materials 0.000 claims description 12
- 229910052708 sodium Inorganic materials 0.000 claims description 12
- 229910052791 calcium Inorganic materials 0.000 claims description 11
- 229910052804 chromium Inorganic materials 0.000 claims description 11
- 229910052802 copper Inorganic materials 0.000 claims description 11
- 229910052759 nickel Inorganic materials 0.000 claims description 11
- 239000011800 void material Substances 0.000 claims description 11
- 229910052776 Thorium Inorganic materials 0.000 claims description 10
- 229910052770 Uranium Inorganic materials 0.000 claims description 10
- 230000001133 acceleration Effects 0.000 claims description 10
- 229910052709 silver Inorganic materials 0.000 claims description 9
- 229910052801 chlorine Inorganic materials 0.000 claims description 8
- 239000013049 sediment Substances 0.000 claims description 4
- 239000007788 liquid Substances 0.000 abstract description 50
- 239000011246 composite particle Substances 0.000 abstract description 31
- 239000013078 crystal Substances 0.000 abstract description 30
- 239000000463 material Substances 0.000 abstract description 16
- 238000010586 diagram Methods 0.000 abstract description 6
- 239000010410 layer Substances 0.000 description 155
- -1 for example Substances 0.000 description 59
- 239000007787 solid Substances 0.000 description 42
- 239000011882 ultra-fine particle Substances 0.000 description 41
- 239000000243 solution Substances 0.000 description 37
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 36
- 229910004298 SiO 2 Inorganic materials 0.000 description 32
- 238000010304 firing Methods 0.000 description 32
- 238000002360 preparation method Methods 0.000 description 28
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 24
- 238000005259 measurement Methods 0.000 description 22
- 230000002829 reductive effect Effects 0.000 description 21
- 238000006243 chemical reaction Methods 0.000 description 20
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 18
- 229910052710 silicon Inorganic materials 0.000 description 18
- 238000003703 image analysis method Methods 0.000 description 17
- 230000009257 reactivity Effects 0.000 description 17
- 230000005540 biological transmission Effects 0.000 description 16
- 239000000126 substance Substances 0.000 description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 15
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 15
- 229910000420 cerium oxide Inorganic materials 0.000 description 15
- 239000011362 coarse particle Substances 0.000 description 15
- 239000000203 mixture Substances 0.000 description 15
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 15
- 238000004448 titration Methods 0.000 description 15
- 238000009826 distribution Methods 0.000 description 14
- 238000003756 stirring Methods 0.000 description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 13
- 239000000084 colloidal system Substances 0.000 description 13
- 239000004094 surface-active agent Substances 0.000 description 13
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 12
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 12
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 239000002253 acid Substances 0.000 description 12
- 125000002091 cationic group Chemical group 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 239000002994 raw material Substances 0.000 description 12
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 11
- 235000011114 ammonium hydroxide Nutrition 0.000 description 11
- 239000010949 copper Substances 0.000 description 11
- 238000001035 drying Methods 0.000 description 11
- 239000011777 magnesium Substances 0.000 description 11
- 239000011701 zinc Substances 0.000 description 11
- 239000002202 Polyethylene glycol Substances 0.000 description 10
- UNJPQTDTZAKTFK-UHFFFAOYSA-K cerium(iii) hydroxide Chemical compound [OH-].[OH-].[OH-].[Ce+3] UNJPQTDTZAKTFK-UHFFFAOYSA-K 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- 239000012071 phase Substances 0.000 description 10
- 229920001223 polyethylene glycol Polymers 0.000 description 10
- 239000011734 sodium Substances 0.000 description 10
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 9
- 239000007864 aqueous solution Substances 0.000 description 9
- 239000011575 calcium Substances 0.000 description 9
- JIHMVMRETUQLFD-UHFFFAOYSA-N cerium(3+);dioxido(oxo)silane Chemical compound [Ce+3].[Ce+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O JIHMVMRETUQLFD-UHFFFAOYSA-N 0.000 description 9
- 239000011651 chromium Substances 0.000 description 9
- 238000010894 electron beam technology Methods 0.000 description 9
- 238000002156 mixing Methods 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 9
- 239000006104 solid solution Substances 0.000 description 9
- 230000003746 surface roughness Effects 0.000 description 9
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 8
- 150000000703 Cerium Chemical class 0.000 description 8
- 230000032683 aging Effects 0.000 description 8
- 125000000217 alkyl group Chemical group 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 150000002433 hydrophilic molecules Chemical class 0.000 description 8
- 239000011259 mixed solution Substances 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 229920001451 polypropylene glycol Polymers 0.000 description 8
- 229910021642 ultra pure water Inorganic materials 0.000 description 8
- 239000012498 ultrapure water Substances 0.000 description 8
- 239000002585 base Substances 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- 229910052746 lanthanum Inorganic materials 0.000 description 7
- 239000012528 membrane Substances 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 239000010944 silver (metal) Substances 0.000 description 7
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 6
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 150000005215 alkyl ethers Chemical class 0.000 description 6
- 150000003863 ammonium salts Chemical class 0.000 description 6
- 125000004429 atom Chemical group 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 239000011324 bead Substances 0.000 description 6
- 239000011247 coating layer Substances 0.000 description 6
- 238000002425 crystallisation Methods 0.000 description 6
- 230000008025 crystallization Effects 0.000 description 6
- 150000002148 esters Chemical class 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 150000002391 heterocyclic compounds Chemical class 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 229910017604 nitric acid Inorganic materials 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 239000011163 secondary particle Substances 0.000 description 6
- 239000002002 slurry Substances 0.000 description 6
- 238000000108 ultra-filtration Methods 0.000 description 6
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 5
- 238000012935 Averaging Methods 0.000 description 5
- 229910019142 PO4 Inorganic materials 0.000 description 5
- 239000003513 alkali Substances 0.000 description 5
- 229910002026 crystalline silica Inorganic materials 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000004090 dissolution Methods 0.000 description 5
- 125000005842 heteroatom Chemical group 0.000 description 5
- 238000000691 measurement method Methods 0.000 description 5
- 239000004570 mortar (masonry) Substances 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- 235000021317 phosphate Nutrition 0.000 description 5
- 238000010298 pulverizing process Methods 0.000 description 5
- 235000012239 silicon dioxide Nutrition 0.000 description 5
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 4
- XLLIQLLCWZCATF-UHFFFAOYSA-N 2-methoxyethyl acetate Chemical compound COCCOC(C)=O XLLIQLLCWZCATF-UHFFFAOYSA-N 0.000 description 4
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 4
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 238000003917 TEM image Methods 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 239000003082 abrasive agent Substances 0.000 description 4
- 235000011054 acetic acid Nutrition 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 4
- 150000001342 alkaline earth metals Chemical class 0.000 description 4
- 125000003342 alkenyl group Chemical group 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 239000003729 cation exchange resin Substances 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 150000001785 cerium compounds Chemical class 0.000 description 4
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Chemical compound CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 4
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000009616 inductively coupled plasma Methods 0.000 description 4
- 238000005342 ion exchange Methods 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- HJOVHMDZYOCNQW-UHFFFAOYSA-N isophorone Chemical compound CC1=CC(=O)CC(C)(C)C1 HJOVHMDZYOCNQW-UHFFFAOYSA-N 0.000 description 4
- 239000007791 liquid phase Substances 0.000 description 4
- 238000006386 neutralization reaction Methods 0.000 description 4
- 239000003002 pH adjusting agent Substances 0.000 description 4
- 229920005575 poly(amic acid) Polymers 0.000 description 4
- 229940051841 polyoxyethylene ether Drugs 0.000 description 4
- 229920000056 polyoxyethylene ether Polymers 0.000 description 4
- 235000019353 potassium silicate Nutrition 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 230000001737 promoting effect Effects 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 4
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 4
- 159000000000 sodium salts Chemical class 0.000 description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 3
- 239000004115 Sodium Silicate Substances 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229920002125 Sokalan® Polymers 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 3
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- 239000003945 anionic surfactant Substances 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- VYLVYHXQOHJDJL-UHFFFAOYSA-K cerium trichloride Chemical compound Cl[Ce](Cl)Cl VYLVYHXQOHJDJL-UHFFFAOYSA-K 0.000 description 3
- GHLITDDQOMIBFS-UHFFFAOYSA-H cerium(3+);tricarbonate Chemical compound [Ce+3].[Ce+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O GHLITDDQOMIBFS-UHFFFAOYSA-H 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 229910052906 cristobalite Inorganic materials 0.000 description 3
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexyloxide Natural products O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 3
- 238000002242 deionisation method Methods 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 150000002170 ethers Chemical class 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 235000011187 glycerol Nutrition 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 125000000623 heterocyclic group Chemical group 0.000 description 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 229910052809 inorganic oxide Inorganic materials 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000002736 nonionic surfactant Substances 0.000 description 3
- 239000006174 pH buffer Substances 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 239000004584 polyacrylic acid Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- 238000006748 scratching Methods 0.000 description 3
- 230000002393 scratching effect Effects 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 229910052911 sodium silicate Inorganic materials 0.000 description 3
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 2
- KNKRKFALVUDBJE-UHFFFAOYSA-N 1,2-dichloropropane Chemical compound CC(Cl)CCl KNKRKFALVUDBJE-UHFFFAOYSA-N 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- RBZGEUJLKTVORU-UHFFFAOYSA-N 12014-84-5 Chemical compound [Ce]#[Si] RBZGEUJLKTVORU-UHFFFAOYSA-N 0.000 description 2
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 2
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 2
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 2
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 2
- 229940093475 2-ethoxyethanol Drugs 0.000 description 2
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 2
- RHLVCLIPMVJYKS-UHFFFAOYSA-N 3-octanone Chemical compound CCCCCC(=O)CC RHLVCLIPMVJYKS-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910004664 Cerium(III) chloride Inorganic materials 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical compound CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 229910020175 SiOH Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 150000004703 alkoxides Chemical class 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 235000001014 amino acid Nutrition 0.000 description 2
- 239000002280 amphoteric surfactant Substances 0.000 description 2
- 229940072049 amyl acetate Drugs 0.000 description 2
- PGMYKACGEOXYJE-UHFFFAOYSA-N anhydrous amyl acetate Natural products CCCCCOC(C)=O PGMYKACGEOXYJE-UHFFFAOYSA-N 0.000 description 2
- 239000003957 anion exchange resin Substances 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical compound C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 2
- 239000003093 cationic surfactant Substances 0.000 description 2
- CKMNQZXKOURUMB-UHFFFAOYSA-N cerium dimer Chemical compound [Ce]#[Ce] CKMNQZXKOURUMB-UHFFFAOYSA-N 0.000 description 2
- 239000008119 colloidal silica Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 2
- 229940116333 ethyl lactate Drugs 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 150000008282 halocarbons Chemical class 0.000 description 2
- MNWFXJYAOYHMED-UHFFFAOYSA-M heptanoate Chemical compound CCCCCCC([O-])=O MNWFXJYAOYHMED-UHFFFAOYSA-M 0.000 description 2
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical class C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- GJRQTCIYDGXPES-UHFFFAOYSA-N iso-butyl acetate Natural products CC(C)COC(C)=O GJRQTCIYDGXPES-UHFFFAOYSA-N 0.000 description 2
- FGKJLKRYENPLQH-UHFFFAOYSA-M isocaproate Chemical compound CC(C)CCC([O-])=O FGKJLKRYENPLQH-UHFFFAOYSA-M 0.000 description 2
- OQAGVSWESNCJJT-UHFFFAOYSA-N isovaleric acid methyl ester Natural products COC(=O)CC(C)C OQAGVSWESNCJJT-UHFFFAOYSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000006179 pH buffering agent Substances 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 238000007517 polishing process Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 description 2
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 2
- 238000003918 potentiometric titration Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 150000004040 pyrrolidinones Chemical class 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 125000005372 silanol group Chemical group 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910001961 silver nitrate Inorganic materials 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910001388 sodium aluminate Inorganic materials 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 2
- 150000003462 sulfoxides Chemical class 0.000 description 2
- 229940104261 taurate Drugs 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- PSBDWGZCVUAZQS-UHFFFAOYSA-N (dimethylsulfonio)acetate Chemical compound C[S+](C)CC([O-])=O PSBDWGZCVUAZQS-UHFFFAOYSA-N 0.000 description 1
- RBNPOMFGQQGHHO-UHFFFAOYSA-N -2,3-Dihydroxypropanoic acid Natural products OCC(O)C(O)=O RBNPOMFGQQGHHO-UHFFFAOYSA-N 0.000 description 1
- IBMCQJYLPXUOKM-UHFFFAOYSA-N 1,2,2,6,6-pentamethyl-3h-pyridine Chemical compound CN1C(C)(C)CC=CC1(C)C IBMCQJYLPXUOKM-UHFFFAOYSA-N 0.000 description 1
- HNSDLXPSAYFUHK-UHFFFAOYSA-N 1,4-bis(2-ethylhexyl) sulfosuccinate Chemical compound CCCCC(CC)COC(=O)CC(S(O)(=O)=O)C(=O)OCC(CC)CCCC HNSDLXPSAYFUHK-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- QWENRTYMTSOGBR-UHFFFAOYSA-N 1H-1,2,3-Triazole Chemical compound C=1C=NNN=1 QWENRTYMTSOGBR-UHFFFAOYSA-N 0.000 description 1
- KJUGUADJHNHALS-UHFFFAOYSA-N 1H-tetrazole Chemical compound C=1N=NNN=1 KJUGUADJHNHALS-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- ULRPISSMEBPJLN-UHFFFAOYSA-N 2h-tetrazol-5-amine Chemical compound NC1=NN=NN1 ULRPISSMEBPJLN-UHFFFAOYSA-N 0.000 description 1
- JSIAIROWMJGMQZ-UHFFFAOYSA-N 2h-triazol-4-amine Chemical compound NC1=CNN=N1 JSIAIROWMJGMQZ-UHFFFAOYSA-N 0.000 description 1
- DQSBZDLZCZUJCJ-UHFFFAOYSA-N 2h-triazole-4,5-diamine Chemical compound NC=1N=NNC=1N DQSBZDLZCZUJCJ-UHFFFAOYSA-N 0.000 description 1
- IRQWEODKXLDORP-UHFFFAOYSA-N 4-ethenylbenzoic acid Chemical compound OC(=O)C1=CC=C(C=C)C=C1 IRQWEODKXLDORP-UHFFFAOYSA-N 0.000 description 1
- NSPMIYGKQJPBQR-UHFFFAOYSA-N 4H-1,2,4-triazole Chemical compound C=1N=CNN=1 NSPMIYGKQJPBQR-UHFFFAOYSA-N 0.000 description 1
- XZGLNCKSNVGDNX-UHFFFAOYSA-N 5-methyl-2h-tetrazole Chemical compound CC=1N=NNN=1 XZGLNCKSNVGDNX-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- KLSJWNVTNUYHDU-UHFFFAOYSA-N Amitrole Chemical compound NC1=NC=NN1 KLSJWNVTNUYHDU-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- KXDAEFPNCMNJSK-UHFFFAOYSA-N Benzamide Chemical compound NC(=O)C1=CC=CC=C1 KXDAEFPNCMNJSK-UHFFFAOYSA-N 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical class NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 239000001879 Curdlan Substances 0.000 description 1
- 229920002558 Curdlan Polymers 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- RBNPOMFGQQGHHO-UWTATZPHSA-N D-glyceric acid Chemical compound OC[C@@H](O)C(O)=O RBNPOMFGQQGHHO-UWTATZPHSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- BUDQDWGNQVEFAC-UHFFFAOYSA-N Dihydropyran Chemical compound C1COC=CC1 BUDQDWGNQVEFAC-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 1
- XGEGHDBEHXKFPX-UHFFFAOYSA-N N-methylthiourea Natural products CNC(N)=O XGEGHDBEHXKFPX-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229920002230 Pectic acid Polymers 0.000 description 1
- 229920000805 Polyaspartic acid Polymers 0.000 description 1
- 108010020346 Polyglutamic Acid Proteins 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 239000004373 Pullulan Substances 0.000 description 1
- 229920001218 Pullulan Polymers 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical class C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical group [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical compound OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- DFPAKSUCGFBDDF-ZQBYOMGUSA-N [14c]-nicotinamide Chemical compound N[14C](=O)C1=CC=CN=C1 DFPAKSUCGFBDDF-ZQBYOMGUSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 125000005037 alkyl phenyl group Chemical group 0.000 description 1
- 150000008051 alkyl sulfates Chemical class 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 description 1
- 229910000387 ammonium dihydrogen phosphate Inorganic materials 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- BBEAQIROQSPTKN-UHFFFAOYSA-N antipyrene Natural products C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 1
- QZNWNKFWDJRMLV-UHFFFAOYSA-N azane;2-hydroxy-4-[(4-hydroxy-1,3,2,4-dioxadiboretan-2-yl)oxy]-1,3,2,4-dioxadiboretane;tetrahydrate Chemical compound N.N.O.O.O.O.O1B(O)OB1OB1OB(O)O1 QZNWNKFWDJRMLV-UHFFFAOYSA-N 0.000 description 1
- FDIWRLNJDKKDHB-UHFFFAOYSA-N azanium;2-aminoacetate Chemical compound [NH4+].NCC([O-])=O FDIWRLNJDKKDHB-UHFFFAOYSA-N 0.000 description 1
- SLXUHJYLQGWQRT-UHFFFAOYSA-N azanium;ethoxymethanesulfonate Chemical class [NH4+].CCOCS([O-])(=O)=O SLXUHJYLQGWQRT-UHFFFAOYSA-N 0.000 description 1
- UREZNYTWGJKWBI-UHFFFAOYSA-M benzethonium chloride Chemical compound [Cl-].C1=CC(C(C)(C)CC(C)(C)C)=CC=C1OCCOCC[N+](C)(C)CC1=CC=CC=C1 UREZNYTWGJKWBI-UHFFFAOYSA-M 0.000 description 1
- 229960001950 benzethonium chloride Drugs 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 1
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical class [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- KCFKHWSNVPJBEP-UHFFFAOYSA-N butylazanium;sulfate Chemical compound CCCCN.CCCCN.OS(O)(=O)=O KCFKHWSNVPJBEP-UHFFFAOYSA-N 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- OZECDDHOAMNMQI-UHFFFAOYSA-H cerium(3+);trisulfate Chemical compound [Ce+3].[Ce+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O OZECDDHOAMNMQI-UHFFFAOYSA-H 0.000 description 1
- 229910000333 cerium(III) sulfate Inorganic materials 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 239000003426 co-catalyst Substances 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 239000007771 core particle Substances 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 235000019316 curdlan Nutrition 0.000 description 1
- 229940078035 curdlan Drugs 0.000 description 1
- 150000001923 cyclic compounds Chemical class 0.000 description 1
- 238000001739 density measurement Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 229910000388 diammonium phosphate Inorganic materials 0.000 description 1
- 235000019838 diammonium phosphate Nutrition 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical class OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- ZGARNLJTTXHQGS-UHFFFAOYSA-N ethanamine;sulfuric acid Chemical compound CCN.CCN.OS(O)(=O)=O ZGARNLJTTXHQGS-UHFFFAOYSA-N 0.000 description 1
- ROBXZHNBBCHEIQ-BYPYZUCNSA-N ethyl (2s)-2-aminopropanoate Chemical compound CCOC(=O)[C@H](C)N ROBXZHNBBCHEIQ-BYPYZUCNSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000000192 extended X-ray absorption fine structure spectroscopy Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- PKWIYNIDEDLDCJ-UHFFFAOYSA-N guanazole Chemical compound NC1=NNC(N)=N1 PKWIYNIDEDLDCJ-UHFFFAOYSA-N 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000001261 hydroxy acids Chemical class 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- XGEGHDBEHXKFPX-NJFSPNSNSA-N methylurea Chemical compound [14CH3]NC(N)=O XGEGHDBEHXKFPX-NJFSPNSNSA-N 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 235000019837 monoammonium phosphate Nutrition 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-M naphthalene-1-sulfonate Chemical compound C1=CC=C2C(S(=O)(=O)[O-])=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-M 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 239000011824 nuclear material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- LCLHHZYHLXDRQG-ZNKJPWOQSA-N pectic acid Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)O[C@H](C(O)=O)[C@@H]1OC1[C@H](O)[C@@H](O)[C@@H](OC2[C@@H]([C@@H](O)[C@@H](O)[C@H](O2)C(O)=O)O)[C@@H](C(O)=O)O1 LCLHHZYHLXDRQG-ZNKJPWOQSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 108010064470 polyaspartate Proteins 0.000 description 1
- 239000010318 polygalacturonic acid Substances 0.000 description 1
- 229920002643 polyglutamic acid Polymers 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 229920001444 polymaleic acid Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 150000004804 polysaccharides Chemical class 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- QLNJFJADRCOGBJ-UHFFFAOYSA-N propionamide Chemical compound CCC(N)=O QLNJFJADRCOGBJ-UHFFFAOYSA-N 0.000 description 1
- 229940080818 propionamide Drugs 0.000 description 1
- 235000019423 pullulan Nutrition 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000005070 ripening Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 238000000851 scanning transmission electron micrograph Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- WUWHFEHKUQVYLF-UHFFFAOYSA-M sodium;2-aminoacetate Chemical compound [Na+].NCC([O-])=O WUWHFEHKUQVYLF-UHFFFAOYSA-M 0.000 description 1
- QJEOJNTXXKYIDP-UHFFFAOYSA-M sodium;3-ethoxypropane-1-sulfonate Chemical compound [Na+].CCOCCCS([O-])(=O)=O QJEOJNTXXKYIDP-UHFFFAOYSA-M 0.000 description 1
- BWYYYTVSBPRQCN-UHFFFAOYSA-M sodium;ethenesulfonate Chemical compound [Na+].[O-]S(=O)(=O)C=C BWYYYTVSBPRQCN-UHFFFAOYSA-M 0.000 description 1
- NFOSJIUDGCORCI-UHFFFAOYSA-M sodium;methoxymethanesulfonate Chemical compound [Na+].COCS([O-])(=O)=O NFOSJIUDGCORCI-UHFFFAOYSA-M 0.000 description 1
- DZXBHDRHRFLQCJ-UHFFFAOYSA-M sodium;methyl sulfate Chemical compound [Na+].COS([O-])(=O)=O DZXBHDRHRFLQCJ-UHFFFAOYSA-M 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- JDVPQXZIJDEHAN-UHFFFAOYSA-N succinamic acid Chemical compound NC(=O)CCC(O)=O JDVPQXZIJDEHAN-UHFFFAOYSA-N 0.000 description 1
- 150000003445 sucroses Chemical class 0.000 description 1
- 229940117986 sulfobetaine Drugs 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical group [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- 150000003536 tetrazoles Chemical class 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
- AQLJVWUFPCUVLO-UHFFFAOYSA-N urea hydrogen peroxide Chemical compound OO.NC(N)=O AQLJVWUFPCUVLO-UHFFFAOYSA-N 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Landscapes
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Silicon Compounds (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Abstract
【課題】シリカ膜、Siウェハや難加工材であっても高速で研磨することができ、同時に高面精度を達成できるシリカ系複合粒子分散液の提供。【解決手段】下記[1]から[3]の特徴を備える平均粒子径20〜400nmのセリア系複合中空微粒子を含む、セリア系複合中空微粒子分散液。[1]前記セリア系複合中空微粒子は外殻としてのセリウム含有シリカ層の内部に空隙を有する中空構造を備え、前記セリウム含有シリカ層の内部に結晶性セリアを主成分とする子粒子が分散している。[2]前記セリア系複合中空微粒子は、X線回折によりセリアの結晶相のみが検出される。[3]前記セリア系複合中空微粒子は、X線回折により測定し、前記結晶性セリアの平均結晶子径が8〜25nmである。【選択図】図1PROBLEM TO BE SOLVED: To provide a silica-based composite particle dispersion liquid capable of polishing a silica film, a Si wafer or a difficult-to-process material at a high speed and at the same time achieving high surface accuracy. SOLUTION: A ceria-based composite hollow fine particle dispersion liquid containing ceria-based composite hollow fine particles having an average particle diameter of 20 to 400 nm having the following characteristics [1] to [3]. [1] The ceria-based composite hollow fine particles have a hollow structure having voids inside the cerium-containing silica layer as an outer shell, and child particles containing crystalline ceria as a main component are dispersed inside the cerium-containing silica layer. ing. [2] In the ceria-based composite hollow fine particles, only the crystal phase of ceria is detected by X-ray diffraction. [3] The ceria-based composite hollow fine particles are measured by X-ray diffraction, and the average crystallite diameter of the crystalline ceria is 8 to 25 nm. [Selection diagram] Fig. 1
Description
本発明は、半導体デバイス製造等に使用される研磨剤として好適なセリア系複合中空微粒子分散液に関し、特に基板上に形成された被研磨膜を、化学機械的研磨(ケミカルメカニカルポリッシング:CMP)で平坦化するためのセリア系複合中空微粒子分散液、その製造方法及びセリア系複合中空微粒子分散液を含む研磨用砥粒分散液に関する。 The present invention relates to a ceria-based composite hollow particle dispersion suitable as a polishing agent used for semiconductor device production and the like, and in particular, a chemical mechanical polishing (chemical mechanical polishing: CMP) is performed on a film to be polished formed on a substrate. The present invention relates to a ceria-based composite hollow fine particle dispersion for flattening, a method for producing the same, and a polishing abrasive dispersion containing the ceria-based composite hollow fine particle dispersion.
半導体基板、配線基板などの半導体デバイスなどは、高密度化・微細化することで高性能化を実現している。この半導体の製造工程においては、いわゆるケミカルメカニカルポリッシング(CMP)が適用されており、具体的にはシャロートレンチ素子分離、層間絶縁膜の平坦化、コンタクトプラグやCuダマシン配線の形成などに必須の技術となっている。 Semiconductor devices such as semiconductor substrates and wiring boards achieve high performance through high density and miniaturization. In this semiconductor manufacturing process, so-called chemical mechanical polishing (CMP) is applied. Specifically, this technology is indispensable for shallow trench isolation, planarization of interlayer insulating films, formation of contact plugs and Cu damascene wiring, etc. It has become.
一般にCMP用研磨剤は、砥粒とケミカル成分とからなり、ケミカル成分は対象被膜を酸化や腐食などさせることにより研磨を促進させる役割を担う。一方で砥粒は機械的作用により研磨する役割を持ち、コロイダルシリカやヒュームドシリカ、セリア粒子が砥粒として使われる。特にセリア粒子は酸化ケイ素膜に対して特異的に高い研磨速度を示すことから、シャロートレンチ素子分離工程での研磨に適用されている。
シャロートレンチ素子分離工程では、酸化ケイ素膜の研磨だけではなく、窒化ケイ素膜の研磨も行われる。素子分離を容易にするためには、酸化ケイ素膜の研磨速度が高く、窒化ケイ素膜の研磨速度が低い事が望ましく、この研磨速度比(選択比)も重要である。
In general, an abrasive for CMP comprises abrasive grains and a chemical component, and the chemical component plays a role of promoting polishing by oxidizing or corroding a target film. On the other hand, abrasive grains have a role of polishing by mechanical action, and colloidal silica, fumed silica and ceria particles are used as abrasive grains. In particular, ceria particles are applied to polishing in a shallow trench isolation process because they exhibit a specifically high polishing rate to a silicon oxide film.
In the shallow trench isolation process, not only the polishing of the silicon oxide film but also the polishing of the silicon nitride film is performed. In order to facilitate element isolation, it is desirable that the polishing rate of the silicon oxide film is high and the polishing rate of the silicon nitride film is low, and this polishing rate ratio (selection ratio) is also important.
従来、このような部材の研磨方法として、比較的粗い1次研磨処理を行った後、精密な2次研磨処理を行うことにより、平滑な表面あるいはスクラッチなどの傷が少ない極めて高精度の表面を得る方法が行われている。
このような仕上げ研磨としての2次研磨に用いる研磨剤に関して、従来、例えば次のような方法等が提案されている。
Conventionally, as a polishing method for such a member, after performing a relatively rough primary polishing process and then performing a precise secondary polishing process, a smooth surface or a highly accurate surface with few scratches such as scratches can be obtained. The way to get is done.
Conventionally, for example, the following method has been proposed as an abrasive used for secondary polishing as such final polishing.
例えば、特許文献1には、硝酸第一セリウムの水溶液と塩基とを、pHが5〜10となる量比で攪拌混合し、続いて70〜100℃に急速加熱し、その温度で熟成することを特徴とする酸化セリウム単結晶からなる酸化セリウム超微粒子(平均粒子径10〜80nm)の製造方法が記載されており、更にこの製造方法によれば、粒子径の均一性が高く、かつ粒子形状の均一性も高い酸化セリウム超微粒子を提供できると記載されている。 For example, in Patent Document 1, an aqueous solution of cerous nitrate and a base are stirred and mixed in an amount ratio such that the pH is 5 to 10, followed by rapid heating to 70 to 100 ° C., and aging at that temperature A method for producing cerium oxide ultrafine particles (average particle size of 10 to 80 nm) composed of a single crystal of cerium oxide characterized by the following is described. Further, according to this production method, the particle size is highly uniform and the particle shape It is described that ultrafine cerium oxide particles can be provided.
また、非特許文献1は、特許文献1に記載の酸化セリウム超微粒子の製造方法と類似した製造工程を含むセリアコートシリカの製造方法を開示している。このセリアコートシリカの製造方法は、特許文献1に記載の製造方法に含まれるような焼成―分散の工程を有さないものである。 Non-Patent Document 1 discloses a method for producing ceria-coated silica including a production process similar to the method for producing cerium oxide ultrafine particles described in Patent Literature 1. The method for producing ceria-coated silica does not have a firing-dispersion step as included in the production method described in Patent Document 1.
また、特許文献2には、非晶質のシリカ粒子Aの表面に、ジルコニウム、チタニウム、鉄、マンガン、亜鉛、セリウム、イットリウム、カルシウム、マグネシウム、フッ素、ランタニウム、ストロンチウムより選ばれた1種以上の元素を含む結晶質の酸化物層Bを有することを特徴とするシリカ系複合粒子が記載されている。また、好ましい態様として、非晶質のシリカ粒子Aの表面に、アルミニウム等の元素を含む非晶質の酸化物層であって、非晶質のシリカ層とは異なる非晶質の酸化物層Cを有し、さらに、その上にジルコニウム、チタニウム、鉄、マンガン、亜鉛、セリウム、イットリウム、カルシウム、マグネシウム、フッ素、ランタニウム、ストロンチウムより選ばれた1種以上の元素を含む結晶質の酸化物層Bを有することを特徴とするシリカ系複合粒子が記載されている。そして、このようなシリカ系複合粒子は、非晶質のシリカ粒子Aの表面に、結晶質の酸化物層Bを有するために、研磨速度を向上させることができ、かつ、シリカ粒子に前処理をすることにより、焼成時に粒子同士の焼結が抑制され研磨スラリー中での分散性を向上させることができ、さらに、酸化セリウムを含まない、あるいは酸化セリウムの使用量を大幅に低減することができるので、安価であって研磨性能の高い研磨材を提供することができると記載されている。また、シリカ系粒子Aと酸化物層Bの間にさらに非晶質の酸化物層Cを有するものは、粒子の焼結抑制効果と研磨速度を向上させる効果に特に優れると記載されている。 Further, in Patent Document 2, at least one selected from zirconium, titanium, iron, manganese, zinc, cerium, yttrium, calcium, magnesium, fluorine, lanthanum, and strontium is used on the surface of the amorphous silica particle A. A silica-based composite particle characterized in having a crystalline oxide layer B containing an element is described. As a preferred embodiment, an amorphous oxide layer containing an element such as aluminum on the surface of the amorphous silica particles A, which is different from the amorphous silica layer A crystalline oxide layer containing C, and further containing one or more elements selected from zirconium, titanium, iron, manganese, zinc, cerium, yttrium, calcium, magnesium, fluorine, lanthanum, and strontium. Silica-based composite particles characterized by having B are described. And since such a silica type composite particle has the crystalline oxide layer B on the surface of the amorphous silica particle A, it can improve a grinding | polishing speed and pre-process on a silica particle. The sintering of the particles is suppressed at the time of firing, the dispersibility in the polishing slurry can be improved, and the use amount of cerium oxide is further reduced. It is described that since it is possible, it is possible to provide an inexpensive abrasive material with high polishing performance. Further, it is described that those having an amorphous oxide layer C between the silica-based particles A and the oxide layer B are particularly excellent in the effect of suppressing the sintering of particles and the effect of improving the polishing rate.
さらに特許文献3には、シリカとシリカ以外の無機酸化物とからなる平均粒子径が19〜70nmの複合酸化物核微粒子に、厚さが1〜10nmになるようにシリカ被覆層を形成し、シリカ以外の無機酸化物を除去して、平均粒子径(Dn)が20〜80nmの範囲、屈折率が1.10〜1.40の範囲にあるシリカ系中空粒子を製造する際に、特定の方法を組合わせることによってシリカ系中空微粒子の粒子径変動係数が1〜50%の範囲となるように調整し、ついで、得られたシリカ系中空微粒子と、マトリックス形成成分と極性溶媒とを混合することを特徴とする透明被膜形成用塗料の製造方法が記載されている。そして、このような製造方法によれば、基材と透明被膜との密着性が高く、透明被膜の上部表面は凹凸が小さく平滑になり、このため、強度、耐擦傷性に優れ、低屈折率で反射防止性能に優れた透明被膜を形成できると記載されている。 Furthermore, in Patent Document 3, a silica coating layer is formed on a composite oxide core fine particle having an average particle diameter of 19 to 70 nm composed of silica and an inorganic oxide other than silica so as to have a thickness of 1 to 10 nm. When inorganic silica other than silica is removed to produce silica-based hollow particles having an average particle diameter (Dn) in the range of 20 to 80 nm and a refractive index in the range of 1.10 to 1.40, By adjusting the method, the silica-based hollow fine particles are adjusted so that the particle diameter variation coefficient is in the range of 1 to 50%, and then the obtained silica-based hollow fine particles, the matrix-forming component and the polar solvent are mixed. A method for producing a coating material for forming a transparent film is described. And, according to such a manufacturing method, the adhesion between the substrate and the transparent film is high, the upper surface of the transparent film has small unevenness and becomes smooth, and therefore, the strength and the scratch resistance are excellent, and the low refractive index It is described that a transparent film excellent in antireflection performance can be formed.
しかしながら、特許文献1に記載の酸化セリウム超微粒子について、本発明者が実際に製造して検討したところ、研磨速度が低く、さらに、研磨基材の表面に欠陥(面精度の悪化、スクラッチ増加、研磨基材表面への研磨材の残留)を生じやすいことが判明した。
これは、焼成工程を含むセリア粒子の製造方法(焼成によりセリア粒子の結晶化度が高まる)に比べて、特許文献1に記載の酸化セリウム超微粒子の製法は、焼成工程を含まず、液相(硝酸第一セリウムを含む水溶液)から酸化セリウム粒子を結晶化させるだけなので、生成する酸化セリウム粒子の結晶化度が相対的に低く、また、焼成処理を経ないため酸化セリウムが母粒子と固着せず、酸化セリウムが研磨基材の表面に残留することが主要因であると、本発明者は推定している。
However, when the present inventors actually manufactured and examined the cerium oxide ultrafine particles described in Patent Document 1, the polishing rate was low, and furthermore, defects (deterioration in surface accuracy, scratch increase, and the like) on the surface of the polishing substrate. It has been found that the remaining of the abrasive on the surface of the abrasive substrate is likely to occur.
This is because the method for producing cerium oxide ultrafine particles described in Patent Document 1 does not include the firing step, as compared to the method for producing ceria particles including the firing step (the crystallization degree of the ceria particles is increased by firing), and the liquid phase Since the cerium oxide particles are only crystallized from (an aqueous solution containing cerous nitrate), the degree of crystallization of the produced cerium oxide particles is relatively low, and the cerium oxide does not undergo calcination treatment, so the cerium oxide is solid with the base particles The inventor presumes that the main factor is that cerium oxide does not adhere and remains on the surface of the polishing substrate.
また、非特許文献1に記載のセリアコートシリカは焼成していないため、現実の研磨速度は低いと考えられ、また、シリカ粒子と固着一体化していないため、容易に脱落し、研磨速度の低下や、研摩の安定性を欠き、研磨基材の表面への粒子の残留も懸念される。 In addition, since ceria-coated silica described in Non-Patent Document 1 is not fired, it is considered that the actual polishing rate is low, and because it is not fixed and integrated with the silica particles, it easily falls off and the polishing rate decreases. Also, the stability of the polishing is lost, and the retention of particles on the surface of the polishing substrate is also a concern.
