JP2019116615A - Oxynitride phosphor, light emitting device and method for producing oxynitride phosphor - Google Patents
Oxynitride phosphor, light emitting device and method for producing oxynitride phosphor Download PDFInfo
- Publication number
- JP2019116615A JP2019116615A JP2018233446A JP2018233446A JP2019116615A JP 2019116615 A JP2019116615 A JP 2019116615A JP 2018233446 A JP2018233446 A JP 2018233446A JP 2018233446 A JP2018233446 A JP 2018233446A JP 2019116615 A JP2019116615 A JP 2019116615A
- Authority
- JP
- Japan
- Prior art keywords
- oxynitride phosphor
- oxynitride
- light emitting
- formula
- phosphor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 title claims abstract description 157
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 28
- 239000000203 mixture Substances 0.000 claims abstract description 100
- 229910052693 Europium Inorganic materials 0.000 claims abstract description 34
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 34
- 229910052772 Samarium Inorganic materials 0.000 claims abstract description 15
- 150000001875 compounds Chemical class 0.000 claims description 68
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 35
- 238000010304 firing Methods 0.000 claims description 27
- 239000000126 substance Substances 0.000 claims description 20
- 229910052757 nitrogen Inorganic materials 0.000 claims description 19
- 229910052746 lanthanum Inorganic materials 0.000 claims description 16
- 229910052684 Cerium Inorganic materials 0.000 claims description 15
- 229910052779 Neodymium Inorganic materials 0.000 claims description 15
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 15
- 229910052760 oxygen Inorganic materials 0.000 claims description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 12
- 230000005284 excitation Effects 0.000 claims description 12
- 239000001301 oxygen Substances 0.000 claims description 12
- 229910052727 yttrium Inorganic materials 0.000 claims description 8
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 6
- 229910052771 Terbium Inorganic materials 0.000 claims description 6
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 5
- 229910052765 Lutetium Inorganic materials 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 4
- 229910052691 Erbium Inorganic materials 0.000 claims description 3
- 229910052689 Holmium Inorganic materials 0.000 claims description 3
- 229910052775 Thulium Inorganic materials 0.000 claims description 3
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 3
- 230000000052 comparative effect Effects 0.000 description 70
- 239000002994 raw material Substances 0.000 description 23
- 239000002245 particle Substances 0.000 description 22
- 239000013078 crystal Substances 0.000 description 18
- 238000000295 emission spectrum Methods 0.000 description 17
- 229910052788 barium Inorganic materials 0.000 description 16
- 230000004907 flux Effects 0.000 description 12
- 150000004767 nitrides Chemical class 0.000 description 11
- 238000002360 preparation method Methods 0.000 description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- 229910004298 SiO 2 Inorganic materials 0.000 description 7
- 229910052814 silicon oxide Inorganic materials 0.000 description 7
- 229910052581 Si3N4 Inorganic materials 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 description 6
- 230000007547 defect Effects 0.000 description 6
- 229910001940 europium oxide Inorganic materials 0.000 description 6
- AEBZCFFCDTZXHP-UHFFFAOYSA-N europium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Eu+3].[Eu+3] AEBZCFFCDTZXHP-UHFFFAOYSA-N 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 230000003213 activating effect Effects 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 239000002253 acid Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 239000012190 activator Substances 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 3
- 238000004020 luminiscence type Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910016066 BaSi Inorganic materials 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 229910000420 cerium oxide Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 210000001072 colon Anatomy 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000004678 hydrides Chemical class 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- PLDDOISOJJCEMH-UHFFFAOYSA-N neodymium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Nd+3].[Nd+3] PLDDOISOJJCEMH-UHFFFAOYSA-N 0.000 description 2
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 2
- MMKQUGHLEMYQSG-UHFFFAOYSA-N oxygen(2-);praseodymium(3+) Chemical compound [O-2].[O-2].[O-2].[Pr+3].[Pr+3] MMKQUGHLEMYQSG-UHFFFAOYSA-N 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 229910003447 praseodymium oxide Inorganic materials 0.000 description 2
- 238000009877 rendering Methods 0.000 description 2
- 239000003566 sealing material Substances 0.000 description 2
- 238000007873 sieving Methods 0.000 description 2
- 229920002050 silicone resin Polymers 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000012856 weighed raw material Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 102100032047 Alsin Human genes 0.000 description 1
- 101710187109 Alsin Proteins 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910016655 EuF 3 Inorganic materials 0.000 description 1
- 229910005793 GeO 2 Inorganic materials 0.000 description 1
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- 229910010199 LiAl Inorganic materials 0.000 description 1
- 229910017639 MgSi Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910017493 Nd 2 O 3 Inorganic materials 0.000 description 1
- HEQHIXXLFUMNDC-UHFFFAOYSA-N O.O.O.O.O.O.O.[Tb].[Tb].[Tb].[Tb] Chemical compound O.O.O.O.O.O.O.[Tb].[Tb].[Tb].[Tb] HEQHIXXLFUMNDC-UHFFFAOYSA-N 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 206010003549 asthenia Diseases 0.000 description 1
- 229910001422 barium ion Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 229910003440 dysprosium oxide Inorganic materials 0.000 description 1
- NLQFUUYNQFMIJW-UHFFFAOYSA-N dysprosium(iii) oxide Chemical compound O=[Dy]O[Dy]=O NLQFUUYNQFMIJW-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- ZXGIFJXRQHZCGJ-UHFFFAOYSA-N erbium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Er+3].[Er+3] ZXGIFJXRQHZCGJ-UHFFFAOYSA-N 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- CMIHHWBVHJVIGI-UHFFFAOYSA-N gadolinium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Gd+3].[Gd+3] CMIHHWBVHJVIGI-UHFFFAOYSA-N 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- OWCYYNSBGXMRQN-UHFFFAOYSA-N holmium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ho+3].[Ho+3] OWCYYNSBGXMRQN-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910003443 lutetium oxide Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen(.) Chemical compound [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- MPARYNQUYZOBJM-UHFFFAOYSA-N oxo(oxolutetiooxy)lutetium Chemical compound O=[Lu]O[Lu]=O MPARYNQUYZOBJM-UHFFFAOYSA-N 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- UZLYXNNZYFBAQO-UHFFFAOYSA-N oxygen(2-);ytterbium(3+) Chemical compound [O-2].[O-2].[O-2].[Yb+3].[Yb+3] UZLYXNNZYFBAQO-UHFFFAOYSA-N 0.000 description 1
- -1 oxynitride Chemical compound 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- FKTOIHSPIPYAPE-UHFFFAOYSA-N samarium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Sm+3].[Sm+3] FKTOIHSPIPYAPE-UHFFFAOYSA-N 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- ZIKATJAYWZUJPY-UHFFFAOYSA-N thulium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Tm+3].[Tm+3] ZIKATJAYWZUJPY-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000010333 wet classification Methods 0.000 description 1
Landscapes
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Luminescent Compositions (AREA)
Abstract
Description
本発明は、酸窒化物蛍光体、発光装置及び酸窒化物蛍光体の製造方法に関する。 The present invention relates to an oxynitride phosphor, a light emitting device, and a method of manufacturing an oxynitride phosphor.