さらに、特許文献2に記載の酸化物層Cを有する態様のシリカ系複合粒子を用いて研磨すると、アルミニウム等の不純物が半導体デバイスの表面に残留し、半導体デバイスへ悪影響を及ぼすこともあることを、本発明者は見出した。
また、これら文献に記載されているセリア粒子は母粒子上に付着されたものであり、強く固着されていないので母粒子から脱落しやすい。
さらに、特許文献2の記載の真球状のシリカ母粒子上に結晶性セリア粒子を形成した砥粒を用いて研磨すると、セリア粒子の研摩時の機械的作用と同時に起こる化学的な反応によりシリカ膜の研磨速度は高いものの、高い圧力条件下では、セリア結晶が脱落や磨減、崩壊により、基板とセリアの接触面積が低下し、研磨速度が低くなる恐れがある。
Furthermore, when polishing is performed using the silica-based composite particles of the embodiment having the oxide layer C described in Patent Document 2, impurities such as aluminum may remain on the surface of the semiconductor device, which may adversely affect the semiconductor device. The inventor found out.
Further, the ceria particles described in these documents are attached on the base particle and are not firmly fixed, so they are easily detached from the base particle.
Further, when polishing is performed using abrasive grains in which crystalline ceria particles are formed on true spherical silica mother particles described in Patent Document 2, the silica film is caused by a chemical reaction that occurs simultaneously with the mechanical action during polishing of the ceria particles. Although the polishing rate is high, under high pressure conditions, the contact area between the substrate and the ceria may be reduced due to the ceria crystal falling off, abrasion, or collapse, and the polishing rate may be reduced.
本発明は上記のような課題を解決することを目的とする。すなわち、本発明は、シリカ膜、Siウェハや難加工材であっても高速で研磨することができ、同時に高面精度(低スクラッチ、基板上の砥粒残が少ない、基板Ra値の良化等)を達成でき、さらに不純物を含まない場合、半導体基板、配線基板などの半導体デバイスの表面の研磨に好ましく用いることができるセリア系複合中空微粒子分散液、その製造方法及びセリア系複合中空微粒子分散液を含む研磨用砥粒分散液を提供することを目的とする。 The present invention aims to solve the above-mentioned problems. That is, the present invention can polish a silica film, a Si wafer or a difficult-to-process material at high speed, and at the same time has high surface accuracy (low scratch, little abrasive grains remaining on the substrate, and improved substrate Ra value. Etc.) and can be preferably used for polishing the surface of a semiconductor device such as a semiconductor substrate or a wiring substrate, and a manufacturing method thereof and a ceria-based composite hollow fine particle dispersion. An object is to provide a polishing abrasive dispersion containing a liquid.
本発明者は上記課題を解決するため鋭意検討し、本発明を完成させた。
本発明は以下の(1)〜(6)である。
(1)下記[1]から[3]の特徴を備える平均粒子径20〜400nmのセリア系複合中空微粒子を含む、セリア系複合中空微粒子分散液。
[1]前記セリア系複合中空微粒子は外殻としてのセリウム含有シリカ層の内部に空隙を有する中空構造を備え、前記セリウム含有シリカ層の内部に結晶性セリアを主成分とする子粒子が分散していること。
[2]前記セリア系複合中空微粒子は、X線回折に供するとセリアの結晶相のみが検出されること。
[3]前記セリア系複合中空微粒子は、X線回折に供して測定される、前記結晶性セリアの平均結晶子径が8〜30nmであること。
(2)前記セリア系複合中空微粒子に含まれる不純物の含有割合が、次の(a)及び(b)のとおりであることを特徴とする上記(1)または(2)に記載のセリア系複合中空微粒子分散液。
(a)Na、Ag、Ca、Cr、Cu、Fe、K、Mg、Ni、Zn及びZrの含有率が、それぞれ100ppm以下。
(b)U、Th、Cl及びSO4の含有率が、それぞれ5ppm以下。
(3)上記(1)または(2)に記載のセリア系複合中空微粒子分散液を含む研磨用砥粒分散液。
(4)前記研磨用砥粒分散液が、シリカ膜が形成された半導体基板の平坦化用であることを特徴とする上記(3)に記載の研磨用砥粒分散液。
(5)下記の工程1〜工程3を含み、上記(1)または(2)に記載のセリア系複合中空微粒子分散液が得られることを特徴とするセリア系複合中空微粒子分散液の製造方法。
工程1:シリカ中空微粒子が溶媒に分散しているシリカ中空微粒子分散液を撹拌し、温度を0〜70℃、pHを7.0〜11.0、酸化還元電位を−400〜300mVに維持しながら、ここへセリウムの金属塩を連続的又は断続的に添加し、前駆体粒子を含む前駆体粒子分散液を得る工程。
工程2:前記前駆体粒子分散液を乾燥させ、400〜1,200℃で焼成し、得られた焼成体に溶媒を加えてpH8.6〜10.8の範囲にて、湿式で解砕処理をして焼成体解砕分散液を得る工程。
工程3:前記焼成体解砕分散液を、相対遠心加速度300G以上にて遠心分離処理を行い、続いて沈降成分を除去することによりセリア系複合中空微粒子分散液を得る工程。
(6)前記工程1における前記シリカ中空微粒子に含まれる不純物の含有割合が、次の(a)及び(b)のとおりであることを特徴とする上記(5)に記載のセリア系複合中空微粒子分散液の製造方法。
(a)Na、Ag、Ca、Cr、Cu、Fe、K、Mg、Ni、Zn及びZrの含有率が、それぞれ100ppm以下。
(b)U、Th、Cl及びSO4の含有率が、それぞれ5ppm以下。
The inventor has intensively studied to solve the above-mentioned problems, and has completed the present invention.
The present invention is the following (1) to (6).
(1) A ceria-based composite hollow fine particle dispersion containing ceria-based composite hollow fine particles having an average particle diameter of 20 to 400 nm having the following features [1] to [3].
[1] The ceria-based composite hollow particle has a hollow structure having a void in the inside of the cerium-containing silica layer as the outer shell, and child particles mainly composed of crystalline ceria are dispersed in the inside of the cerium-containing silica layer. Being
[2] The ceria-based composite hollow particles should be detected only in the crystalline phase of ceria when subjected to X-ray diffraction.
[3] The ceria-based composite hollow fine particles have an average crystallite diameter of the crystalline ceria of 8 to 30 nm measured by X-ray diffraction.
(2) The ceria-based composite as described in (1) or (2) above, wherein the content ratio of impurities contained in the ceria-based composite hollow fine particles is as shown in the following (a) and (b): Hollow particle dispersion.
(A) The contents of Na, Ag, Ca, Cr, Cu, Fe, K, Mg, Ni, Zn and Zr are each 100 ppm or less.
(B) The contents of U, Th, Cl and SO 4 are each 5 ppm or less.
(3) A polishing abrasive particle dispersion containing the ceria-based composite hollow particle dispersion according to (1) or (2) above.
(4) The polishing abrasive dispersion according to (3) above, wherein the polishing abrasive dispersion is for planarizing a semiconductor substrate on which a silica film is formed.
(5) A method for producing a ceria-based composite hollow fine particle dispersion, comprising the following steps 1 to 3, wherein the ceria-based composite hollow fine particle dispersion described in (1) or (2) is obtained.
Step 1: A silica hollow fine particle dispersion in which silica fine particles are dispersed in a solvent is stirred, and the temperature is maintained at 0 to 70 ° C., the pH is set to 7.0 to 11.0, and the oxidation-reduction potential is maintained at −400 to 300 mV. Meanwhile, a step of adding a metal salt of cerium continuously or intermittently to obtain a precursor particle dispersion containing precursor particles.
Step 2: The precursor particle dispersion is dried, calcined at 400 to 1,200 ° C., a solvent is added to the obtained calcined product, and wet crushing is performed in a pH range of 8.6 to 10.8. And a step of obtaining a fired body disintegration dispersion.
Step 3: A step of obtaining a ceria-based composite hollow fine particle dispersion by subjecting the calcined dispersion to a centrifuge at a relative centrifugal acceleration of 300 G or more and subsequently removing a sediment component.
(6) The content ratio of the impurities contained in the silica hollow fine particles in the step 1 is as shown in the following (a) and (b): Method of producing a dispersion.
(A) The contents of Na, Ag, Ca, Cr, Cu, Fe, K, Mg, Ni, Zn and Zr are each 100 ppm or less.
(B) The contents of U, Th, Cl and SO 4 are each 5 ppm or less.
本発明のセリア系複合中空微粒子分散液を、例えば、研磨用砥粒分散液として研磨用途に使用した場合、対象がシリカ膜、Siウェハなどを含む難加工材であっても、高速で研磨することができ、同時に高面精度(低スクラッチ、被研磨基板の表面粗さ(Ra)が低いこと等)を達成することができる。本発明のセリア系複合中空微粒子分散液の製造方法は、このような優れた性能を示すセリア系複合中空微粒子分散液を効率的に製造する方法を提供するものである。
本発明のセリア系複合中空微粒子分散液の製造方法においては、セリア系複合中空微粒子に含まれる不純物を著しく低減させ、高純度化させることも可能である。本発明のセリア系複合中空微粒子分散液の製造方法の好適態様によって得られる、高純度化されたセリア系複合中空微粒子分散液は、不純物を含まないため、半導体基板、配線基板などの半導体デバイスの表面の研磨に好ましく用いることができる。
また、本発明のセリア系複合中空微粒子分散液は、研磨用砥粒分散液として使用した場合、半導体デバイス表面の平坦化に有効であり、特にはシリカ絶縁膜が形成された基板の研磨に好適である。
また、本発明のセリア系複合中空微粒子分散液に分散しているセリア系複合中空微粒子は、外殻としてのセリウム含有シリカ層の内部に空隙を有する中空構造を備え、更に、該セリウム含有シリカ層の内部に結晶性セリアを主成分とする子粒子が分散してなる粒子であり、セリア固有の効果である排ガス浄化用触媒、アンモニア浄化用触媒、Pd等の他の触媒金属の安定化剤等の用途に適用可能であり、特に外殻としてのセリウム含有シリカ層の内部に空隙を有する中空構造をとるので外径が同程度のセリア単体粒子に比べて、密度は低く、より少量のセリアであっても、同等ないし同等以上の触媒機能等を発揮することが可能となる。
When the ceria-based composite hollow particle dispersion of the present invention is used, for example, as an abrasive particle dispersion for polishing, polishing is performed at high speed even if the target is a difficult-to-process material including silica film, Si wafer, etc. At the same time, high surface precision (low scratch, low surface roughness (Ra) of the substrate to be polished, etc.) can be achieved. The method for producing a ceria-based composite hollow fine particle dispersion of the present invention provides a method for efficiently producing a ceria-based composite hollow fine particle dispersion exhibiting such excellent performance.
In the method for producing a ceria-based composite hollow fine particle dispersion according to the present invention, impurities contained in the ceria-based composite hollow fine particles can be remarkably reduced and highly purified. The highly purified ceria-based composite hollow particle dispersion obtained by the preferred embodiment of the method for producing a ceria-based composite hollow particle dispersion according to the present invention does not contain any impurities, so that it can be used for semiconductor devices such as semiconductor substrates and wiring substrates. It can be preferably used for polishing the surface.
The ceria-based composite hollow particle dispersion of the present invention is effective for flattening the surface of a semiconductor device when it is used as an abrasive dispersion for polishing, and is particularly suitable for polishing a substrate on which a silica insulating film is formed. It is.
The ceria-based composite hollow particles dispersed in the ceria-based composite hollow particle dispersion of the present invention have a hollow structure having voids inside the cerium-containing silica layer as the outer shell, and the cerium-containing silica layer In the inside of the particles, particles consisting mainly of crystalline ceria are dispersed, and the catalyst for exhaust gas purification which is an effect unique to ceria, catalyst for ammonia purification, stabilizer of other catalyst metals such as Pd, etc. The density is low compared to ceria single particles with the same outer diameter because they have a hollow structure with voids inside the cerium-containing silica layer as the outer shell, and the amount of ceria is smaller. Even if there is, it becomes possible to exhibit the same or more equivalent catalytic functions.
本発明について説明する。
本発明は、下記[1]から[3]の特徴を備える平均粒子径20〜400nmのセリア系複合中空微粒子を含む、セリア系複合中空微粒子分散液である。
[1]前記セリア系複合中空微粒子は外殻としてのセリウム含有シリカ層の内部に空隙を有する中空構造を備え、前記セリウム含有シリカ層の内部に結晶性セリアを主成分とする子粒子が分散していること。
[2]前記セリア系複合中空微粒子は、X線回折に供するとセリアの結晶相のみが検出されること。
[3]前記セリア系複合中空微粒子は、X線回折に供して測定される、前記結晶性セリアの平均結晶子径が8〜30nmであること。
The present invention will be described.
The present invention is a ceria-based composite hollow fine particle dispersion containing ceria-based composite hollow fine particles having an average particle size of 20 to 400 nm and having the following characteristics [1] to [3].
[1] The ceria-based composite hollow particle has a hollow structure having a void in the inside of the cerium-containing silica layer as the outer shell, and child particles mainly composed of crystalline ceria are dispersed in the inside of the cerium-containing silica layer. Being
[2] The ceria-based composite hollow particles should be detected only in the crystalline phase of ceria when subjected to X-ray diffraction.
[3] The ceria-based composite hollow fine particles have an average crystallite diameter of the crystalline ceria of 8 to 30 nm measured by X-ray diffraction.
上記[1]から[3]の特徴を備える平均粒子径20〜400nmのセリア系複合中空微粒子を、以下では「本発明の複合微粒子」ともいう。
また、このようなセリア系複合中空微粒子分散液を、以下では「本発明の分散液」ともいう。
The ceria-based composite hollow fine particles having an average particle diameter of 20 to 400 nm having the features of the above [1] to [3] are hereinafter also referred to as “the composite fine particles of the present invention”.
Further, such a ceria-based composite hollow fine particle dispersion is also referred to as “the dispersion of the present invention” below.
また、本発明は、下記の工程1〜工程3を含み、本発明の分散液が得られることを特徴とするセリア系複合中空微粒子分散液の製造方法である。
工程1:シリカ中空微粒子が溶媒に分散しているシリカ中空微粒子分散液を撹拌し、温度を0〜70℃、pHを7.0〜11.0、酸化還元電位を−400〜300mVに維持しながら、ここへセリウムの金属塩を連続的又は断続的に添加し、前駆体粒子を含む前駆体粒子分散液を得る工程。
工程2:前記前駆体粒子分散液を乾燥させ、400〜1,200℃で焼成し、得られた焼成体に溶媒を加えてpH8.6〜10.8の範囲にて、湿式で解砕処理をして焼成体解砕分散液を得る工程。
工程3:前記焼成体解砕分散液を、相対遠心加速度300G以上にて遠心分離処理を行い、続いて沈降成分を除去することによりセリア系複合中空微粒子分散液を得る工程。
なお、相対遠心加速度とは、地球の重力加速度を1Gとして、その比で表したものである。
このような製造方法を、以下では「本発明の製造方法」ともいう。
Moreover, this invention is the manufacturing method of the ceria type | system | group composite hollow microparticle dispersion liquid characterized by including the following process 1-process 3 and obtaining the dispersion liquid of this invention.
Step 1: A silica hollow fine particle dispersion in which silica fine particles are dispersed in a solvent is stirred, and the temperature is maintained at 0 to 70 ° C., the pH is set to 7.0 to 11.0, and the oxidation-reduction potential is maintained at −400 to 300 mV. Meanwhile, a step of adding a metal salt of cerium continuously or intermittently to obtain a precursor particle dispersion containing precursor particles.
Step 2: The precursor particle dispersion is dried, calcined at 400 to 1,200 ° C., a solvent is added to the obtained calcined product, and wet crushing is performed in a pH range of 8.6 to 10.8. And a step of obtaining a fired body disintegration dispersion.
Step 3: A step of obtaining a ceria-based composite hollow fine particle dispersion by subjecting the calcined dispersion to a centrifuge at a relative centrifugal acceleration of 300 G or more and subsequently removing a sediment component.
The relative centrifugal acceleration is expressed as a ratio of the earth's gravitational acceleration as 1G.
Such a manufacturing method is hereinafter also referred to as "the manufacturing method of the present invention".
本発明の分散液は、本発明の製造方法によって製造することが好ましい。 The dispersion of the present invention is preferably produced by the production method of the present invention.
以下において、単に「本発明」と記した場合、本発明の分散液、本発明の複合微粒子及び本発明の製造方法のいずれをも意味するものとする。 In the following, the simple description of “the present invention” means any of the dispersion of the present invention, the composite fine particles of the present invention, and the production method of the present invention.
<構造・機構>
本発明の複合微粒子の形成過程および結果として中空構造を備えることとなる機構、ならびに結晶性セリア粒子が外殻としてのセリウム含有シリカ層の内部に分散して存在することになる機構について、本発明者は以下のように推定している。図1を用いて説明する。
例えば、特許文献3に記載のシリカ中空微粒子の製造方法の操作を行うことで得た中空シリカゾルに、セリウム塩の溶解液を添加しながら、並行してアルカリを添加すると、セリウム塩の溶解液が中和される。そうすると、シリカ中空微粒子の表面のシラノール基と、セリウム塩の溶解液の中和による生成物(水酸化セリウム等)とが反応(図1(a)参照)し、一例として、Ce(OH)・Si(OH)様の化合物を経由して、シリカ中空微粒子の表面にCeO2・SiO2・SiOH等およびCeO2超微粒子(粒径が2.5nm以上、8nm未満の範囲)を含む層(以下「CeO2超微粒子含有層」ともいい、CeO2超微粒子とセリウムシリケート層からなる層)が、シリカ中空微粒子の外側に形成される(図1(b)参照)。シリカ中空微粒子の表面に形成されるCeO2超微粒子は、焼成工程においてセリウムシリケート層から分相したセリウム原子がCeO2超微粒子に沈着してセリアが粒子成長する。必要とする研磨速度を達成するためのセリア粒子の結晶の大きさ(8〜30nm)とするためには、調合で得た結晶子径が2.5nm未満であるとより高温焼成が必要とされる。しかし、高温で処理されると分相で生じたシリカが接着剤となって、当該発明の単結晶性セリア被覆複合粒子を、後工程における解砕によって得ることができない。
<Structure / Mechanism>
The present invention relates to the formation process of the composite fine particles of the present invention and the mechanism for providing the hollow structure as a result, and the mechanism for the crystalline ceria particles to be dispersed and present inside the cerium-containing silica layer as the outer shell. The person estimates as follows. This will be described with reference to FIG.
For example, when an alkali is added in parallel while adding a solution of a cerium salt to a hollow silica sol obtained by performing the procedure of the method for producing silica hollow fine particles described in Patent Document 3, the solution of a cerium salt becomes Neutralized. Then, the silanol groups on the surface of the hollow silica particles react with a product (such as cerium hydroxide) by neutralization of the solution of the cerium salt (see FIG. 1 (a)), for example, Ce (OH). A layer containing CeO 2 · SiO 2 · SiOH etc. and CeO 2 ultrafine particles (particle diameter in the range of 2.5 nm or more and less than 8 nm) on the surface of the hollow silica particles via a Si (OH) -like compound Also referred to as “CeO 2 ultrafine particle-containing layer”, a layer consisting of CeO 2 ultrafine particles and a cerium silicate layer is formed on the outside of the silica hollow fine particles (see FIG. 1 (b)). In the CeO 2 ultrafine particles formed on the surface of the hollow silica fine particles, cerium atoms separated from the cerium silicate layer in the firing step are deposited on the CeO 2 ultrafine particles, and ceria particles grow. In order to achieve the crystal size (8 to 30 nm) of ceria particles for achieving the required polishing rate, higher temperature baking is required if the crystallite diameter obtained in the preparation is less than 2.5 nm. The However, when treated at high temperature, the phase-separated silica becomes an adhesive, and the single crystalline ceria-coated composite particles of the present invention can not be obtained by crushing in a later step.
調合工程で2.5nm以上のCeO2超微粒子を得るためには、シリカとの反応を抑制するため、セリウム塩を添加する際のシリカ中空微粒子分散液の温度は70℃以下であることが好ましい。この際、一部のCeO2超微粒子は調合中の酸化還元電位を所定範囲に保つことにより、加熱・熟成がなくとも既に結晶化している。一方、70℃超の温度で調合した後、液相において加熱処理・熟成しても、CeO2超微粒子は2.5nm以上に成長せず、また結晶化も生じ難い傾向にある。
前記CeO2超微粒子含有層は、シリカ中空微粒子表面のシラノール基と、セリウム塩の溶解液の中和による生成物(水酸化セリウム等)との反応によりシリカ中空微粒子の表面が溶出し、これに(吹き込んだエアー等に由来する)酸素等が影響して、固化して形成されたものと推定される。
そして、その後、乾燥し、400〜1200℃程度で焼成すると、前記CeO2超微粒子含有層の内部に存在している、粒径が2.5nm以上、8nm未満のCeO2超微粒子が、セリウムシリケート層内に存在しているセリウム原子を取り込んで粒径を成長させ、最終的には平均結晶子径が8〜30nm程度にまで成長した結晶性セリア粒子(セリア子粒子)となる(図1(c)参照)。また、セリウムシリケート層(例えばCeO2・SiO2・SiOH)は、熱分解や熱拡散等によりセリウム含有シリカ層となる(図1(c)参照)。そのため、結晶性セリア粒子はセリウム含有シリカ層内で分散した状態で存在することとなる。
なお、図1(c)では、シリカ中空微粒子を構成するシリカの全てが外殻としてのセリウム含有シリカ層を構成する物質に変わった例を示しているが、シリカ中空微粒子の一部がセリウム含有シリカ層の内側に残存する場合もある。このような場合でも、本発明の複合微粒子に含まれる。
また、このような機構によって形成された結晶性セリア粒子(子粒子)は粒子どうしの合着が生じ難い。なお、セリウムシリケート層に含まれるセリウムの一部は結晶性セリア粒子になりきれず残存するため、セリウム含有シリカ層が形成される。
In order to obtain CeO 2 ultrafine particles of 2.5 nm or more in the blending step, the temperature of the silica hollow fine particle dispersion when adding the cerium salt is preferably 70 ° C. or less in order to suppress reaction with silica. . At this time, some CeO 2 ultrafine particles are already crystallized without heating and aging by keeping the oxidation-reduction potential during preparation in a predetermined range. On the other hand, even if heat treatment and aging are carried out in the liquid phase after blending at a temperature exceeding 70 ° C., the CeO 2 ultrafine particles do not grow to 2.5 nm or more, and crystallization tends not to occur.
The CeO 2 ultrafine particle-containing layer elutes the surface of the silica hollow fine particles by the reaction between the silanol groups on the surface of the silica hollow fine particles and a product (cerium hydroxide or the like) obtained by neutralization of the cerium salt solution. It is presumed that it is solidified by being formed by the influence of oxygen (derived from the blown air etc.) and the like.
Thereafter, dried, and baked at about 400 to 1200 ° C., the CeO 2 is present inside the ultrafine particle-containing layer, the particle diameter is 2.5nm or more, CeO 2 ultrafine particles of less than 8 nm, cerium silicate The cerium atoms present in the layer are incorporated to grow the particle size, and finally the crystalline ceria particles (ceria particles) grown to an average crystallite size of about 8 to 30 nm are formed (FIG. 1 ( c)). Further, the cerium silicate layer (for example, CeO 2 · SiO 2 · SiOH) becomes a cerium-containing silica layer by thermal decomposition, thermal diffusion, or the like (see FIG. 1 (c)). Therefore, the crystalline ceria particles are present in a dispersed state in the cerium-containing silica layer.
FIG. 1C shows an example in which all of the silica constituting the silica hollow fine particles is changed to a substance constituting the cerium-containing silica layer as the outer shell, but a part of the silica hollow fine particles is cerium-containing. It may remain inside the silica layer. Even in such a case, they are included in the composite particle of the present invention.
In addition, crystalline ceria particles (child particles) formed by such a mechanism are less likely to cause cohesion of particles. In addition, since a part of cerium contained in the cerium silicate layer does not become crystalline ceria particles and remains, a cerium-containing silica layer is formed.
なお、調合温度が70℃超でかつ酸化還元電位を所定範囲に保った場合は、水酸化セリウム等とシリカ中空微粒子との反応性が増し、シリカ中空微粒子の溶出量が著しく増し、調合後のシリカ中空微粒子は、例えばシリカ中空微粒子の空隙の径は維持し、厚さが1/2程度になった場合、体積は50〜60%減少する。そして溶解したシリカはCeO2超微粒子含有層に含まれ、前述の例の場合、CeO2超微粒子含有層の組成はシリカ濃度が約2割、セリア濃度が約8割となり、CeO2超微粒子含有層のシリカの割合が増える。そして焼成によりセリア子粒子を8〜30nmに結晶成長させた際に、セリウムシリケート層から分相したセリウム原子がセリア子粒子に沈着・成長し、セリウム原子の分相(拡散)により結果的に生成したシリカがセリア粒子を被覆することになり、セリア子粒子がシリカ被膜で覆われた形態となる。この時に、焼成温度が高いとシリカが接着剤となって、粒子の合着を促進するため、後工程の解砕で単分散状態に解砕することができない。焼成温度が低いと解砕は容易になるが、セリア粒子が成長しないので研磨速度が得られない。 When the preparation temperature is higher than 70 ° C. and the redox potential is kept in a predetermined range, the reactivity between cerium hydroxide etc. and the hollow silica particles is increased, and the elution amount of the hollow silica particles is significantly increased. In the hollow silica particles, for example, the diameter of the voids of the hollow silica particles is maintained, and the volume is reduced by 50 to 60% when the thickness is about 1/2. The dissolved silica contained in the CeO 2 ultrafine particles-containing layer, the preceding example, CeO 2 silica concentration composition of ultrafine particles-containing layer is about 20%, the ceria concentration is about 80%, CeO 2 containing ultrafine particles The proportion of silica in the layer increases. Then, when crystal growth of ceria particles is performed to 8 to 30 nm by firing, cerium atoms separated from the cerium silicate layer are deposited and grown on ceria particles, resulting in phase separation (diffusion) of cerium atoms. The coated silica will cover the ceria particles, and the ceria child particles will be covered with the silica film. At this time, if the firing temperature is high, the silica acts as an adhesive and promotes the coalescence of the particles, so that it can not be crushed into a monodispersed state by crushing in a later step. When the firing temperature is low, crushing is facilitated, but since ceria particles do not grow, the polishing rate can not be obtained.
さらに、調合温度が70℃超でかつ酸化還元電位を所定範囲に保った場合、調合後の結晶子径は2.5nm以下と小さくなり、焼成により所定サイズにセリア子粒子を結晶成長させるためには、セリウムシリケート層からより多くのセリウム原子の拡散が必要となり、結果的にセリウムシリケート層中のシリカ濃度が高まり、子粒子を覆うシリカ被膜が増大する傾向が強まる。
シリカ中空微粒子分散液とセリウムの金属塩の反応時の調合温度が0〜70℃でかつ酸化還元電位を所定範囲に保った場合は、水酸化セリウム等とシリカ中空微粒子との反応性が抑制され、シリカ中空微粒子があまり溶解せず、調合後のシリカ中空微粒子は、例えばシリカ中空微粒子の空隙の径は維持し、厚さは10〜20%程度、体積は10〜25%程度の減少に抑えられる。そのため前述の例の場合、CeO2超微粒子含有層の組成はシリカ濃度が約1割、セリア濃度が約9割になり、CeO2超微粒子含有層のセリアの割合が増加し、焼成後にセリウム含有シリカ層が形成される。また調合後のセリアの結晶サイズは2.5nm以上、8nm未満(一例として5〜7nm)程度となるため、焼成により所定サイズにセリア子粒子を結晶成長させるためのセリウム原子の拡散量が少なくてよく、結果的にセリウムシリケート層中に多くセリウムが残存し、低温焼成で結晶成長がおきて、8〜30nmのセリア粒子が得られる。従って、0〜70℃で調合した場合は、セリウム含有シリカ層の層内にセリア子粒子が分散した形態となる。
Furthermore, when the blending temperature is over 70 ° C. and the oxidation-reduction potential is kept within a predetermined range, the crystallite diameter after blending becomes as small as 2.5 nm or less, and in order to grow ceria particles to a predetermined size by firing. Requires diffusion of more cerium atoms from the cerium silicate layer, and as a result, the silica concentration in the cerium silicate layer increases and the tendency of the silica coating covering the child particles to increase increases.
When the preparation temperature during the reaction of the silica hollow fine particle dispersion and the metal salt of cerium is 0 to 70 ° C. and the oxidation-reduction potential is kept within a predetermined range, the reactivity between the cerium hydroxide and the silica hollow fine particles is suppressed. Silica hollow fine particles do not dissolve so much, and the prepared silica hollow fine particles maintain, for example, the diameter of the voids of the silica hollow fine particles, and the thickness is reduced to about 10 to 20% and the volume is reduced to about 10 to 25%. Be Therefore, in the case of the above-mentioned example, the composition of the CeO 2 ultrafine particle-containing layer has a silica concentration of about 10% and a ceria concentration of about 90%, the ceria content of the CeO 2 ultrafine particle-containing layer increases, and contains cerium after firing. A silica layer is formed. Moreover, since the crystal size of ceria after blending is about 2.5 nm or more and less than 8 nm (as an example, 5 to 7 nm), the amount of cerium atoms diffused to grow ceria particles into a predetermined size by firing is small. Well, as a result, a large amount of cerium remains in the cerium silicate layer, and crystal growth occurs by low-temperature firing, so that ceria particles of 8 to 30 nm are obtained. Therefore, when prepared at 0 to 70 ° C., ceria particle is dispersed in the layer of the cerium-containing silica layer.
また調合段階で、セリア粒子が8nm以上となるとセリア粒子どうしの合着がおきて、セリウム含有シリカ層の内部に均一なセリア粒子が単分散配列しないので、優れた研磨特性が得られない。 Further, when ceria particles are 8 nm or more in the preparation stage, ceria particles are coalesced with each other, and uniform ceria particles are not monodisperse arrayed inside the cerium-containing silica layer, so that excellent polishing characteristics can not be obtained.
このような本発明の微粒子は中空構造を備えるため密度が低く、分散液中にて沈降し難い。また、研磨剤として用いた場合、単位重量に対する粒子数を高めることができる。すなわち、研磨の際は通常、特定固形分濃度にて行うため、同一固形分濃度の場合、粒子個数が多くなることから研磨速度を高めることができる。また、空隙がクッションの役割を果たすためスクラッチは生じ難い。また、結晶性セリア粒子の粒度がそろっているため、研磨圧力を高めてもスクラッチが生じ難い。ここで、研磨圧力を高めると結晶性セリア粒子の脱落が懸念されるが、本発明の微粒子の場合は、外殻を形成するセリウム含有シリカ層によって結晶性セリア粒子が強固に保持されているため、研磨圧力を高めても結晶性セリア粒子が脱落し難い。また、中空構造ではあるが、セリウム含有シリカ層は縦荷重に対して十分な強度を有していることから、研磨中に本発明の複合微粒子は破壊されない。 Such fine particles of the present invention have a hollow structure, so the density is low and it is difficult to settle in the dispersion. Further, when used as an abrasive, the number of particles per unit weight can be increased. That is, since polishing is usually performed at a specific solid content concentration, the number of particles increases at the same solid content concentration, so that the polishing rate can be increased. In addition, scratches are unlikely to occur because the gap serves as a cushion. In addition, since the particle size of the crystalline ceria particles is uniform, scratching hardly occurs even if the polishing pressure is increased. Here, if the polishing pressure is increased, there is a concern that the crystalline ceria particles will come off, but in the case of the fine particles of the present invention, the crystalline ceria particles are firmly held by the cerium-containing silica layer forming the outer shell. Even if the polishing pressure is increased, the crystalline ceria particles hardly fall off. In addition, although it has a hollow structure, the cerium-containing silica layer has a sufficient strength against a longitudinal load, so that the composite fine particles of the present invention are not destroyed during polishing.
次に、図2および図3を用いて、本発明の複合微粒子についてさらに説明する。
本発明の複合微粒子は図2および図3に例示する構造を備えている。図2(a)、図2(b)、図3(a)および図3(b)は共に本発明の複合微粒子の断面の模式図である。図2(a)および図3(a)は、子粒子の一部が外部に露出しているタイプであり、図2(b)および図3(b)は、全ての子粒子が外部に露出していない、埋没タイプである。また、図2はシリカ中空微粒子が残存しているタイプであり、図3はシリカ中空微粒子が残存していないタイプを示している。
図2および図3に示すように、本発明の複合微粒子20は、外殻としてのセリウム含有シリカ層12の内部に空隙10を有する中空構造を備え、セリウム含有シリカ層の内部に結晶性セリアを主成分とする子粒子14が分散している。
なお、図2および図3中の▲は、TEM−EDS分析を行う測定点X、X´、YおよびZの例示である。
Next, the composite particle of the present invention will be further described with reference to FIGS. 2 and 3.
The composite particle of the present invention has the structure illustrated in FIG. 2 and FIG. 2 (a), 2 (b), 3 (a) and 3 (b) are schematic views of the cross section of the composite particle of the present invention. 2 (a) and 3 (a) are types in which a part of child particles are exposed to the outside, and FIGS. 2 (b) and 3 (b) show all child particles exposed to the outside Not buried type. FIG. 2 shows the type in which the hollow silica particles are left, and FIG. 3 shows the type in which the hollow silica particles are not left.
As shown in FIGS. 2 and 3, the composite fine particle 20 of the present invention has a hollow structure having a void 10 inside the cerium-containing silica layer 12 as an outer shell, and crystalline ceria is provided inside the cerium-containing silica layer. Child particles 14 as a main component are dispersed.
2 and 3 are examples of measurement points X, X ′, Y, and Z at which TEM-EDS analysis is performed.
図2および図3の模式図では理解が容易になるように、空隙10、セリウム含有シリカ層12および子粒子14を明確に区別して記したが、本発明の複合微粒子は上記のような機構によって形成されると推測されるため、実際のところは、これらは一体となって存在しており、STEM/SEM像におけるコントラストあるいはEDS分析以外では、空隙10、セリウム含有シリカ層12および子粒子14を明確に区別することは難しい。
ただし、本発明の複合微粒子の断面についてSTEM−EDS分析を行い、CeとSiの元素濃度を測定すると、図2または図3に示した構造であることを確認することができる。
Although the voids 10, the cerium-containing silica layer 12 and the child particles 14 are clearly distinguished for easy understanding in the schematic views of FIGS. 2 and 3, the composite fine particles of the present invention have the mechanism described above. In fact, they are present together as they are supposed to be formed, and except for the contrast or EDS analysis in the STEM / SEM image, the void 10, the cerium-containing silica layer 12 and the child particles 14 are It is difficult to distinguish clearly.
However, when STEM-EDS analysis is performed on the cross section of the composite fine particle of the present invention to measure the elemental concentration of Ce and Si, it can be confirmed that the structure is as shown in FIG. 2 or 3.
すなわち、走査透過型電子顕微鏡(STEM)によって特定した箇所に電子ビームを選択的に照射するEDS分析を行い、図2に示す本発明の複合微粒子の断面の測定点XにおけるCeとSiとの元素濃度を測定すると、いずれもゼロ%となる。別の言い方をすれば、走査透過型電子顕微鏡(STEM)によって特定した箇所に電子ビームを選択的に照射するEDS分析を行ったときに、粒子内におけるCeとSiとの元素濃度がいずれもゼロ%となった部分が空隙10である。図2において10を囲む円状のラインの内側は空隙であるためSi元素も存在していないが、このラインの外側はシリカ中空微粒子の残存物11であるため、この残存物11にはSi元素が存在する。したがって、走査透過型電子顕微鏡(STEM)によって特定した箇所に電子ビームを選択的に照射するEDS分析を行い、図2に示す本発明の複合微粒子の断面の測定点X´におけるCeとSiとの元素濃度を測定すると、Ceはほぼゼロ%となり、Si元素がほぼ100%となる。 That is, the element of Ce and Si at the measurement point X of the cross-section of the composite fine particle of the present invention shown in FIG. 2 is performed by performing EDS analysis in which an electron beam is selectively irradiated to a place specified by a scanning transmission electron microscope (STEM). When the concentration is measured, all become zero%. In other words, when EDS analysis in which the electron beam is selectively irradiated to the location specified by the scanning transmission electron microscope (STEM), the elemental concentration of both Ce and Si in the particles is zero. The part that became% is the air gap 10. In FIG. 2, there is no Si element because the inside of the circular line surrounding 10 is a void, but the outside of this line is a residue 11 of hollow silica fine particles. Exists. Therefore, EDS analysis is performed by selectively irradiating an electron beam to a place specified by a scanning transmission electron microscope (STEM), and the Ce and Si at the measurement point X ′ of the cross section of the composite fine particle of the present invention shown in FIG. When the element concentration is measured, Ce is almost zero%, and Si element is almost 100%.
また、シリカ中空微粒子の残存物11の外側はセリウム含有シリカ層12であり、この部分(例えば測定点Y)におけるCeとSiとの元素濃度を測定すると、Ceモル濃度とSiモル濃度との合計に対するCeモル濃度の比(百分率)(Ce/(Ce+Si)×100)が0〜50%となる。逆に言えば、走査透過型電子顕微鏡(STEM)によって特定した箇所に電子ビームを選択的に照射するEDS分析を行ったときに、Si元素濃度がゼロ%ではなく(すなわちゼロ%超であり)、かつ、Ceモル濃度とSiモル濃度との合計に対するCeモル濃度の比(百分率)(Ce/(Ce+Si)×100)が0〜50%となった部分がセリウム含有シリカ層12である。したがって、図2に示すようにシリカ中空微粒子が残存している場合、その残存物はセリウム含有シリカ層12に含まれることになる。 Further, the outside of the silica hollow fine particle residue 11 is a cerium-containing silica layer 12, and when the element concentration of Ce and Si in this portion (for example, measurement point Y) is measured, the sum of the Ce molar concentration and the Si molar concentration is obtained. The ratio (percentage) of Ce molar concentration to (Ce / (Ce + Si) × 100) is 0 to 50%. In other words, when performing an EDS analysis in which an electron beam is selectively irradiated to a location specified by a scanning transmission electron microscope (STEM), the Si element concentration is not zero% (that is, more than zero%). And, a portion where the ratio (percentage) of Ce molar concentration to the total of Ce molar concentration and Si molar concentration (Ce / (Ce + Si) × 100) becomes 0 to 50% is the cerium-containing silica layer 12. Therefore, when silica hollow fine particles remain as shown in FIG. 2, the residue is included in the cerium-containing silica layer 12.
さらに、セリウム含有シリカ層12に含まれる子粒子14におけるCeとSiとの元素濃度を、例えば測定点Zにて測定すると、Ceモル濃度とSiモル濃度との合計に対するCeモル濃度の比(百分率)(Ce/(Ce+Si)×100)が50%超となる。逆に言えば、走査透過型電子顕微鏡(STEM)によって特定した箇所に電子ビームを選択的に照射するEDS分析を行ったときに、Ceモル濃度とSiモル濃度との合計に対するCeモル濃度の比(百分率)(Ce/(Ce+Si)×100)が50%超となった部分が子粒子14である。 Furthermore, when the elemental concentration of Ce and Si in the child particles 14 included in the cerium-containing silica layer 12 is measured, for example, at the measurement point Z, the ratio of the Ce molar concentration to the total of the Ce molar concentration and the Si molar concentration (percentage ) (Ce / (Ce + Si) × 100) exceeds 50%. Conversely, when EDS analysis in which the electron beam is selectively irradiated to the location specified by the scanning transmission electron microscope (STEM), the ratio of the Ce molar concentration to the sum of the Ce molar concentration and the Si molar concentration A portion where (percent) (Ce / (Ce + Si) × 100) exceeds 50% is the child particle 14.
次に、図3に示すシリカ中空微粒子が残存してないタイプについて説明するが、原則として、前述の図2に示すシリカ中空微粒子が残存しているタイプと同様に考えることができる。
すなわち、走査透過型電子顕微鏡(STEM)によって特定した箇所に電子ビームを選択的に照射するEDS分析を行い、図3に示す本発明の複合微粒子の断面の測定点XにおけるCeとSiとの元素濃度を測定すると、いずれもゼロ%となる。別の言い方をすれば、走査透過型電子顕微鏡(STEM)によって特定した箇所に電子ビームを選択的に照射するEDS分析を行ったときに、粒子内におけるCeとSiとの元素濃度がいずれもゼロ%となった部分が空隙10である。
ここで、図3において10を囲む円状のラインの外側はセリウム含有シリカ層12となる。
Next, although the type in which the hollow silica fine particles shown in FIG. 3 do not remain is described, in principle, it can be considered the same as the type in which the hollow silica fine particles shown in FIG.
That is, EDS analysis in which the electron beam is selectively irradiated to a location specified by a scanning transmission electron microscope (STEM) is performed, and elements of Ce and Si at the measurement point X of the cross section of the composite particle of When the concentration is measured, all become zero%. In other words, when EDS analysis in which the electron beam is selectively irradiated to the location specified by the scanning transmission electron microscope (STEM), the elemental concentration of both Ce and Si in the particles is zero. % Is the void 10.
Here, the outer side of the circular line surrounding 10 in FIG. 3 is the cerium-containing silica layer 12.
そして、空隙10の外側はセリウム含有シリカ層12であり、この部分(例えば測定点Y)におけるCeとSiとの元素濃度を測定すると、Ceモル濃度とSiモル濃度との合計に対するCeモル濃度の比(百分率)(Ce/(Ce+Si)×100)が0〜50%となる。逆に言えば、走査透過型電子顕微鏡(STEM)によって特定した箇所に電子ビームを選択的に照射するEDS分析を行ったときに、Si元素濃度がゼロ%ではなく(すなわちゼロ%超であり)、かつ、Ceモル濃度とSiモル濃度との合計に対するCeモル濃度の比(百分率)(Ce/(Ce+Si)×100)が0〜50%となった部分がセリウム含有シリカ層12である。 And the outer side of the space | gap 10 is the cerium containing silica layer 12, When the element concentration of Ce and Si in this part (for example, measurement point Y) is measured, Ce molar concentration with respect to the sum total of Ce molar concentration and Si molar concentration The ratio (percentage) (Ce / (Ce + Si) × 100) is 0 to 50%. In other words, when performing an EDS analysis in which an electron beam is selectively irradiated to a location specified by a scanning transmission electron microscope (STEM), the Si element concentration is not zero% (that is, more than zero%). And, a portion where the ratio (percentage) of Ce molar concentration to the total of Ce molar concentration and Si molar concentration (Ce / (Ce + Si) × 100) becomes 0 to 50% is the cerium-containing silica layer 12.
さらに、セリウム含有シリカ層12に含まれる子粒子14におけるCeとSiとの元素濃度を、例えば測定点Zにて測定すると、Ceモル濃度とSiモル濃度との合計に対するCeモル濃度の比(百分率)(Ce/(Ce+Si)×100)が50%超となる。逆に言えば、走査透過型電子顕微鏡(STEM)によって特定した箇所に電子ビームを選択的に照射するEDS分析を行ったときに、Ceモル濃度とSiモル濃度との合計に対するCeモル濃度の比(百分率)(Ce/(Ce+Si)×100)が50%超となった部分が子粒子14である。 Furthermore, when the elemental concentration of Ce and Si in the child particles 14 contained in the cerium-containing silica layer 12 is measured, for example, at measurement point Z, the ratio of Ce molar concentration to the total of Ce molar concentration and Si molar concentration (percent ) (Ce / (Ce + Si) × 100) exceeds 50%. Conversely, when EDS analysis in which the electron beam is selectively irradiated to the location specified by the scanning transmission electron microscope (STEM), the ratio of the Ce molar concentration to the sum of the Ce molar concentration and the Si molar concentration A portion where (percent) (Ce / (Ce + Si) × 100) exceeds 50% is the child particle 14.
したがって、STEM−EDS分析を行って得られる元素マップにおいて、本発明の複合微粒子における空隙10とセリウム含有シリカ層12とは、Ceモル濃度とSiモル濃度とが共にゼロ%となるラインによって区別することができる。また、STEM−EDS分析を行って得られる元素マップにおいて、本発明の複合微粒子におけるセリウム含有シリカ層12と子粒子14とは、Ceモル濃度とSiモル濃度との合計に対するCeモル濃度の比(百分率)(Ce/(Ce+Si)×100)が50%となるラインによって、区別することができる。そして、(Ce/(Ce+Si)×100)が50%と超なる部分が子粒子14であり、Si元素濃度がゼロ%ではなく(すなわちゼロ%超であり)、かつ、Ceモル濃度とSiモル濃度との合計に対するCeモル濃度の比(百分率)(Ce/(Ce+Si)×100)が0〜50%となった部分がセリウム含有シリカ層12である。 Therefore, in the elemental map obtained by conducting STEM-EDS analysis, the voids 10 and the cerium-containing silica layer 12 in the composite fine particle of the present invention are distinguished by a line in which both Ce molar concentration and Si molar concentration are zero%. be able to. In the element map obtained by performing STEM-EDS analysis, the cerium-containing silica layer 12 and the child particles 14 in the composite fine particles of the present invention have a ratio of Ce molar concentration to the sum of Ce molar concentration and Si molar concentration ( It can distinguish by the line which percentage becomes (Ce / (Ce + Si) x100) 50%. The portion where (Ce / (Ce + Si) × 100) exceeds 50% is the child particle 14, the Si element concentration is not zero% (that is, more than zero%), and the Ce molar concentration and the Si mole The portion where the ratio (percentage) of Ce molar concentration to the total concentration (Ce / (Ce + Si) × 100) is 0 to 50% is the cerium-containing silica layer 12.
本明細書においてSTEM−EDS分析は、80万倍で観察して行うものとする。 In the present specification, STEM-EDS analysis is performed by observation at 800,000 times.
本発明の複合微粒子は図2または図3に示したような態様であるので、その断面についてSTEM−EDS分析を行い、元素マッピングを行うと、その最外殻から中心の空隙に至る途中に、少なくとも一つ以上のセリア濃度が相対的に高い層(セリア微粒子からなる)を有している。 Since the composite fine particle of the present invention is an aspect as shown in FIG. 2 or FIG. 3, STEM-EDS analysis is performed on the cross section, and element mapping is performed. It has a layer (consisting of ceria fine particles) having a relatively high concentration of at least one ceria.
<セリウム含有シリカ層>
本発明の複合微粒子は、外殻としてのセリウム含有シリカ層の内部に空隙を有する中空構造を備える。そして、セリウム含有シリカ層の内部に結晶性セリアを主成分とする子粒子が分散している。
<Cerium-containing silica layer>
The composite fine particles of the present invention have a hollow structure having voids inside a cerium-containing silica layer as an outer shell. And the child particle | grains which have a crystalline ceria as a main component are disperse | distributing in the inside of a cerium containing silica layer.
このような構造をとることにより、製造時の解砕処理や研磨時の圧力による子粒子の脱落が生じ難く、また、たとえ一部の子粒子が欠落したとしても、多くの子粒子は脱落せずにセリウム含有シリカ層中に存在し、且つ、セリウム含有シリカ層の強度は十分であることから本発明の複合粒子は破壊されることはないため、研磨機能を低下させることがない。 By adopting such a structure, it is difficult for the child particles to fall off due to the crushing process during production or the pressure during polishing, and even if some of the child particles are missing, many child particles can be dropped off. Therefore, since the composite particles of the present invention are not destroyed because they are present in the cerium-containing silica layer and the strength of the cerium-containing silica layer is sufficient, the polishing function is not deteriorated.
前述の通り、本発明の複合微粒子についてSTEM−EDS分析を行い、図2または図3に示した本発明の複合微粒子の断面におけるCeとSiの元素濃度を測定した場合に、セリウム含有シリカ層はCeモル濃度とSiモル濃度との合計に対するCeモル濃度の比(百分率)(Ce/(Ce+Si)×100)が0〜50%となる部分である。 As described above, when STEM-EDS analysis is performed on the composite particles of the present invention, and the elemental concentration of Ce and Si in the cross section of the composite particles of the present invention shown in FIG. 2 or FIG. This is a portion where the ratio (percentage) of Ce molar concentration to the total of Ce molar concentration and Si molar concentration (Ce / (Ce + Si) × 100) is 0 to 50%.
本発明の複合微粒子について透過型電子顕微鏡を用いて観察して得られる像(TEM像)では、本発明の複合微粒子の周辺部分に子粒子の像が濃く現れるが、その子粒子の周囲および外側、すなわち、本発明の複合微粒子の表面側及び内側にも、相対的に薄い像として、セリウム含有シリカ層の一部が現れる。この部分についてSTEM−EDS分析を行い、当該部分のSiモル濃度及びCeモル濃度を求めると、Siモル濃度が非常に高いことを確認することができる。具体的には、Ceモル濃度とSiモル濃度との合計に対するCeモル濃度の比(百分率)(Ce/(Ce+Si)×100)が0〜50%となる。 In the image (TEM image) obtained by observing the composite fine particles of the present invention using a transmission electron microscope, the image of the child particles appears dark in the peripheral portion of the composite fine particles of the present invention. That is, a part of the cerium-containing silica layer appears as a relatively thin image also on the surface side and the inner side of the composite fine particle of the present invention. When this part is subjected to STEM-EDS analysis and the Si molar concentration and Ce molar concentration of the part are determined, it can be confirmed that the Si molar concentration is very high. Specifically, the ratio (percentage) of Ce molar concentration to the total of Ce molar concentration and Si molar concentration (Ce / (Ce + Si) × 100) is 0 to 50%.
セリウム含有シリカ層は非晶質シリカを主成分し、子粒子とは別に、さらにセリウムを含む。
セリウム含有シリカ層が非晶質シリカ層を主成分とすることは、例えば、次の方法で確認することができる。本発明の複合微粒子を含む分散液を乾燥させた後、乳鉢を用いて粉砕し、例えば、従来公知のX線回折装置(例えば、理学電気株式会社製、RINT1400)によってX線回折パターンを得ると、Cristobaliteのような結晶性シリカのピークは現れない。このことから、セリウム含有シリカ層に含まれるシリカは非晶質であることを確認できる。また、このような場合に、セリウム含有シリカ層が非晶質シリカを主成分とするものとする。
また、本発明の分散液を乾燥させ、樹脂包埋した後にPtによるスパッタコーティングを施し、従来公知の収束イオンビーム(FIB)装置を用い断面試料を作成する。例えば作成した断面試料を従来公知のTEM装置を用い、高速フーリエ変換(FFT)解析を用いてFFTパターンを得ると、Cristobaliteのような結晶性シリカの回折図は現れない。このことから、セリウム含有シリカ層に含まれるシリカは非晶質であることを確認できる。また、このような場合に、セリウム含有シリカ層が非晶質シリカを主成分とするものとする。
また、別の方法として同様に作成し断面試料について、従来公知のTEM装置を用い、セリウム含有シリカ層の原子配列による格子縞の有無を観察する方法が挙げられる。結晶質であれば結晶構造に応じた格子縞が観察され、非晶質であれば格子縞は観察されない。このことから、セリウム含有シリカ層に含まれるシリカは非晶質であることを確認できる。また、このような場合に、セリウム含有シリカ層が非晶質シリカを主成分とするものとする。
The cerium-containing silica layer contains amorphous silica as a main component and further contains cerium separately from the child particles.
The fact that the cerium-containing silica layer is mainly composed of an amorphous silica layer can be confirmed, for example, by the following method. The dispersion containing the composite fine particles of the present invention is dried and then ground using a mortar, for example, to obtain an X-ray diffraction pattern using a conventionally known X-ray diffractometer (for example, RINT 1400 manufactured by Rigaku Denki Co., Ltd.) The peak of crystalline silica such as Cristobalite does not appear. From this, it can be confirmed that the silica contained in the cerium-containing silica layer is amorphous. In such a case, the cerium-containing silica layer is mainly composed of amorphous silica.
Further, the dispersion liquid of the present invention is dried, embedded in a resin, sputter-coated with Pt, and a cross-sectional sample is prepared using a conventionally known focused ion beam (FIB) apparatus. For example, when the FFT sample is obtained by using the conventionally known TEM apparatus and the fast Fourier transform (FFT) analysis for the prepared cross-sectional sample, the diffraction pattern of crystalline silica such as Cristobalite does not appear. From this, it can be confirmed that the silica contained in the cerium-containing silica layer is amorphous. In such a case, the cerium-containing silica layer is mainly composed of amorphous silica.
Further, as another method, a method of observing the presence or absence of lattice fringes by the atomic arrangement of the cerium-containing silica layer using a conventionally known TEM apparatus for a cross-sectional sample prepared in the same manner can be mentioned. If it is crystalline, lattice fringes corresponding to the crystal structure are observed, and if it is amorphous, no lattice fringes are observed. From this, it can be confirmed that the silica contained in the cerium-containing silica layer is amorphous. In such a case, the cerium-containing silica layer is mainly composed of amorphous silica.
前述のようにセリウム含有シリカ層は、STEM−EDS分析を行って得られた元素マップにおいてCeモル濃度とSiモル濃度との合計に対するCeモル濃度の比(百分率)(Ce/(Ce+Si)×100)が0〜50%となる部分であるが、セリウム含有シリカ層を構成する物質は、主としてCe、Siおよびこれらの酸化物である。具体的に、セリウム含有シリカ層におけるCe、Siおよび酸素の合計含有率は70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがより好ましく、95質量%以上であることがより好ましく、98質量%以上であることがさらに好ましい。
セリウム含有シリカ層は、例えばLa、Ce、Zrを10質量%以下含んでいてもよく、その他の不純物元素を含んでもよい。
As described above, the cerium-containing silica layer has a ratio (percentage) of the Ce molar concentration to the sum of the Ce molar concentration and the Si molar concentration in the element map obtained by conducting STEM-EDS analysis (Ce / (Ce + Si) × 100 ) Is 0 to 50%, but the substances constituting the cerium-containing silica layer are mainly Ce, Si and oxides thereof. Specifically, the total content of Ce, Si and oxygen in the cerium-containing silica layer is preferably 70% by mass or more, more preferably 80% by mass or more, and more preferably 90% by mass or more , 95% by mass or more, more preferably 98% by mass or more.
The cerium-containing silica layer may contain, for example, 10% by mass or less of La, Ce, and Zr, and may contain other impurity elements.
外殻としてのセリウム含有シリカ層の厚さは、複合微粒子(平均粒子径20〜400nm)を構成するに適した範囲内であれば、格別に制限されるものではないが、その平均の厚さは5〜30nmであることが好ましく、8〜20nmであることがより好ましい。
なお、セリウム含有シリカ層の平均の厚さは、STEM−EDS分析を行った元素マップにおいて本発明の複合微粒子の中心からセリウム含有シリカ層の最も外側まで任意の12箇所に直線を引き、その直線上において、前述のようにSTEM−EDS分析を行って得た元素マップから特定されるCeモル濃度とSiモル濃度とが共にゼロ%となっている空洞の輪郭と、本発明の複合微粒子のセリウム含有シリカ層の最も外側との距離(本発明の複合微粒子の中心を通る線上の距離)を測定し、それらを単純平均して求めるものとする。なお、本発明の複合微粒子の中心は、後述する本発明の複合微粒子の長軸と短軸との交点を意味するものとする。
The thickness of the cerium-containing silica layer as the outer shell is not particularly limited as long as it is within a range suitable for constituting composite fine particles (average particle diameter of 20 to 400 nm), but the average thickness thereof is not limited. Is preferably 5 to 30 nm, more preferably 8 to 20 nm.
In addition, the average thickness of the cerium-containing silica layer is obtained by drawing a straight line at any 12 points from the center of the composite fine particle of the present invention to the outermost side of the cerium-containing silica layer in the element map obtained by STEM-EDS analysis. Above, the outline of the cavity where the Ce molar concentration and the Si molar concentration specified from the element map obtained by performing the STEM-EDS analysis as described above are both 0%, and the cerium of the composite fine particle of the present invention The distance to the outermost side of the contained silica layer (the distance on the line passing through the center of the composite fine particle of the present invention) is measured, and they are obtained by simple averaging. In addition, the center of the composite particle of the present invention means an intersection point of the long axis and the short axis of the composite particle of the present invention described later.
本発明の複合微粒子では、子粒子の表面の少なくとも一部がセリウム含有シリカ層によって被覆されているので、本発明の複合微粒子の最表面(セリウム含有シリカ層の最も外側)にはシリカの―OH基が存在することになる。このため研磨剤として利用した場合に、本発明の複合微粒子は研磨基板表面の−OH基による電荷で反発しあい、その結果、研磨基板表面への付着が少なくなると考えられる。 In the composite fine particle of the present invention, at least a part of the surface of the child particle is coated with the cerium-containing silica layer, so that the outermost surface of the composite fine particle of the present invention (the outermost side of the cerium-containing silica layer) is —OH of silica. The group will be present. For this reason, when used as an abrasive, the composite fine particles of the present invention are repelled by charges due to —OH groups on the surface of the polishing substrate, and as a result, adhesion to the surface of the polishing substrate is considered to be reduced.
また、一般的にセリアは、シリカや研磨基板、研磨パッドとは電位が異なり、pHがアルカリ性から中性付近に向かうにつれてマイナスのゼータ電位が減少して行き、弱酸性領域では逆のプラスの電位を持つ。そのため研磨時の酸性pHでは電位の大きさの違いや極性の違いなどによって、セリアは研磨基材や研磨パッドに付着し、研磨基材や研磨パッドに残り易い。一方、本発明の複合微粒子は上記のように最表面(セリウム含有シリカ層の最も外側)にシリカが存在しているため、その電位がシリカに起因した負電荷となるため、pHがアルカリ性から酸性までマイナスの電位を維持し、その結果、研磨基材や研磨パッドへの砥粒残りが起こりにくい。本発明の製造方法における工程2の解砕処理時にpH8.6〜10.8を保ちながら解砕すると、本発明の複合微粒子の表面のシリカ(セリウム含有シリカ層のシリカ)の一部が溶解する。係る条件で製造した本発明の分散液を、研磨用途に適用する時にpH<7に調整すれば、溶解したシリカが本発明の複合微粒子(砥粒)に沈着するので、本発明の複合微粒子の表面は負の電位を持つことになる。電位が低い場合には、珪酸を添加し、適度にセリウム含有シリカ層を補強しても構わない。 In general, ceria has a potential different from that of silica, a polishing substrate, and a polishing pad, and as the pH goes from alkaline to near neutral, the negative zeta potential decreases, and in the weakly acidic region, the opposite positive potential have. For this reason, at an acidic pH during polishing, ceria adheres to the polishing base material and the polishing pad and tends to remain on the polishing base material and the polishing pad due to the difference in the magnitude of the potential and the difference in polarity. On the other hand, since the composite fine particles of the present invention have silica on the outermost surface (outermost side of the cerium-containing silica layer) as described above, the potential becomes a negative charge due to silica, so that the pH is alkaline to acidic. The negative potential is maintained, and as a result, abrasive residue on the polishing substrate or the polishing pad is less likely to occur. When pulverizing while maintaining pH 8.6 to 10.8 during the pulverization treatment in step 2 in the production method of the present invention, a part of the silica (cerium-containing silica layer silica) on the surface of the composite fine particles of the present invention is dissolved. . When the dispersion of the present invention produced under such conditions is adjusted to pH <7 when applied to polishing applications, dissolved silica is deposited on the composite fine particles (abrasive grains) of the present invention. The surface will have a negative potential. When the potential is low, silica may be added to moderately reinforce the cerium-containing silica layer.
<子粒子>
本発明の複合微粒子において結晶性セリアを主成分とする子粒子(以下、「セリア子粒子」ともいう)は、外殻としてのセリウム含有シリカ層の内部に分散している。
<Child particles>
In the composite particles of the present invention, child particles (hereinafter also referred to as "ceria child particles") mainly composed of crystalline ceria are dispersed inside a cerium-containing silica layer as an outer shell.
また、セリウム含有シリカ層の内部においてセリア子粒子は積層されていても良く、その形状は真球状、楕円形状、矩形形状など特に限定されず、さらに粒子径分布も均一であってもシャープであってもよい。
前記セリア子粒子は、前記セリウム含有シリカ層中に埋没するものもあれば、セリウム含有シリカ層から部分的に露出するものもある。
In addition, ceria particle may be laminated inside the cerium-containing silica layer, and the shape is not particularly limited, such as a spherical shape, an elliptical shape, a rectangular shape, etc. Furthermore, the particle diameter distribution is also sharp even if uniform. May be
Some of the ceria particles are buried in the cerium-containing silica layer, and others are partially exposed from the cerium-containing silica layer.
前述のように子粒子は、STEM−EDS分析を行って得られた元素マップにおいてCeモル濃度とSiモル濃度との合計に対するCeモル濃度の比(百分率)(Ce/(Ce+Si)×100)が50%超となる部分であるが、セリウム含有シリカ層を構成する物質は、主としてCe、Siおよびこれらの酸化物である。具体的に、子粒子におけるCe、Siおよび酸素の合計含有率は70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがより好ましく、95質量%以上であることがより好ましく、98質量%以上であることがさらに好ましい。
子粒子は、例えばLa、Ce、Zrを10質量%以下含んでいてもよく、その他の不純物元素を含んでもよい。
As described above, the child particles have a Ce molar concentration ratio (percentage) (Ce / (Ce + Si) × 100) to the total of the Ce molar concentration and the Si molar concentration in the element map obtained by performing the STEM-EDS analysis. The material constituting the cerium-containing silica layer is mainly Ce, Si, and oxides thereof, although the portion is more than 50%. Specifically, the total content of Ce, Si and oxygen in the child particles is preferably 70% by mass or more, more preferably 80% by mass or more, more preferably 90% by mass or more, and 95 More preferably, it is more than 98 mass%, and it is still more preferable that it is 98 mass% or more.
The child particles may contain, for example, 10% by mass or less of La, Ce, and Zr, and may contain other impurity elements.
本発明における結晶性セリアを主成分とする子粒子は、セリウム含有シリカ層の内部に分散しており、子粒子の粒子径分布における変動係数(CV値)が14〜60%であることが好ましい。すなわち、子粒子の粒度分布の幅が大きいことが好ましい。このような粒度分布幅が大きなセリア子粒子を備えている本発明の複合微粒子を含む本発明の分散液を研磨用砥粒分散液として使用すると、研磨の初期においては粒径の大きい子粒子が研磨対象の基板と接触して研磨が行われる。そして、その子粒子が研磨圧力により外れたり、磨滅や破壊が生じたりしても、次に、粒子径の小さい子粒子が研磨対象の基板と接触するので、接触面積を高く保つことができる。そのため、効率よく研磨速度が安定した研磨が行われる。 The child particles mainly composed of crystalline ceria in the present invention are dispersed inside the cerium-containing silica layer, and the coefficient of variation (CV value) in the particle size distribution of the child particles is preferably 14 to 60%. . That is, it is preferable that the width of the particle size distribution of the daughter particles is large. When the dispersion liquid of the present invention containing the composite fine particles of the present invention having such ceria particles having a large particle size distribution width is used as an abrasive dispersion for polishing, the child particles having a large particle diameter are obtained at the initial stage of polishing. Polishing is performed in contact with the substrate to be polished. Even if the child particles come off due to the polishing pressure, or wear or breakage occurs, the child particles having a small particle size come into contact with the substrate to be polished, so that the contact area can be kept high. Therefore, polishing with stable polishing rate is performed efficiently.
本発明において、セリウム含有シリカ層の内部に分散している子粒子の粒子径分布における変動係数(CV値)は14〜60%であることが好ましく、16〜55%であることがより好ましく、18〜53%であることがさらに好ましい。 In the present invention, the coefficient of variation (CV value) in the particle size distribution of the child particles dispersed inside the cerium-containing silica layer is preferably 14 to 60%, more preferably 16 to 55%, More preferably, it is 18 to 53%.
本発明において、子粒子の粒子径分布は、次のように測定するものとする。
初めに本発明の複合微粒子をSTEM−EDS分析によって80万倍で観察し、得られた元素マップにおいてCeモル濃度とSiモル濃度との合計に対するCeモル濃度の比(百分率)(Ce/(Ce+Si)×100)が50%となるラインを特定することで子粒子を特定する。次に、その子粒子の最大径を長軸とし、その長さを測定して、その値を長径(DL)とする。また、長軸上にて長軸を2等分する点を定め、それに直交する直線が粒子の外縁と交わる2点を求め、同2点間の距離を測定し短径(DS)とする。そして、長径(DL)と短径(DS)との幾何平均値を求め、これをその子粒子の粒子径とする。
このようにして100個以上の子粒子について粒子径を測定し、粒子径分布を得ることができる。
In the present invention, the particle size distribution of the child particles is measured as follows.
First, the composite fine particle of the present invention is observed at 800,000 times by STEM-EDS analysis, and the ratio (percentage) of Ce molar concentration to the sum of Ce molar concentration and Si molar concentration in the obtained elemental map (Ce / (Ce + Si A child particle is specified by specifying a line where x100) becomes 50%. Next, the maximum diameter of the child particles is taken as the major axis, the length is measured, and the value is taken as the major diameter (DL). Further, a point that bisects the major axis on the major axis is determined, two points where a straight line perpendicular to the major axis intersects the outer edge of the particle are obtained, and the distance between the two points is measured to obtain a minor axis (DS). Then, a geometric average value of the long diameter (DL) and the short diameter (DS) is obtained, and this is used as the particle diameter of the child particles.
In this manner, the particle size can be measured for 100 or more child particles to obtain a particle size distribution.
本発明において、子粒子の粒子径分布における変動係数(CV値)は、上記のようにして得た粒子径分布を母集団として標準偏差と個数平均値を得た後、標準偏差を個数平均値で除し、100を乗じること(すなわち、標準偏差/個数平均値×100)により、算出する。 In the present invention, the coefficient of variation (CV value) in the particle size distribution of child particles is obtained by obtaining the standard deviation and the number average value using the particle size distribution obtained as described above as a population, and then calculating the standard deviation as a number average value Calculated by dividing by and multiplying by 100 (ie, standard deviation / number average value × 100).
子粒子の平均粒子径は、8〜30nmが好ましく、14〜23nmであることがより好ましい。
子粒子の平均粒子径が30nmを超える場合、工程2において、そのようなセリア子粒子を有した前駆体粒子は、焼成後に焼結や凝結が生じ解砕も困難となる傾向がある。また、セリウム含有シリカ層からセリウムが排出されるとセリウム含有シリカ層の強度が低下して本発明の複合粒子が破壊されることがある。このようなセリア系複合中空微粒子分散液は、研磨用途に使用しても研磨対象でのスクラッチ発生を招く可能性がある。子粒子の平均粒子径が8nm未満の場合、同じく研磨用途に使用すると、実用的に充分な研磨速度を得難い傾向がある。
The average particle diameter of the secondary particles is preferably 8 to 30 nm, and more preferably 14 to 23 nm.
When the average particle size of the secondary particles exceeds 30 nm, in the step 2, precursor particles having such ceria child particles tend to be sintered or coagulated after firing and also difficult to be crushed. In addition, when cerium is discharged from the cerium-containing silica layer, the strength of the cerium-containing silica layer may be reduced and the composite particles of the present invention may be broken. Such a ceria-based composite hollow particle dispersion may cause scratching on the object to be polished even when used for polishing applications. When the average particle size of the secondary particles is less than 8 nm, it may be difficult to obtain a practically sufficient polishing rate when used similarly for polishing.
本発明において、子粒子の平均粒子径は、上記のようにして得た粒子径分布における個数平均径を意味するものとする。 In the present invention, the average particle diameter of child particles means the number average diameter in the particle diameter distribution obtained as described above.
子粒子は積層されていてもよい。すなわち、外殻としてのセリウム含有シリカ層の内部における、本発明の複合微粒子の中心からの放射状の線上において複数存在していてもよい。
また、子粒子はセリウム含有シリカ層内に埋没していてよいし、セリウム含有シリカ層の外部へ部分的に露出していてもよいが、子粒子がセリウム含有シリカ層の内部に埋没した場合は、保存安定性及び研磨安定性が向上し、さらに研磨後の基板上に砥粒残りが少なくなることから、子粒子はセリウム含有シリカ層の内部に埋没している方が望ましい。
The child particles may be stacked. That is, multiple particles may be present in a radial line from the center of the composite fine particle of the present invention in the inside of the cerium-containing silica layer as the outer shell.
In addition, child particles may be buried in the cerium-containing silica layer, or may be partially exposed to the outside of the cerium-containing silica layer, but if child particles are buried in the cerium-containing silica layer, Since the storage stability and the polishing stability are improved, and the remaining abrasives are reduced on the substrate after polishing, it is preferable that the child particles be buried inside the cerium-containing silica layer.
子粒子の形状は特に限定されない。例えば真球状、楕円形状、矩形状であってもよい。本発明の分散液を研磨用途に使用する場合であって、高研磨速度を得ようとする場合、子粒子は非球形が好ましく、矩形状がより好ましい。 The shape of the secondary particles is not particularly limited. For example, a true spherical shape, an elliptical shape, or a rectangular shape may be used. When the dispersion liquid of the present invention is used for polishing and a high polishing rate is to be obtained, the child particles are preferably non-spherical and more preferably rectangular.
セリウム含有シリカ層の内部に分散された子粒子は、単分散状態であってもよく、子粒子が積層された状態(すなわち、セリウム含有シリカ層の厚さ方向に複数の子粒子が積み重なって存在する状態)であってもよく、複数の子粒子が連結した状態であっても構わない。 The child particles dispersed inside the cerium-containing silica layer may be in a monodispersed state, and the child particles are stacked (that is, a plurality of child particles are stacked in the thickness direction of the cerium-containing silica layer) Or a plurality of child particles may be connected.
本発明において、子粒子は結晶性セリアを主成分とする。
前記子粒子が結晶性セリアを主成分とすることは、例えば、本発明の分散液を乾燥させた後、得られた固形物を乳鉢を用いて粉砕する等して本発明の複合微粒子を得た後、これを例えば従来公知のX線回折装置(例えば、理学電気株式会社製、RINT1400)を用いてX線分析し、得られたX線回折パターンにおいて、セリアの結晶相のみが検出されることから確認できる。このような場合に、前記子粒子が結晶性セリアを主成分とするものとする。なお、セリアの結晶相としては、特に限定されないが、例えばCerianite等が挙げられる。
In the present invention, the child particles contain crystalline ceria as the main component.
The fact that the child particles are mainly composed of crystalline ceria means that, for example, after drying the dispersion of the present invention, the obtained solid is pulverized using a mortar to obtain the composite fine particles of the present invention. Then, this is subjected to X-ray analysis using, for example, a conventionally known X-ray diffraction apparatus (for example, RINT1400, manufactured by Rigaku Corporation), and only the ceria crystal phase is detected in the obtained X-ray diffraction pattern. This can be confirmed. In such a case, the child particles contain crystalline ceria as a main component. The crystal phase of ceria is not particularly limited, and examples thereof include Ceriaite.
子粒子は結晶性セリア(結晶性Ce酸化物)を主成分とし、その他のもの、例えばセリウム以外の元素を含んでもよい。また、研磨の助触媒として含水セリウム化合物を含んでもよい。
ただし、上記のように、本発明の複合微粒子をX線回折に供するとセリアの結晶相のみが検出される。すなわち、セリア以外の結晶相を含んでいたとしても、その含有率は少ない、あるいはセリア結晶中に固溶しているため、X線回折による検出範囲外となる。
The secondary particles contain crystalline ceria (crystalline Ce oxide) as a main component, and may contain other elements such as elements other than cerium. A hydrous cerium compound may also be included as a polishing co-catalyst.
However, as described above, when the composite fine particle of the present invention is subjected to X-ray diffraction, only the crystalline phase of ceria is detected. That is, even if a crystal phase other than ceria is contained, the content is small or because it is in solid solution in the ceria crystal, it falls outside the detection range by X-ray diffraction.
セリア子粒子の平均結晶子径は、本発明の複合微粒子をX線回折に供して得られるチャートに現れる最大ピークの半値全幅を用いて算出される。そして、例えば(111)面の平均結晶子径は8〜30nm(半値全幅は1.07〜0.29°)であり、14〜23nm(半値全幅は0.62〜0.37°)であることが好ましく、15〜22nm(半値全幅は0.58〜0.38°)であることがより好ましい。
なお、多くの場合は(111)面のピークの強度が最大になるが、他の結晶面、例えば(100)面のピークの強度が最大であってもよい。その場合も同様に算出でき、その場合の平均結晶子径の大きさは、上記の(111)面の平均結晶子径と同じであってよい。
The average crystallite diameter of the ceria particle is calculated using the full width at half maximum of the maximum peak appearing in the chart obtained by subjecting the composite fine particle of the present invention to X-ray diffraction. And, for example, the average crystallite diameter of the (111) plane is 8 to 30 nm (full width at half maximum is 1.07 to 0.29 °) and 14 to 23 nm (full width at half maximum is 0.62 to 0.37 °) It is preferably 15 to 22 nm (full width at half maximum is 0.58 to 0.38 °), more preferably.
In many cases, the peak intensity of the (111) plane is maximum, but the peak intensity of other crystal planes, for example, the (100) plane may be maximum. In that case, the calculation can be performed in the same manner, and the average crystallite diameter in that case may be the same as the average crystallite diameter of the (111) plane.
子粒子の平均結晶子径の測定方法を、(111)面(2θ=28度近傍)の場合を例として以下に示す。
初めに、本発明の複合微粒子を、乳鉢を用いて粉砕し、例えば従来公知のX線回折装置(例えば、理学電気(株)製、RINT1400)によってX線回折パターンを得る。そして、得られたX線回折パターンにおける2θ=28度近傍の(111)面のピークの半値全幅を測定し、下記のScherrerの式により、平均結晶子径を求めることができる。
D=Kλ/βcosθ
D:平均結晶子径(オングストローム)
K:Scherrer定数(本発明ではK=0.94とする)
λ:X線波長(1.5419オングストローム、Cuランプ)
β:半値全幅(rad)
θ:反射角
The measurement method of the average crystallite diameter of the child particles is shown below by taking the case of (111) plane (near 2θ = 28 degrees) as an example.