発光ダイオード(Light Emitting Diode、以下「LED」ともいう。)やレーザーダイオード(Laser Diode、以下「LD」ともいう。)の発光素子と、蛍光体とを組合せた発光装置は、変換効率の高い光源であり、消費電力が少なく、長寿命であり、サイズの小型化が可能であることから、白熱電球や蛍光灯に代わる光源として利用されている。 A light emitting device combining a light emitting diode (Light Emitting Diode, hereinafter also referred to as “LED”) or a light emitting element of a laser diode (Laser Diode, hereinafter also referred to as “LD”) and a phosphor has a light source with high conversion efficiency. Because of its low power consumption, long life and small size, it is used as a light source to replace incandescent bulbs and fluorescent lamps.
発光装置に用いられる蛍光体として、例えば、特許文献1には、BapSiqOrN((2/3)p+(4/3)q−(2/3)r):Eu(0.5<p<1.5、1.5<q<2.5、1.5<r<2.5)の式で表される酸窒化物蛍光体が開示されている。この酸窒化物系蛍光体は、紫外から可視光領域の励起光源により励起されて、青緑色系から黄色系の発光をする。 As a fluorescent substance used for a light-emitting device, for example, in Patent Document 1, Ba p Si q O r N ((2/3) p + (4/3) q− (2/3) r) : Eu (0. An oxynitride phosphor represented by the formula 5 <p <1.5, 1.5 <q <2.5, 1.5 <r <2.5) is disclosed. The oxynitride phosphor is excited by an excitation light source in the ultraviolet to visible light range to emit bluish green to yellowish light.
しかしながら、上述した酸窒化物蛍光体は、発光強度の向上と温度特性の更なる改善が求められている。
そこで、本発明の一態様は、高い発光強度を有し、温度特性が良好な酸窒化物蛍光体、発光装置及び酸窒化物蛍光体の製造方法を提供すること目的とする。
However, the above-described oxynitride phosphor is required to improve emission intensity and further improve temperature characteristics.
Therefore, it is an object of one embodiment of the present invention to provide an oxynitride phosphor having high emission intensity and a favorable temperature characteristic, a light emitting device, and a method for producing an oxynitride phosphor.
前記課題を解決するための手段は、以下の態様を包含する。 The means for solving the problems includes the following aspects.
本発明の第一の態様は、下記式(I)で示される組成を含む、酸窒化物蛍光体である。
(Ba1−aEua)1−bMbSi2O2+cN2+d (I)
(式(I)中、Mは、Eu及びSmを除く希土類元素からなる群から選択される少なくとも1種の元素であり、a、b、c及びdは、それぞれ0<a≦1.0、0<b≦0.07、−0.3<c<0.3、−0.3<d<0.3を満たす数である。)
A first aspect of the present invention is an oxynitride phosphor containing a composition represented by the following formula (I).
(Ba 1-a Eu a) 1-b M b Si 2 O 2 + c N 2 + d (I)
In the formula (I), M is at least one element selected from the group consisting of rare earth elements other than Eu and Sm, and a, b, c and d each satisfy 0 <a ≦ 1.0, 0 <b ≦ 0.07, −0.3 <c <0.3, −0.3 <d <0.3.
本発明の第二の態様は、前記酸窒化物蛍光体と、380nm以上485nm以下の範囲に発光ピーク波長を有する励起光源とを含む、発光装置である。 A second aspect of the present invention is a light emitting device including the oxynitride phosphor and an excitation light source having an emission peak wavelength in the range of 380 nm to 485 nm.
本発明の第三の態様は、前記第一の態様に示される酸窒化物蛍光体の製造方法であって、Baを含む化合物、Euを含む化合物、Eu及びSmを除く希土類元素からなる群から選択される少なくとも1種の元素Mを含む化合物、Siを含む化合物を含み、前記化合物のいずれかが酸素を含む化合物であり、必要に応じて前記化合物のいずれかが窒素を含む化合物である混合物を調製し、その混合物を焼成することを含む、酸窒化物蛍光体の製造方法である。 A third aspect of the present invention is a method for producing an oxynitride phosphor according to the first aspect, which comprises a compound containing Ba, a compound containing Eu, and a rare earth element other than Eu and Sm. A mixture comprising a compound containing at least one element M to be selected, a compound containing Si, any of the aforementioned compounds being a compound containing oxygen, and optionally, any of the compounds being a compound containing nitrogen And baking the mixture, which is a method of producing an oxynitride phosphor.
本発明の一態様によれば、高い発光強度を有し、温度特性が良好な酸窒化物蛍光体、発光装置及び酸窒化物蛍光体の製造方法を提供することができる。 According to one aspect of the present invention, it is possible to provide an oxynitride phosphor having high emission intensity and good temperature characteristics, a light emitting device, and a method for producing an oxynitride phosphor.
以下、本発明に係る酸窒化物蛍光体、発光装置及び酸窒化物蛍光体の製造方法を、実施形態に基づいて説明する。ただし、以下に示す実施形態は、本発明の技術思想を具体化するための例示であって、本発明は、以下の酸窒化物蛍光体、発光装置及び酸窒化物蛍光体の製造方法に限定されない。なお、色名と色度座標との関係、光の波長範囲と単色光の色名との関係等は、JIS Z8110に従う。 Hereinafter, an oxynitride phosphor, a light emitting device, and a method for producing an oxynitride phosphor according to the present invention will be described based on embodiments. However, the embodiments shown below are exemplifications for embodying the technical concept of the present invention, and the present invention is limited to the following oxynitride phosphor, light emitting device, and method of producing oxynitride phosphor. I will not. The relationship between the color name and the chromaticity coordinates, the relationship between the wavelength range of light and the color name of monochromatic light, etc. conform to JIS Z8110.
酸窒化物蛍光体
本発明の第一の実施形態に係る酸窒化物蛍光体は、下記式(I)で示される組成を含む。
(Ba1−aEua)1−bMbSi2O2+cN2+d (I)
(式(I)中、Mは、Eu及びSmを除く希土類元素からなる群から選択される少なくとも1種の元素であり、a、b、c及びdは、それぞれ0<a≦1.0、0<b≦0.07、−0.3<c<0.3、−0.3<d<0.3を満たす数である。)
Oxynitride Phosphor The oxynitride phosphor according to the first embodiment of the present invention has a composition represented by the following formula (I).
(Ba 1-a Eu a) 1-b M b Si 2 O 2 + c N 2 + d (I)
In the formula (I), M is at least one element selected from the group consisting of rare earth elements other than Eu and Sm, and a, b, c and d each satisfy 0 <a ≦ 1.0, 0 <b ≦ 0.07, −0.3 <c <0.3, −0.3 <d <0.3.
本発明の第一の実施形態に係る前記式(I)で示される組成を含む酸窒化物蛍光体は、380nm以上485nm以下の範囲(以下、「近紫外から青色領域」と呼ぶこともある。)に発光ピーク波長を有する発光素子からの光によって効率よく励起されて、青緑色の光を発し、後述するように高い発光強度を有する酸窒化物蛍光体を提供することができる。また、本発明の第一の実施形態に係る酸窒化物蛍光体は、温度特性にも優れる。すなわち、高温下で作動させた場合であっても、また、高温下で長時間連続点灯させ続けた場合であっても色調変動を抑制することができる温度特性が良好な酸窒化物蛍光体を提供することができる。 The oxynitride phosphor including the composition represented by the formula (I) according to the first embodiment of the present invention may be in the range of 380 nm to 485 nm (hereinafter, referred to as “near ultraviolet to blue region”. ) Can be efficiently excited by light from a light emitting element having a light emission peak wavelength to emit bluish green light, thereby providing an oxynitride phosphor having high light emission intensity as described later. The oxynitride phosphor according to the first embodiment of the present invention is also excellent in temperature characteristics. That is, an oxynitride phosphor having good temperature characteristics capable of suppressing color tone fluctuation even when operated at high temperature or continuously lit for a long time at high temperature. Can be provided.
前記式(I)中、Mは、Eu及びSmを除く希土類元素からなる群から選択される少なくとも1種の元素である(以下、「元素M」と呼ぶことがある。)。前記式(I)で示される組成を有する酸窒化物蛍光体は、賦活元素であるEuと、Eu及びSmを除く希土類元素からなる群から選択される少なくとも1種の元素Mを含み、蛍光体の組成における酸素及び窒素の負の電荷と、Ba、Eu、元素M及びSiの正の電荷とのバランスを保ちながら元素Mが蛍光体の結晶構造中に一部取り込まれている。製造方法については後述するが、本形態の酸窒化物蛍光体の原料に含まれる元素Mの化合物の一部は、原料の混合物の焼成時にフラックスとして機能しており、元素Mの一部が蛍光体の結晶構造中に取り込まれていると考えられる。そのため、本形態の酸窒化物蛍光体は、欠陥が少なく結晶性の高い蛍光体粒子となり、近紫外から青色領域に発光ピーク波長を有する発光素子からの光によって効率よく励起されて、青緑色の光を発し、元素Mを含まない場合よりも、高い発光強度を有する。 In the formula (I), M is at least one element selected from the group consisting of rare earth elements other than Eu and Sm (hereinafter may be referred to as “element M”). The oxynitride phosphor having the composition represented by the above formula (I) contains Eu as an activating element and at least one element M selected from the group consisting of rare earth elements excluding Eu and Sm, and a phosphor The element M is partially taken into the crystal structure of the phosphor while maintaining the balance between the negative charges of oxygen and nitrogen and the positive charges of Ba, Eu, element M and Si in the composition of Although the production method will be described later, a part of the compound of the element M contained in the raw material of the oxynitride phosphor of this embodiment functions as a flux when firing the mixture of the raw materials, and a part of the element M is fluorescent It is considered to be incorporated into the crystal structure of the body. Therefore, the oxynitride phosphor of the present embodiment is a phosphor particle having few defects and high crystallinity, and is efficiently excited by light from a light emitting element having a light emission peak wavelength in the near ultraviolet to blue region, and is bluish green It emits light and has higher emission intensity than in the case of not containing the element M.
前記式(I)中、元素Mは、より好ましくはY、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuからなる群から選択される少なくとも1種の希土類元素である。前記式(I)中、元素Mは、さらに好ましくはY、La、Ce、Pr、Nd、Tb及びDyからなる群から選択される少なくとも1種の元素である。前記式(I)で示される組成を含む酸窒化物蛍光体は、前記元素Mを含むことにより、近紫外から青色領域に発光ピーク波長を有する発光素子からの光によって効率よく励起されて、高い発光強度を有する酸窒化物蛍光体を提供することができる。 In the above formula (I), the element M is more preferably at least one member selected from the group consisting of Y, La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu. It is a rare earth element. In the formula (I), the element M is more preferably at least one element selected from the group consisting of Y, La, Ce, Pr, Nd, Tb and Dy. By containing the element M, the oxynitride phosphor having the composition represented by the formula (I) is efficiently excited by the light from the light emitting element having a light emission peak wavelength in the near ultraviolet to blue region, and is high An oxynitride phosphor having emission intensity can be provided.
前記式(I)中、元素Mは、特に好ましくはLa、Ce、Pr及びNdからなる群から選択される少なくとも1種の元素である。前記式(I)で示される組成を含む酸窒化物蛍光体は、Euと共に、La、Ce、Pr及びNdからなる群から選択される少なくとも1種の元素Mを含む。元素Mは、その中でもBaイオンのイオン半径に近いイオン半径を有する元素ほど、Ba及びEuと置き換わって酸窒化物蛍光体に含まれやすく、欠陥が少なく結晶性の高い蛍光体粒子となることで、近紫外から青色領域に発光ピーク波長を有する発光素子からの光によって効率よく励起され、高い発光強度を有する青緑色の光を発するようになる。また、前記式(I)中、元素Mが、La、Ce、Pr及びNdからなる群から選択される少なくとも1種の元素であると、高温下で作動させた場合であっても、また、高温下で長時間連続点灯させた場合であっても色調変動を抑制することができる酸窒化物蛍光体を提供することができる。 In the formula (I), the element M is particularly preferably at least one element selected from the group consisting of La, Ce, Pr and Nd. The oxynitride phosphor including the composition represented by the formula (I) contains Eu and at least one element M selected from the group consisting of La, Ce, Pr and Nd. Among them, the element M having an ion radius closer to the ion radius of Ba ion is more likely to be included in the oxynitride phosphor by replacing Ba and Eu, and becomes phosphor particles with few defects and high crystallinity. The light is efficiently excited by the light from the light emitting element having a light emission peak wavelength in the near ultraviolet to blue region, and a bluish green light having a high light emission intensity is emitted. In the above formula (I), the element M is at least one element selected from the group consisting of La, Ce, Pr and Nd, even when operated at high temperature, It is possible to provide an oxynitride phosphor capable of suppressing color tone fluctuation even when lighted continuously for a long time under high temperature.
前記式(I)中、変数aは、前記式(I)で示される組成を含む酸窒化物蛍光体のEuの賦活量をモル比で表わす。本明細書において、「モル比」とは、前記式(I)で表される化学組成1モル中の各元素のモル比を表す。前記式(I)中、変数aは、0<a≦1.0を満たす数である。前記式(I)中、変数aが0であると、酸窒化物中にEuが賦活剤として存在せず、酸窒化物が励起光の照射によっても発光しない。前記式(I)中、変数aが1.0の場合、それは、結晶構造中、Baサイトが全てEuで置き換わることを意味するが、このようにBaサイトが全てEuで置き換わっても励起光の照射によって発光する酸窒化物蛍光体が得られる。前記式(I)中、変数aは、好ましくは0.001≦a<1.0、より好ましくは0.001≦a≦0.5、さらに好ましくは0.001≦a≦0.3、よりさらに好ましくは0.001≦a≦0.1を満たす数である。賦活元素であるEuのモル比を増加していくと、ある範囲までは発光強度は高くなるが、Euの増加によって濃度消光が起こり、却って発光強度が低下する場合がある。 In the formula (I), the variable a represents the activation amount of Eu of the oxynitride phosphor including the composition represented by the formula (I) in molar ratio. In the present specification, “molar ratio” refers to the molar ratio of each element in 1 mol of the chemical composition represented by the formula (I). In the formula (I), the variable a is a number that satisfies 0 <a ≦ 1.0. In the formula (I), when the variable a is 0, Eu does not exist as an activator in the oxynitride, and the oxynitride does not emit light even when irradiated with excitation light. In the formula (I), when the variable a is 1.0, it means that all Ba sites are replaced with Eu in the crystal structure, but even if all Ba sites are replaced with Eu in this way, excitation light An oxynitride phosphor that emits light upon irradiation is obtained. In the formula (I), the variable a is preferably 0.001 ≦ a <1.0, more preferably 0.001 ≦ a ≦ 0.5, still more preferably 0.001 ≦ a ≦ 0.3. More preferably, it is a number satisfying 0.001 ≦ a ≦ 0.1. When the molar ratio of the activating element, Eu, is increased, the emission intensity increases up to a certain range, but the increase in Eu may cause concentration quenching, which may lower the emission intensity.