First, the composite fine particles of the present invention are pulverized using a mortar, and an X-ray diffraction pattern is obtained by using, for example, a conventionally known X-ray diffractometer (for example, RINT1400 manufactured by Rigaku Corporation). Then, the full width at half maximum of the peak of the (111) plane near 2θ = 28 degrees in the obtained X-ray diffraction pattern is measured, and the average crystallite diameter can be obtained by the following Scherrer equation.
D = Kλ / β cos θ
D: Average crystallite diameter (angstrom)
K: Scherrer constant (in the present invention, K = 0.94)
λ: X-ray wavelength (1.5419 angstrom, Cu lamp)
β: full width at half maximum (rad)
θ: Reflection angle
子粒子の主成分である結晶性セリアにケイ素原子が固溶していることが好ましい。一般に固溶とは、2種類以上の元素(金属の場合も非金属の場合もある)が互いに溶け合い、全体が均一の固相となっているものを意味し、固溶して得られる固溶体は、置換型固溶体と侵入型固溶体とに分類される。置換型固溶体は、原子半径が近い原子において容易に起こり得るが、CeとSiは原子半径が大きく違うため、少なくとも置換型固溶体は生じ難いと見られる。また、Cerianiteの結晶構造において、Ce中心からみたCeの配位数は8であるが、例えばSiがCeと1対1で置換した場合はCeの配位数は7となるはずである。しかし、本発明の複合微粒子の実施例1の分析結果においてはCe中心からみたCeの平均配位数は8.0で、さらにSiの平均配位数は1.2であることから、本発明の複合微粒子の好適態様は侵入型であると推定している。そのうえ、本発明の複合微粒子の好適態様の分析結果からも、Ce−Siの原子間距離は、Ce−Ceの原子間距離よりも小さいことから、本発明の複合微粒子の好適態様は、侵入型固溶体であると推察される。すなわち、子粒子に含まれるセリウム原子およびケイ素原子について、セリウム−ケイ素原子間距離をR1とし、セリウム−セリウム原子間距離をR2としたときにR1<R2の関係を満たすことが好ましい。
従来、砥粒としてセリア粒子を用いてシリカ膜付基板やガラス基材を研磨すると、他の無機酸化物粒子を用いた場合に比べて、特異的に高い研磨速度を示すことが知られている。セリア粒子がシリカ膜付基板に対して、特に高い研磨速度を示す理由の一つとして、セリア粒子中に含まれる三価のセリウムが被研磨基板上のシリカ被膜に対して、高い化学反応性を持つことが指摘されている。酸化セリウム中のセリウムは三価と四価の価数となりうるが、半導体用の研磨材として用いられる純度の高い酸化セリウム粒子は、炭酸セリウムなどの高純度なセリウム塩を700℃の高温で焼成するプロセスを経ている。そのため、焼成型セリア粒子中のセリウムの価数は四価を主としており、例え三価のセリウムを含んでいたとしてもその含有量は十分でない。
本発明の複合微粒子の好適態様は、その外表面側に存在する子粒子(セリア微粒子)において、Si原子がCeO2結晶に侵入型の固溶をしていると見られる。Si原子の固溶により、CeO2結晶の結晶歪みが生じることで、高温で焼成しても酸素欠陥が多くなりSiO2に対して化学的に活性な三価のセリウムが多く生じ、CeO2の化学反応性を助長する結果、上記の高い研磨速度を示すものと推察される。また三価のセリウム含有量を増加させるために、LaやZrなどをドープさせても構わない。
なお、上記のR1、R2等の、セリウム原子およびケイ素原子の原子間距離は、従来公知のX線吸収分光測定装置(例えばRigaku社製のR−XAS Looper)を用いて、CeL III吸収端(5727eV)におけるX線吸収スペクトルを測定し、そのX線吸収スペクトルに現れるEXAFS振動を得た後、従来公知の方法(例えば、Rigaku製ソフトウエアREX−2000を使用した解析)によって求めた値を意味するものとする。
It is preferable that a silicon atom is solid-solved in crystalline ceria which is a main component of the particle. In general, solid solution means that two or more kinds of elements (metal or non-metal) are dissolved in each other and the whole is a uniform solid phase. And classified into substitutional solid solution and interstitial solid solution. Substitution-type solid solutions can easily occur in atoms with a close atomic radius, but Ce and Si have a large difference in atomic radii, so at least substitution-type solid solutions are unlikely to occur. In addition, in the crystal structure of Cerianite, the coordination number of Ce as viewed from the center of Ce is 8, but when, for example, Si is replaced with Ce by 1: 1, the coordination number of Ce should be 7. However, in the analysis result of Example 1 of the composite fine particle of the present invention, the average coordination number of Ce viewed from the Ce center is 8.0, and the average coordination number of Si is 1.2. It is presumed that the preferred embodiment of the composite fine particles is an interstitial type. Moreover, from the analysis result of the preferred embodiment of the composite fine particle of the present invention, the inter-atomic distance of Ce—Si is smaller than the inter-atomic distance of Ce—Ce. Therefore, the preferred embodiment of the fine composite particle of the present invention is an interstitial type. It is presumed to be a solid solution. That is, it is preferable to satisfy the relationship of R 1 <R 2 when the cerium-silicon interatomic distance is R 1 and the cerium-cerium interatomic distance is R 2 for cerium atoms and silicon atoms contained in child particles .
Conventionally, it is known that when a substrate with a silica film or a glass substrate is polished using ceria particles as abrasive grains, the polishing rate is specifically high as compared with the case of using other inorganic oxide particles. . One of the reasons why ceria particles exhibit a particularly high polishing rate for a substrate with a silica film is that trivalent cerium contained in the ceria particles has a high chemical reactivity with respect to the silica coating on the substrate to be polished. It is pointed out that it has. Cerium in cerium oxide can be trivalent and tetravalent valence, but high purity cerium oxide particles used as abrasives for semiconductors are high purity cerium salts such as cerium carbonate fired at a high temperature of 700 ° C. Go through the process of For this reason, the valence of cerium in the calcined ceria particles is mainly tetravalent, and even if trivalent cerium is contained, the content thereof is not sufficient.
In a preferred embodiment of the composite fine particles of the present invention, it is considered that Si atoms are intrusive solid solution in the CeO 2 crystal in the child particles (ceria fine particles) existing on the outer surface side. By solid solution of Si atoms, that crystal strain of the CeO 2 crystal occurs, resulting many chemically active trivalent cerium with respect to SiO 2 becomes large oxygen defects by firing at a high temperature, the CeO 2 As a result of promoting chemical reactivity, it is presumed that the above-mentioned high polishing rate is exhibited. In order to increase the trivalent cerium content, La, Zr or the like may be doped.
The interatomic distance between the cerium atom and the silicon atom such as R 1 and R 2 described above can be determined using the conventionally known X-ray absorption spectrometer (for example, R-XAS Looper manufactured by Rigaku Corporation). After measuring the X-ray absorption spectrum at the end (5727 eV) and obtaining the EXAFS vibration appearing in the X-ray absorption spectrum, a value determined by a conventionally known method (for example, analysis using software REX-2000 made by Rigaku) Shall mean.
<空隙>
本発明の複合微粒子は、外殻としてのセリウム含有シリカ層の内部に空隙を有する中空構造を備える。
空隙の大きさは特に限定されない。空隙の大きさは、本発明の複合微粒子の大きさから、セリウム含有シリカ層の厚さを引いた大きさということになる。
<Gap>
The composite fine particles of the present invention have a hollow structure having voids inside a cerium-containing silica layer as an outer shell.
The size of the gap is not particularly limited. The size of the void is the size of the composite fine particle of the present invention minus the thickness of the cerium-containing silica layer.
空隙の平均径は15〜300nmの範囲であることが好ましい。
ここで空隙の平均径は、次の方法によって測定するものとする。
初めに本発明の複合微粒子についてSTEM−EDS分析によって80万倍で観察し、Ceモル濃度とSiモル濃度とが共にゼロ%となる部分を空隙として特定する。次に、その空隙の最大径を長軸とし、その長さを測定して、その値を長径(DL)とする。また、長軸上にて長軸を2等分する点を定め、それに直交する直線が空隙を特定するラインと交わる2点を求め、同2点間の距離を測定し短径(DS)とする。そして、長径(DL)と短径(DS)との幾何平均値を求め、これをその空隙の径とする。
このようにして50個の粒子の空隙について径を測定し、これを単純平均して得た値を平均径とする。
The average diameter of the voids is preferably in the range of 15 to 300 nm.
Here, the average diameter of the voids is measured by the following method.
First, the composite fine particles of the present invention are observed at 800,000 times by STEM-EDS analysis, and a portion where both Ce molar concentration and Si molar concentration are 0% is specified as a void. Next, the maximum diameter of the gap is taken as the major axis, the length is measured, and the value is taken as the major diameter (DL). Further, a point that bisects the major axis on the major axis is determined, two points where a straight line perpendicular to the major axis intersects with a line that specifies the air gap are obtained, a distance between the two points is measured, and a minor axis (DS) To do. Then, a geometric average value of the long diameter (DL) and the short diameter (DS) is obtained, and this is set as the diameter of the gap.
Thus, the diameter is measured with respect to the voids of 50 particles, and a value obtained by simple averaging is determined as the average diameter.
空隙の形状は特に限定されず、例えば、球状、俵状、短繊維状、四面体状(三角錐型)、六面体状、八面体状、板状、不定形、多孔質状のものであってよい。 The shape of the void is not particularly limited, and it may be, for example, spherical, scaly, short fibrous, tetrahedral (triangular pyramidal), hexahedral, octahedral, plate-like, irregular, porous Good.
<本発明の複合微粒子>
本発明の複合微粒子について説明する。
本発明の複合微粒子は、前述のように、[1]前記セリア系複合中空微粒子は外殻としてのセリウム含有シリカ層の内部に空隙を有する中空構造を備え、前記セリウム含有シリカ層の内部に結晶性セリアを主成分とする子粒子が分散しており、[2]前記セリア系複合中空微粒子は、X線回折に供するとセリアの結晶相のみが検出され、[3]前記セリア系複合中空微粒子は、X線回折に供して測定される、前記結晶性セリアの平均結晶子径が8〜30nmである。
<Composite fine particles of the present invention>
The composite particle of the present invention will be described.
As described above, the composite fine particles of the present invention are as follows: [1] The ceria-based composite hollow fine particles have a hollow structure having voids inside a cerium-containing silica layer as an outer shell, and crystals are formed inside the cerium-containing silica layer. [2] The ceria-based composite hollow microparticles are detected only by the ceria crystal phase when subjected to X-ray diffraction, and [3] the ceria-based composite hollow microparticles are dispersed. Is measured by X-ray diffraction, and the average crystallite diameter of the crystalline ceria is 8 to 30 nm.
そして、本発明の複合微粒子は、さらに、シリカとセリアとの質量比が100:5〜450であることが好ましく、100:11〜410であることがより好ましい。シリカに対するセリアの量が多すぎると、複合微粒子同士が結合し、粗大粒子が発生する場合がある。この場合に本発明の分散液を含む研磨剤(研磨スラリー)は、研磨基材の表面に欠陥(スクラッチの増加などの面精度の低下)を発生させる可能性がある。また、シリカに対するセリアの量が多すぎても、コスト的に高価になるばかりでなく、資源リスクが増大する。さらに、粒子同士の融着が進む。その結果、基板表面の粗度が上昇(表面粗さRaの悪化)したり、スクラッチが増加する、更に遊離したセリアが基板に残留する、研磨装置の廃液配管等への付着といったトラブルを起こす原因ともなりやすい。
なお、上記のシリカ(SiO2)とセリア(CeO2)との質量比を算定する場合の対象となるシリカとは、本発明の複合微粒子に含まれる全てのシリカ(SiO2)を意味する。
And as for the composite microparticles | fine-particles of this invention, it is further preferable that mass ratio of a silica and a ceria is 100: 5-450, and it is more preferable that it is 100: 11-410. If the amount of ceria relative to silica is too large, the composite fine particles may be bonded to generate coarse particles. In this case, the abrasive (polishing slurry) containing the dispersion of the present invention may cause defects (decrease in surface accuracy such as an increase in scratches) on the surface of the polishing substrate. Further, if the amount of ceria relative to silica is too large, not only is the cost high, but the resource risk increases. Furthermore, fusion between particles proceeds. As a result, the roughness of the substrate surface increases (deterioration of the surface roughness Ra), scratches increase, and free ceria remains on the substrate, causing problems such as adhesion to the waste liquid piping of the polishing apparatus. It is easy to get along.
In addition, the silica used as the object in calculating the mass ratio of the above silica (SiO 2 ) and ceria (CeO 2 ) means all silica (SiO 2 ) contained in the composite fine particles of the present invention.
本発明の複合微粒子におけるシリカ(SiO2)とセリア(CeO2)の含有率(質量%)は、まず本発明の分散液の固形分濃度を、1000℃灼熱減量を行って秤量により求める。
次に、所定量の本発明の複合微粒子に含まれるセリウム(Ce)の含有率(質量%)をICPプラズマ発光分析により求め、酸化物質量%(CeO2質量%等)に換算する。そして、本発明の複合微粒子を構成するCeO2以外の成分はSiO2であるとして、SiO2質量%を算出することができる。
なお、本発明の製造方法においては、シリカとセリアの質量比は、本発明の分散液を調製する際に投入したシリカ源物質とセリア源物質との使用量から算定することもできる。これは、セリアやシリカが溶解し除去されるプロセスとなっていない場合に適用でき、そのような場合はセリアやシリカの使用量と分析値が良い一致を示す。
The content (% by mass) of the silica (SiO 2 ) and ceria (CeO 2 ) in the composite fine particles of the present invention is first determined by weighing the solid concentration of the dispersion of the present invention by performing 1000 ° C. thermal loss.
Next, the content (mass%) of cerium (Ce) contained in the predetermined amount of the composite fine particles of the present invention is determined by ICP plasma emission analysis, and converted to oxide mass% (CeO 2 mass%, etc.). Then, assuming that the component other than CeO 2 constituting the composite particles of the present invention is SiO 2 , SiO 2 mass% can be calculated.
In the production method of the present invention, the mass ratio of silica to ceria can also be calculated from the amounts used of the silica source material and the ceria source material which were added when preparing the dispersion liquid of the present invention. This can be applied when ceria and silica are not dissolved and removed, and in such a case, the amount of ceria and silica used agree well with the analytical value.
本発明の複合微粒子の態様として、複合微粒子が連結してなる粒子連結型の複合微粒子と、連結構造を有さない単一の複合微粒子が独立して存在する単粒子(非連結粒子)型の複合微粒子を挙げることができる。本発明の複合微粒子は、その何れであってもよく、両者の混合物であっても構わない。なお、基板との接触面積を高く保つことができ、研磨速度が速いことを重視する場合は、粒子連結型が望ましい。粒子連結型とは、2個以上の本発明の複合微粒子同士が各々一部において結合しているもので、連結は3個以下が好ましい。
なお、前記粒子連結型粒子とは、粒子間に再分散できない程度の化学結合が生じて粒子が連結してなるもの(凝結粒子)を意味する。また、単粒子とは、複数粒子が連結したものではなく、粒子のモルホロジーに関係なく凝集していないものを意味する。
前記の被研磨基板に対する研磨レート向上を重視する場合における、本発明の複合微粒子分散液としては、次の態様1を挙げることができる。
[態様1]本発明の複合微粒子が、更に、画像解析法で測定された短径/長径比が0.8未満である粒子の個数割合が45%以上であることを特徴とする、本発明の分散液。
また、前記被研磨基板上の表面粗さが低い水準にあることを重視する場合における、本発明の複合微粒子分散液としては、次の態様2を挙げることができる。
[態様2]本発明の複合微粒子が、更に、画像解析法で測定された短径/長径比が0.8以上である粒子の個数割合が40%以上であることを特徴とする、本発明の分散液。
As an embodiment of the composite fine particle of the present invention, a particle connection type composite fine particle formed by connecting the composite fine particles and a single particle (non-connected particle) type in which a single composite fine particle without a connective structure exists independently. Composite particulates can be mentioned. The composite particles of the present invention may be any of them, or may be a mixture of both. In the case where the contact area with the substrate can be kept high and importance is attached to the high polishing rate, the particle connection type is desirable. The particle connection type is one in which two or more of the composite fine particles of the present invention are partially bonded to each other, and the number of connections is preferably 3 or less.
In addition, the particle | grain connection type particle | grain means the thing (condensed particle | grain) which a chemical bond of the extent which can not be re-dispersed between particle | grains arises, and particle | grains connect. Moreover, a single particle does not mean that a plurality of particles are connected, and does not aggregate regardless of the morphology of the particles.
The following embodiment 1 can be exemplified as the composite fine particle dispersion of the present invention in the case where the improvement of the polishing rate to the substrate to be polished is emphasized.
[Aspect 1] The composite particle of the present invention is characterized in that the number ratio of particles having a minor axis / major axis ratio of less than 0.8 as measured by an image analysis method is 45% or more. Dispersion.
Further, the following can be exemplified as the composite fine particle dispersion of the present invention in the case where importance is given to the fact that the surface roughness on the substrate to be polished is at a low level.
[Aspect 2] The composite particle of the present invention is characterized in that the number ratio of particles having a minor axis / major axis ratio of 0.8 or more measured by an image analysis method is 40% or more. Dispersion.
画像解析法による短径/長径比の測定方法を説明する。透過型電子顕微鏡により、本発明の複合微粒子を倍率30万倍(ないしは50万倍)で写真撮影して得られる写真投影図において、粒子の最大径を長軸とし、その長さを測定して、その値を長径(DL)とする。また、長軸上にて長軸を2等分する点を定め、それに直交する直線が粒子の外縁と交わる2点を求め、同2点間の距離を測定し短径(DS)とする。これより、短径/長径比(DS/DL)を求める。そして、写真投影図で観察される任意の50個の粒子における短径/長径比を単純平均して求めた値を、本発明の複合微粒子の短径/長径比とする。
ここで、写真投影図で観察される任意の50個の粒子において、短径/長径比が0.80未満または0.80以上である粒子の個数割合(%)を求めることができる。
A method of measuring the minor axis / major axis ratio by the image analysis method will be described. In a photographic projection drawing obtained by photographing a composite fine particle of the present invention at a magnification of 300,000 times (or 500,000 times) with a transmission electron microscope, the maximum diameter of the particles is taken as the major axis, and the length is measured. , The value of the major axis (DL). Further, a point that bisects the major axis on the major axis is determined, two points where a straight line perpendicular to the major axis intersects the outer edge of the particle are obtained, and the distance between the two points is measured to obtain a minor axis (DS). From this, the minor axis / major axis ratio (DS / DL) is determined. Then, a value obtained by simply averaging the minor axis / major axis ratio of any 50 particles observed in the photographic projection diagram is defined as the minor axis / major axis ratio of the composite fine particles of the present invention.
Here, the number ratio (%) of particles having a minor axis / major axis ratio of less than 0.80 or 0.80 or more in arbitrary 50 particles observed in a photographic projection diagram can be obtained.
本発明の複合微粒子は前述の粒子連結型であることがより好ましいが、その他の形状のもの、例えば球状粒子を含んでいてもよい。 The composite fine particles of the present invention are more preferably in the particle-connected type described above, but may have other shapes, for example, spherical particles.
本発明の分散液は、所望により分散液中に含まれる粗大粒子数を制限することが可能である。例えば、本発明の分散液中に含まれ得る0.51μm以上の粗大粒子数は、通常、格別に制限されるものではないが、高い研磨精度を求められる場合はドライ換算で150百万個/cc以下であることが好ましい。粗大粒子数は150百万個/cc以下が好ましく、120百万個/cc以下がより好ましい。0.51μm以上の粗大粒子は研磨傷の原因となり、さらに研磨基板の表面粗さを悪化させる原因となり得る。通常研磨速度が高い場合、研磨速度が高い反面、研磨傷が多発し基板の表面粗さが悪化する傾向にある。しかし、本発明の複合微粒子が粒子連結型である場合、高い研磨速度が得られ、その一方で0.51μm以上の粗大粒子数が150百万個/cc以下であると研磨傷が少なく、表面粗さを低く抑えることができる。 The dispersion of the present invention can optionally limit the number of coarse particles contained in the dispersion. For example, the number of coarse particles of 0.51 μm or more that can be contained in the dispersion of the present invention is not particularly limited, but when high polishing accuracy is required, it is 150 million particles / dry. It is preferable that it is cc or less. The number of coarse particles is preferably 150 million particles / cc or less, more preferably 120 million particles / cc or less. Coarse particles having a diameter of 0.51 μm or more may cause polishing scratches and may further deteriorate the surface roughness of the polishing substrate. Usually, when the polishing rate is high, while the polishing rate is high, polishing flaws frequently occur and the surface roughness of the substrate tends to deteriorate. However, when the composite fine particles of the present invention are particle-linked, a high polishing rate can be obtained. On the other hand, when the number of coarse particles of 0.51 μm or more is 150 million particles / cc or less, there are few polishing flaws and the surface The roughness can be kept low.
なお、本発明の分散液中に含まれ得る粗大粒子数の測定法は、以下の通りである。
試料を純水で0.1質量%に希釈調整した後、5mlを採取し、これを従来公知の粗大粒子数測定装置に注入する。そして、0.51μm以上の粗大粒子の個数を求める。この測定を3回行い、単純平均値を求め、その値を1000倍して、0.51μm以上の粗大粒子数の値とする。
In addition, the measuring method of the number of coarse particles which may be contained in the dispersion liquid of this invention is as follows.
After diluting and adjusting the sample to 0.1% by mass with pure water, 5 ml is collected and injected into a conventionally known coarse particle number measuring device. Then, the number of coarse particles of 0.51 μm or more is obtained. This measurement is performed three times, a simple average value is determined, and the value is multiplied by 1000 to obtain a value of the number of coarse particles of 0.51 μm or more.
本発明の複合微粒子の形状は特に限定されず、例えば、球状、俵状、短繊維状、四面体状(三角錐型)、六面体状、八面体状、板状、不定形、多孔質状のものであってよい。 The shape of the composite fine particle of the present invention is not particularly limited. For example, it may be spherical, rod-like, short fiber-like, tetrahedron-like (triangular pyramidal), hexahedral, octahedral, plate-like, indeterminate, porous It may be
本発明の複合微粒子は、比表面積が4〜100m2/gであることが好ましく、20〜70m2/gであることがより好ましい。 The composite particle of the present invention preferably has a specific surface area of 4 to 100 m 2 / g, and more preferably 20 to 70 m 2 / g.
ここで、比表面積(BET比表面積)の測定方法について説明する。
まず、乾燥させた試料(0.2g)を測定セルに入れ、窒素ガス気流中、250℃で40分間脱ガス処理を行い、その上で試料を窒素30体積%とヘリウム70体積%の混合ガス気流中で液体窒素温度に保ち、窒素を試料に平衡吸着させる。次に、上記混合ガスを流しながら試料の温度を徐々に室温まで上昇させ、その間に脱離した窒素の量を検出し、予め作成した検量線により、試料の比表面積を測定する。
このようなBET比表面積測定法(窒素吸着法)は、例えば従来公知の表面積測定装置を用いて行うことができる。
本発明において比表面積は、特に断りがない限り、このような方法で測定して得た値を意味するものとする。
Here, a method of measuring the specific surface area (BET specific surface area) will be described.
First, a dried sample (0.2 g) is put in a measurement cell, degassed in a nitrogen gas stream at 250 ° C. for 40 minutes, and then the sample is a mixed gas of 30% by volume of nitrogen and 70% by volume of helium. The liquid nitrogen temperature is maintained in the air stream and nitrogen is equilibrated to the sample. Next, the temperature of the sample is gradually raised to room temperature while flowing the mixed gas, the amount of nitrogen desorbed during that time is detected, and the specific surface area of the sample is measured using a calibration curve prepared in advance.
Such a BET specific surface area measurement method (nitrogen adsorption method) can be performed using, for example, a conventionally known surface area measurement device.
In the present invention, the specific surface area means a value obtained by such a method unless otherwise specified.
本発明の複合微粒子は、密度が3.2〜5.0g/ccであることが好ましく、3.5〜4.5g/ccであることがより好ましい。 The composite fine particles of the present invention preferably have a density of 3.2 to 5.0 g / cc, and more preferably 3.5 to 4.5 g / cc.
ここで、密度の測定方法について説明する。
まず、密度測定装置の試料室の温度を25℃に設定し、あらかじめN2ガスを流し、校正球を使用して試料室容量の校正を行う。次に、乾燥させた試料を試料セルに約8割入れ、試料セルを装置にセットして測定を開始する。試料の質量と試料室にかかる圧力から得られる試料の体積から密度を測定する。
このような気相置換法による密度測定は、例えば従来公知の密度測定装置を用いて行うことができる。
本発明において密度は、特に断りがない限り、このような方法で測定して得た値を意味するものとする。
Here, the method of measuring the density will be described.
First, the temperature of the sample chamber of the density measuring apparatus is set to 25 ° C., N 2 gas is flowed in advance, and the volume of the sample chamber is calibrated using a calibration sphere. Next, about 80% of the dried sample is put in the sample cell, and the sample cell is set in the apparatus to start measurement. The density is measured from the volume of the sample obtained from the mass of the sample and the pressure applied to the sample chamber.
The density measurement by such a gas phase substitution method can be performed using, for example, a conventionally known density measuring apparatus.
In the present invention, the density means a value obtained by measuring by such a method unless otherwise specified.
本発明の複合微粒子の平均粒子径は20〜400nmであり、30〜300nmであることが好ましく、50〜200nmであることがさらに好ましい。本発明の複合微粒子の平均粒子径が20〜400nmの範囲にある場合、研磨材として適用した際に研磨速度が高くなり好ましい。
本発明の複合微粒子の平均粒子径は、画像解析法で測定された平均粒子径の個数平均値を意味する。
The average particle diameter of the composite particles of the present invention is 20 to 400 nm, preferably 30 to 300 nm, and more preferably 50 to 200 nm. When the average particle size of the composite fine particles of the present invention is in the range of 20 to 400 nm, it is preferable because the polishing rate increases when applied as an abrasive.
The average particle size of the composite fine particles of the present invention means the number average value of the average particle size measured by an image analysis method.
ここで、画像解析法による平均粒子径の測定方法を説明する。透過型電子顕微鏡により、本発明の複合微粒子を倍率30万倍(ないしは50万倍)で写真撮影して得られる写真投影図において、粒子の最大径を長軸とし、その長さを測定して、その値を長径(DL)とする。また、長軸上にて長軸を2等分する点を定め、それに直交する直線が粒子の外縁と交わる2点を求め、同2点間の距離を測定し短径(DS)とする。そして、長径(DL)と短径(DS)との幾何平均値を求め、これを複合微粒子の平均粒子径とする。
このようにして50個以上の複合粒子について平均粒子径を測定し、それらの個数平均値を算出する。
Here, the measuring method of the average particle diameter by the image analysis method is demonstrated. In a photographic projection drawing obtained by photographing a composite fine particle of the present invention at a magnification of 300,000 times (or 500,000 times) with a transmission electron microscope, the maximum diameter of the particles is taken as the major axis, and the length is measured. , The value of the major axis (DL). Further, a point that bisects the major axis on the major axis is determined, two points where a straight line perpendicular to the major axis intersects the outer edge of the particle are obtained, and the distance between the two points is measured to obtain a minor axis (DS). Then, the geometric mean value of the major diameter (DL) and the minor diameter (DS) is determined, and this is taken as the mean particle diameter of the composite fine particles.
Thus, an average particle diameter is measured about 50 or more composite particles, and those number average values are calculated.
本発明の複合微粒子において、非晶質シリカおよびセリアを含み、その他のもの、例えばLa、Ce、Zrを10質量%以下含んでいてもよく、結晶性シリカや不純物元素を含んでもよい。
また、本発明の複合微粒子において、Na、Ag、Ca、Cr、Cu、Fe、K、Mg、Ni、Zn及びZrの各元素(以下、「特定不純物群1」と称する場合がある)の含有率が、それぞれ100ppm以下であることが好ましい。さらに50ppm以下であることが好ましく、25ppm以下であることがより好ましい。
また、本発明の複合微粒子において、U、Th、Cl及びSO4の各元素(以下、「特定不純物群2」と称する場合がある)の含有率が、それぞれ5ppm以下であることが好ましい。
The composite fine particle of the present invention may contain amorphous silica and ceria, and may contain 10% by mass or less of other materials such as La, Ce and Zr, and may contain crystalline silica and impurity elements.
In addition, in the composite particles of the present invention, the inclusion of each element of Na, Ag, Ca, Cr, Cu, Fe, K, Mg, Ni, Zn and Zr (hereinafter sometimes referred to as “specific impurity group 1”) It is preferable that each rate is 100 ppm or less. Furthermore, it is preferable that it is 50 ppm or less, and it is more preferable that it is 25 ppm or less.
In the composite fine particle of the present invention, the content of each element of U, Th, Cl and SO 4 (hereinafter sometimes referred to as “specific impurity group 2”) is preferably 5 ppm or less.
ここで、本発明の複合微粒子ならびに後述するシリカ中空微粒子における特定不純物群1または特定不純物群2の含有率はdry量に対する含有率を意味するものとする。
dry量に対する含有率とは、対象物(本発明の複合微粒子または後述するシリカ中空微粒子)に含まれる固形分の質量に対する測定対象物(特定不純物群1または特定不純物群2)の重量の比(百分率)の値を意味するものとする。
Here, the content of the specific impurity group 1 or the specific impurity group 2 in the composite fine particle of the present invention and the silica hollow fine particles described later means the content rate with respect to the dry amount.
The content ratio with respect to the amount of dry is the ratio of the weight of the measurement object (specific impurity group 1 or specific impurity group 2) to the mass of solids contained in the object (composite fine particles of the present invention or silica hollow fine particles described later) ( It shall mean the value of percentage).
一般に水硝子を原料として調製したシリカ中空微粒子は、原料水硝子に由来する前記特定不純物群1と前記特定不純物群2を合計で数千ppm程度含有する。
このようなシリカ中空微粒が溶媒に分散してなる分散液の場合、イオン交換処理を行って前記特定不純物群1と前記特定不純物群2の含有率を下げることは可能であるが、その場合でも前記特定不純物群1または前記特定不純物群2が合計で数ppmから数百ppm残留する。そのため水硝子を原料としたシリカ中空微粒子を用いる場合は、酸処理等で不純物を低減させることも行われている。
これに対し、アルコキシシランを原料として合成したシリカ中空微粒子が溶媒に分散してなる分散液の場合、通常、前記特定不純物群1における各元素の含有率は、それぞれ100ppm以下であることが好ましく、20ppm以下であることがより好ましく、前記特定不純物群2における各元素と各陰イオンの含有率は、それぞれ20ppm以下であることが好ましく、5ppm以下であることがより好ましい。
In general, silica hollow fine particles prepared using water glass as a raw material contain about a few thousand ppm in total of the specific impurity group 1 and the specific impurity group 2 derived from the raw water glass.
In the case of a dispersion in which such silica hollow fine particles are dispersed in a solvent, it is possible to reduce the content of the specific impurity group 1 and the specific impurity group 2 by performing an ion exchange treatment. The specific impurity group 1 or the specific impurity group 2 remains in total several ppm to several hundreds ppm. For this reason, when silica hollow fine particles made from water glass are used, impurities are also reduced by acid treatment or the like.
On the other hand, in the case of a dispersion in which silica hollow fine particles synthesized using alkoxysilane as a raw material are dispersed in a solvent, usually, the content of each element in the specific impurity group 1 is preferably 100 ppm or less, More preferably, the content of each element and each anion in the specific impurity group 2 is preferably 20 ppm or less, and more preferably 5 ppm or less.
なお、本発明の複合微粒子またはシリカ中空微粒子におけるNa、Ag、Ca、Cr、Cu、Fe、K、Mg、Ni、Zn、Zr、U、Th、Cl及びSO4の各々の含有率は、それぞれ次の方法を用いて測定して求めた値とする。
・Na及びK:原子吸光分光分析
・Ag、Ca、Cr、Cu、Fe、Mg、Ni、Zn、Zr、U及びTh:ICP−MS(誘導結合プラズマ発光分光質量分析)
・Cl:電位差滴定法
・SO4:イオンクロマトグラフ
In addition, each content rate of Na, Ag, Ca, Cr, Cu, Fe, K, Mg, Ni, Zn, Zr, U, Th, Cl, and SO 4 in the composite fine particles or silica hollow fine particles of the present invention is respectively The value obtained by measurement using the following method.
Na and K: Atomic absorption spectroscopic analysis Ag, Ca, Cr, Cu, Fe, Mg, Ni, Zn, Zr, U and Th: ICP-MS (inductively coupled plasma emission spectroscopic mass spectrometry)
・ Cl: Potentiometric titration method ・ SO 4 : Ion chromatograph
<本発明の分散液>
本発明の分散液について説明する。
本発明の分散液は、上記のような本発明の複合微粒子が分散溶媒に分散しているものである。
<Dispersion of the present invention>
The dispersion liquid of the present invention will be described.
The dispersion liquid of the present invention is one in which the composite fine particles of the present invention as described above are dispersed in a dispersion solvent.
本発明の分散液は分散溶媒として、水及び/又は有機溶媒を含む。この分散溶媒として、例えば純水、超純水、イオン交換水のような水を用いることが好ましい。さらに、本発明の分散液は、研磨性能を制御するための添加剤として、研磨促進剤、界面活性剤、pH調整剤及びpH緩衝剤からなる群より選ばれる1種以上を添加することで研磨スラリーとして好適に用いられる。 The dispersion of the present invention contains water and / or an organic solvent as a dispersion solvent. As the dispersion solvent, for example, water such as pure water, ultrapure water, and ion exchange water is preferably used. Furthermore, the dispersion of the present invention is polished by adding one or more selected from the group consisting of a polishing accelerator, a surfactant, a pH adjuster and a pH buffer as an additive for controlling the polishing performance. It is suitably used as a slurry.
また、本発明の分散液を備える分散溶媒として、例えばメタノール、エタノール、イソプロパノール、n−ブタノール、メチルイソカルビノールなどのアルコール類;アセトン、2−ブタノン、エチルアミルケトン、ジアセトンアルコール、イソホロン、シクロヘキサノンなどのケトン類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド類;ジエチルエーテル、イソプロピルエーテル、テトラヒドロフラン、1,4−ジオキサン、3,4−ジヒドロ−2H−ピランなどのエーテル類;2−メトキシエタノール、2−エトキシエタノール、2−ブトキシエタノール、エチレングリコールジメチルエーテルなどのグリコールエーテル類;2−メトキシエチルアセテート、2−エトキシエチルアセテート、2−ブトキシエチルアセテートなどのグリコールエーテルアセテート類;酢酸メチル、酢酸エチル、酢酸イソブチル、酢酸アミル、乳酸エチル、エチレンカーボネートなどのエステル類;ベンゼン、トルエン、キシレンなどの芳香族炭化水素類;ヘキサン、ヘプタン、イソオクタン、シクロヘキサンなどの脂肪族炭化水素類;塩化メチレン、1,2−ジクロルエタン、ジクロロプロパン、クロルベンゼンなどのハロゲン化炭化水素類;ジメチルスルホキシドなどのスルホキシド類;N−メチル−2−ピロリドン、N−オクチル−2−ピロリドンなどのピロリドン類などの有機溶媒を用いることができる。これらを水と混合して用いてもよい。 Further, as a dispersion solvent provided with the dispersion liquid of the present invention, for example, alcohols such as methanol, ethanol, isopropanol, n-butanol and methylisocarbinol; acetone, 2-butanone, ethyl amyl ketone, diacetone alcohol, isophorone, cyclohexanone Ketones such as; Amides such as N, N-dimethylformamide, N, N-dimethylacetamide; Ethers such as diethyl ether, isopropyl ether, tetrahydrofuran, 1,4-dioxane, 3,4-dihydro-2H-pyran Glycol ethers such as 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, ethylene glycol dimethyl ether; 2-methoxyethyl acetate, 2-ethoxyethyl acetate, 2-butoxy Glycol ether acetates such as ethyl acetate; esters such as methyl acetate, ethyl acetate, isobutyl acetate, amyl acetate, ethyl lactate, ethylene carbonate; aromatic hydrocarbons such as benzene, toluene, xylene; hexane, heptane, isooctane, Aliphatic hydrocarbons such as cyclohexane; halogenated hydrocarbons such as methylene chloride, 1,2-dichloroethane, dichloropropane, chlorobenzene; sulfoxides such as dimethyl sulfoxide; N-methyl-2-pyrrolidone, N-octyl- Organic solvents such as pyrrolidones such as 2-pyrrolidone can be used. You may mix and use these with water.
本発明の分散液に含まれる固形分濃度は0.3〜50質量%の範囲にあることが好ましい。 It is preferable that solid content concentration contained in the dispersion liquid of this invention exists in the range of 0.3-50 mass%.
本発明の分散液は、所望により、カチオンコロイド滴定を行った場合に、下記式(1)で表される流動電位変化量(ΔPCD)と、クニックにおけるカチオンコロイド滴定液の添加量(V)との比(ΔPCD/V)が−150.0〜−5.0となる流動電位曲線が得られるものであることが好ましい。
ΔPCD/V=(I−C)/V・・・式(1)
C:前記クニックにおける流動電位(mV)
I:前記流動電位曲線の開始点における流動電位(mV)
V:前記クニックにおける前記カチオンコロイド滴定液の添加量(ml)
The dispersion liquid of the present invention may optionally have a flow potential change amount (ΔPCD) represented by the following formula (1) when cationic colloid titration is performed, and an addition amount (V) of the cationic colloid titration solution in the knick It is preferable that a streaming potential curve having a ratio (ΔPCD / V) of −150.0 to −5.0 is obtained.
ΔPCD / V = (I−C) / V formula (1)
C: flow potential (mV) in the knick
I: flow potential (mV) at the start point of the flow potential curve
V: Addition amount of the cation colloid titration solution in the knick (ml)
ここで、カチオンコロイド滴定は、固形分濃度を1質量%に調整した本発明の分散液80gにカチオンコロイド滴定液を添加することで行う。カチオンコロイド滴定液として、0.001Nポリ塩化ジアリルジメチルアンモニウム溶液を用いる。 Here, the cation colloid titration is performed by adding the cation colloid titration liquid to 80 g of the dispersion liquid of the present invention in which the solid content concentration is adjusted to 1% by mass. A 0.001 N polyallyldimethyl ammonium chloride solution is used as a cationic colloid titrant.
このカチオンコロイド滴定によって得られる流動電位曲線とは、カチオン滴定液の添加量(ml)をX軸、本発明の分散液の流動電位(mV)をY軸に取ったグラフである。
また、クニックとは、カチオンコロイド滴定によって得られる流動電位曲線において急激に流動電位が変化する点(変曲点)である。そして変曲点における流動電位をC(mV)とし、変曲点におけるカチオンコロイド滴定液の添加量をV(ml)とする。
流動電位曲線の開始点とは、滴定前の本発明の分散液における流動電位である。具体的にはカチオンコロイド滴定液の添加量が0である点を開始点とする。この開始点における流動電位をI(mV)とする。
The flow potential curve obtained by this cationic colloid titration is a graph in which the addition amount (ml) of the cationic titration solution is taken on the X axis, and the flow potential (mV) of the dispersion of the present invention is taken on the Y axis.
The term "knick" refers to a point (inflection point) at which the flow potential rapidly changes in the flow potential curve obtained by cationic colloid titration. The flow potential at the inflection point is C (mV), and the addition amount of the cationic colloid titrant at the inflection point is V (ml).
The starting point of the flow potential curve is the flow potential in the inventive dispersion before titration. Specifically, the point at which the addition amount of the cationic colloid titrant is 0 is taken as the starting point. The flow potential at this start point is I (mV).
上記のΔPCD/Vの値が−150.0〜−5.0であると、本発明の分散液を研磨剤として用いた場合、研磨剤の研磨速度がより向上する。このΔPCD/Vは、本発明の複合微粒子表面におけるセリウム含有シリカ層による子粒子の被覆具合及び/又は複合微粒子の表面における子粒子の露出具合あるいは脱離しやすいシリカの存在を反映していると考えられる。ΔPCD/Vの値が上記範囲内であると、湿式による解砕時において子粒子は脱離する事が少なく、研磨速度も高いと本発明者は推定している。逆にΔPCD/Vの値が−150.0よりもその絶対値が大きい場合は、複合微粒子表面がセリウム含有シリカ層で全面覆われているため解砕工程にて子粒子脱落は起き難いが研磨時にシリカが脱離しがたく研磨速度が低下する。一方、−5.0よりもその絶対値が小さい場合は脱落が起きやすいと考えられる。上記範囲内であると、研磨時において子粒子表面が適度に露出して子粒子の脱落が少なく、研磨速度がより向上すると本発明者は推定している。ΔPCD/Vは、−145.0〜−10.0であることがより好ましく、−140.0〜−20.0であることがさらに好ましい。 When the value of ΔPCD / V is −150.0 to −5.0, when the dispersion liquid of the present invention is used as an abrasive, the polishing rate of the abrasive is further improved. It is believed that this ΔPCD / V reflects the coverage of the child particles with the cerium-containing silica layer on the surface of the composite fine particle of the present invention and / or the exposure of child particles on the surface of the composite fine particle or the presence of easily removable silica. It is done. When the value of ΔPCD / V is within the above range, the present inventor presumes that the child particles are hardly detached at the time of pulverization by wet and the polishing rate is high. Conversely, when the absolute value of ΔPCD / V is larger than −150.0, the composite fine particle surface is entirely covered with a cerium-containing silica layer, so that it is difficult for child particles to fall off during the crushing process, but polishing. Sometimes, the removal rate of silica is reduced. On the other hand, when the absolute value is smaller than -5.0, it is considered that dropout is likely to occur. The inventor presumes that within the above range, the surface of the child particles is appropriately exposed at the time of polishing so that the child particles are not dropped off and the polishing rate is further improved. As for (DELTA) PCD / V, it is more preferable that it is -145.0--10.0, and it is further more preferable that it is -140.0--20.0.
本発明の分散液は、そのpH値を3〜8の範囲とした場合に、カチオンコロイド滴定を始める前、すなわち、滴定量がゼロである場合の流動電位がマイナスの電位となるものであることが好ましい。これは、この流動電位がマイナスの電位を維持する場合、同じくマイナスの表面電位を示す研磨基材への砥粒(セリア系複合中空微粒子)の残留が生じ難いからである。 In the dispersion of the present invention, when the pH value is in the range of 3 to 8, the flow potential is a negative potential before starting the cationic colloid titration, that is, when the titration amount is zero. Is preferred. This is because when the flow potential is maintained at a negative potential, it is difficult for the abrasive grains (ceria-based composite hollow fine particles) to remain on the polishing base material that also exhibits a negative surface potential.
<本発明の製造方法>
本発明の製造方法について説明する。
本発明の製造方法は以下に説明する工程1〜工程3を備える。
<Production method of the present invention>
The production method of the present invention will be described.
The manufacturing method of the present invention includes steps 1 to 3 described below.
<工程1>
工程1ではシリカ中空微粒子が溶媒に分散してなるシリカ中空微粒子分散液を用意する。
なお、本明細書では「工程1」を「調合工程」という場合もある。
<Step 1>
In step 1, a silica hollow fine particle dispersion in which hollow silica fine particles are dispersed in a solvent is prepared.
In this specification, “step 1” may be referred to as “preparation step”.
シリカ中空微粒子は非晶質シリカを主成分とし、内部に空隙を有する中空構造を備える。
シリカ中空微粒子が非晶質シリカを主成分とすることは、前述のセリウム含有シリカ層の場合と同様に、例えば、次の方法で確認することができる。シリカ中空微粒子が溶媒に分散しているシリカ中空微粒子分散液を乾燥させた後、乳鉢を用いて粉砕し、例えば、従来公知のX線回折装置(例えば、理学電気株式会社製、RINT1400)によってX線回折パターンを得ると、Cristobaliteのような結晶性シリカのピークは現れない。このことから、シリカ中空微粒子に含まれるシリカは非晶質であることを確認できる。また、このような場合に、シリカ中空微粒子が非晶質シリカを主成分とするものとする。
Silica hollow fine particles are mainly composed of amorphous silica and have a hollow structure having voids inside.
The fact that the hollow silica particles contain amorphous silica as a main component can be confirmed, for example, by the following method, as in the case of the above-mentioned cerium-containing silica layer. The silica hollow fine particle dispersion in which the silica hollow fine particles are dispersed in a solvent is dried and then pulverized using a mortar. For example, the X When the line diffraction pattern is obtained, the peak of crystalline silica such as Cristobalite does not appear. From this, it can be confirmed that the silica contained in the silica hollow fine particles is amorphous. In such a case, the silica hollow fine particles are mainly composed of amorphous silica.
シリカ中空微粒子は主としてSiおよび酸素からなるが、La、Ce、Zrを10質量%以下含んでいてもよく、その他の不純物元素や結晶性シリカを含んでもよい。 Silica hollow fine particles are mainly composed of Si and oxygen, but may contain 10% by mass or less of La, Ce and Zr, and may contain other impurity elements and crystalline silica.
本発明の製造方法により、半導体デバイスなどの研磨に適用する本発明の分散液を調製しようとする場合は、シリカ中空微粒子分散液として、アルコキシシランを原料としたシリカ中空微粒子が溶媒に分散してなるシリカ中空微粒子分散液を用いることが好ましい。なお、上記以外の従来公知のシリカ中空微粒子分散液(水硝子を原料として調製したシリカ中空微粒子分散液等)を原料とする場合は、シリカ中空微粒子分散液を酸処理し、更に脱イオン処理して使用することが好ましい。この場合、シリカ中空微粒子に含まれるNa、Ag、Ca、Cr、Cu、Fe、K、Mg、Ni、Zn及びZrの含有率が少なくなり、具体的には、100ppm以下となり得るからである。
具体的には、原料であるシリカ中空微粒子分散液中のシリカ中空微粒子として、次の(a)と(b)の条件を満たすものが好適に使用される。
(a)Na、Ag、Ca、Cr、Cu、Fe、K、Mg、Ni、Zn及びZrの含有率が、それぞれ100ppm以下。
(b)U、Th、Cl及びSO4の含有率が、それぞれ5ppm以下。
When it is intended to prepare the dispersion of the present invention to be applied to polishing of semiconductor devices etc. by the manufacturing method of the present invention, silica hollow fine particles using alkoxysilane as a raw material are dispersed in a solvent as a silica hollow fine particle dispersion. It is preferable to use a silica hollow fine particle dispersion. In addition, when using conventionally well-known silica hollow particle dispersion liquid (The silica hollow particle dispersion liquid etc. which were prepared using water glass as a raw material) other than the above as a raw material, the silica hollow particle dispersion liquid is acid-treated and further deionized. Are preferably used. In this case, the content of Na, Ag, Ca, Cr, Cu, Fe, K, Mg, Ni, Zn and Zr contained in the hollow silica particles is reduced, specifically to 100 ppm or less.
Specifically, as the hollow silica particles in the hollow silica particle dispersion liquid, which is a raw material, those having the following conditions (a) and (b) are suitably used.
(A) The contents of Na, Ag, Ca, Cr, Cu, Fe, K, Mg, Ni, Zn and Zr are each 100 ppm or less.
(B) The contents of U, Th, Cl and SO 4 are each 5 ppm or less.
ここで(a)は本発明の複合微粒子が含み得る特定不純物群1と同一であり、(b)は本発明の複合微粒子が含み得る特定不純物群2と同一である。シリカ中空微粒子におけるこれらの含有率の測定方法も、本発明の複合微粒子における特定不純物群1および特定不純物群2の含有率を測定する場合と同様の方法で測定するものとする。 Here, (a) is the same as the specific impurity group 1 that can be included in the composite fine particles of the present invention, and (b) is the same as the specific impurity group 2 that can be included in the composite fine particles of the present invention. The measurement method of these content rates in the silica hollow fine particles is also measured by the same method as that for measuring the content rates of the specific impurity group 1 and the specific impurity group 2 in the composite fine particles of the present invention.
シリカ中空微粒子の大きさは特に限定されないが、その平均粒子径は15〜340nmであることが好ましく、45〜180nmであることがより好ましい。 The size of the silica hollow fine particles is not particularly limited, but the average particle diameter is preferably 15 to 340 nm, and more preferably 45 to 180 nm.
ここで、シリカ中空微粒子の平均粒子径は、画像解析法で測定された平均粒子径の個数平均値を意味する。
画像解析法による平均粒子径の測定方法を説明する。透過型電子顕微鏡により、シリカ中空微粒子を倍率30万倍(ないしは50万倍)で写真撮影して得られる写真投影図において、粒子の最大径を長軸とし、その長さを測定して、その値を長径(DL)とする。また、長軸上にて長軸を2等分する点を定め、それに直交する直線が粒子の外縁と交わる2点を求め、同2点間の距離を測定し短径(DS)とする。そして、長径(DL)と短径(DS)との幾何平均値を求め、これをシリカ中空微粒子の平均粒子径とする。
このようにして50個以上のシリカ中空微粒子について平均粒子径を測定し、それらの個数平均値を算出する。このようにして得られた値をシリカ中空微粒子の平均粒子径とする。
Here, the average particle diameter of the silica hollow fine particles means the number average value of the average particle diameter measured by the image analysis method.
The measuring method of the average particle diameter by the image analysis method is demonstrated. In a photographic projection drawing obtained by photographing a silica hollow fine particle at a magnification of 300,000 (or 500,000) by a transmission electron microscope, the maximum diameter of the particle is taken as the major axis, and the length is measured. Let the value be the major axis (DL). Further, a point that bisects the major axis on the major axis is determined, two points where a straight line perpendicular to the major axis intersects the outer edge of the particle are obtained, and the distance between the two points is measured to obtain a minor axis (DS). Then, the geometric mean value of the major diameter (DL) and the minor diameter (DS) is determined, and this is used as the mean particle diameter of the silica hollow fine particles.
Thus, the average particle diameter is measured for 50 or more silica hollow fine particles, and their number average value is calculated. The value obtained in this manner is taken as the average particle size of the silica hollow fine particles.
前記のとおり、本発明におけるシリカ中空微粒子は、外殻としてのセリウム含有シリカ層の内部に空隙を有する構造であり、セリウム含有シリカ層は粒子として空隙構造を保持できる程度の厚さであれば、格別に制限されるものではない。例えば、シリカ中空微粒子を構成するセリウム含有シリカ層の平均の厚さは、5〜30nmであることが好ましく、8〜20nmであることがより好ましい。
このセリウム含有シリカ層の厚さは、画像解析法で測定するものとする。
画像解析法について詳細に説明する。透過型電子顕微鏡により、シリカ中空微粒子を倍率30万倍(ないしは50万倍)で写真撮影して得られる写真投影図において、粒子の最大径を長軸とし、その長さを測定して、長軸上にて長軸を2等分する点を特定し、この点をシリカ中空微粒子の中心と定める。次に、この中心から粒子の最外縁まで任意の12箇所に直線を引き、その直線上における空洞の輪郭と交わる点と最外縁と交わる点との長さを測定し、12箇所におけるそれらを単純平均し、得られた値をその1粒子のセリウム含有シリカ層の厚さとする。そして、50個のシリカ中空微粒子のセリウム含有シリカ層の厚さを求め、それらを単純平均して得られた値を、そのシリカ中空微粒子のセリウム含有シリカ層の厚さとする。
As described above, the silica hollow fine particles in the present invention have a structure having voids inside the cerium-containing silica layer as the outer shell, and the cerium-containing silica layer has a thickness that can retain the void structure as particles, It is not particularly limited. For example, the average thickness of the cerium-containing silica layer constituting the hollow silica particles is preferably 5 to 30 nm, and more preferably 8 to 20 nm.
The thickness of the cerium-containing silica layer is measured by an image analysis method.
The image analysis method will be described in detail. In a photographic projection view obtained by photographing a hollow silica fine particle with a transmission electron microscope at a magnification of 300,000 times (or 500,000 times), the maximum diameter of the particles is taken as the major axis, and the length is measured. A point on the axis that bisects the major axis is specified, and this point is defined as the center of the silica hollow fine particles. Next, a straight line is drawn at any 12 points from the center to the outermost edge of the particle, and the lengths of the points intersecting the outline of the cavity and the points intersecting the outermost edge on the straight line are measured. The average value is taken as the thickness of the cerium-containing silica layer of one particle. Then, the thickness of the 50 silica hollow fine particles of the cerium-containing silica layer is determined, and the value obtained by simply averaging them is taken as the thickness of the cerium hollow silica layer of the silica hollow fine particles.
シリカ中空微粒子の空隙の大きさは特に限定されないが、平均径が15〜300nmであることが好ましく、45〜100nmであることがより好ましい。
ここで空隙の平均径は、画像解析法で測定するものとする。
画像解析法について詳細に説明する。透過型電子顕微鏡により、シリカ中空微粒子を倍率30万倍(ないしは50万倍)で写真撮影して得られる写真投影図において、粒子の空隙の輪郭を特定する。そして、その輪郭の最大径を長軸とし、その長さを測定して、その値を長径(DL)とする。また、長軸上にて長軸を2等分する点を定め、それに直交する直線が輪郭を特定するラインと交わる2点を求め、同2点間の距離を測定し短径(DS)とする。そして、長径(DL)と短径(DS)との幾何平均値を求め、これをその空隙の径とする。
このようにして50個の粒子の空隙について径を測定し、これを単純平均して得た値を平均径とする。
The size of the voids of the hollow silica particles is not particularly limited, but the average diameter is preferably 15 to 300 nm, and more preferably 45 to 100 nm.
Here, the average diameter of the voids is measured by an image analysis method.
The image analysis method will be described in detail. The outline of the voids of the particles is specified in a photographic projection obtained by photographing the hollow silica fine particles with a transmission electron microscope at a magnification of 300,000 times (or 500,000 times). Then, the maximum diameter of the contour is taken as the major axis, the length is measured, and the value is taken as the major diameter (DL). In addition, a point that bisects the major axis on the major axis is determined, two points where a straight line perpendicular to the major axis intersects the line that specifies the contour are obtained, and the distance between the two points is measured to obtain the minor axis (DS) Do. Then, a geometric average value of the long diameter (DL) and the short diameter (DS) is obtained, and this is set as the diameter of the gap.
Thus, the diameter is measured with respect to the voids of 50 particles, and a value obtained by simple averaging is determined as the average diameter.
シリカ中空微粒子の形状は特に限定されず、例えば、球状、俵状、短繊維状、四面体状(三角錐型)、六面体状、八面体状、板状、不定形、多孔質状のものであってよい。 The shape of the hollow silica particle is not particularly limited, and it may be, for example, a sphere, a bowl, a short fiber, a tetrahedron (triangular pyramid), a hexahedron, an octahedron, a plate, an irregular form, or a porous one. It may be.
シリカ中空微粒子は、密度が0.9〜1.5g/ccであることが好ましく、1.1〜1.3g/cc(であることが好ましい。
ここで密度は、前述の本発明の複合微粒子の密度と同じ方法によって測定するものとする。
The silica hollow fine particles preferably have a density of 0.9 to 1.5 g / cc, and preferably 1.1 to 1.3 g / cc (.
Here, the density is measured by the same method as the density of the above-mentioned composite fine particle of the present invention.
シリカ中空微粒子の形状は、粒子連結型粒子であっても、単粒子(非連結粒子)であってもよく、通常は両者の混合物である。
ここで、シリカ中空微粒子を用いてなる本発明の分散液を研磨用途に使用する場合であって、被研磨基板に対する研磨レート向上を重視する場合は、シリカ中空微粒子の画像解析法で測定された短径/長径比が0.80以下(好ましくは0.67以下)である粒子の個数割合は45%以下(より好ましくは35%以下)であることが好ましい。なお、同じく被研磨基板上の表面粗さが低い水準にあることを重視する場合は、この限りではない。
なお、前記粒子連結型粒子とは、粒子間に再分散できない程度の化学結合が生じて粒子が連結してなるもの(凝結粒子)を意味する。また、単粒子とは、複数粒子が連結したものではなく、粒子のモルホロジーに関係なく凝集していないものを意味する。
The shape of the hollow silica particles may be particle-connected particles or single particles (non-connected particles), and is usually a mixture of both.
Here, in the case where the dispersion of the present invention comprising the hollow silica particles is used for polishing, and when the emphasis is placed on the improvement of the polishing rate to the substrate to be polished, it was measured by the image analysis method of the hollow silica particles. The proportion of particles having a minor axis / major axis ratio of 0.80 or less (preferably 0.67 or less) is preferably 45% or less (more preferably 35% or less). The same is not true when importance is also given to the fact that the surface roughness on the substrate to be polished is at a low level.
In addition, the particle | grain connection type particle | grain means the thing (condensed particle | grain) which a chemical bond of the extent which can not be re-dispersed between particle | grains arises, and particle | grains connect. Moreover, a single particle does not mean that a plurality of particles are connected, and does not aggregate regardless of the morphology of the particles.
画像解析法による短径/長径比の測定方法を説明する。透過型電子顕微鏡により、シリカ中空微粒子を倍率30万倍(ないしは50万倍)で写真撮影して得られる写真投影図において、粒子の最大径を長軸とし、その長さを測定して、その値を長径(DL)とする。また、長軸上にて長軸を2等分する点を定め、それに直交する直線が粒子の外縁と交わる2点を求め、同2点間の距離を測定し短径(DS)とする。これより、短径/長径比(DS/DL)を求める。そして、写真投影図で観察される任意の50個の粒子において、短径/長径比が0.80以下または0.80超である粒子の個数割合(%)を求める。 A method of measuring the minor axis / major axis ratio by the image analysis method will be described. In a photographic projection drawing obtained by photographing a silica hollow fine particle at a magnification of 300,000 (or 500,000) by a transmission electron microscope, the maximum diameter of the particle is taken as the major axis, and the length is measured. Let the value be the major axis (DL). Further, a point that bisects the major axis on the major axis is determined, two points where a straight line perpendicular to the major axis intersects the outer edge of the particle are obtained, and the distance between the two points is measured to obtain a minor axis (DS). From this, the minor axis / major axis ratio (DS / DL) is determined. Then, the number ratio (%) of particles having a minor axis / major axis ratio of 0.80 or less or more than 0.80 in any 50 particles observed in the photographic projection diagram is obtained.
シリカ中空微粒子はセリウムとの反応性(セリア重量あたりのシリカ中空微粒子の溶解重量)が適度なものが好適に用いられる。シリカ中空微粒子は、本発明の製造方法における工程1の調合工程でセリウムの金属塩を添加することで、シリカの一部が水酸化セリウム等によって溶解し、シリカ中空微粒子のサイズが小さくなり、溶解したシリカ中空微粒子の表面にセリウムの微結晶を含んだセリウム含有シリカ層の前駆体が形成される。この際、シリカ中空微粒子がセリウムとの反応性が高い非晶質シリカからなる場合、シリカ中空微粒子が溶解して中空構造を維持できない。また、セリウム含有シリカ層の前駆体が厚くなり、焼成によって生じるセリウム含有シリカ層が厚膜化したり、その層のシリカ割合が過剰に高くなり、解砕工程で解砕が困難になるからである。また、シリカ中空微粒子がセリウムとの反応性が極度に低い非晶質シリカからなる場合はセリウム含有シリカ層が十分に形成されず、セリア子粒子が脱落しやすくなる。セリウムとの反応性が適切な場合は、過剰なシリカの溶解が抑制され、セリウム含有シリカ層は適度な厚みとなり子粒子の脱落を防止し、その強度が複合微粒子間との強度よりも大きくなると考えられるので、易解砕となるため、望ましい。 As the hollow silica particles, those having appropriate reactivity with cerium (the weight of the hollow silica hollow particles dissolved in the weight of ceria) are suitably used. Silica hollow fine particles are dissolved by adding a cerium metal salt in the preparation step of step 1 in the production method of the present invention, so that part of the silica is dissolved by cerium hydroxide or the like, and the size of the silica hollow fine particles is reduced. A precursor of a cerium-containing silica layer containing cerium microcrystals is formed on the surface of the hollow silica fine particles. At this time, when the silica hollow fine particles are made of amorphous silica having high reactivity with cerium, the silica hollow fine particles are dissolved and the hollow structure cannot be maintained. In addition, the precursor of the cerium-containing silica layer becomes thick, the cerium-containing silica layer formed by firing becomes thick, the silica proportion of the layer becomes excessively high, and the crushing becomes difficult in the crushing step. . In addition, when the silica hollow fine particles are made of amorphous silica having extremely low reactivity with cerium, the cerium-containing silica layer is not sufficiently formed, and the ceria particles are likely to fall off. When the reactivity with cerium is appropriate, excessive dissolution of silica is suppressed, and the cerium-containing silica layer has an appropriate thickness to prevent detachment of child particles, and when its strength is greater than the strength with the composite fine particles As it is considered, it is desirable because it is easily crushed.
シリカ中空微粒子の製造方法は特に限定されないが、例えば、特許文献3に記載のシリカ中空微粒子の製造方法にあるような、シリカとシリカ以外の無機酸化物とからなる複合酸化物核粒子の製造方法が挙げられる。また、その他に、炭酸カルシウムなどの核微粒子にシリカ被覆層を形成しシリカ以外の核微粒子を除去してシリカ中空微粒子を製造するコアシェル法や、ミクロバブルにシリカ被覆層を形成するバブルテンプレート法、原料となる液体を微細な霧状にしてこれを熱風中に噴出させるスプレードライ法、水相と油相の境界における反応を利用して殻を形成させ、最後に核物質を除去するエマルジョン法などの方法がある。 The method for producing silica hollow fine particles is not particularly limited. For example, as in the method for producing silica hollow fine particles described in Patent Document 3, a method for producing composite oxide core particles comprising silica and an inorganic oxide other than silica. Is mentioned. In addition, a core-shell method of producing silica hollow particles by forming a silica coating layer on core fine particles such as calcium carbonate and removing core fine particles other than silica, a bubble template method of forming a silica coating layer on microbubbles, Spray drying method in which the liquid as raw material is made into a fine mist and sprayed into hot air, emulsion method in which the shell is formed using the reaction at the boundary between the water phase and the oil phase, and finally the nuclear material is removed There is a way.
工程1では、シリカ中空微粒子が溶媒に分散してなるシリカ中空微粒子分散液を撹拌し、温度を0〜70℃、pHを7.0〜11.0、酸化還元電位を−400〜300mVに維持しながら、ここへセリウムの金属塩を連続的又は断続的に添加し、セリウムの金属塩を中和することで、前駆体粒子を含む前駆体粒子分散液を得る。 In step 1, a silica hollow fine particle dispersion in which silica fine particles are dispersed in a solvent is stirred, and the temperature is maintained at 0 to 70 ° C., the pH is 7.0 to 11.0, and the oxidation-reduction potential is −400 to 300 mV. However, the metal salt of cerium is continuously or intermittently added thereto, and the metal salt of cerium is neutralized to obtain a precursor particle dispersion containing precursor particles.
シリカ中空微粒子分散液における分散媒は水を含むことが好ましく、水系のシリカ中空微粒子分散液(水ゾル)を使用することが好ましい。 The dispersion medium in the silica hollow fine particle dispersion preferably contains water, and an aqueous silica hollow fine particle dispersion (water sol) is preferably used.
シリカ中空微粒子分散液における固形分濃度は、SiO2換算基準で1〜40質量%であることが好ましい。この固形分濃度が低すぎると、製造工程でのシリカ濃度が低くなり生産性が悪くなり得る。 The solid content concentration in the silica hollow fine particle dispersion is preferably 1 to 40% by mass on the basis of SiO 2 conversion. When this solid content concentration is too low, the silica concentration in the production process becomes low, and the productivity may deteriorate.
本発明の製造方法において、例えば、工程1におけるシリカ中空微粒子とセリウムの金属塩との反応温度を70℃超とした場合、セリアとシリカの反応性が高まり、シリカ中空微粒子の溶解が進む。その結果、工程2の中間段階で乾燥して得られた前駆体粒子におけるCeO2超微粒子の粒子径は2.5nm未満となる。このことは係る高温域においてシリカがセリアと液相で反応すると、シリカがセリアの粒子成長を阻害するため、乾燥後のセリアの平均粒子径が2.5nm未満と、小さくなることを示している。
なお、このような前駆体粒子であっても、焼成温度を1200℃以上とすることでセリア子粒子の平均結晶子径を8〜30nmとすることは可能であるが、この場合は、セリウム含有シリカ層は形成されずにシリカ被膜が形成され、このシリカ被膜がセリア子粒子を強固に被覆する傾向が強まるために、解砕が困難となる点で支障がある。そのため、反応温度を0〜70℃に保ち、液相でのシリカとセリアの反応を適度に抑えることで、乾燥後の前駆体粒子におけるCeO2超微粒子の平均結晶子径を2.5nm以上にでき、解砕しやすい粒子となる。さらに乾燥後の平均結晶子径が大きいため、セリア子粒子の平均結晶子径を8〜30nmとするための焼成温度を低くすることができ、焼成により形成されるセリウム含有シリカ層の厚みが過剰に厚膜化せず、解砕が容易となる。
In the production method of the present invention, for example, when the reaction temperature between the silica hollow fine particles and the metal salt of cerium in Step 1 is higher than 70 ° C., the reactivity of ceria and silica is increased, and dissolution of the silica hollow fine particles proceeds. As a result, the particle diameter of the CeO 2 ultrafine particles in the precursor particles obtained by drying in the intermediate stage of step 2 is less than 2.5 nm. This indicates that when silica reacts with ceria in a liquid phase in such a high temperature range, silica inhibits ceria particle growth, so that the average particle diameter of ceria after drying is reduced to less than 2.5 nm. .
Even with such precursor particles, it is possible to set the average crystallite diameter of the ceria particles to 8 to 30 nm by setting the firing temperature to 1200 ° C. or higher. Since the silica layer is formed without forming the silica layer, and this silica layer has a strong tendency to cover the ceria particles, there is a problem in that crushing becomes difficult. Therefore, the average crystallite diameter of the CeO 2 ultrafine particles in the precursor particles after drying is set to 2.5 nm or more by maintaining the reaction temperature at 0 to 70 ° C. and appropriately suppressing the reaction between silica and ceria in the liquid phase. Can be easily crushed. Furthermore, since the average crystallite diameter after drying is large, the firing temperature for setting the average crystallite diameter of the ceria particles to 8 to 30 nm can be lowered, and the thickness of the cerium-containing silica layer formed by firing is excessive. Therefore, crushing is easy.
また、陽イオン交換樹脂又は陰イオン交換樹脂、あるいは鉱酸、有機酸等で不純物を抽出し、限外ろ過膜などを用いて、必要に応じて、シリカ中空微粒子分散液の脱イオン処理を行うことができる。脱イオン処理により不純物イオンなどを除去したシリカ中空微粒子分散液は表面にケイ素を含む水酸化物を形成させやすいのでより好ましい。なお、脱イオン処理はこれらに限定されるものではない。 Also, impurities are extracted with cation exchange resin or anion exchange resin, or mineral acid, organic acid, etc., and deionization treatment of the silica hollow fine particle dispersion is performed using an ultrafiltration membrane or the like, if necessary. be able to. The silica hollow fine particle dispersion from which impurity ions and the like have been removed by the deionization treatment is more preferable because it easily forms a hydroxide containing silicon on the surface. The deionization treatment is not limited to these.
工程1では、上記のようなシリカ中空微粒子分散液を撹拌し、温度を0〜70℃、pHを7.0〜11.0、酸化還元電位を−400〜300mVに維持しながら、ここへセリウムの金属塩を連続的又は断続的に添加する。酸化還元電位が低いと、棒状等の結晶が生成するために、シリカ中空微粒子には沈着し難い。
さらに、酸化還元電位を所定の範囲に調整しない場合は、調合工程で生成したCeO2超微粒子は結晶化しにくい傾向にあり、結晶化していないCeO2超微粒子は調合後の加熱、熟成によっても結晶化が促進されない。そのため工程2の焼成において所定サイズに結晶化させるためには、高温での焼成が必要となり、解砕が困難になる。
In step 1, the above-mentioned hollow silica particle dispersion liquid is stirred, the temperature is 0 to 70 ° C., the pH is 7.0 to 11.0, and the redox potential is -400 to 300 mV while the cerium is added thereto. Is added continuously or intermittently. When the redox potential is low, crystals in the form of a rod or the like are formed, so that it is difficult to deposit on the silica hollow fine particles.
Furthermore, when the redox potential is not adjusted to a predetermined range, the CeO 2 ultrafine particles generated in the preparation process tend to be difficult to crystallize, and the uncrystallized CeO 2 ultrafine particles are also crystallized by heating and aging after preparation. Is not promoted. Therefore, in order to crystallize to a predetermined size in the baking of Step 2, baking at a high temperature is required, and crushing becomes difficult.
セリウムの金属塩の種類は限定されるものではないが、セリウムの塩化物、硝酸塩、硫酸塩、酢酸塩、炭酸塩、金属アルコキシドなどを用いることができる。具体的には、硝酸第一セリウム、炭酸セリウム、硫酸第一セリウム、塩化第一セリウムなどを挙げることができる。なかでも、硝酸第一セリウムや塩化第一セリウム、炭酸セリウムなどの三価のセリウム塩が好ましい。中和と同時に過飽和となった溶液から、結晶性セリウム酸化物や水酸化セリウム等が生成し、それらは速やかにシリカ中空微粒子に凝集沈着し、最終的にCeO2超微粒子が単分散で形成されるからである。さらに三価のセリウム塩はシリカ中空微粒子と適度に反応し、セリウム含有シリカ層が形成されやすい。また研磨基板に形成されたシリカ膜と反応性の高い三価のセリウムがセリア結晶中に形成されやすいため、好ましい。しかしこれら金属塩に含まれる硫酸イオン、塩化物イオン、硝酸イオンなどは、腐食性を示す。そのため、所望により、調合後に後工程で洗浄し5ppm以下に除去する必要がある。一方、炭酸塩は炭酸ガスとして調合中に放出され、またアルコキシドは分解してアルコールとなるため、好ましく用いることができる。 Although the type of metal salt of cerium is not limited, cerium chloride, nitrate, sulfate, acetate, carbonate, metal alkoxide and the like can be used. Specifically, cerous nitrate, cerous carbonate, cerous sulfate, cerous chloride etc. can be mentioned. Among them, trivalent cerium salts such as cerous nitrate, cerous chloride and cerium carbonate are preferable. At the same time as neutralization, crystalline cerium oxide, cerium hydroxide, etc. are generated from the solution which has become supersaturated, and they are quickly coagulated and deposited on the hollow silica particles, and finally CeO 2 ultrafine particles are formed in monodispersion. This is because that. Furthermore, the trivalent cerium salt reacts appropriately with the hollow silica particles, and a cerium-containing silica layer is easily formed. Further, trivalent cerium having high reactivity with the silica film formed on the polishing substrate is preferable because it is easily formed in the ceria crystal. However, sulfate ion, chloride ion, nitrate ion and the like contained in these metal salts are corrosive. Therefore, if necessary, after preparation, it is necessary to wash in a post process and remove to 5 ppm or less. On the other hand, carbonates are released during preparation as carbon dioxide gas, and alkoxides are preferably used because they decompose into alcohols.
シリカ中空微粒子分散液に対するセリウムの金属塩の添加量は、得られるセリア系の複合微粒子におけるシリカとセリアとの質量比が、前述の本発明の複合微粒子の場合と同様に、100:1〜500の範囲となる量とする。 The addition amount of the metal salt of cerium to the silica hollow fine particle dispersion is such that the mass ratio of silica to ceria in the obtained ceria-based composite fine particles is 100: 1 to 500, as in the case of the composite fine particles of the present invention described above. The amount will be in the range of
シリカ中空微粒子分散液にセリウムの金属塩を添加した後、撹拌する際の温度は0〜70℃であることが好ましく、3〜40℃であることがより好ましく、5〜30℃であることがさらに好ましい。この温度が低すぎるとセリアとシリカの反応性が低下し、シリカの溶解度が著しく低下するため、セリアの結晶化が制御されなくなる。その結果、粗大なセリアの結晶性酸化物が生成して、シリカ中空微粒子の表面におけるCeO2超微粒子の異常成長が起こり、焼成後に解砕されにくくなったり、セリウム化合物によるシリカの溶解量が減るため、セリウム含有シリカ層に供給されるシリカが減少することになる。このためセリウム含有シリカ層を構成するシリカ量が不足し、セリア子粒子の固定化が起こり難くなる事が考えられる。逆に、この温度が高すぎるとシリカの溶解度が著しく増し、結晶性のセリア酸化物の生成が抑制される事が考えられるが、焼成時に高温を要し粒子間の結合が促進され、中空構造を維持したまま解砕できなくなる可能性、またはシリカ中空微粒子が溶解され中空構造を維持できなくなる可能性があり、更に、反応器壁面にスケールなどが生じやすくなり好ましくない。またシリカ中空微粒子は、セリウム化合物(セリウム塩の中和物)に対して溶解されにくいものが好ましい。溶解されやすいシリカ中空微粒子の場合は、シリカによってセリアの結晶成長が抑制され、調合段階でのCeO2超微粒子の粒子径が2.5nm未満となる。
調合段階でのCeO2超微粒子の粒子径が2.5nm未満であると、焼成後のセリア粒子径を8nm以上とするために、焼成温度を高くする必要があり、その場合、解砕が困難となる可能性がある。溶解されやすいシリカ中空微粒子は、100℃以上で乾燥させた後に原料に供すると溶解性を抑制することができる。
After adding the metal salt of cerium to the hollow particle dispersion of silica, the temperature upon stirring is preferably 0 to 70 ° C., more preferably 3 to 40 ° C., and 5 to 30 ° C. More preferable. If this temperature is too low, the reactivity of ceria and silica is reduced, and the solubility of silica is significantly reduced, so that the crystallization of ceria can not be controlled. As a result, a coarse ceria crystalline oxide is formed, and abnormal growth of CeO 2 ultrafine particles occurs on the surface of the silica hollow fine particles, which makes it difficult to be crushed after firing, or reduces the amount of silica dissolved by the cerium compound. Therefore, the amount of silica supplied to the cerium-containing silica layer is reduced. For this reason, it is possible that the amount of silica which comprises a cerium containing silica layer runs short, and fixation of ceria child particle becomes difficult to occur. On the contrary, if this temperature is too high, the solubility of silica is remarkably increased and the formation of crystalline ceria oxide is considered to be suppressed. And the silica hollow fine particles may be dissolved and the hollow structure may not be maintained, and furthermore, scale etc. may easily occur on the reactor wall surface, which is not preferable. The hollow silica fine particles are preferably those which are difficult to dissolve in a cerium compound (neutralization product of a cerium salt). In the case of the hollow silica particles that are easily dissolved, the crystal growth of ceria is suppressed by the silica, and the particle diameter of the CeO 2 ultrafine particles in the preparation step becomes less than 2.5 nm.