前記式(I)中、変数bは、前記式(I)で示される組成を含む酸窒化物蛍光体のEu及びSmを除く希土類元素からなる群からなる群から選択される少なくとも1種の元素Mのモル比である。前記式(I)中、変数bは、0<b≦0.07を満たす数であり、前記変数bが0であると、酸窒化物蛍光体中に、元素Mが存在せず、酸窒化物蛍光体の発光強度を高く改善することができない。前記式(I)中、変数bが0.07を超えると、すなわち、結晶構造中に取り込まれる元素Mが多くなると、賦活剤であるEuの発光に寄与するはずのエネルギーが元素Mに吸収されると推測され、発光特性が低下する。前記式(I)中、変数bは、好ましくは0.001≦b≦0.06、より好ましくは0.001≦b≦0.05、さらに好ましくは0.001≦b≦0.045を満たす数である。 In the formula (I), the variable b is at least one element selected from the group consisting of rare earth elements excluding Eu and Sm of the oxynitride phosphor containing the composition represented by the formula (I) It is a molar ratio of M. In the formula (I), the variable b is a number satisfying 0 <b ≦ 0.07, and when the variable b is 0, the element M is not present in the oxynitride phosphor, and the oxynitridation is carried out It is not possible to improve the emission intensity of the substance phosphors to a high degree. In the formula (I), when the variable b exceeds 0.07, that is, when the element M to be incorporated into the crystal structure is increased, the energy that should contribute to the light emission of the activator Eu is absorbed by the element M It is inferred that the light emission characteristics are degraded. In the formula (I), the variable b preferably satisfies 0.001 ≦ b ≦ 0.06, more preferably 0.001 ≦ b ≦ 0.05, and still more preferably 0.001 ≦ b ≦ 0.045. It is a number.
前記式(I)で示される組成を含む酸窒化物蛍光体は、前記式(I)中、元素Mが、La、Ce、Pr及びNdからなる群から選択される少なくとも1種の元素であり、前記式(I)中、変数a、変数bが、それぞれ0.001≦a<0.1、0.001≦b≦0.05を満たす数であることが好ましい。前記式(I)で示される組成を含む酸窒化物蛍光体は、Euと共に、La、Ce、Pr及びNdからなる群から選択される少なくとも1種の元素Mを含み、前記酸窒化物蛍光体に含まれる組成において、Euのモル比を示す変数aが、0.001≦a<0.1を満たす数であり、元素Mのモル比を示す変数bが、0.001≦b≦0.05を満たす数であることによって、酸窒化物蛍光体は、発光強度を高く改善することができるとともに、温度特性を改善することができる。前記式(I)で示される組成において、La、Ce、Pr及びNdからなる群から選択される少なくとも1種の元素Mを含む酸窒化物蛍光体は、高温下で作動させた場合であっても、また、高温下で長時間連続点灯させた場合であっても色調変動を抑制することができる酸窒化物蛍光体を提供することができる。 In the oxynitride phosphor containing the composition represented by the formula (I), the element M is at least one element selected from the group consisting of La, Ce, Pr and Nd in the formula (I) In the formula (I), it is preferable that the variable a and the variable b be numbers satisfying 0.001 ≦ a <0.1 and 0.001 ≦ b ≦ 0.05, respectively. The oxynitride phosphor containing the composition represented by the formula (I) contains at least one element M selected from the group consisting of La, Ce, Pr and Nd together with Eu, and the oxynitride phosphor In the composition contained in, the variable a representing the molar ratio of Eu is a number satisfying 0.001 ≦ a <0.1, and the variable b representing the molar ratio of the element M is 0.001 ≦ b ≦ 0. By being a number satisfying 05, the oxynitride phosphor can improve the emission intensity highly and improve the temperature characteristics. The oxynitride phosphor containing at least one element M selected from the group consisting of La, Ce, Pr and Nd in the composition represented by the above formula (I) is a case where it is operated under high temperature. Also, it is possible to provide an oxynitride phosphor capable of suppressing color tone fluctuation even when the lamp is continuously lit for a long time under high temperature.
前記式(I)中、変数cは、前記式(I)で示される組成において、Siのモル比が2である場合に、酸素(O)のモル比である2に対して変動する数値を示す。また、式(I)中、変数dは、前記式(I)で示される組成において、Siのモル比が2である場合に、窒素(N)のモル比である2に対して変動する数値を示す。
変数cが−0.3<c<0.3を満たす数であり、変数dが−0.3<d<0.3を満たす数であれば、酸素及び窒素の負の電荷と、Ba、Eu、元素M及びSiの正の電荷とのバランスが調整されやすく、本件蛍光体の基本組成となるBaSi2O2N2で表される酸窒化物の結晶構造を維持することができ、安定した結晶構造によって、発光特性の改善に寄与することができる。一方、変数cが−0.3以下又は変数dが−0.3以下であるか、変数cが0.3以上又は変数dが0.3以上であると、BaSi2O2N2で示される結晶構造を構成するSiON3で表される四面体構造が変化し、結晶構造が一部変化して、発光強度が低下する場合がある。
In the formula (I), the variable c is a value which is variable with respect to the molar ratio of oxygen (O) when the molar ratio of Si is 2 in the composition represented by the formula (I). Show. Furthermore, in the formula (I), the variable d is a numerical value which fluctuates with respect to 2 which is the molar ratio of nitrogen (N) when the molar ratio of Si is 2 in the composition represented by the above-mentioned formula (I) Indicates
If the variable c is a number satisfying −0.3 <c <0.3 and the variable d is a number satisfying −0.3 <d <0.3, negative charges of oxygen and nitrogen, Ba, and The balance with the positive charge of Eu, element M and Si can be easily adjusted, and the crystal structure of the oxynitride represented by BaSi 2 O 2 N 2 , which is the basic composition of the present phosphor, can be maintained and is stable. The crystalline structure can contribute to the improvement of the light emission characteristics. On the other hand, BaSi 2 O 2 N 2 indicates that the variable c is −0.3 or less or the variable d is −0.3 or less, or the variable c is 0.3 or more or the variable d is 0.3 or more. The tetrahedral structure represented by SiON 3 constituting the crystal structure to be changed may change, and the crystal structure may partly change to reduce the light emission intensity.
前記式(I)で示される組成を含む酸窒化物蛍光体は、平均粒径が好ましくは3μm以上50μmの範囲内であり、より好ましくは5μm以上40μm以下の範囲内であり、さらに好ましくは6μm以上30μm以下の範囲内であり、よりさらに好ましくは7μm以上20μmの範囲内である。前記式(I)で示される組成を含む酸窒化物蛍光体の平均粒径が3μm以上50μmの範囲内であると、近紫外から青色領域に発光ピーク波長を有する発光素子からの光をよく吸収し、高い発光強度を有する。前記式(I)で示される組成を含む酸窒化物蛍光体の平均粒径は、レーザー回折散乱式粒度分布測定法による体積基準の粒度分布における小径側からの体積累積頻度が50%に達する粒径(メジアン径)をいう。レーザー回折散乱式粒度分布測定法には、例えばレーザー回折式粒度分布測定装置(MALVERN社製、製品名:MASTER SIZER(マスターサイザー)3000、)を用いて測定することができる。 The oxynitride phosphor containing the composition represented by the formula (I) preferably has an average particle diameter in the range of 3 μm to 50 μm, more preferably in the range of 5 μm to 40 μm, and still more preferably 6 μm. More preferably, it is in the range of 7 μm to 20 μm. When the average particle diameter of the oxynitride phosphor having the composition represented by the formula (I) is in the range of 3 μm to 50 μm, the light from the light emitting element having the emission peak wavelength in the near ultraviolet to blue region is well absorbed And have high light emission intensity. The average particle diameter of the oxynitride phosphor containing the composition represented by the above-mentioned formula (I) is a particle whose volume cumulative frequency from the small diameter side reaches 50% in the volume-based particle size distribution by laser diffraction scattering particle size distribution measurement The diameter (median diameter) is said. The laser diffraction / scattering particle size distribution measurement method can be measured, for example, using a laser diffraction particle size distribution measuring apparatus (manufactured by MALVERN, product name: MASTER SIZER (master sizer) 3000).
発光装置
本発明の第二の実施形態に係る前記式(I)で示される組成を含む酸窒化物蛍光体を用いた発光装置の一例を図面に基づいて説明する。図1は、本発明の第二の実施態様に係る発光装置100を示す概略断面図である。
Light Emitting Device An example of a light emitting device using an oxynitride phosphor containing the composition represented by the formula (I) according to the second embodiment of the present invention will be described based on the drawings. FIG. 1 is a schematic cross-sectional view showing a light emitting device 100 according to a second embodiment of the present invention.
発光装置100は、成形体40と、発光素子10と、蛍光部材50とを備える。成形体40は、第1のリード20及び第2のリード30と、熱可塑性樹脂又は熱硬化性樹脂を含む樹脂部42とが一体的に成形されてなるものである。成形体40は底面と側面を持つ凹部を形成しており、凹部の底面に発光素子10が配置されている。発光素子10は一対の正負の電極を有しており、その一対の正負の電極はそれぞれ第1のリード20及び第2のリード30とそれぞれワイヤ60を介して電気的に接続されている。発光素子10は蛍光部材50により被覆されている。蛍光部材50は、例えば、発光素子10からの光を波長変換する蛍光体70と樹脂を含む。さらに蛍光体70は、第一蛍光体71と第二蛍光体72とを含む。発光素子10の正負一対の電極に接続された第1のリード20及び第2のリード30は、発光装置100を構成する成形体40の外方に向けて、第1のリード20及び第2のリード30の一部が露出されている。これらの第1のリード20及び第2のリード30を介して、外部から電力の供給を受けて発光装置100を発光させることができる。 The light emitting device 100 includes the molded body 40, the light emitting element 10, and the fluorescent member 50. The molded body 40 is formed by integrally molding the first lead 20 and the second lead 30 and the resin portion 42 containing a thermoplastic resin or a thermosetting resin. The molded body 40 forms a recess having a bottom surface and a side surface, and the light emitting element 10 is disposed on the bottom surface of the recess. The light emitting element 10 has a pair of positive and negative electrodes, and the pair of positive and negative electrodes are electrically connected to the first lead 20 and the second lead 30 through the wires 60 respectively. The light emitting element 10 is covered by a fluorescent member 50. The fluorescent member 50 includes, for example, a phosphor 70 for converting the wavelength of light from the light emitting element 10 and a resin. The phosphor 70 further includes a first phosphor 71 and a second phosphor 72. The first lead 20 and the second lead 30 connected to the pair of positive and negative electrodes of the light emitting element 10 are directed to the outside of the molded body 40 constituting the light emitting device 100 to form the first lead 20 and the second lead. A part of the lead 30 is exposed. Power can be supplied from the outside via the first lead 20 and the second lead 30 to cause the light emitting device 100 to emit light.
発光素子10は、励起光源として用いられており、380nm以上485nm以下の波長範囲内に発光ピークを有するものであることが好ましい。発光素子10の発光ピーク波長は、より好ましくは390nm以上480nm以下の範囲内であり、さらに好ましくは420nm以上470nm以下の範囲内である。発光素子10の発光スペクトルの半値幅は、例えば、30nm以下とすることができる。 The light emitting element 10 is used as an excitation light source, and preferably has a light emission peak in a wavelength range of 380 nm to 485 nm. The emission peak wavelength of the light emitting element 10 is more preferably in the range of 390 nm to 480 nm, and still more preferably in the range of 420 nm to 470 nm. The half width of the emission spectrum of the light emitting element 10 can be, for example, 30 nm or less.
発光素子10は、例えば、窒化物系半導体(InXAlYGa1−X−YN、0≦X、0≦Y、X+Y≦1)を用いた半導体発光素子を用いることが好ましい。光源として半導体発光素子を用いることによって、高効率で入力に対する出力のリニアリティが高く、機械的衝撃にも強い安定した発光装置を得ることができる。 Light emitting element 10, for example, it is preferable to use a semiconductor light emitting device using nitride semiconductor (In X Al Y Ga 1- X-Y N, 0 ≦ X, 0 ≦ Y, X + Y ≦ 1). By using a semiconductor light emitting element as a light source, it is possible to obtain a stable light emitting device with high efficiency, high output linearity with respect to input, and resistance to mechanical shock.
発光装置100は、少なくとも第一の実施形態に係る前記式(I)で示される組成を含む酸窒化物蛍光体と、380nm以上485nm以下の範囲内に発光ピーク波長を有する励起光源とを含むことが好ましい。
第一蛍光体71は、本発明の第一の実施形態に係る前記式(I)で示される組成を含む酸窒化物蛍光体を含むことが好ましい。第一蛍光体71が、前記式(I)で示される組成を含む酸窒化物蛍光体であると、380nm以上485nm以下の範囲内に発光ピーク波長を有する励起光源からの光により効率よく励起され、高い発光強度を有する酸窒化物蛍光体により、発光素子10からの光と第一蛍光体71を含む蛍光体70からの蛍光との混色光を発する発光装置100を構成することが可能となる。
The light emitting device 100 includes an oxynitride phosphor including the composition represented by the formula (I) according to at least the first embodiment, and an excitation light source having an emission peak wavelength in the range of 380 nm to 485 nm. Is preferred.