If the particle size of the CeO 2 ultrafine particles in the preparation stage is less than 2.5 nm, the firing temperature needs to be increased in order to make the ceria particle size after firing 8 nm or more. It could be Soluble hollow silica fine particles can be prevented from being soluble when used as raw materials after being dried at 100 ° C. or higher.
また、シリカ中空微粒子分散液を撹拌する際の時間は0.5〜24時間であることが好ましく、0.5〜18時間であることがより好ましい。この時間が短すぎるとCeO2超微粒子が凝集して、シリカ中空微粒子の表面上でシリカと反応し難くなり、解砕されにくい複合微粒子が形成される傾向がある点で好ましくない。逆に、この時間が長すぎてもCeO2超微粒子含有層の形成はそれ以上反応が進まず不経済となる。なお、前記セリウム金属塩の添加後に、所望により0〜70℃にて熟成しても構わない。熟成により、セリウム化合物の反応を促進させると同時に、シリカ中空微粒子に付着せず遊離したCeO2超微粒子をシリカ中空微粒子上に付着させる効果があるからである。 In addition, the time for stirring the silica hollow fine particle dispersion is preferably 0.5 to 24 hours, and more preferably 0.5 to 18 hours. If this time is too short, the CeO 2 ultrafine particles aggregate, making it difficult to react with the silica on the surface of the hollow silica fine particles, which is not preferable in that there is a tendency to form composite fine particles that are difficult to be crushed. Conversely, even if this time is too long, the formation of the CeO 2 ultrafine particle-containing layer is uneconomical because the reaction does not proceed any further. In addition, you may age at 0-70 degreeC if desired after the addition of the said cerium metal salt. Aging is effective in promoting the reaction of the cerium compound and, at the same time, the effect of adhering the CeO 2 ultrafine particles which are not attached to the silica hollow particles and released onto the silica hollow particles.
また、シリカ中空微粒子分散液にセリウムの金属塩を添加し、撹拌する際のシリカ中空微粒子分散液のpH範囲は7.0〜11.0とするが、7.0〜9.0とすることが好ましく、7.6〜8.6とすることがより好ましい。この際、アルカリ等を添加しpH調整を行うことが好ましい。このようなアルカリの例としては、公知のアルカリを使用することができる。具体的には、アンモニア水溶液、水酸化アルカリ、アルカリ土類金属、アミン類の水溶液などが挙げられるが、これらに限定されるものではない。 The pH range of the silica hollow fine particle dispersion when adding a cerium metal salt to the silica fine hollow particle dispersion and stirring is 7.0 to 11.0, but 7.0 to 9.0. Is preferable, and it is more preferable to set it as 7.6-8.6. At this time, it is preferable to adjust the pH by adding an alkali or the like. A publicly known alkali can be used as an example of such an alkali. Specific examples thereof include aqueous ammonia solutions, alkali hydroxides, alkaline earth metals, and aqueous solutions of amines, but not limited thereto.
また、シリカ中空微粒子分散液にセリウムの金属塩を添加し、撹拌する際の微粒子分散液の酸化還元電位を−400〜300mVに調整する。酸化還元電位は−300〜200mVとすることが好ましい。三価のセリウム金属塩を原料として用いた場合、調合中に微粒子分散液の酸還元電位が低下するからである。また酸化還元電位をこの範囲に保つことで、生成したCeO2超微粒子の結晶化が促進される。酸化還元電位が−400mV未満となった場合、セリウム化合物がシリカ中空微粒子の表面に沈着せずに板状・棒状などのセリア単独粒子あるいは複合セリア粒子が生成する場合がある。さらに、シリカ中空微粒子に対する水酸化セリウム等の反応性が低下し、CeO2超微粒子含有層が形成されず、仮に形成したとしてもCeO2超微粒子層中のシリカの割合が極めて低くなる。そのため焼成後にセリア子粒子を内在するセリウム含有シリカ層は形成され難い。
酸化還元電位を上記の範囲内に保つ方法として過酸化水素などの酸化剤を添加したり、エアー、酸素及びオゾンを吹き込む方法が挙げられる。これらの方法を行わない場合は、酸化還元電位は−400mV以下になる傾向にある。
Moreover, the metal salt of cerium is added to a silica hollow particle dispersion liquid, and the redox potential of the particle dispersion liquid at the time of stirring is adjusted to -400-300 mV. The redox potential is preferably -300 to 200 mV. This is because when a trivalent cerium metal salt is used as a raw material, the acid reduction potential of the fine particle dispersion is lowered during the preparation. Further, by keeping the redox potential in this range, crystallization of the generated CeO 2 ultrafine particles is promoted. When the oxidation-reduction potential is less than −400 mV, the ceria compound may not be deposited on the surface of the silica hollow fine particles, and ceria single particles or composite ceria particles such as plates and rods may be generated. Furthermore, the reactivity of cerium hydroxide or the like with respect to the silica hollow fine particles is reduced, and the CeO 2 ultrafine particle-containing layer is not formed. Even if it is formed, the ratio of silica in the CeO 2 ultrafine particle layer becomes extremely low. Therefore, it is difficult to form a cerium-containing silica layer internally containing ceria particles after firing.
As a method of keeping the redox potential within the above range, there may be mentioned a method of adding an oxidizing agent such as hydrogen peroxide or blowing air, oxygen and ozone. If these methods are not performed, the redox potential tends to be -400 mV or less.
このような工程1によって、本発明の複合微粒子の前駆体である粒子(前駆体粒子)を含む分散液(前駆体粒子分散液)が得られる。本工程において、前駆体粒子に含まれるCeO2超微粒子の平均結晶子径が2.5nm以上、10nm未満の粒子を得ることが可能である。シリカとセリアの反応性が高すぎると前駆体粒子に含まれるCeO2超微粒子の平均結晶子径が2.5nm未満となる傾向があるため、工程2でセリア粒子を8nm以上とするために過剰に高温での焼成が必要となる。その結果、粒子間の固着が強固となり、解砕が困難となる可能性がある。 By such step 1, a dispersion (precursor particle dispersion) containing particles (precursor particles) that are precursors of the composite fine particles of the present invention is obtained. In this step, it is possible to obtain particles having an average crystallite diameter of 2.5 nm or more and less than 10 nm of CeO 2 ultrafine particles contained in the precursor particles. If the reactivity between silica and ceria is too high, the average crystallite size of CeO 2 ultrafine particles contained in the precursor particles tends to be less than 2.5 nm. In addition, firing at a high temperature is required. As a result, adhesion between particles becomes strong, which may make crushing difficult.
上記のように工程1では、前記シリカ中空微粒子分散液を撹拌し、温度を0〜70℃、pHを7.0〜11.0、酸化還元電位を−400〜300mVに維持しながら、ここへ前記セリウムの金属塩を連続的又は断続的に添加するが、その後、温度を70℃超98℃以下、pHを7.0〜11.0、酸化還元電位を−400〜300mVに維持しながら、ここへ前記セリウムの金属塩を連続的又は断続的に添加し、前記前駆体粒子分散液を得ることが好ましい。
すなわち、工程1では、温度0〜70℃にて処理を行うが、その後に、温度70℃超98℃以下に変更して処理を行って前記前駆体粒子分散液を得ることが好ましい。
このような工程1を行うと、子粒子の粒子径分布における変動係数が好適値である本発明の複合微粒子を含む本発明の分散液を得やすいからである。
なお、温度を70℃超98℃以下として処理する場合のpHおよび酸化還元電位の好適値、調整方法等は、温度0〜70℃にて処理する場合と同様とする。
As described above, in step 1, the silica hollow fine particle dispersion is stirred, and the temperature is maintained at 0 to 70 ° C., the pH is 7.0 to 11.0, and the oxidation-reduction potential is −400 to 300 mV. The metal salt of cerium is continuously or intermittently added, and then, while maintaining the temperature above 70 ° C. and 98 ° C., the pH at 7.0 to 11.0, and the redox potential at −400 to 300 mV, It is preferable to add the cerium metal salt continuously or intermittently to obtain the precursor particle dispersion.
That is, in step 1, the treatment is performed at a temperature of 0 to 70 ° C., but after that, it is preferable to change the temperature to over 70 ° C. and not more than 98 ° C. to obtain the precursor particle dispersion.
This is because when the step 1 is performed, it is easy to obtain the dispersion liquid of the present invention including the composite fine particles of the present invention having a suitable coefficient of variation in the particle size distribution of the child particles.
In addition, the suitable value of pH and the oxidation-reduction potential when adjusting the temperature to be higher than 70 ° C. and not higher than 98 ° C., the adjusting method, and the like are the same as in the case of processing at a temperature of 0 to 70 ° C.
また、逆に、温度0〜70℃にて処理を行う前に、温度70℃超98℃以下にて処理を行って前記前駆体粒子分散液を得ることが好ましい。すなわち、前記シリカ中空微粒子分散液を撹拌し、温度を70℃超98℃以下、pHを7.0〜11.0、酸化還元電位を−400〜300mVに維持しながら、ここへ前記セリウムの金属塩を連続的又は断続的に添加し、その後、温度を0〜70℃、pHを7.0〜11.0、酸化還元電位を−400〜300mVに維持しながら、ここへ前記セリウムの金属塩を連続的又は断続的に添加し、前記前駆体粒子分散液を得ることが好ましい。
このような工程1を行うと、子粒子の粒子径分布における変動係数が好適値である本発明の複合微粒子を含む本発明の分散液を得やすいからである。
なお、温度を70℃超98℃以下として処理する場合のpHおよび酸化還元電位の好適値、調整方法等は、温度0〜70℃にて処理する場合と同様とする。
このように調合中に温度を変化させて調合した場合であっても、温度が0〜70℃にて調合が行われる工程が含まれていれば、複合微粒子は前述と同様の生成機構となる。
Also, conversely, it is preferable to perform the treatment at a temperature of more than 70 ° C. and 98 ° C. or less before obtaining the treatment at a temperature of 0 to 70 ° C. to obtain the precursor particle dispersion. That is, the silica hollow fine particle dispersion is agitated, and the temperature of the cerium metal is increased to 70 ° C. to 98 ° C., the pH is 7.0 to 11.0, and the oxidation-reduction potential is −400 to 300 mV. A salt is continuously or intermittently added, and then the metal salt of cerium is added thereto while maintaining a temperature of 0 to 70 ° C., a pH of 7.0 to 11.0, and a redox potential of −400 to 300 mV. Are preferably added continuously or intermittently to obtain the precursor particle dispersion.
This is because when the step 1 is performed, it is easy to obtain the dispersion liquid of the present invention including the composite fine particles of the present invention having a suitable coefficient of variation in the particle size distribution of the child particles.
In addition, the suitable value of pH and the oxidation-reduction potential when adjusting the temperature to be higher than 70 ° C. and not higher than 98 ° C., the adjusting method, and the like are the same as in the case of processing at a temperature of 0 to 70 ° C.
Thus, even if it is a case where it mixes by changing temperature during preparation, if the process in which preparation is performed at the temperature of 0-70 ° C is included, composite fine particles will be the same generation mechanism as the above. .
0〜70℃の範囲で反応させると、シリカに対するセリウムの反応性が抑制されるため、サイズの大きなCeO2超微粒子が生成するが、その後調合温度を70℃超98℃以下に保ちセリウムの金属塩を添加すると、シリカに対するセリウムの反応性が高くなり、シリカの溶解が促進されるため、シリカがセリアの結晶成長を阻害し、サイズの小さなCeO2超微粒子が生成する。このように調合工程(工程1)中の反応温度を0〜70℃を必須として、反応温度を70℃超98℃以下に変えて、セリウムの金属塩を添加することにより、CeO2超微粒子およびセリア子粒子の粒子径分布を広くすることができる。なお、調合温度は0〜70℃の範囲でセリウムの金属塩を添加させる工程があれば、70℃超98℃以下の温度での反応は、0〜70℃での反応の前でも後でも構わず、3回以上温度を変えても構わない。
また、反応温度を2段階以上で行う場合の0〜70℃で反応させる工程でのセリウム金属塩の添加量は、セリウム金属塩の全添加量に対して10〜90質量%の範囲であることが好ましい。この範囲を超える場合は、サイズの大きい(または小さい)CeO2超微粒子およびセリア子粒子割合が少なくなるため、粒度分布があまり広くならないからである。
When the reaction is performed in the range of 0 to 70 ° C., the reactivity of cerium with respect to silica is suppressed, and thus, large sized CeO 2 ultrafine particles are formed, and then the preparation temperature is maintained at 70 ° C. to 98 ° C. or less. When the salt is added, the reactivity of cerium with respect to silica is increased and the dissolution of silica is promoted, so that silica inhibits ceria crystal growth and small-sized CeO 2 ultrafine particles are generated. Thus, the CeO 2 ultrafine particles and the CeO 2 ultrafine particles are obtained by changing the reaction temperature in the preparation step (step 1) to 0 to 70 ° C. as essential and changing the reaction temperature to 70 ° C. to 98 ° C. or less. The particle size distribution of the ceria particles can be widened. If there is a step of adding a cerium metal salt in the range of 0 to 70 ° C., the reaction at a temperature higher than 70 ° C. and 98 ° C. or lower may be performed before or after the reaction at 0 to 70 ° C. Alternatively, the temperature may be changed three times or more.
Moreover, the addition amount of the cerium metal salt in the step of reacting at 0 to 70 ° C. when the reaction temperature is performed in two or more steps is in the range of 10 to 90 mass% with respect to the total addition amount of the cerium metal salt. Is preferred. When exceeding this range, the ratio of large (or small) CeO 2 ultrafine particles and ceria particles decreases, and the particle size distribution is not so wide.
工程1で得られた前駆体粒子分散液を、工程2に供する前に、純水やイオン交換水などを用いて、さらに希釈あるいは濃縮して、次の工程2に供してもよい。 The precursor particle dispersion obtained in step 1 may be further diluted or concentrated using pure water, ion-exchanged water, or the like before being subjected to step 2, and may be subjected to the next step 2.
なお、前駆体粒子分散液における固形分濃度は1〜27質量%であることが好ましい。 In addition, it is preferable that solid content concentration in precursor particle dispersion liquid is 1-27 mass%.
また、所望により、前駆体粒子分散液を、陽イオン交換樹脂、陰イオン交換樹脂、限外ろ過膜、イオン交換膜、遠心分離などを用いて脱イオン処理してもよい。 If desired, the precursor particle dispersion may be deionized using a cation exchange resin, an anion exchange resin, an ultrafiltration membrane, an ion exchange membrane, centrifugation, or the like.
<工程2>
工程2では、前駆体粒子分散液を乾燥させた後、400〜1,200℃で焼成する。
<Step 2>
In step 2, the precursor particle dispersion is dried and then fired at 400 to 1,200 ° C.
乾燥する方法は特に限定されない。従来公知の乾燥機を用いて乾燥させることができる。具体的には、箱型乾燥機、バンド乾燥機、スプレードライアー等を使用することができる。
なお、好適には、さらに乾燥前の前駆体粒子分散液のpHを6.0〜7.0とすることが推奨される。乾燥前の前駆体粒子分散液のpHを6.0〜7.0とした場合、表面活性を抑制できるからである。
The method for drying is not particularly limited. It can be dried using a conventionally known dryer. Specifically, a box drier, a band drier, a spray drier, etc. can be used.
Preferably, the pH of the precursor particle dispersion before drying is further adjusted to 6.0 to 7.0. When the pH of the precursor particle dispersion before drying is set to 6.0 to 7.0, the surface activity can be suppressed.
乾燥後、焼成する温度は400〜1200℃であるが、900〜1200℃であることが好ましく、940〜1150℃であることがより好ましい。このような温度範囲において焼成すると、セリアの結晶化が十分に進行し、また、セリア子粒子が分散しているセリウム含有シリカ層が適度な膜厚となり、セリウム含有シリカ層に分散した子粒子の脱落が生じにくくなる。さらにこのような温度範囲で焼成することで、水酸化セリウム等は残存し難くなる。この温度が高すぎるとセリアの結晶が異常成長したり、セリウム含有シリカ層が厚くなりすぎたり、セリウム含有シリカ層を構成する非晶質シリカが結晶化したり、粒子同士の融着が進む可能性もある。 The drying temperature after drying is 400 to 1200 ° C, preferably 900 to 1200 ° C, and more preferably 940 to 1150 ° C. When firing is performed in such a temperature range, crystallization of ceria proceeds sufficiently, and the cerium-containing silica layer in which ceria particles are dispersed has a suitable film thickness, and child particles dispersed in the cerium-containing silica layer It becomes difficult for dropout to occur. Furthermore, by firing in such a temperature range, cerium hydroxide and the like hardly remain. If this temperature is too high, ceria crystals may grow abnormally, the cerium-containing silica layer may become too thick, the amorphous silica constituting the cerium-containing silica layer may crystallize, or fusion of particles may proceed. There is also.
焼成時にアルカリ金属、アルカリ土類金属、硫酸塩などをフラックス成分として添加してセリアの結晶成長を促進することもできるが、フラックス成分は、研磨基板への金属汚染や腐食の原因となり得る。そのため、焼成時のフラックス成分の含有量は、前駆体粒子(ドライ)あたり、100ppm以下であることが好ましく、50ppm以下であることがさらに好ましく、40ppm以下であることが最も好ましい。
またフラックス成分は、原料のコロイダルシリカからの持込みを利用したり、調合時にセリウム金属塩の中和に使用するアルカリとして利用しても良いが、調合時にアルカリ金属またはアルカリ土類金属が共存した場合、シリカ中空微粒子の重合が促進され緻密化するため、水酸化セリウム等とシリカ中空微粒子との反応性が低下する。さらにシリカ中空微粒子の表面がアルカリ金属またはアルカリ土類金属で保護されるため、水酸化セリウム等との反応性が抑制され、セリウム含有シリカ層が形成されない傾向にある。さらに調合中にシリカの溶解が抑制されるため、セリア子粒子中にケイ素原子が固溶し難くなる。
Alkaline metal, alkaline earth metal, sulfate, or the like can be added as a flux component during firing to promote ceria crystal growth. However, the flux component can cause metal contamination and corrosion on the polishing substrate. Therefore, the content of the flux component at the time of firing is preferably 100 ppm or less, more preferably 50 ppm or less, and most preferably 40 ppm or less, per precursor particle (dry).
In addition, the flux component may be used from the raw material colloidal silica or may be used as an alkali used to neutralize the cerium metal salt at the time of preparation, but when an alkali metal or alkaline earth metal coexists at the time of preparation Since the polymerization of the silica hollow fine particles is promoted and densified, the reactivity between the cerium hydroxide and the silica hollow fine particles decreases. Furthermore, since the surface of the hollow silica particles is protected with an alkali metal or alkaline earth metal, the reactivity with cerium hydroxide or the like is suppressed, and a cerium-containing silica layer tends not to be formed. Furthermore, since dissolution of silica is suppressed during preparation, silicon atoms are hardly dissolved in ceria particles.
また、このような温度範囲において焼成すると、子粒子の主成分である結晶性セリアにケイ素原子が固溶する。したがって、子粒子に含まれるセリウム原子およびケイ素原子について、セリウム−ケイ素原子間距離をR1とし、セリウム−セリウム原子間距離をR2としたときに、R1<R2の関係を満たすものとなり得る。 In addition, when firing in such a temperature range, silicon atoms are dissolved in crystalline ceria which is the main component of the child particles. Therefore, when the cerium-silicon interatomic distance is R 1 and the cerium-cerium interatomic distance is R 2 with respect to cerium atoms and silicon atoms contained in child particles, the relationship of R 1 <R 2 is satisfied. obtain.
工程2では、焼成して得られた焼成体に溶媒を加えて、pH8.6〜10.8の範囲にて、湿式で解砕処理をして、焼成体解砕分散液を得る。
ここで、焼成体に湿式で解砕処理を施す前に焼成体を乾式で解砕し、その後、湿式で解砕処理を施してもよい。
In step 2, a solvent is added to the fired body obtained by firing, and the mixture is crushed by a wet method in a pH range of 8.6 to 10.8 to obtain a fired body crushed dispersion liquid.
Here, before subjecting the fired body to wet disintegration treatment, the fired body may be disintegrated by a dry method and then subjected to wet disintegration treatment.
乾式の解砕装置としては従来公知の装置を使用することができるが、例えば、アトライター、ボールミル、振動ミル、振動ボールミル等を挙げることができる。
湿式の解砕装置としても従来公知の装置を使用することができるが、例えば、バスケットミル等のバッチ式ビーズミル、横型・縦型・アニュラー型の連続式のビーズミル、サンドグラインダーミル、ボールミル等、ロータ・ステータ式ホモジナイザー、超音波分散式ホモジナイザー、分散液中の微粒子同士をぶつける衝撃粉砕機等の湿式媒体攪拌式ミル(湿式解砕機)が挙げられる。湿式媒体攪拌ミルに用いるビーズとしては、例えば、ガラス、アルミナ、ジルコニア、スチール、フリント石、有機樹脂等を原料としたビーズを挙げることができる。
焼成体を湿式で解砕するときに用いる溶媒としては、水及び/又は有機溶媒が使用される。例えば、純水、超純水、イオン交換水のような水を用いることが好ましい。また、焼成体解砕分散液の固形分濃度は、格別に制限されるものではないが、例えば、0.3〜50質量%の範囲にあることが好ましい。
Conventionally known devices can be used as the dry crushing device, and examples thereof include an attritor, a ball mill, a vibration mill, and a vibration ball mill.
A conventionally known apparatus can also be used as a wet crusher, and examples thereof include batch-type bead mills such as basket mills, continuous-type bead mills of horizontal, vertical, and annular types, sand grinder mills, ball mills, etc. -Stator type homogenizers, ultrasonic dispersion type homogenizers, and wet medium stirring mills (wet crushers) such as an impact crusher that collides fine particles in a dispersion. Examples of the beads used in the wet medium stirring mill include beads made of glass, alumina, zirconia, steel, flint stone, organic resin, and the like.
Water and / or an organic solvent are used as a solvent used when wet-disintegrating the fired body. For example, it is preferable to use water such as pure water, ultrapure water, or ion exchange water. Moreover, although the solid content density | concentration of a baked body crushing dispersion liquid is not restrict | limited especially, For example, it is preferable to exist in the range of 0.3-50 mass%.
なお、焼成体に湿式解砕を施す場合は、溶媒のpHを8.6〜10.8に維持しながら湿式による解砕を行うことが好ましい。pHをこの範囲に維持すると、カチオンコロイド滴定を行った場合に、前記式(1)で表される、流動電位変化量(ΔPCD)と、クニックにおけるカチオンコロイド滴定液の添加量(V)との比(ΔPCD/V)が−150.0〜−5.0となる流動電位曲線が得られるセリア系複合中空微粒子分散液を、最終的により容易に得ることができる。
すなわち、前述の好ましい態様に該当する本発明の分散液が得られる程度に、解砕を行うことが好ましい。前述のように、好ましい態様に該当する本発明の分散液を研磨剤に用いた場合、研磨速度がより向上するからである。これについて本発明者は、本発明の複合微粒子表面におけるセリウム含有シリカ層が適度に薄くなること、及び/又は複合微粒子表面の一部に子粒子が適度に露出することで、研磨速度がより向上し、且つセリア子粒子の脱落を制御できると推定している。さらに解砕中に、セリウム含有シリカ層中のシリカが溶解し再び沈着することで、軟質で易溶解なシリカ層が最外層に形成され、この易溶解性のシリカ層が基板との凝着作用で摩擦力を向上させ研磨速度が向上すると推定している。また、セリウム含有シリカ層が薄いか剥げた状態であるため、子粒子が研磨時にある程度脱離しやすくなると推定している。ΔPCD/Vは、−145.0〜−10.0であることがより好ましく、−140.0〜−20.0であることがさらに好ましい。
なお、工程2のような湿式解砕工程を経ずに、焼成粉をほぐす程度であったり、乾式解砕・粉砕だけ、あるいは湿式解砕であっても所定のpH範囲外の場合は、ΔPCD/Vが−150.0〜−5.0の範囲となりにくく、さらに軟質で易溶解性のシリカ層が形成され難い。
In the case of subjecting the fired body to wet disintegration, it is preferable to perform disintegration by wet while maintaining the pH of the solvent at 8.6 to 10.8. When the pH is maintained in this range, the flow potential change amount (ΔPCD) represented by the above formula (1) when cationic colloid titration is performed, and the addition amount (V) of the cationic colloid titration solution in the knick A ceria-based composite hollow fine particle dispersion capable of obtaining a flow potential curve in which the ratio (ΔPCD / V) is −150.0 to −5.0 can finally be obtained more easily.
That is, it is preferable to perform crushing to such an extent that the dispersion liquid of the present invention corresponding to the above-mentioned preferred embodiment is obtained. This is because, as described above, when the dispersion liquid of the present invention corresponding to a preferred embodiment is used as an abrasive, the polishing rate is further improved. The inventors of the present invention have found that the polishing rate is further improved by appropriately thinning the cerium-containing silica layer on the surface of the composite fine particle of the present invention and / or by appropriately exposing child particles to a part of the surface of the composite fine particle. In addition, it is presumed that the falling of ceria particles can be controlled. Furthermore, during disintegration, the silica in the cerium-containing silica layer is dissolved and deposited again, so that a soft and easily soluble silica layer is formed as the outermost layer, and this easily soluble silica layer adheres to the substrate It is estimated that the polishing force is improved by improving the frictional force. In addition, since the cerium-containing silica layer is in a thin or peeled state, it is estimated that child particles are easily detached during polishing. ΔPCD / V is more preferably −145.0 to −10.0, and further preferably −140.0 to −20.0.
In addition, it is the grade which loosens baking powder without passing through a wet disintegration process like the process 2, only dry disintegration and pulverization only, or even if it is a wet disintegration, when it is out of a predetermined pH range, ΔPCD / V is unlikely to be in the range of −150.0 to −5.0, and a soft and easily soluble silica layer is difficult to form.
<工程3>
工程3では、工程2において得られた前記焼成体解砕分散液について、相対遠心加速度300G以上にて遠心分離処理を行い、続いて沈降成分を除去し、セリア系複合中空微粒子散液を得る。
具体的には、前記焼成体解砕分散液について、遠心分離処理による分級を行う。遠心分離処理における相対遠心加速度は300G以上とする。遠心分離処理後、沈降成分を除去し、セリア系複合中空微粒子分散液を得ることができる。相対遠心加速度の上限は格別に制限されるものではないが、実用上は10,000G以下で使用される。
<Step 3>
In step 3, the crushed and crushed dispersion obtained in step 2 is centrifuged at a relative centrifugal acceleration of 300 G or more, and then the precipitated component is removed to obtain a ceria-based composite hollow fine particle solution.
Specifically, classification is performed by centrifugal separation processing on the fired body crushed and dispersed liquid. The relative centrifugal acceleration in the centrifugation process is set to 300 G or more. After centrifugation, the precipitated components can be removed to obtain a ceria-based composite hollow fine particle dispersion. Although the upper limit of relative centrifugal acceleration is not particularly limited, it is practically used at 10,000 G or less.
工程3では、上記の条件を満たす遠心分離処理を備えることが必要である。遠心加速度が上記の条件に満たない場合は、セリア系複合中空微粒子分散液中に粗大粒子が残存するため、セリア系複合中空微粒子分散液を用いた研磨材などの研磨用途に使用した際に、スクラッチが発生する原因となる。 In step 3, it is necessary to provide a centrifugation process that meets the above conditions. When the centrifugal acceleration does not satisfy the above conditions, coarse particles remain in the ceria-based composite hollow particle dispersion, and therefore, when used for polishing applications such as abrasives using the ceria-based composite hollow particle dispersion, It causes scratching.
本発明では、上記の製造方法によって得られるセリア系複合中空微粒子分散液を、更に乾燥させて、セリア系複合中空微粒子を得ることができる。乾燥方法は特に限定されず、例えば、従来公知の乾燥機を用いて乾燥させることができる。 In the present invention, the ceria-based composite hollow fine particle dispersion obtained by the above production method can be further dried to obtain ceria-based composite hollow fine particles. The drying method is not particularly limited, and can be dried using, for example, a conventionally known dryer.
このような本発明の製造方法によって、本発明の分散液を得ることができる。 The dispersion of the present invention can be obtained by the production method of the present invention.
<研磨用砥粒分散液>
本発明の分散液を含む液体は、研磨用砥粒分散液(以下では「本発明の研磨用砥粒分散液」ともいう)として好ましく用いることができる。特にはSiO2絶縁膜が形成された半導体基板の平坦化用の研磨用砥粒分散液として好適に使用することができる。また研磨性能を制御するためにケミカル成分を添加し、研磨スラリーとしても好適に用いることができる。
<Polishing abrasive dispersion>
The liquid containing the dispersion of the present invention can be preferably used as a polishing abrasive dispersion (hereinafter also referred to as “the polishing abrasive dispersion of the present invention”). In particular, it can be suitably used as a polishing abrasive dispersion for polishing a semiconductor substrate on which a SiO 2 insulating film is formed. Moreover, in order to control polishing performance, a chemical component can be added and it can use suitably as a polishing slurry.
本発明の研磨用砥粒分散液は半導体基板などを研磨する際の研磨速度が高く、また研磨時に研磨面のキズ(スクラッチ)が少ない、基板への砥粒の残留が少ないなどの効果に優れている。 The polishing abrasive dispersion of the present invention has a high polishing rate when polishing a semiconductor substrate, etc., and has excellent effects such as few scratches (scratches) on the polishing surface and little residual abrasive on the substrate during polishing. ing.
本発明の研磨用砥粒分散液は分散溶媒として、水及び/又は有機溶媒を含む。この分散溶媒として、例えば純水、超純水、イオン交換水のような水を用いることが好ましい。さらに、本発明の研磨用砥粒分散液に、研磨性能を制御するための添加剤として、研磨促進剤、界面活性剤、複素環化合物、pH調整剤及びpH緩衝剤からなる群より選ばれる1種以上を添加することで研磨スラリーとして好適に用いられる。 The abrasive grain dispersion of the present invention contains water and / or an organic solvent as a dispersion solvent. As the dispersion solvent, for example, water such as pure water, ultrapure water, and ion exchange water is preferably used. Further, the polishing abrasive dispersion of the present invention is selected from the group consisting of a polishing accelerator, a surfactant, a heterocyclic compound, a pH adjuster and a pH buffer as an additive for controlling polishing performance. It is suitably used as a polishing slurry by adding species or more.
<研磨促進剤>
本発明の研磨用砥粒分散液に、被研磨材の種類によっても異なるが、必要に応じて従来公知の研磨促進剤を添加することで研磨スラリーとして、使用することができる。この様な例としては、過酸化水素、過酢酸、過酸化尿素など及びこれらの混合物を挙げることができる。このような過酸化水素等の研磨促進剤を含む研磨剤組成物を用いると、被研磨材が金属の場合には効果的に研磨速度を向上させることができる。
<Polishing accelerator>
Although it changes with kinds of to-be-polished material to the abrasive grain dispersion liquid of this invention, it can be used as a grinding | polishing slurry by adding a conventionally well-known grinding | polishing promoter as needed. Examples of such include hydrogen peroxide, peracetic acid, urea peroxide and mixtures thereof. When such an abrasive composition containing a polishing accelerator such as hydrogen peroxide is used, the polishing rate can be effectively improved when the material to be polished is a metal.
研磨促進剤の別の例としては、硫酸、硝酸、リン酸、シュウ酸、フッ酸等の無機酸、酢酸等の有機酸、あるいはこれら酸のナトリウム塩、カリウム塩、アンモニウム塩、アミン塩及びこれらの混合物などを挙げることができる。これらの研磨促進剤を含む研磨用組成物の場合、複合成分からなる被研磨材を研磨する際に、被研磨材の特定の成分についての研磨速度を促進することにより、最終的に平坦な研磨面を得ることができる。 Other examples of polishing accelerators include inorganic acids such as sulfuric acid, nitric acid, phosphoric acid, oxalic acid and hydrofluoric acid, organic acids such as acetic acid, or sodium, potassium, ammonium and amine salts of these acids And mixtures thereof. In the case of a polishing composition containing these polishing accelerators, when polishing a material to be polished consisting of composite components, the polishing rate is accelerated for a specific component of the material to be polished, thereby finally achieving flat polishing. You can get a face.
本発明の研磨用砥粒分散液が研磨促進剤を含有する場合、その含有量としては、0.1〜10質量%であることが好ましく、0.5〜5質量%であることがより好ましい。 When the polishing abrasive dispersion of the present invention contains a polishing accelerator, its content is preferably 0.1 to 10% by mass, more preferably 0.5 to 5% by mass. .
<界面活性剤及び/又は親水性化合物>
本発明の研磨用砥粒分散液の分散性や安定性を向上させるためにカチオン系、アニオン系、ノニオン系、両性系の界面活性剤又は親水性化合物を添加することができる。界面活性剤と親水性化合物は、いずれも被研磨面への接触角を低下させる作用を有し、均一な研磨を促す作用を有する。界面活性剤及び/又は親水性化合物としては、例えば、以下の群から選ばれるものを使用することができる。
<Surfactant and / or hydrophilic compound>
In order to improve the dispersibility and stability of the abrasive grain dispersion for polishing of the present invention, cationic, anionic, nonionic or amphoteric surfactants or hydrophilic compounds can be added. Both the surfactant and the hydrophilic compound have an action of reducing a contact angle to the surface to be polished and an action of promoting uniform polishing. As the surfactant and / or the hydrophilic compound, for example, those selected from the following group can be used.
陰イオン界面活性剤として、カルボン酸塩、スルホン酸塩、硫酸エステル塩、リン酸エステル塩が挙げられ、カルボン酸塩として、石鹸、N−アシルアミノ酸塩、ポリオキシエチレン又はポリオキシプロピレンアルキルエーテルカルボン酸塩、アシル化ペプチド;スルホン酸塩として、アルキルスルホン酸塩、アルキルベンゼン及びアルキルナフタレンスルホン酸塩、ナフタレンスルホン酸塩、スルホコハク酸塩、α−オレフィンスルホン酸塩、N−アシルスルホン酸塩;硫酸エステル塩として、硫酸化油、アルキル硫酸塩、アルキルエーテル硫酸塩、ポリオキシエチレン又はポリオキシプロピレンアルキルアリルエーテル硫酸塩、アルキルアミド硫酸塩;リン酸エステル塩として、アルキルリン酸塩、ポリオキシエチレン又はポリオキシプロピレンアルキルアリルエーテルリン酸塩を挙げることができる。 Examples of the anionic surfactant include carboxylate, sulfonate, sulfate ester salt and phosphate ester salt. Examples of the carboxylate salt include soap, N-acyl amino acid salt, polyoxyethylene or polyoxypropylene alkyl ether carboxyl. Acid salt, acylated peptide; as sulfonate, alkyl sulfonate, alkyl benzene and alkyl naphthalene sulfonate, naphthalene sulfonate, sulfosuccinate, α-olefin sulfonate, N-acyl sulfonate; sulfate ester Salts include sulfated oil, alkyl sulfates, alkyl ether sulfates, polyoxyethylene or polyoxypropylene alkyl allyl ether sulfates, alkyl amide sulfates; phosphate ester salts such as alkyl phosphates, polyoxyethylene or polyoxypropyls. Can pyrene alkyl allyl ether phosphates.