The first phosphor 71 preferably includes an oxynitride phosphor including the composition represented by the formula (I) according to the first embodiment of the present invention. When the first phosphor 71 is an oxynitride phosphor including the composition represented by the formula (I), it is efficiently excited by light from an excitation light source having a light emission peak wavelength within the range of 380 nm to 485 nm. It is possible to constitute the light emitting device 100 emitting mixed color light of the light from the light emitting element 10 and the fluorescence from the fluorescent substance 70 including the first fluorescent substance 71 by the oxynitride fluorescent substance having high luminous intensity. .
第一蛍光体71は、第一の実施形態に係る前記式(I)で示される組成を含む酸窒化物蛍光体を含み、例えば、発光素子10を覆う蛍光部材50に含有される。第一蛍光体71を含有する蛍光部材50により発光素子10が覆われた発光装置100では、発光素子10から出射された光の一部が前記式(I)で示される組成を含む酸窒化物蛍光体に吸収されて、青緑色光として放射される。380nm以上485nm以下の範囲内に発光ピーク波長を有する光を発する発光素子10を用いることで、発光効率が高い発光装置を提供することができる。 The first phosphor 71 includes an oxynitride phosphor including the composition represented by the formula (I) according to the first embodiment, and is contained in, for example, the fluorescent member 50 covering the light emitting element 10. In the light emitting device 100 in which the light emitting element 10 is covered with the fluorescent member 50 containing the first fluorescent substance 71, an oxynitride including a part of the light emitted from the light emitting element 10 having the composition represented by the formula (I) It is absorbed by the phosphor and emitted as blue-green light. By using the light emitting element 10 that emits light having a light emission peak wavelength in the range of 380 nm to 485 nm, a light emitting device with high light emission efficiency can be provided.
蛍光部材50は、第一蛍光体71とは発光ピーク波長が異なる第二蛍光体72を含むことが好ましい。例えば、発光装置100は、380nm以上485nm以下の範囲内に発光ピーク波長を有する光を放出する発光素子10と、この光によって励起される第一蛍光体71及び第二蛍光体72を適宜備えることにより、広い色再現範囲や高い演色性を得ることができる。 The fluorescent member 50 preferably includes a second phosphor 72 having a light emission peak wavelength different from that of the first phosphor 71. For example, the light emitting device 100 appropriately includes the light emitting element 10 that emits light having a light emission peak wavelength in the range of 380 nm to 485 nm, and the first phosphor 71 and the second phosphor 72 excited by this light. Thus, a wide color reproduction range and high color rendering can be obtained.
第二蛍光体72としては、発光素子10からの光を吸収し、第一蛍光体71とは異なる波長の光に波長変換するものであればよい。例えば、(Ca,Sr,Ba)2SiO4:Eu、(Ca,Sr,Ba)8MgSi4O16(F,Cl,Br)2:Eu、Si6−zAlzOzN8−z:Eu(0<z≦4.2)、(Sr、Ba,Ca)Ga2S4:Eu、(Lu,Y,Gd,Lu)3(Ga,Al)5O12:Ce、(La,Y,Gd)3Si6N11:Ce、Ca3Sc2Si3O12:Ce、CaSc4O4:Ce、K2(Si,Ge,Ti)F6:Mn、(Ca,Sr,Ba)2Si5N8:Eu、CaAlSiN3:Eu、(Ca,Sr)AlSiN3:Eu、(Sr,Ca)LiAl3N4:Eu、(Ca,Sr)2Mg2Li2Si2N6:Eu、3.5MgO・0.5MgF2・GeO2:Mn、Sr3SiO5:Eu、(Ca,Sr,Li,Y)x(Si,Al)12(O,N)16:Eu(0≦x≦3)等が挙げられる。本明細書において、蛍光体の組成を表す式中、カンマ(,)で区切られて記載されている複数の元素は、これらの複数の元素のうち少なくとも一種の元素を組成中に含有することを意味する。また、本明細書において、蛍光体の組成を表す式中、コロン(:)の前は母体結晶を表し、コロン(:)の後は賦活元素を表す。 What is necessary is to absorb the light from the light emitting element 10 and perform wavelength conversion to light of a wavelength different from that of the first phosphor 71 as the second phosphor 72. For example, (Ca, Sr, Ba) 2 SiO 4 : Eu, (Ca, Sr, Ba) 8 MgSi 4 O 16 (F, Cl, Br) 2 : Eu, Si 6-z Al z O z N 8-z : Eu (0 <z ≦ 4.2 ), (Sr, Ba, Ca) Ga 2 S 4: Eu, (Lu, Y, Gd, Lu) 3 (Ga, Al) 5 O 12: Ce, (La, Y, Gd) 3 Si 6 N 11 : Ce, Ca 3 Sc 2 Si 3 O 12 : Ce, CaSc 4 O 4 : Ce, K 2 (Si, Ge, Ti) F 6 : Mn, (Ca, Sr, Ba) ) 2 Si 5 N 8 : Eu, CaAlSiN 3 : Eu, (Ca, Sr) AlSiN 3 : Eu, (Sr, Ca) LiAl 3 N 4 : Eu, (Ca, Sr) 2 Mg 2 Li 2 Si 2 N 6 : Eu, 3.5MgO.0.5MgF 2 .GeO 2 : Mn Sr 3 SiO 5 : Eu, (Ca, Sr, Li, Y) x (Si, Al) 12 (O, N) 16 : Eu (0 ≦ x ≦ 3), etc. may be mentioned. In the present specification, in a formula representing the composition of a phosphor, a plurality of elements described by being separated by commas (,) contain at least one element of the plurality of elements in the composition. means. Further, in the present specification, in the formula representing the composition of the phosphor, the host crystal is shown before the colon (:), and the activating element is shown after the colon (:).
第一蛍光体71及び第二蛍光体72を含む蛍光体70は、封止材料とともに発光素子を被覆する蛍光部材50を構成する。蛍光部材50を構成する封止材料としては、シリコーン樹脂、エポキシ樹脂を挙げることができる。 The fluorescent substance 70 containing the 1st fluorescent substance 71 and the 2nd fluorescent substance 72 comprises the fluorescence member 50 which coat | covers a light emitting element with a sealing material. As a sealing material which comprises the fluorescence member 50, a silicone resin and an epoxy resin can be mentioned.
本発明の第二の実施形態に係る発光装置は、本発明の第一の実施形態に係る酸窒化物蛍光体を含むことにより、高い発光強度を有し、高温下で作動させた場合であっても、また、高温下で長時間、発光装置を連続点灯させた場合であっても、色調変動を抑制することができ、演色性や色再現性に優れた発光装置を提供することができる。 The light emitting device according to the second embodiment of the present invention has high emission intensity by including the oxynitride phosphor according to the first embodiment of the present invention, and is operated at high temperature. Even in the case where the light emitting device is continuously lit for a long time under high temperature, however, it is possible to suppress color tone fluctuation, and it is possible to provide a light emitting device excellent in color rendering property and color reproducibility. .
酸窒化物蛍光体の製造方法
本発明の第三の実施形態に係る酸窒化物蛍光体の製造方法は、下記式(I)で示される組成を含む酸窒化物蛍光体の製造方法であって、Baを含む化合物、Euを含む化合物、Eu及びSmを除く希土類元素からなる群から選択される少なくとも1種の元素Mを含む化合物、Siを含む化合物を含み、前記化合物のいずれかが酸素を含む化合物であり、必要に応じて前記化合物のいずれかが窒素を含む化合物である混合物を調製し、その混合物を焼成することを含む。
(Ba1−aEua)1−bMbSi2O2+cN2+d (I)
(式(I)中、Mは、Eu及びSmを除く希土類元素からなる群から選択される少なくとも1種の元素であり、a、b、c及びdは、それぞれ0<a≦1.0、0<b≦0.07、−0.3<c<0.3、−0.3<d<0.3を満たす数である。)
Method for Producing Oxynitride Phosphor The method for producing an oxynitride phosphor according to the third embodiment of the present invention is a method for producing an oxynitride phosphor containing a composition represented by the following formula (I) A compound containing Ba, a compound containing Eu, a compound containing at least one element M selected from the group consisting of Eu and rare earth elements excluding Sm, a compound containing Si, and any of the compounds mentioned above contains oxygen Preparing a mixture containing the compound, wherein any one of the compounds is a compound containing nitrogen, if necessary, and calcining the mixture.
(Ba 1-a Eu a) 1-b M b Si 2 O 2 + c N 2 + d (I)
In the formula (I), M is at least one element selected from the group consisting of rare earth elements other than Eu and Sm, and a, b, c and d each satisfy 0 <a ≦ 1.0, 0 <b ≦ 0.07, −0.3 <c <0.3, −0.3 <d <0.3.
前記式(I)中、元素Mは、Eu及びSmを除く希土類元素からなる群から選択される少なくとも1種の元素であり、好ましくはY、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuからなる群から選択される少なくとも1種の希土類元素であり、より好ましくはY、La、Ce、Pr、Nd、Tb及びDyからなる群から選択される少なくとも1種の元素であり、さらに好ましくはLa、Ce、Pr及びNdからなる群から選択される少なくとも1種の元素である。 In the formula (I), the element M is at least one element selected from the group consisting of rare earth elements other than Eu and Sm, preferably Y, La, Ce, Pr, Nd, Gd, Tb, Dy. At least one rare earth element selected from the group consisting of Ho, Er, Tm, Yb and Lu, more preferably at least one selected from the group consisting of Y, La, Ce, Pr, Nd, Tb and Dy It is one kind of element, more preferably at least one kind of element selected from the group consisting of La, Ce, Pr and Nd.
混合物
本発明の第三の実施形態に係る酸窒化物蛍光体の製造方法は、原料として、Baを含む化合物、Euを含む化合物、Eu及びSmを除く希土類元素からなる群から選択される少なくとも1種の元素Mを含む化合物、Siを含む化合物を含む。前記化合物のうちいずれかの化合物は、酸素を含む化合物である。前記酸素を含む化合物としては、炭酸塩又は酸化物であることが好ましい。また、Baを含む化合物、Euを含む化合物、Eu及びSmを除く希土類元素からなる群から選択される少なくとも1種の元素Mを含む化合物、及びSiを含む化合物からなる群から選択される少なくとも1種の化合物は、必要に応じて前記化合物のいずれかが窒素を含む化合物であり、好ましくは前記化合物のいずれかは窒化物である。窒素を含む化合物は、例えばBaを含む窒化物、Siを含む窒化物、Euを含む窒化物が挙げられる。
Mixture The method for producing an oxynitride phosphor according to the third embodiment of the present invention comprises at least one selected from the group consisting of a compound containing Ba, a compound containing Eu, and a rare earth element other than Eu and Sm as raw materials. A compound containing the element M of a species and a compound containing Si are included. The compound of any of the above compounds is a compound containing oxygen. The compound containing oxygen is preferably a carbonate or an oxide. Further, at least one selected from the group consisting of a compound containing Ba, a compound containing Eu, a compound containing at least one element M selected from the group consisting of Eu and rare earth elements excluding Sm, and a compound containing Si The compound of the type is a compound in which any of the compounds mentioned above contains nitrogen, if necessary, and preferably, any of the compounds is a nitride. The compound containing nitrogen includes, for example, a nitride containing Ba, a nitride containing Si, and a nitride containing Eu.
本発明の第三の実施形態に係る酸窒化物蛍光体の製造方法において、酸窒化物蛍光体は、酸素及び窒素を一定のモル比で有しているので、Ba、Eu、元素M及びSiの他に酸素を含む化合物及び窒素を含む化合物を一定のモル比で含む必要がある。酸素を含む化合物は、後述するように、Baを含む化合物、Euを含む化合物、元素Mを含む化合物であってもよい。窒素を含む化合物は、後述するようにSiを含む化合物であってもよい。 In the method for producing an oxynitride phosphor according to the third embodiment of the present invention, since the oxynitride phosphor has oxygen and nitrogen in a constant molar ratio, Ba, Eu, element M and Si are used. In addition, it is necessary to include a compound containing oxygen and a compound containing nitrogen in a fixed molar ratio. The compound containing oxygen may be a compound containing Ba, a compound containing Eu, or a compound containing an element M, as described later. The compound containing nitrogen may be a compound containing Si as described later.
本発明の第三の実施形態に係る酸窒化物蛍光体の製造方法において、酸窒化物蛍光体の原料を含む前記混合物に含まれる元素Mのモル比は、前記混合物に含まれるSiのモル比を2としたときに、0を超えて0.15未満であることが好ましい。酸窒化物蛍光体の製造方法において、前記混合物に含まれる元素Mのモル比は、前記混合物に含まれるSiのモル比を2としたときに、より好ましくは0.001以上0.13以下、さらに好ましくは0.001以上0.12以下である。前記混合物に含まれる元素Mのモル比が、前記混合物に含まれるSiのモル比を2としたときに、0を超えて0.15未満であれば、得られる前記式(I)で示される組成を含む酸窒化物蛍光体を得ることができ、前記式(I)で示される組成において、変数bが0<b≦0.07を満たすモル比の元素Mを、酸窒化物蛍光体に含有させることができる。酸窒化物蛍光体の原料を含む混合物中の各元素のモル比は、仕込み組成又は仕込みモル比として表してもよい。 In the method for producing an oxynitride phosphor according to the third embodiment of the present invention, the molar ratio of the element M contained in the mixture containing the raw material of the oxynitride phosphor is the molar ratio of Si contained in the mixture Is preferably greater than 0 and less than 0.15. In the method for producing an oxynitride phosphor, the molar ratio of the element M contained in the mixture is more preferably 0.001 or more and 0.13 or less, where the molar ratio of Si contained in the mixture is 2. More preferably, it is 0.001 or more and 0.12 or less. The molar ratio of the element M contained in the mixture is, if the molar ratio of Si contained in the mixture is 2, if it is more than 0 and less than 0.15, the obtained formula (I) is obtained An oxynitride phosphor containing a composition can be obtained, and in the composition represented by the formula (I), the element M in a molar ratio satisfying a variable b of 0 <b ≦ 0.07 is added to the oxynitride phosphor. It can be contained. The molar ratio of each element in the mixture containing the raw material of the oxynitride phosphor may be expressed as a charged composition or a charged molar ratio.