陽イオン界面活性剤として、脂肪族アミン塩、脂肪族4級アンモニウム塩、塩化ベンザルコニウム塩、塩化ベンゼトニウム、ピリジニウム塩、イミダゾリニウム塩;両性界面活性剤として、カルボキシベタイン型、スルホベタイン型、アミノカルボン酸塩、イミダゾリニウムベタイン、レシチン、アルキルアミンオキサイドを挙げることができる。 Aliphatic amine salt, aliphatic quaternary ammonium salt, benzalkonium chloride salt, benzethonium chloride, pyridinium salt, imidazolinium salt as cationic surfactant; carboxybetaine type, sulfobetaine type, as amphoteric surfactant, Aminocarboxylic acid salts, imidazolinium betaines, lecithin, alkylamine oxides can be mentioned.
非イオン界面活性剤として、エーテル型、エーテルエステル型、エステル型、含窒素型が挙げられ、エーテル型として、ポリオキシエチレンアルキル及びアルキルフェニルエーテル、アルキルアリルホルムアルデヒド縮合ポリオキシエチレンエーテル、ポリオキシエチレンポリオキシプロピレンブロックポリマー、ポリオキシエチレンポリオキシプロピレンアルキルエーテルが挙げられ、エーテルエステル型として、グリセリンエステルのポリオキシエチレンエーテル、ソルビタンエステルのポリオキシエチレンエーテル、ソルビトールエステルのポリオキシエチレンエーテル、エステル型として、ポリエチレングリコール脂肪酸エステル、グリセリンエステル、ポリグリセリンエステル、ソルビタンエステル、プロピレングリコールエステル、ショ糖エステル、含窒素型として、脂肪酸アルカノールアミド、ポリオキシエチレン脂肪酸アミド、ポリオキシエチレンアルキルアミド等が例示される。その他に、フッ素系界面活性剤などが挙げられる。 Examples of the nonionic surfactant include ether type, ether ester type, ester type and nitrogen type, and as ether type, polyoxyethylene alkyl and alkyl phenyl ether, alkyl allyl formaldehyde condensed polyoxyethylene ether, polyoxyethylene poly Oxypropylene block polymers and polyoxyethylene polyoxypropylene alkyl ethers are mentioned, and as ether ester type, polyoxyethylene ether of glycerin ester, polyoxyethylene ether of sorbitan ester, polyoxyethylene ether of sorbitol ester, as ester type, Polyethylene glycol fatty acid ester, glycerin ester, polyglycerin ester, sorbitan ester, propylene glycol ester , Sucrose esters, nitrogen-containing type, fatty acid alkanolamides, polyoxyethylene fatty acid amides, polyoxyethylene alkyl amide, and the like. In addition, fluorine type surfactant etc. are mentioned.
界面活性剤としては陰イオン界面活性剤もしくは非イオン系界面活性剤が好ましく、また、塩としては、アンモニウム塩、カリウム塩、ナトリウム塩等が挙げられ、特にアンモニウム塩及びカリウム塩が好ましい。 As the surfactant, an anionic surfactant or a nonionic surfactant is preferable, and as the salt, ammonium salt, potassium salt, sodium salt and the like can be mentioned, and ammonium salt and potassium salt are particularly preferable.
さらに、その他の界面活性剤、親水性化合物等としては、グリセリンエステル、ソルビタンエステル及びアラニンエチルエステル等のエステル;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリエチレングリコールアルキルエーテル、ポリエチレングリコールアルケニルエーテル、アルキルポリエチレングリコール、アルキルポリエチレングリコールアルキルエーテル、アルキルポリエチレングリコールアルケニルエーテル、アルケニルポリエチレングリコール、アルケニルポリエチレングリコールアルキルエーテル、アルケニルポリエチレングリコールアルケニルエーテル、ポリプロピレングリコールアルキルエーテル、ポリプロピレングリコールアルケニルエーテル、アルキルポリプロピレングリコール、アルキルポリプロピレングリコールアルキルエーテル、アルキルポリプロピレングリコールアルケニルエーテル、アルケニルポリプロピレングリコール等のエーテル;アルギン酸、ペクチン酸、カルボキシメチルセルロース、カードラン及びプルラン等の多糖類;グリシンアンモニウム塩及びグリシンナトリウム塩等のアミノ酸塩;ポリアスパラギン酸、ポリグルタミン酸、ポリリシン、ポリリンゴ酸、ポリメタクリル酸、ポリメタクリル酸アンモニウム塩、ポリメタクリル酸ナトリウム塩、ポリアミド酸、ポリマレイン酸、ポリイタコン酸、ポリフマル酸、ポリ(p−スチレンカルボン酸)、ポリアクリル酸、ポリアクリルアミド、アミノポリアクリルアミド、ポリアクリル酸アンモニウム塩、ポリアクリル酸ナトリウム塩、ポリアミド酸、ポリアミド酸アンモニウム塩、ポリアミド酸ナトリウム塩及びポリグリオキシル酸等のポリカルボン酸及びその塩;ポリビニルアルコール、ポリビニルピロリドン及びポリアクロレイン等のビニル系ポリマ;メチルタウリン酸アンモニウム塩、メチルタウリン酸ナトリウム塩、硫酸メチルナトリウム塩、硫酸エチルアンモニウム塩、硫酸ブチルアンモニウム塩、ビニルスルホン酸ナトリウム塩、1−アリルスルホン酸ナトリウム塩、2−アリルスルホン酸ナトリウム塩、メトキシメチルスルホン酸ナトリウム塩、エトキシメチルスルホン酸アンモニウム塩、3−エトキシプロピルスルホン酸ナトリウム塩等のスルホン酸及びその塩;プロピオンアミド、アクリルアミド、メチル尿素、ニコチンアミド、コハク酸アミド及びスルファニルアミド等のアミド等を挙げることができる。 Furthermore, as other surfactants and hydrophilic compounds, esters such as glycerin ester, sorbitan ester and alanine ethyl ester; polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polyethylene glycol alkyl ether, polyethylene glycol alkenyl ether, alkyl Polyethylene glycol, alkyl polyethylene glycol alkyl ether, alkyl polyethylene glycol alkenyl ether, alkenyl polyethylene glycol, alkenyl polyethylene glycol alkyl ether, alkenyl polyethylene glycol alkenyl ether, polypropylene glycol alkyl ether, polypropylene glycol alkenyl ether, alkyl polypropylene Ethers such as recall, alkyl polypropylene glycol alkyl ether, alkyl polypropylene glycol alkenyl ether, alkenyl polypropylene glycol; polysaccharides such as alginic acid, pectic acid, carboxymethyl cellulose, curdlan and pullulan; amino acid salts such as glycine ammonium salt and glycine sodium salt; Polyaspartic acid, polyglutamic acid, polylysine, polymalic acid, polymethacrylic acid, polymethacrylic acid ammonium salt, polymethacrylic acid sodium salt, polyamic acid, polymaleic acid, polyitaconic acid, polyfumaric acid, poly (p-styrenecarboxylic acid), poly Acrylic acid, polyacrylamide, aminopolyacrylamide, polyacrylic acid ammonium salt, polyacrylic acid sodium salt, Polyamic acid and its salts such as polyamic acid ammonium salt, polyamic acid sodium salt and polyglyoxylic acid and its salts; polyvinyl polymers such as polyvinyl alcohol, polyvinyl pyrrolidone and polyacrolein; methyl taurate ammonium salt and methyl taurate sodium salt , Methyl sulfate sodium salt, ethyl ammonium sulfate salt, butyl ammonium sulfate salt, vinyl sulfonic acid sodium salt, 1-allyl sulfonic acid sodium salt, 2-allyl sulfonic acid sodium salt, methoxymethyl sulfonic acid sodium salt, ethoxymethyl sulfonic acid ammonium salt Salts, sulfonic acids such as 3-ethoxypropylsulfonic acid sodium salt and the like; propionamide, acrylamide, methylurea, nicotinamide, succinic acid amide and sulfite Amides such as phenyl amide can be mentioned.
なお、適用する被研磨基材がガラス基板等である場合は、何れの界面活性剤であっても好適に使用できるが、半導体集積回路用シリコン基板などの場合であって、アルカリ金属、アルカリ土類金属又はハロゲン化物等による汚染の影響を嫌う場合にあっては、酸もしくはそのアンモニウム塩系の界面活性剤を使用することが望ましい。 Note that when the substrate to be polished is a glass substrate or the like, any surfactant can be suitably used. However, in the case of a silicon substrate for a semiconductor integrated circuit or the like, alkali metal, alkaline earth In the case where the influence of contamination by a metal or a halide is disliked, it is desirable to use an acid or an ammonium salt surfactant.
本発明の研磨用砥粒分散液が界面活性剤及び/又は親水性化合物を含有する場合、その含有量は、総量として、研磨用砥粒分散液の1L中、0.001〜10gとすることが好ましく、0.01〜5gとすることがより好ましく0.1〜3gとすることが特に好ましい。 When the polishing abrasive dispersion of the present invention contains a surfactant and / or a hydrophilic compound, the content is 0.001 to 10 g in 1 L of the polishing abrasive dispersion as a total amount. Is preferably 0.01 to 5 g, more preferably 0.1 to 3 g.
界面活性剤及び/又は親水性化合物の含有量は、充分な効果を得る上で、研磨用砥粒分散液の1L中、0.001g以上が好ましく、研磨速度低下防止の点から10g以下が好ましい。 In order to obtain a sufficient effect, the content of the surfactant and / or the hydrophilic compound is preferably 0.001 g or more in 1 liter of the abrasive dispersion for polishing, and is preferably 10 g or less from the viewpoint of preventing reduction in the polishing rate. .
界面活性剤又は親水性化合物は1種のみでもよいし、2種以上を使用してもよく、異なる種類のものを併用することもできる。 Only one type of surfactant or hydrophilic compound may be used, two or more types may be used, and different types may be used in combination.
<複素環化合物>
本発明の研磨用砥粒分散液については、被研磨基材に金属が含まれる場合に、金属に不動態層又は溶解抑制層を形成させて、被研磨基材の侵食を抑制する目的で、複素環化合物を含有させても構わない。ここで、「複素環化合物」とはヘテロ原子を1個以上含んだ複素環を有する化合物である。ヘテロ原子とは、炭素原子、又は水素原子以外の原子を意味する。複素環とはヘテロ原子を少なくとも一つ持つ環状化合物を意味する。ヘテロ原子は複素環の環系の構成部分を形成する原子のみを意味し、環系に対して外部に位置していたり、少なくとも一つの非共役単結合により環系から分離していたり、環系のさらなる置換基の一部分であるような原子は意味しない。ヘテロ原子として好ましくは、窒素原子、硫黄原子、酸素原子、セレン原子、テルル原子、リン原子、ケイ素原子、及びホウ素原子などを挙げることができるがこれらに限定されるものではない。複素環化合物の例として、イミダゾール、ベンゾトリアゾール、ベンゾチアゾール、テトラゾールなどを用いることができる。より具体的には、1,2,3,4−テトラゾール、5−アミノ−1,2,3,4−テトラゾール、5−メチル−1,2,3,4−テトラゾール、1,2,3−トリアゾール、4−アミノ−1,2,3−トリアゾール、4,5−ジアミノ−1,2,3−トリアゾール、1,2,4−トリアゾール、3−アミノ1,2,4−トリアゾール、3,5−ジアミノ−1,2,4−トリアゾールなどを挙げることができるが、これらに限定されるものではない。
<Heterocyclic compound>
For the polishing abrasive dispersion of the present invention, when a metal is contained in the substrate to be polished, for the purpose of forming a passive layer or dissolution inhibiting layer on the metal and suppressing erosion of the substrate to be polished, A heterocyclic compound may be contained. Here, the "heterocyclic compound" is a compound having a heterocyclic ring containing one or more hetero atoms. A hetero atom means an atom other than a carbon atom or a hydrogen atom. A heterocycle means a cyclic compound having at least one heteroatom. A heteroatom means only those atoms that form part of a heterocyclic ring system, either external to the ring system, separated from the ring system by at least one non-conjugated single bond, Atoms that are part of a further substituent of are not meant. Preferred examples of the hetero atom include, but are not limited to, a nitrogen atom, a sulfur atom, an oxygen atom, a selenium atom, a tellurium atom, a phosphorus atom, a silicon atom, and a boron atom. As examples of heterocyclic compounds, imidazole, benzotriazole, benzothiazole, tetrazole and the like can be used. More specifically, 1,2,3,4-tetrazole, 5-amino-1,2,3,4-tetrazole, 5-methyl-1,2,3,4-tetrazole, 1,2,3- Triazole, 4-amino-1,2,3-triazole, 4,5-diamino-1,2,3-triazole, 1,2,4-triazole, 3-amino1,2,4-triazole, 3,5 -Diamino-1, 2, 4- triazole etc. can be mentioned, However, It is not limited to these.
本発明の研磨用砥粒分散液に複素環化合物を配合する場合の含有量については、0.001〜1.0質量%であることが好ましく、0.001〜0.7質量%であることがより好ましく、0.002〜0.4質量%であることがさらに好ましい。 About content in the case of mix | blending a heterocyclic compound with the abrasive grain dispersion liquid of this invention, it is preferable that it is 0.001-1.0 mass%, and it is 0.001-0.7 mass%. Is more preferable, and 0.002 to 0.4% by mass is more preferable.
<pH調整剤>
上記各添加剤の効果を高めるためなどに必要に応じて酸又は塩基およびそれらの塩類化合物を添加して研磨用組成物のpHを調節することができる。
<PH adjuster>
An acid or a base and a salt compound thereof may be added to adjust the pH of the polishing composition, as necessary, in order to enhance the effects of the respective additives.
本発明の研磨用砥粒分散液をpH7以上に調整するときは、pH調整剤として、アルカリ性のものを使用する。望ましくは、水酸化ナトリウム、アンモニア水、炭酸アンモニウム、エチルアミン、メチルアミン、トリエチルアミン、テトラメチルアミンなどのアミンが使用される。 When the polishing abrasive dispersion of the present invention is adjusted to pH 7 or higher, an alkaline one is used as a pH adjuster. Desirably, amines such as sodium hydroxide, aqueous ammonia, ammonium carbonate, ethylamine, methylamine, triethylamine, tetramethylamine are used.
本発明の研磨用砥粒分散液をpH7未満に調整するときは、pH調整剤として、酸性のものが使用される。例えば、酢酸、乳酸、クエン酸、リンゴ酸、酒石酸、グリセリン酸などのヒドロキシ酸類の様な、塩酸、硝酸などの鉱酸が使用される。 When adjusting the polishing abrasive dispersion of the present invention to less than pH 7, an acidic one is used as a pH adjuster. For example, mineral acids such as hydrochloric acid and nitric acid such as hydroxy acids such as acetic acid, lactic acid, citric acid, malic acid, tartaric acid and glyceric acid are used.
<pH緩衝剤>
本発明の研磨用砥粒分散液のpH値を一定に保持するために、pH緩衝剤を使用しても構わない。pH緩衝剤としては、例えば、リン酸2水素アンモニウム、リン酸水素2アンモニウム、4ホウ酸アンモ四水和水などのリン酸塩及びホウ酸塩又は有機酸塩などを使用することができる。
<PH buffering agent>
A pH buffer may be used to keep the pH value of the polishing abrasive dispersion of the present invention constant. As the pH buffering agent, for example, phosphates such as ammonium dihydrogen phosphate, diammonium hydrogen phosphate, ammonium tetraborate tetrahydrate, and borate or organic acid salts can be used.
また、本発明の研磨用砥粒分散液の分散溶媒として、例えばメタノール、エタノール、イソプロパノール、n−ブタノール、メチルイソカルビノールなどのアルコール類;アセトン、2−ブタノン、エチルアミルケトン、ジアセトンアルコール、イソホロン、シクロヘキサノンなどのケトン類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド類;ジエチルエーテル、イソプロピルエーテル、テトラヒドロフラン、1,4−ジオキサン、3,4−ジヒドロ−2H−ピランなどのエーテル類;2−メトキシエタノール、2−エトキシエタノール、2−ブトキシエタノール、エチレングリコールジメチルエーテルなどのグリコールエーテル類;2−メトキシエチルアセテート、2−エトキシエチルアセテート、2−ブトキシエチルアセテートなどのグリコールエーテルアセテート類;酢酸メチル、酢酸エチル、酢酸イソブチル、酢酸アミル、乳酸エチル、エチレンカーボネートなどのエステル類;ベンゼン、トルエン、キシレンなどの芳香族炭化水素類;ヘキサン、ヘプタン、イソオクタン、シクロヘキサンなどの脂肪族炭化水素類;塩化メチレン、1,2−ジクロルエタン、ジクロロプロパン、クロルベンゼンなどのハロゲン化炭化水素類;ジメチルスルホキシドなどのスルホキシド類;N−メチル−2−ピロリドン、N−オクチル−2−ピロリドンなどのピロリドン類などの有機溶媒を用いることができる。これらを水と混合して用いてもよい。 Further, as a dispersion solvent for the polishing abrasive dispersion of the present invention, for example, alcohols such as methanol, ethanol, isopropanol, n-butanol, methyl isocarbinol; acetone, 2-butanone, ethyl amyl ketone, diacetone alcohol, Ketones such as isophorone and cyclohexanone; Amides such as N, N-dimethylformamide and N, N-dimethylacetamide; Diethyl ether, isopropyl ether, tetrahydrofuran, 1,4-dioxane, 3,4-dihydro-2H-pyran and the like Ethers; glycol ethers such as 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, ethylene glycol dimethyl ether; 2-methoxyethyl acetate, 2-ethoxyethyl acetate, 2-butyl ether Glycol ether acetates such as xylethyl acetate; Esters such as methyl acetate, ethyl acetate, isobutyl acetate, amyl acetate, ethyl lactate, ethylene carbonate; Aromatic hydrocarbons such as benzene, toluene, xylene; Hexane, heptane, isooctane Aliphatic hydrocarbons such as cyclohexane; halogenated hydrocarbons such as methylene chloride, 1,2-dichloroethane, dichloropropane, chlorobenzene; sulfoxides such as dimethyl sulfoxide; N-methyl-2-pyrrolidone, N-octyl Organic solvents such as pyrrolidones such as -2-pyrrolidone can be used. You may mix and use these with water.
本発明の研磨用砥粒分散液に含まれる固形分濃度は0.3〜50質量%の範囲にあることが好ましい。この固形分濃度が低すぎると研磨速度が低下する可能性がある。逆に固形分濃度が高すぎても研磨速度はそれ以上向上する場合は少ないので、不経済となり得る。 The solid content concentration contained in the polishing abrasive dispersion of the present invention is preferably in the range of 0.3 to 50% by mass. If the solid concentration is too low, the polishing rate may be reduced. Conversely, even if the solid content concentration is too high, the polishing rate is rarely improved further, which can be uneconomical.
以下、本発明について実施例に基づき説明する。本発明はこれらの実施例に限定されない。 Hereinafter, the present invention will be described based on examples. The present invention is not limited to these examples.
初めに、実施例及び比較例における各測定方法及び試験方法の詳細について説明する。各実施例及び比較例について、以下の各測定結果及び試験結果を第1表〜第3表に記す。 First, details of each measurement method and test method in the examples and comparative examples will be described. For each example and comparative example, the following measurement results and test results are shown in Tables 1 to 3.
[成分の分析]
[SiO2含有量の測定]
シリカ中空微粒子分散液におけるSiO2含有量について、珪酸ナトリウムを原料とした場合は、シリカ中空微粒子分散液に1000℃灼熱減量を行い秤量し、得られたものの全てがSiO2であるとして、その含有量を求めた。また、アルコキシシランを原料とした場合は、シリカ中空微粒子分散液を150℃で1時間乾燥させた後に秤量し、得られたものの全てがSiO2であるとして、その含有量を求めた。ここで得られたSiO2の含有量をシリカ中空微粒子分散液の固形分量(dry量)とする。また、この値を用いて、シリカ中空微粒子分散液の固形分濃度を求める。
また、セリア系複合中空微粒子におけるSiO2含有量は、セリア系複合中空微粒子分散液に1000℃灼熱減量を行い、固形分の質量を求めた後、後述するAg〜Th等の場合と同様に、ICPプラズマ発光分析装置(例えば、SII製、SPS5520)を用いて標準添加法によってCe含有率を測定してCeO2質量%を算出し、CeO2以外の固形分の成分はSiO2であるとして、SiO2の含有量を求めた。なお、セリア系複合中空微粒子におけるSiO2含有率、CeO2含有率およびシリカ100質量部に対するセリアの質量部は、ここで求めたCeO2含有量およびSiO2含有量に基づいて算出した。ここで得られたCeO2含有量およびSiO2含有量の合計量を、セリア系複合中空微粒子分散液の固形分量(dry量)とする。また、この値を用いて、セリア系複合中空微粒子分散液の固形分濃度を求める。
以下に説明する特定不純物群1および特定不純物群2の含有率の測定では、このようにして求めた固形分の質量に基づいて、dry量に対する各成分の含有率を求めた。
[Analysis of ingredients]
[Measurement of SiO 2 content]
For SiO 2 content in the hollow silica fine particle dispersion, as the case of the sodium silicate as a raw material, the hollow silica fine particle dispersion 1000 ° C. ignition loss was carried out were weighed, all but the resulting is SiO 2, containing the The amount was determined. When alkoxysilane was used as the raw material, the silica hollow fine particle dispersion was dried at 150 ° C. for 1 hour and then weighed, and the content was determined assuming that all of the obtained product was SiO 2 . The content of SiO 2 obtained here is defined as the solid content (dry amount) of the silica hollow fine particle dispersion. Moreover, the solid content concentration of the silica hollow fine particle dispersion is determined using this value.
In addition, the SiO 2 content in the ceria-based composite hollow fine particles is reduced to 1000 ° C. in the ceria-based composite hollow fine particle dispersion, and after determining the mass of the solid content, as in the case of Ag to Th described later, Using an ICP plasma emission spectrometer (eg, SPS, SPS5520), the Ce content was measured by the standard addition method to calculate CeO 2 mass%, and the solid content component other than CeO 2 was SiO 2 . The content of SiO 2 was determined. In addition, the SiO 2 content, the CeO 2 content, and the mass part of ceria with respect to 100 parts by mass of silica in the ceria-based composite hollow fine particles were calculated based on the CeO 2 content and the SiO 2 content obtained here. Let the total amount of CeO 2 content and SiO 2 content obtained here be the solid content amount (dry amount) of the ceria-based composite hollow fine particle dispersion. Moreover, the solid content concentration of the ceria-based composite hollow fine particle dispersion is determined using this value.
In the measurement of the content rates of the specific impurity group 1 and the specific impurity group 2 described below, the content rate of each component with respect to the dry amount was obtained based on the mass of the solid content obtained in this manner.
[セリア系複合中空微粒子またはシリカ中空微粒子の成分分析]
各元素の含有率は、以下の方法によって測定するものとする。
初めに、セリア系複合中空微粒子またはセリア系複合中空微粒子分散液からなる試料約1g(固形分20質量%に調整したもの)を白金皿に採取する。リン酸3ml、硝酸5ml、弗化水素酸10mlを加えて、サンドバス上で加熱する。乾固したら、少量の水と硝酸50mlを加えて溶解させて100mlのメスフラスコにおさめ、水を加えて100mlとする。この溶液でNa、Kは原子吸光分光分析装置(例えば日立製作所社製、Z−2310)で測定する。次に、100mlにおさめた溶液から分液10mlを20mlメスフラスコに採取する操作を5回繰り返し、分液10mlを5個得る。そして、これを用いて、Ag、Ca、Cr、Cu、Fe、Mg、Ni、Zn、U及びThについてICPプラズマ発光分析装置(例えばSII製、SPS5520)にて標準添加法で測定を行う。ここで、同様の方法でブランクも測定して、ブランク分を差し引いて調整し、各元素における測定値とする。
そして、前述の方法で求めた固形分の質量に基づいて、dry量に対する各成分の含有率を求めた。
[Component analysis of ceria-based composite hollow particles or silica hollow particles]
The content of each element is to be measured by the following method.
First, about 1 g of a sample consisting of a ceria-based composite hollow fine particle or a ceria-based composite hollow fine particle dispersion (prepared to have a solid content of 20% by mass) is collected in a platinum dish. Add 3 ml of phosphoric acid, 5 ml of nitric acid and 10 ml of hydrofluoric acid and heat on a sand bath. Once dried, a small amount of water and 50 ml of nitric acid are added and dissolved to make a 100 ml volumetric flask, and water is added to make 100 ml. In this solution, Na and K are measured with an atomic absorption spectrometer (for example, Z-2310, manufactured by Hitachi, Ltd.). Next, the operation of collecting 10 ml of the separated solution in a 20 ml measuring flask from the solution made up to 100 ml is repeated 5 times to obtain 5 10 ml of the separated solution. Then, using this, Ag, Ca, Cr, Cu, Fe, Mg, Ni, Zn, U and Th are measured by a standard addition method using an ICP plasma emission analyzer (for example, SPS 5520 manufactured by SII). Here, a blank is also measured by the same method, and the blank is subtracted and adjusted to obtain measured values for each element.
And based on the mass of solid content calculated | required by the above-mentioned method, the content rate of each component with respect to the amount of dry was calculated | required.
各陰イオンの含有率は、以下の方法によって測定するものとする。
<Cl>
セリア系複合中空微粒子またはセリア系複合中空微粒子分散液からなる試料20g(固形分20質量%に調整したもの)にアセトンを加え100mlに調整し、この溶液に、酢酸5ml、0.001モル塩化ナトリウム溶液4mlを加えて0.002モル硝酸銀溶液で電位差滴定法(京都電子製:電位差滴定装置AT−610)で分析を行う。
別途ブランク測定として、アセトン100mlに酢酸5ml、0.001モル塩化ナトリウム溶液4mlを加えて0.002モル硝酸銀溶液で滴定を行った場合の滴定量を求めておき、試料を用いた場合の滴定量から差し引き、試料の滴定量とした。
そして、前述の方法で求めた固形分の質量に基づいて、dry量に対する各成分の含有率を求めた。
The content of each anion is to be measured by the following method.
<Cl>
Acetone is added to 20 g of a sample consisting of a ceria-based composite hollow fine particle or ceria-based composite hollow fine particle dispersion (solid content adjusted to 20% by mass) to 100 ml, and 5 ml of acetic acid, 0.001 molar sodium chloride is added to this solution. 4 ml of the solution is added, and analysis is performed by a potentiometric titration method (manufactured by Kyoto Electronics: potentiometric titrator AT-610) with a 0.002 molar silver nitrate solution.
As a blank measurement separately, 5 ml of acetic acid and 4 ml of 0.001 molar sodium chloride solution are added to 100 ml of acetone, and the titration amount in the case of titration with a 0.002 molar silver nitrate solution is obtained. It was subtracted from the sample to give a titre of the sample.
And based on the mass of solid content calculated | required by the above-mentioned method, the content rate of each component with respect to the amount of dry was calculated | required.
<SO4>
セリア系複合中空微粒子またはセリア系複合中空微粒子分散液からなる試料5g(固形分20質量%に調整したもの)を水で希釈して100mlにおさめ、遠心分離機(日立製 HIMAC CT06E)にて4000rpmで20分遠心分離して、沈降成分を除去して得た液をイオンクロマトグラフ(DIONEX製 ICS−1100)にて分析した。
そして、前述の方法で求めた固形分の質量に基づいて、dry量に対するSO4成分の含有率を求めた。
<SO 4 >
5 g of a sample composed of ceria-based composite hollow microparticles or a ceria-based composite hollow microparticle dispersion (adjusted to a solid content of 20% by mass) was diluted with water to 100 ml, and 4000 rpm in a centrifuge (HIMAC CT06E manufactured by Hitachi). The solution obtained by centrifuging for 20 minutes to remove the sediment component was analyzed with an ion chromatograph (ICS-1100, manufactured by DIONEX).
Then, based on the weight of the solids obtained by the method described above to determine the content of SO 4 component to dry weight.
[X線回折法、平均結晶子径の測定]
実施例及び比較例で得られたセリア系複合中空微粒子分散液またはセリア系複合中空微粒子を従来公知の乾燥機を用いて乾燥し、得られた粉体を乳鉢にて10分粉砕し、X線回折装置(理学電気(株)製、RINT1400)によってX線回折パターンを得て、結晶型を特定した。
また、前述の方法によって、得られたX線回折パターンにおける2θ=28度近傍の(111)面(2θ=28度近傍)のピークの半価全幅を測定し、Scherrerの式により、平均結晶子径を求めた。
[X-ray diffraction method, measurement of average crystallite diameter]
The ceria-based composite hollow particle dispersion or ceria-based composite hollow particles obtained in Examples and Comparative Examples are dried using a conventionally known dryer, and the obtained powder is pulverized in a mortar for 10 minutes, and X-rays are obtained. An X-ray diffraction pattern was obtained with a diffraction device (RINT1400, manufactured by Rigaku Denki Co., Ltd.), and the crystal type was specified.
Further, the full width at half maximum of the (111) plane (about 2θ = 28 °) near 2θ = 28 ° in the obtained X-ray diffraction pattern is measured by the above-mentioned method, and the average crystallite is obtained according to Scherrer's equation. The diameter was determined.
<平均粒子径>
実施例及び比較例で得られたセリア系複合中空微粒子分散液について、これに含まれる粒子の平均粒子径は、前述の画像解析法によって測定を行った。
<Average particle size>
With respect to the ceria-based composite hollow fine particle dispersions obtained in the examples and comparative examples, the average particle size of the particles contained therein was measured by the above-described image analysis method.
<粗大粒子数>
実施例及び比較例で得られたセリア系複合中空微粒子分散液について、これに含まれる粗大粒子数(0.51μm以上の粒子の個数)を測定した。測定は、前述の通り、従来公知の粗大粒子数測定装置を用いた方法である。
<Coarse particle number>
The number of coarse particles (the number of particles having a diameter of 0.51 μm or more) contained in the ceria-based composite hollow fine particle dispersions obtained in Examples and Comparative Examples was measured. The measurement is a method using a conventionally known coarse particle number measuring apparatus as described above.
[研磨試験方法]
<SiO2膜の研磨>
実施例及び比較例の各々において得られたセリア系複合中空微粒子分散液を含む研磨用砥粒分散液を調整した。ここで固形分濃度は0.6質量%で硝酸を添加してpHは5.0とした。
次に、被研磨基板として、熱酸化法により作製したSiO2絶縁膜(厚み1μm)基板を準備した。
次に、この被研磨基板を研磨装置(ナノファクター株式会社製、NF300)にセットし、研磨パッド(ニッタハース社製「IC−1000/SUBA400同心円タイプ」)を使用し、基板荷重0.5MPa、テーブル回転速度90rpmで研磨用砥粒分散液を50ml/分の速度で1分間供給して研磨を行った。
そして、研磨前後の被研磨基材の重量変化を求めて研磨速度を計算した。
また、研磨基材の表面の平滑性(表面粗さRa)を原子間力顕微鏡(AFM、株式会社日立ハイテクサイエンス社製)を用いて測定した。平滑性と表面粗さは概ね比例関係にあるため、第3表には表面粗さを記載した。
なお研磨傷の観察は、光学顕微鏡を用いて絶縁膜表面を観察することで行った。
[Abrasion test method]
Polishing of SiO 2 film
A polishing abrasive particle dispersion containing the ceria-based composite hollow particle dispersion obtained in each of the examples and the comparative examples was prepared. Here, the solid content concentration was 0.6% by mass and nitric acid was added to adjust the pH to 5.0.
Next, as a substrate to be polished, a SiO 2 insulating film (thickness 1 μm) substrate prepared by a thermal oxidation method was prepared.
Next, the substrate to be polished is set in a polishing apparatus (NF300, manufactured by Nano Factor Co., Ltd.), and a polishing pad ("IC-1000 / SUBA400 concentric type" manufactured by Nitta Haas) is used. Polishing was performed by supplying an abrasive grain dispersion for polishing at a rotational speed of 90 rpm for 1 minute at a rate of 50 ml / min.
Then, the weight change of the substrate to be polished before and after polishing was determined to calculate the polishing rate.
Further, the smoothness (surface roughness Ra) of the surface of the polishing substrate was measured using an atomic force microscope (AFM, manufactured by Hitachi High-Tech Science Co., Ltd.). The surface roughness is described in Table 3 because the smoothness and the surface roughness are approximately proportional to each other.
In addition, observation of a polishing flaw was performed by observing the insulating film surface using an optical microscope.
<アルミハードディスクの研磨>
実施例及び比較例の各々において得られたセリア系複合中空微粒子分散液を含む研磨用砥粒分散液を調整した。ここで固形分濃度は9質量%で硝酸を添加してpHを2.0に調整した。
アルミハードディスク用基板を研磨装置(ナノファクター株式会社製、NF300)にセットし、研磨パッド(ニッタハース社製「ポリテックスφ12」)を使用し、基板負荷0.05MPa、テーブル回転速度30rpmで研磨スラリーを20ml/分の速度で5分間供給して研磨を行い、超微細欠陥・可視化マクロ装置(VISION PSYTEC社製、製品名:Maicro―Max)を使用し、Zoom15にて全面観察し、65.97cm2に相当する研磨処理された基板表面に存在するスクラッチ(線状痕)の個数を数えて合計し、次の基準に従って評価した。
線状痕の個数 評価
50個未満 「非常に少ない」
50個から80個未満 「少ない」
80個以上 「多い」
少なくとも80個以上で総数をカウントできないほど多い 「※」
Polishing of aluminum hard disks
A polishing abrasive particle dispersion containing the ceria-based composite hollow particle dispersion obtained in each of the examples and the comparative examples was prepared. Here, the solid content concentration was 9% by mass and the pH was adjusted to 2.0 by adding nitric acid.
A substrate for aluminum hard disk is set in a polishing apparatus (NF300, manufactured by Nano Factor Co., Ltd.), and a polishing pad (“Polytex φ12” manufactured by Nitta Haas Co., Ltd.) is used. Polishing is performed by supplying at a rate of 20 ml / min for 5 minutes, and using an ultra-fine defect / visualization macro apparatus (manufactured by VISION PSYTEC, product name: Micro-Max), the entire surface is observed with a Zoom 15, 65.97 cm 2 The number of scratches (linear marks) present on the polished substrate surface was counted, summed, and evaluated according to the following criteria.
Number of linear marks Evaluation less than 50 "very small"
50 to less than 80 "less"
80 or more "many"
At least 80 or more and too many to count the total number "※"
以下に実施例を記す。なお、単に「固形分濃度」とある場合は、化学種を問わず溶媒に分散した微粒子の濃度を意味する。 Examples are described below. The term “solid content concentration” simply means the concentration of fine particles dispersed in a solvent regardless of chemical species.
[準備工程1]
《シリカ中空微粒子》の調製
シリカ・アルミナゾル(日揮触媒化成株式会社製:USBB−120、平均粒子径25nm、SiO2・Al2O3濃度:20重量%、固形分中Al2O3含有量:27重量%)100gに純水3900gを加えて98℃に加温し、この温度を保持しながら、SiO2として濃度1.5重量%の珪酸ナトリウム水溶液7,000gと、Al2O3として濃度0.5重量%のアルミン酸ナトリウム水溶液7,000gとを5時間で添加して、SiO2・Al2O3一次粒子分散液を得た。このときの反応液のpHは12.0であった。また、平均粒子径は50nmであった。
[Preparation process 1]
Preparation of << Silica Hollow Microparticles >> Silica-alumina sol (manufactured by JGC Catalysts and Chemicals, Inc .: USBB-120, average particle diameter 25 nm, SiO 2 · Al 2 O 3 concentration: 20% by weight, Al 2 O 3 content in solid content: 27% by weight) 3900 g of pure water is added to 100 g and heated to 98 ° C., while maintaining this temperature, 7,000 g of a 1.5% by weight aqueous solution of sodium silicate as SiO 2 and a concentration as Al 2 O 3 An aqueous solution of 7,000 g of a 0.5 wt% aqueous solution of sodium aluminate was added over 5 hours to obtain a SiO 2 · Al 2 O 3 primary particle dispersion. The pH of the reaction solution at this time was 12.0. Moreover, the average particle diameter was 50 nm.
ついで、SiO2として濃度1.5重量%の珪酸ナトリウム水溶液16,740gと、Al2O3としての濃度0.5重量%のアルミン酸ナトリウム水溶液5,580gとを5時間で添加して複合酸化物微粒子(二次粒子)の分散液を得た。このとき、反応液のpHは12.2であった。 Then, 16,740 g of a 1.5% by weight aqueous solution of sodium silicate as SiO 2 and 5,580 g of a 0.5% by weight aqueous solution of sodium aluminate as concentration of Al 2 O 3 are added over 5 hours to add complex oxidation A dispersion of fine particles (secondary particles) was obtained. At this time, the pH of the reaction solution was 12.2.