Baを含む化合物は、Baを含む窒化物、酸化物、炭酸塩又は水素化物等を使用することができる。また、バリウムは、バリウム金属の単体を用いてもよく、Baを含む化合物としては、例えばBa3N2、BaO、BaCO3、BaH2、BaNH2が挙げられる。 As the compound containing Ba, a nitride containing Ba, an oxide, a carbonate, a hydride or the like can be used. Moreover, barium may use a single substance of barium metal, and examples of the compound containing Ba include Ba 3 N 2 , BaO, BaCO 3 , BaH 2 and BaNH 2 .
Siを含む化合物は、Siを含む酸化物及び/又はSiを含む窒化物を使用することができる。前記Siを含む化合物は、例えばSiO2、Si3N4が挙げられる。ケイ素は、ケイ素金属の単体を用いてもよく、Siの一部が第14属のGe及びSnから選ばれる少なくとも一種の元素で置き換わった合金を用いてもよい。 As a compound containing Si, an oxide containing Si and / or a nitride containing Si can be used. Examples of the compound containing Si include SiO 2 and Si 3 N 4 . As silicon, a single substance of silicon metal may be used, or an alloy in which part of Si is replaced by at least one element selected from Ge and Sn of Group 14 may be used.
前記元素Mを含む化合物は、Eu及びSmを除く希土類元素からなる群から選択される少なくとも1種の希土類元素を含む酸化物、水酸化物、窒化物、酸窒化物、フッ化物、又は塩化物等を使用することができる。前記元素Mを含む化合物は、入手しやすく、安定な化合物であるため取り扱いが容易である酸化物であることが好ましい。前記元素Mを含む化合物は、Y2O3、La2O3、CeO2、Pr6O11、Nd2O3、Gd2O3、Tb4O7、Dy2O3、Ho2O3、Er2O3、Tm2O3、Yb2O3、Lu2O3が挙げられる。 The compound containing the element M is an oxide, hydroxide, nitride, oxynitride, fluoride or chloride containing at least one rare earth element selected from the group consisting of rare earth elements other than Eu and Sm. Etc. can be used. The compound containing the element M is preferably an oxide which is easy to obtain and a stable compound and thus easy to handle. The compound containing the element M is Y 2 O 3 , La 2 O 3 , CeO 2 , CeO 2 , Pr 6 O 11 , Nd 2 O 3 , Gd 2 O 3 , Tb 4 O 7 , Dy 2 O 3 , Ho 2 O 3 , Er 2 O 3 , Tm 2 O 3 , Yb 2 O 3 , and Lu 2 O 3 .
前記Euを含む化合物としては、Euを含む酸化物、水酸化物、窒化物、酸窒化物、フッ化物、水素化物、又は塩化物等を使用することができる。Euを含む化合物は、具体的には、例えばEu2O3、EuN、EuF3が挙げられる。 As the compound containing Eu, an oxide containing Eu, a hydroxide, a nitride, an oxynitride, a fluoride, a hydride, or a chloride can be used. Specific examples of the compound containing Eu include Eu 2 O 3 , EuN, and EuF 3 .
混合物は、Baを含む化合物、Euを含む化合物、Eu及びSmを除く希土類元素からなる群から選択される少なくとも1種の元素Mを含む化合物、及びSiを含む化合物は、各化合物を計量し、調製される。 The mixture is a compound containing Ba, a compound containing Eu, a compound containing at least one element M selected from the group consisting of Eu and rare earth elements other than Sm, and a compound containing Si weigh each compound, Be prepared.
計量した原料は、混合機を用いて湿式又は乾式で混合して調製してもよい。混合機は工業的に通常用いられているボールミルの他、振動ミル、ロールミル、ジェットミル等の粉砕機を用いて粉砕して比表面積を大きくすることもできる。また、粉末の比表面積を一定範囲とするために、工業的に通常用いられている沈降槽、ハイドロサイクロン、遠心分離器等の湿式分離機、サイクロン、エアセパレータ等の乾式分級機を用いて分級することもできる。 The measured raw materials may be prepared by wet or dry mixing using a mixer. A mixer can also be ground using a pulverizer such as a vibration mill, a roll mill, a jet mill or the like in addition to a ball mill generally used industrially to increase the specific surface area. Also, in order to set the specific surface area of the powder within a certain range, classification is carried out using a settling tank, a wet separator such as a hydrocyclone, a centrifugal separator, a dry classifier such as a cyclone, an air separator, etc. You can also
混合物は、黒鉛等の炭素、窒化ホウ素(BN)、アルミナ(Al2O3)、タングステン(W)、モリブデン(Mo)等の材質の坩堝やボートに載置して、炉内で熱処理し焼成物を得ることができる。 The mixture is placed on a crucible or a boat made of carbon such as graphite, boron nitride (BN), alumina (Al 2 O 3 ), tungsten (W), molybdenum (Mo), etc., heat-treated in the furnace and fired. You can get things.
焼成工程
本発明の第三の実施形態に係る酸窒化物蛍光体の製造方法において、混合物は、還元雰囲気で焼成されることが好ましい。還元雰囲気は、窒素を含むことが好ましい。還元雰囲気は、窒素を含み、その他のガスとして、水素、アルゴン、二酸化炭素、一酸化炭素又はアンモニアの少なくとも1種以上を含んでいてもよい。還元雰囲気は、窒素とともに、水素を含む雰囲気であることが好ましく、還元雰囲気中、水素ガスを好ましくは1体積%以上、より好ましくは5体積%以上、さらに好ましくは10体積%以上含有する。
Firing Step In the method for producing an oxynitride phosphor according to the third embodiment of the present invention, the mixture is preferably fired in a reducing atmosphere. The reducing atmosphere preferably contains nitrogen. The reducing atmosphere contains nitrogen, and may contain at least one or more of hydrogen, argon, carbon dioxide, carbon monoxide or ammonia as another gas. The reducing atmosphere is preferably an atmosphere containing hydrogen as well as nitrogen, and preferably contains 1% by volume or more, more preferably 5% by volume or more, and still more preferably 10% by volume or more in the reducing atmosphere.
本発明の第三の実施形態に係る製造方法は、還元雰囲気中で混合物を焼成することで、所望の組成を有する酸窒化物蛍光体を得ることができる。還元雰囲気が、窒素ガスと水素ガスを含む雰囲気である場合には、より高い発光強度を有する酸窒化物蛍光体を得ることができる。本発明に係る酸窒化物蛍光体は、賦活元素がEuであり、還元雰囲気中で混合物を焼成することで、発光に寄与する2価のEuが占める割合が酸窒化物蛍光体中で増大することに