ついで、限外濾過膜で洗浄して固形分濃度13重量%にした後、目開き1μmのカプセルフィルターで濾過し複合酸化物微粒子分散液を得た。このとき、平均粒子径70nmであった。 Subsequently, after washing with an ultrafiltration membrane to obtain a solid content concentration of 13% by weight, the mixture was filtered through a capsule filter having an opening of 1 μm to obtain a composite oxide fine particle dispersion. At this time, the average particle size was 70 nm.
この複合酸化物微粒子分散液500gに純水1,125gを加え、さらに濃塩酸(濃度35.5重量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離・洗浄して固形分濃度20重量%のシリカ系微粒子の水分散液を得た。 1,125 g of pure water was added to 500 g of this composite oxide fine particle dispersion, and concentrated hydrochloric acid (concentration 35.5 wt%) was added dropwise to adjust the pH to 1.0, followed by dealumination. Subsequently, while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water, the aluminum salt dissolved in the ultrafiltration membrane was separated and washed to obtain an aqueous dispersion of silica-based fine particles having a solid content concentration of 20% by weight.
ついで、シリカ系微粒子の水分散液150gと、純水500g、エタノール1,750gおよび濃度28重量%のアンモニア水626gとの混合液を35℃に加温した後、エチルシリケート(SiO2濃度28重量%)117gを5時間で添加してシリカ被覆層を形成し、純水5Lを加えながら限外濾過膜で洗浄して固形分濃度20重量%のシリカ被覆層を形成したシリカ系微粒子の水分散液を得た。 Next, a mixture of 150 g of an aqueous dispersion of silica-based fine particles, 500 g of pure water, 1,750 g of ethanol and 626 g of ammonia water having a concentration of 28% by weight was heated to 35 ° C., and then ethyl silicate (SiO 2 concentration of 28% by weight). %) 117 g was added in 5 hours to form a silica coating layer, and the silica-based fine particles were washed with an ultrafiltration membrane while adding 5 L of pure water to form a silica coating layer having a solid content concentration of 20% by weight. A liquid was obtained.
つぎに、シリカ被覆層を形成したシリカ系微粒子の水分散液にアンモニア水を添加して分散液のpHを10.5に調整し、ついで200℃にて11時間熟成した後、常温に冷却してシリカ中空微粒子分散液を得た。 Next, aqueous ammonia is added to an aqueous dispersion of silica-based fine particles on which a silica coating layer has been formed to adjust the pH of the dispersion to 10.5, and then aged at 200 ° C. for 11 hours, and then cooled to room temperature. A silica hollow particle dispersion was obtained.
得られたシリカ中空微粒子分散液に含まれるシリカ中空微粒子の平均粒子径を前述の画像解析法によって測定したところ、85nmであった。
また、シリカ中空微粒子の短径/長径比を前述の画像解析法で測定したところ、短径/長径比が0.80以下である粒子の個数割合は32%であった。
また、シリカ中空微粒子の比表面積を、前述のBET比表面積測定法(窒素吸着法)によって測定したところ、100m2/gであった。
また、シリカ中空微粒子の密度を前述の方法によって測定したところ、1.2g/cであった。
さらに、シリカ中空微粒子に含まれる特定不純物群1および特定不純物群2の含有率を前述の方法によって測定した。結果を第1表に示す。
It was 85 nm when the average particle diameter of the silica hollow fine particles contained in the obtained silica hollow fine particle dispersion was measured by the above-described image analysis method.
Further, when the minor axis / major axis ratio of the hollow silica particles was measured by the above-mentioned image analysis method, the number ratio of particles having a minor axis / major axis ratio of 0.80 or less was 32%.
Further, the specific surface area of the silica hollow fine particles was measured by the BET specific surface area measurement method (nitrogen adsorption method) described above, and it was 100 m 2 / g.
Moreover, it was 1.2 g / c when the density of the silica hollow fine particles was measured by the above-mentioned method.
Furthermore, the content rates of the specific impurity group 1 and the specific impurity group 2 contained in the silica hollow fine particles were measured by the above-mentioned method. The results are shown in Table 1.
<実施例1>
上記準備工程1のように得られたシリカ中空微粒子分散液に超純水を加えて、SiO2固形分濃度3質量%の分散液6,000g(SiO2 dry180g)(以下、A液ともいう)を得た。
Example 1
Ultrapure water is added to the silica hollow fine particle dispersion obtained as in Preparation Step 1 above, and a dispersion of 6,000 g (SiO 2 dry 180 g) having a SiO 2 solid content concentration of 3% by mass (hereinafter also referred to as A liquid). Got.
次に、硝酸セリウム(III)6水和物(関東化学社製、4N高純度試薬)にイオン交換水を加え、CeO2換算で3.0質量%のB液を得た。 Next, ion-exchanged water was added to cerium (III) nitrate hexahydrate (manufactured by Kanto Chemical Co., 4N high purity reagent) to obtain 3.0% by mass B liquid in terms of CeO 2 conversion.
次に、A液(6,000g)を15℃に調整して、撹拌しながら、ここへB液(13,803g、SiO2の100質量部に対して、CeO2が230.0質量部に相当)を18時間かけて添加した。この間、液温を15℃に維持しておき、B液と同時に3%アンモニア水を添加して、pH7.5〜9.5を維持するようにして前駆体微粒子分散を得た。なお、B液の添加中は酸化還元電位を−200〜100mVに保った。
そして、前駆体微粒子分散液の液温を15℃のまま4時間撹拌を継続した。熟成中は酸化還元電位を−200〜100mVに保った。熟成終了後に室内に放置することで室温に戻し、限外膜にてイオン交換水を補給しながら洗浄を行った。洗浄を施した後の前駆体粒子分散液は、固形分濃度が5質量%、pHが4.9(25℃にて)、電導度が47μs/cm(25℃にて)であった。
Next, adjust the A solution (6,000 g) to 15 ° C., and while stirring, add 230.0 parts by weight of CeO 2 to the B solution (13, 803 g, 100 parts by weight of SiO 2 ). Equivalent) was added over 18 hours. During this time, the liquid temperature was maintained at 15 ° C., 3% ammonia water was added simultaneously with the solution B, and pH 7.5 to 9.5 was maintained to obtain precursor fine particle dispersion. During the addition of solution B, the oxidation-reduction potential was kept at -200 to 100 mV.
And stirring was continued for 4 hours with the liquid temperature of the precursor fine particle dispersion kept at 15 ° C. During the aging, the redox potential was kept at -200 to 100 mV. After ripening, it was allowed to return to room temperature by leaving it in the room, and washing was carried out while replenishing ion-exchanged water with an ultrafiltration membrane. The precursor particle dispersion after washing had a solid content concentration of 5% by mass, a pH of 4.9 (at 25 ° C.), and a conductivity of 47 μs / cm (at 25 ° C.).
次に、得られた前駆体粒子分散液を100℃の乾燥機中で16時間乾燥させた後、1050℃のマッフル炉を用いて2時間焼成を行い、粉体(焼成体)を得た。 Next, the obtained precursor particle dispersion was dried in a dryer at 100 ° C. for 16 hours, and then fired for 2 hours using a 1050 ° C. muffle furnace to obtain a powder (fired body).
焼成後に得られた粉体(焼成体)100gにイオン交換水652gを加え、さらに3%アンモニア水溶液を用いてpHを9.0に調整した後、φ0.3mmのアクリルビーズ(稗田化学工業株式会社製)にて湿式解砕(カンペ(株)製バッチ式卓上サンドミル)を120分行った。また、解砕時の懸濁pHを9.0に維持するように、一定時間毎に3%アンモニア水溶液を添加した。
そして、解砕後にイオン交換水を用いて希釈し、アクリルビーズを分離して、固形分濃度が5質量%の焼成体解砕分散液を1115g得た。
After adding 652 g of ion-exchanged water to 100 g of the powder (baked body) obtained after firing, and further adjusting the pH to 9.0 using a 3% aqueous ammonia solution, acrylic beads of φ 0.3 mm (Shibata Chemical Industry Co., Ltd. Wet pulverization (Kampe Co., Ltd. manufactured batch type table-top sand mill) for 120 minutes. Further, a 3% aqueous ammonia solution was added at regular intervals so as to maintain the suspension pH at the time of disintegration at 9.0.
Then, after crushing, the reaction product was diluted with ion-exchanged water, and the acrylic beads were separated to obtain 1115 g of a crushed crushed and crushed liquid having a solid content concentration of 5% by mass.
次に、得られた焼成体解砕分散液を遠心分離装置(日立工機株式会社製、型番「CR21G」)にて、相対加速度1570Gで1分間処理し、軽液を回収し、セリア系複合中空微粒子分散液を得た。 Next, the fired body pulverized dispersion obtained was treated with a centrifugal separator (manufactured by Hitachi Koki Co., Ltd., model number “CR21G”) at a relative acceleration of 1570 G for 1 minute, and the light liquid was recovered. A hollow fine particle dispersion was obtained.
そして、得られたセリア系複合中空微粒子分散液に含まれるセリア系複合中空微粒子における特定不純物群1および特定不純物群2の含有率を前述の方法によって測定した。
結果を第2表に示す。
Then, the content rates of the specific impurity group 1 and the specific impurity group 2 in the ceria-based composite hollow particles contained in the obtained ceria-based composite hollow particle dispersion liquid were measured by the above-mentioned method.
The results are shown in Table 2.
また、得られたセリア系複合中空微粒子分散液に含まれるセリア系複合中空微粒子のシリカ含有率とセリア含有率、シリカ100質量部に対するセリアの質量部、結晶性セリアの平均結晶子径、子粒子の平均粒子径、子粒子の標準偏差、子粒子の変動係数、比表面積、密度、平均粒子径を前述の方法によって測定した。
これらの測定結果を第3表に示す。
In addition, the silica content and ceria content of the ceria-based composite hollow particles contained in the obtained ceria-based composite hollow particle dispersion, the mass part of ceria per 100 parts by mass of silica, the average crystallite diameter of crystalline ceria, child particles The average particle diameter, the standard deviation of the child particles, the coefficient of variation of the child particles, the specific surface area, the density, and the average particle diameter were measured by the methods described above.
The measurement results are shown in Table 3.
次に、得られたセリア系複合中空微粒子分散液を用いて研磨試験を行った。
結果を第3表に示す。
Next, a polishing test was conducted using the obtained ceria-based composite hollow fine particle dispersion.
The results are shown in Table 3.
また、実施例1で得られたセリア系複合中空微粒子分散液が含むセリア系複合中空微粒子についてSEMおよびTEMを用いて観察した。図4(a)にSEM像を、図4(b)にTEM像示す。図4に示すように、セリア系複合中空微粒子の最表面に、薄いセリウム含有シリカ層が存在しており、内部が空隙である中空構造を有している様子が観察された。
なお、以下の実施例2〜実施例5の各々にて得られたセリア系複合中空微粒子分散液に含まれるセリア系複合中空微粒子について、SEM像とTEM像を確認し、いずれも中空構造を有すること及び表面にセリア含有シリカ層が存在し、その層内に子粒子(セリア結晶粒子)が分散して存在していることを確認した。
In addition, the ceria composite hollow fine particles contained in the ceria composite hollow fine particle dispersion obtained in Example 1 were observed using SEM and TEM. FIG. 4A shows an SEM image, and FIG. 4B shows a TEM image. As shown in FIG. 4, it was observed that a thin cerium-containing silica layer was present on the outermost surface of the ceria-based composite hollow fine particles and had a hollow structure with voids inside.
In addition, about the ceria type | system | group composite hollow microparticles contained in the ceria type | system | group composite hollow microparticle dispersion obtained in each of the following Examples 2-5, a SEM image and a TEM image are confirmed, and all have a hollow structure. It was confirmed that a ceria-containing silica layer was present on the surface, and child particles (ceria crystal particles) were dispersed and present in the layer.
得られたセリア系複合中空微粒子分散液に含まれるセリア系複合中空微粒子についてX線回折法によって測定した。得られたX線回折パターンを図5に示す。図5に示すように、X線回折パターンには、シャープなCerianiteの結晶パターンが観察された。 The ceria-based composite hollow fine particles contained in the obtained ceria-based composite hollow fine particle dispersion were measured by an X-ray diffraction method. The obtained X-ray diffraction pattern is shown in FIG. As shown in FIG. 5, a sharp Ceriaite crystal pattern was observed in the X-ray diffraction pattern.
<実施例2>
実施例1では1050℃で焼成を行ったが、この焼成温度を940℃として焼成を行ったこと以外は、実施例1と同様の操作を行い、同様の評価を行った。
Example 2
The firing was performed at 1050 ° C. in Example 1, but the same operation as in Example 1 was performed except that the firing was performed at 940 ° C., and the same evaluation was performed.
また、実施例2で得られたセリア系複合中空微粒子分散液に含まれるセリア系複合中空微粒子についてX線回折法によって測定した。得られたX線回折パターンを図6に示す。図6に示すように、X線回折パターンには、シャープなCerianiteの結晶パターンが観察された。 The ceria composite hollow fine particles contained in the ceria composite hollow fine particle dispersion obtained in Example 2 were measured by X-ray diffraction. The obtained X-ray diffraction pattern is shown in FIG. As shown in FIG. 6, a sharp Ceriaite crystal pattern was observed in the X-ray diffraction pattern.
<実施例3>
実施例1では1050℃で焼成を行ったが、この焼成温度を1140℃として焼成を行ったこと以外は、実施例1と同様の操作を行い、同様の評価を行った。
Example 3
In Example 1, baking was performed at 1050 ° C., but the same evaluation as in Example 1 was performed except that the baking was performed at 1140 ° C.
また、実施例3で得られたセリア系複合中空微粒子分散液に含まれるセリア系複合中空微粒子についてX線回折法によって測定した。得られたX線回折パターンを図7に示す。図7に示すように、X線回折パターンには、かなりシャープなCerianiteの結晶パターンが観察された。 The ceria composite hollow fine particles contained in the ceria composite hollow fine particle dispersion obtained in Example 3 were measured by the X-ray diffraction method. The obtained X-ray diffraction pattern is shown in FIG. As shown in FIG. 7, a considerably sharp Ceriaite crystal pattern was observed in the X-ray diffraction pattern.
<実施例4>
実施例1ではA液(6,000g)を15℃に保ち、撹拌しながらB液(13,803g)を18時間かけて添加し、この間、液温15℃を維持し、必要に応じて3%アンモニア水を添加して、pHを7.5〜9.5を維持するように調合したが、実施例4では、A液(6,000g)を15℃に保ち、撹拌しながら、ここへB液(24,000.0g、SiO2の100質量部に対して、CeO2が400.0質量部に相当)を18時間かけて添加し、添加終了後に、液温15℃で4時間熟成を行った。
それら以外は実施例1と同様に実施し、同様の評価を行った。
Example 4
In Example 1, solution A (6,000 g) is maintained at 15 ° C., solution B (13,803 g) is added over 18 hours while stirring, while the solution temperature is maintained at 15 ° C., if necessary 3 % Ammonia water was added to keep the pH at 7.5-9.5, but in Example 4, solution A (6,000 g) was kept at 15.degree. C. and stirred here. Solution B (24,000.0 g, corresponding to 400.0 parts by mass of CeO 2 with respect to 100 parts by mass of SiO 2 ) is added over 18 hours, and after completion of the addition, aging is carried out at 15 ° C. for 4 hours Did.
Except these, it implemented similarly to Example 1 and performed the same evaluation.
<実施例5>
実施例1ではA液(6,000g)を15℃に保ち、撹拌しながらB液(13,803g)を18時間かけて添加し、この間、液温15℃を維持し、必要に応じて3%アンモニア水を添加して、pHを7.5〜9.5を維持するように調合したが、実施例4では、A液(6,000g)を15℃に保ち、撹拌しながら、ここへB液(666.7g、SiO2の100質量部に対して、CeO2が11.1質量部に相当)を18時間かけて添加し、添加終了後に、液温15℃で4時間熟成を行った。
それら以外は実施例1と同様に実施し、同様の評価を行った。
Example 5
In Example 1, solution A (6,000 g) is maintained at 15 ° C., solution B (13,803 g) is added over 18 hours while stirring, while the solution temperature is maintained at 15 ° C., if necessary 3 % Ammonia water was added to keep the pH at 7.5-9.5, but in Example 4, solution A (6,000 g) was kept at 15.degree. C. and stirred here. Solution B (666.7 g, corresponding to 11.1 parts by mass of CeO 2 with respect to 100 parts by mass of SiO 2 ) was added over 18 hours, and after completion of the addition, aging was carried out at a liquid temperature of 15 ° C. for 4 hours The
Except these, it implemented similarly to Example 1 and performed the same evaluation.
<比較例1>
準備工程1で得られたシリカ中空微粒子分散液を用いて実施例1と同様の評価を行った。
Comparative Example 1
The same evaluation as in Example 1 was performed using the silica hollow fine particle dispersion obtained in the preparation step 1.
<比較例2>
<高純度113nm粒子の調整>
<< シリカ微粒子分散液(シリカ微粒子の平均粒子径63nm)の調製>>
エタノール12,090gと正珪酸エチル6,363.9gとを混合し、混合液a1とした。
次に、超純水6,120gと29%アンモニア水444.9gとを混合し、混合液b1とした。
次に、超純水192.9gとエタノール444.9gとを混合して敷き水とした。
そして、敷き水を撹拌しながら75℃に調整し、ここへ、混合液a1及び混合液b1を、各々10時間で添加が終了するように、同時添加を行った。添加が終了したら、液温を75℃のまま3時間保持して熟成させた後、固形分濃度を調整し、SiO2固形分濃度19質量%、画像解析法による平均粒子径63nmのシリカ微粒子が溶媒に分散してなるシリカゾルを9,646.3g得た。
Comparative Example 2
<Preparation of high purity 113 nm particles>
<< Preparation of silica fine particle dispersion (average particle diameter of silica fine particle 63 nm) >>
Mixing the ethanol 12,090g and ethyl orthosilicate 6,363.9G, it was mixed solution a 1.
Then mixed with ultrapure water 6,120g and 29% aqueous ammonia 444.9G, it was mixed solution b 1.
Next, 192.9 g of ultrapure water and 444.9 g of ethanol were mixed to obtain laying water.
Then, the stirring water was adjusted to 75 ° C. while stirring, and the mixed solution a 1 and the mixed solution b 1 were simultaneously added so that the addition was completed in 10 hours each. When the addition is complete, after the liquid temperature was aged by holding 3 hours while the 75 ° C., to adjust the solid content concentration, SiO 2 solid content concentration of 19 mass%, silica fine particles having an average particle size 63nm by the image analysis method 9,646.3 g of a silica sol dispersed in a solvent was obtained.
<< シリカ微粒子分散液(シリカ微粒子の平均粒子径:113nmの調製>>
メタノール2,733.3gと正珪酸エチル1,822.2gとを混合し、混合液a2とした。
次に、超純水1,860.7gと29%アンモニア水40.6gとを混合し、混合液b2とした。
次に、超純水59gとメタノール1,208.9gとを混合して敷き水として、前工程で得た平均粒子径63nmのシリカ微粒子が溶媒に分散してなるシリカゾル922.1gを加えた。
そして、シリカゾルを含んだ敷き水を撹拌しながら65℃に調整し、ここへ、混合液a2及び混合液b2を、各々18時間で添加が終了するように、同時添加を行った。添加が終了したら、液温を65℃のまま3時間保持して熟成させた後、限外膜、ロータリーエバポレーターで濃縮し、固形分濃度(SiO2固形分濃度)を19質量%に調整し、3,600gのシリカ系微粒子分散液を得た。
<< Silica fine particle dispersion (preparation of average particle diameter of silica fine particles: 113 nm >>
Mixing the methanol 2,733.3g and ethyl orthosilicate 1,822.2G, it was mixed solution a 2.
Next, 1,860.7 g of ultrapure water and 40.6 g of 29% ammonia water were mixed to obtain a mixed solution b 2 .
Next, 922.1 g of silica sol obtained by mixing 59 g of ultrapure water and 1,208.9 g of methanol as a laying water and having silica fine particles having an average particle diameter of 63 nm obtained in the previous step dispersed in a solvent was added.
Then, the water containing the silica sol was adjusted to 65 ° C. while stirring, and the mixed solution a 2 and the mixed solution b 2 were simultaneously added so that the addition was completed in 18 hours. After the addition is completed, the liquid temperature is kept at 65 ° C. for 3 hours and aged, and then concentrated with an outer membrane and a rotary evaporator to adjust the solid content concentration (SiO 2 solid content concentration) to 19% by mass. A silica-based fine particle dispersion of 3,600 g was obtained.
得られたシリカ系微粒子分散液1,053gに陽イオン交換樹脂(三菱化学社製SK−1BH)114gを徐々に添加し、30分間攪拌し樹脂を分離した。この時のpHは5.1であった。
また、陽イオン交換樹脂による処理を行った後のシリカ系微粒子分散液に含まれる粒子のNa、Ag、Ca、Cr、Cu、Fe、K、Mg、Ni、Zn及びZrの含有率(シリカdry量に対する各成分の含有率)は何れも1ppm以下であった。また、U、Th、Cl及びSO4の含有率が、それぞれ5ppm以下であった。
上記のようにして得られたシリカ系微粒子分散液を用いて実施例1と同様の評価を行った。
なお、比較例2で用いたシリカ系微粒子分散液に含まれるシリカ系微粒子は、中空構造を備えないものであるが、平均粒子径、成分等の測定結果を第1表に示す。
114 g of cation exchange resin (SK-1BH manufactured by Mitsubishi Chemical Corporation) was gradually added to 1,053 g of the obtained silica-based fine particle dispersion, and the resin was separated by stirring for 30 minutes. The pH at this time was 5.1.
Further, the content of Na, Ag, Ca, Cr, Cu, Fe, K, Mg, Ni, Zn, and Zr in the particles contained in the silica-based fine particle dispersion after the treatment with the cation exchange resin (silica dry The content of each component relative to the amount was 1 ppm or less. Further, the contents of U, Th, Cl and SO 4 were each 5 ppm or less.
Evaluation similar to Example 1 was performed using the silica-based fine particle dispersion obtained as described above.
The silica-based fine particles contained in the silica-based fine particle dispersion used in Comparative Example 2 do not have a hollow structure, but Table 1 shows the measurement results of the average particle diameter, components, and the like.
本発明の分散液に含まれるセリア系複合中空微粒子は、粗大粒子を含まないため低スクラッチで、かつ高研磨速度である。よって、本発明の分散液を含む研磨用砥粒分散液は、半導体基板、配線基板などの半導体デバイスの表面の研磨に好ましく用いることができる。具体的には、シリカ膜が形成された半導体基板の平坦化用として好ましく用いることができる。 Since the ceria-based composite hollow fine particles contained in the dispersion of the present invention do not contain coarse particles, they are low in scratch and have a high polishing rate. Therefore, the polishing abrasive dispersion containing the dispersion of the present invention can be preferably used for polishing the surface of a semiconductor device such as a semiconductor substrate or a wiring substrate. Specifically, it can be preferably used for planarizing a semiconductor substrate on which a silica film is formed.
Claims (6)
[1]前記セリア系複合中空微粒子は外殻としてのセリウム含有シリカ層の内部に空隙を有する中空構造を備え、前記セリウム含有シリカ層の内部に結晶性セリアを主成分とする子粒子が分散していること。
[2]前記セリア系複合中空微粒子は、X線回折に供するとセリアの結晶相のみが検出されること。
[3]前記セリア系複合中空微粒子は、X線回折に供して測定される、前記結晶性セリアの平均結晶子径が8〜30nmであること。 A ceria-based composite hollow fine particle dispersion comprising ceria-based composite hollow particles having an average particle diameter of 20 to 400 nm, having the features of the following [1] to [3].
[1] The ceria-based composite hollow particle has a hollow structure having a void in the inside of the cerium-containing silica layer as the outer shell, and child particles mainly composed of crystalline ceria are dispersed in the inside of the cerium-containing silica layer. Being
[2] The ceria-based composite hollow particles should be detected only in the crystalline phase of ceria when subjected to X-ray diffraction.
[3] The ceria-based composite hollow fine particles have an average crystallite diameter of the crystalline ceria of 8 to 30 nm measured by X-ray diffraction.
(a)Na、Ag、Ca、Cr、Cu、Fe、K、Mg、Ni、Zn及びZrの含有率が、それぞれ100ppm以下。
(b)U、Th、Cl及びSO4の含有率が、それぞれ5ppm以下。 The ceria-based composite hollow fine particle dispersion according to claim 1 or 2, wherein the content ratio of impurities contained in the ceria-based composite hollow fine particles is as shown in the following (a) and (b).
(A) The contents of Na, Ag, Ca, Cr, Cu, Fe, K, Mg, Ni, Zn and Zr are each 100 ppm or less.
(B) The contents of U, Th, Cl and SO 4 are each 5 ppm or less.
工程1:シリカ中空微粒子が溶媒に分散しているシリカ中空微粒子分散液を撹拌し、温度を0〜70℃、pHを7.0〜11.0、酸化還元電位を−400〜300mVに維持しながら、ここへセリウムの金属塩を連続的又は断続的に添加し、前駆体粒子を含む前駆体粒子分散液を得る工程。
工程2:前記前駆体粒子分散液を乾燥させ、400〜1,200℃で焼成し、得られた焼成体に溶媒を加えてpH8.6〜10.8の範囲にて、湿式で解砕処理をして焼成体解砕分散液を得る工程。
工程3:前記焼成体解砕分散液を、相対遠心加速度300G以上にて遠心分離処理を行い、続いて沈降成分を除去することによりセリア系複合中空微粒子分散液を得る工程。 A method for producing a ceria-based composite hollow particle dispersion, comprising the following steps 1 to 3 to obtain the ceria-based composite hollow particle dispersion according to claim 1 or 2.
Step 1: A silica hollow fine particle dispersion in which silica fine particles are dispersed in a solvent is stirred, and the temperature is maintained at 0 to 70 ° C., the pH is set to 7.0 to 11.0, and the oxidation-reduction potential is maintained at −400 to 300 mV. Meanwhile, a step of adding a metal salt of cerium continuously or intermittently to obtain a precursor particle dispersion containing precursor particles.
Step 2: The precursor particle dispersion is dried, calcined at 400 to 1,200 ° C., a solvent is added to the obtained calcined product, and wet crushing is performed in a pH range of 8.6 to 10.8. And a step of obtaining a fired body disintegration dispersion.
Step 3: A step of obtaining a ceria-based composite hollow fine particle dispersion by subjecting the calcined dispersion to a centrifuge at a relative centrifugal acceleration of 300 G or more and subsequently removing a sediment component.
(a)Na、Ag、Ca、Cr、Cu、Fe、K、Mg、Ni、Zn及びZrの含有率が、それぞれ100ppm以下。
(b)U、Th、Cl及びSO4の含有率が、それぞれ5ppm以下。 6. The production of a ceria-based composite hollow fine particle dispersion according to claim 5, wherein the content ratio of impurities contained in the silica hollow fine particles in the step 1 is as follows (a) and (b): Method.
(A) The contents of Na, Ag, Ca, Cr, Cu, Fe, K, Mg, Ni, Zn and Zr are each 100 ppm or less.
(B) The contents of U, Th, Cl and SO 4 are each 5 ppm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018008782A JP7002350B2 (en) | 2018-01-23 | 2018-01-23 | Abrasive grain dispersion for polishing containing ceria-based composite hollow fine particle dispersion, its manufacturing method, and ceria-based composite hollow fine particle dispersion. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018008782A JP7002350B2 (en) | 2018-01-23 | 2018-01-23 | Abrasive grain dispersion for polishing containing ceria-based composite hollow fine particle dispersion, its manufacturing method, and ceria-based composite hollow fine particle dispersion. |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019127405A true JP2019127405A (en) | 2019-08-01 |
JP7002350B2 JP7002350B2 (en) | 2022-01-20 |
Family
ID=67471891
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018008782A Active JP7002350B2 (en) | 2018-01-23 | 2018-01-23 | Abrasive grain dispersion for polishing containing ceria-based composite hollow fine particle dispersion, its manufacturing method, and ceria-based composite hollow fine particle dispersion. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7002350B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2021241626A1 (en) * | 2020-05-27 | 2021-12-02 | ||
WO2023054456A1 (en) * | 2021-09-29 | 2023-04-06 | 東レ株式会社 | Cerium oxide nanoparticles, dispersion, antiviral agent, antimicrobial agent, resin composition, resin product, fiber material, fiber product, and method for producing cerium oxide nanoparticles |
CN115926746A (en) * | 2022-10-24 | 2023-04-07 | 国家纳米科学中心 | Nano-cerium-silicon composite oxide particles and its preparation method and use |
JP2024508929A (en) * | 2021-03-04 | 2024-02-28 | 中国科学院過程工程研究所 | Manufacturing method of hollow multi-shell material of amorphous metal oxide and its application [Cross reference to related applications] This application has priority based on the patent application of Chinese Patent Application No. 202110241311.7 filed on March 4, 2021 , and the entire contents of this Chinese patent application are incorporated herein by reference. |
WO2025028454A1 (en) * | 2023-07-28 | 2025-02-06 | 日産化学株式会社 | Monovalent alkali metal ion-containing hollow silica sol and method for producing same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003103455A (en) * | 2001-09-28 | 2003-04-08 | Shin Etsu Handotai Co Ltd | Work holding board and polishing device and polishing method for work |
JP2006114861A (en) * | 2004-09-14 | 2006-04-27 | Ebara Corp | Polishing apparatus and polishing method |
WO2016159167A1 (en) * | 2015-03-31 | 2016-10-06 | 日揮触媒化成株式会社 | Silica-based composite fine-particle dispersion, method for producing same, and polishing slurry including silica-based composite fine-particle dispersion |
JP2017043531A (en) * | 2015-01-20 | 2017-03-02 | 日揮触媒化成株式会社 | Silica-based composite fine particle dispersion, method for producing the same, and polishing slurry containing silica-based composite fine particle dispersion |
WO2017183452A1 (en) * | 2016-04-22 | 2017-10-26 | 日揮触媒化成株式会社 | Silica-based composite fine particle dispersion and method for manufacturing same |
-
2018
- 2018-01-23 JP JP2018008782A patent/JP7002350B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003103455A (en) * | 2001-09-28 | 2003-04-08 | Shin Etsu Handotai Co Ltd | Work holding board and polishing device and polishing method for work |
JP2006114861A (en) * | 2004-09-14 | 2006-04-27 | Ebara Corp | Polishing apparatus and polishing method |
JP2017043531A (en) * | 2015-01-20 | 2017-03-02 | 日揮触媒化成株式会社 | Silica-based composite fine particle dispersion, method for producing the same, and polishing slurry containing silica-based composite fine particle dispersion |
WO2016159167A1 (en) * | 2015-03-31 | 2016-10-06 | 日揮触媒化成株式会社 | Silica-based composite fine-particle dispersion, method for producing same, and polishing slurry including silica-based composite fine-particle dispersion |
WO2017183452A1 (en) * | 2016-04-22 | 2017-10-26 | 日揮触媒化成株式会社 | Silica-based composite fine particle dispersion and method for manufacturing same |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2021241626A1 (en) * | 2020-05-27 | 2021-12-02 | ||
WO2021241626A1 (en) * | 2020-05-27 | 2021-12-02 | 東レ株式会社 | Cerium oxide nanoparticles, antibacterial agent, antiviral agent and method for producing cerium oxide nanoparticles |
JP2024508929A (en) * | 2021-03-04 | 2024-02-28 | 中国科学院過程工程研究所 | Manufacturing method of hollow multi-shell material of amorphous metal oxide and its application [Cross reference to related applications] This application has priority based on the patent application of Chinese Patent Application No. 202110241311.7 filed on March 4, 2021 , and the entire contents of this Chinese patent application are incorporated herein by reference. |
JP7649871B2 (en) | 2021-03-04 | 2025-03-21 | 中国科学院過程工程研究所 | A method for producing hollow multi-shell materials of amorphous metal oxides and their applications |
WO2023054456A1 (en) * | 2021-09-29 | 2023-04-06 | 東レ株式会社 | Cerium oxide nanoparticles, dispersion, antiviral agent, antimicrobial agent, resin composition, resin product, fiber material, fiber product, and method for producing cerium oxide nanoparticles |
CN115926746A (en) * | 2022-10-24 | 2023-04-07 | 国家纳米科学中心 | Nano-cerium-silicon composite oxide particles and its preparation method and use |
CN115926746B (en) * | 2022-10-24 | 2024-06-07 | 国家纳米科学中心 | Nano-cerium-silicon composite oxide particles and preparation method and use thereof |
WO2025028454A1 (en) * | 2023-07-28 | 2025-02-06 | 日産化学株式会社 | Monovalent alkali metal ion-containing hollow silica sol and method for producing same |
KR20250039503A (en) * | 2023-07-28 | 2025-03-20 | 닛산 가가쿠 가부시키가이샤 | Hollow silica sol containing 1-valent alkali metal ion and its preparation method |
JP7674622B1 (en) * | 2023-07-28 | 2025-05-09 | 日産化学株式会社 | Monovalent alkali metal ion-containing hollow silica sol and method for producing same |
KR102815703B1 (en) | 2023-07-28 | 2025-06-02 | 닛산 가가쿠 가부시키가이샤 | Hollow silica sol containing 1-valent alkali metal ion and its preparation method |
Also Published As
Publication number | Publication date |
---|---|
JP7002350B2 (en) | 2022-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6803823B2 (en) | Abrasive grain dispersion for polishing containing ceria-based composite fine particle dispersion, its manufacturing method, and ceria-based composite fine particle dispersion | |
TWI656098B (en) | Oxide-based composite fine particle dispersion, method for producing the same, and abrasive dispersion for polishing containing cerium oxide-based composite fine particle dispersion | |
WO2017183452A1 (en) | Silica-based composite fine particle dispersion and method for manufacturing same | |
JPWO2016159167A1 (en) | Silica-based composite fine particle dispersion, method for producing the same, and polishing slurry containing silica-based composite fine particle dispersion | |
JP7037918B2 (en) | Abrasive grain dispersion for polishing containing ceria-based composite fine particle dispersion, its manufacturing method, and ceria-based composite fine particle dispersion. | |
JP2019081672A (en) | Ceria-based composite fine particle dispersion, production method thereof, and abrasive grain dispersion for polishing including the ceria-based composite fine dispersion | |
JP2019127405A (en) | Ceria-based composite hollow microparticle dispersion, production method thereof, and polishing abrasive grain dispersion comprising ceria-based composite hollow microparticle dispersion | |
JP2017206411A (en) | Silica-based composite fine particle dispersion, method for producing the same and polishing slurry containing silica-based composite fine particle dispersion | |
JP7117225B2 (en) | Ceria-based composite fine particle dispersion, method for producing the same, and polishing abrasive dispersion containing ceria-based composite fine particle dispersion | |
JP6710100B2 (en) | Method for producing silica-based composite fine particle dispersion | |
JP2017193692A (en) | Silica-based composite fine particle dispersion, method for producing the same, and polishing slurry containing silica-based composite fine particle dispersion | |
JP7348098B2 (en) | Ceria-based composite fine particle dispersion, its manufacturing method, and polishing abrasive grain dispersion containing the ceria-based composite fine particle dispersion | |
JP6616794B2 (en) | Silica-based composite fine particle dispersion, method for producing the same, and abrasive abrasive dispersion containing silica-based composite fine particle dispersion | |
JP7215977B2 (en) | Ceria-based composite fine particle dispersion, method for producing the same, and polishing abrasive dispersion containing ceria-based composite fine particle dispersion | |
JP7620504B2 (en) | Ceria-based composite microparticle dispersion, its manufacturing method and polishing abrasive dispersion containing the ceria-based composite microparticle dispersion | |
JP7490628B2 (en) | Particle-linked ceria-based composite microparticle dispersion, its manufacturing method, and abrasive dispersion for polishing containing particle-linked ceria-based composite microparticle dispersion | |
JP2017214271A (en) | Silica-based composite fine particle fluid dispersion, production method therefor and abrasive grain fluid dispersion including silica-based composite fine particle fluid dispersion | |
JP7038031B2 (en) | Abrasive grain dispersion for polishing containing ceria-based composite fine particle dispersion, its manufacturing method, and ceria-based composite fine particle dispersion. | |
JP2019172533A (en) | Ceria-based composite fine-particle dispersion, method of manufacturing the same, and abrasive grain dispersion comprising ceria-based composite fine-particle dispersion | |
JP7549528B2 (en) | Ceria-based composite microparticle dispersion, its manufacturing method and polishing abrasive dispersion containing the ceria-based composite microparticle dispersion | |
JP7583627B2 (en) | Particle-linked ceria-based composite microparticle dispersion, its manufacturing method, and abrasive dispersion for polishing containing particle-linked ceria-based composite microparticle dispersion | |
JP6616795B2 (en) | Polishing abrasive dispersion containing silica composite fine particles | |
JP6588050B2 (en) | Polishing abrasive dispersion containing silica composite fine particles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200728 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210629 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210630 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20210824 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211005 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211130 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211227 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7002350 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |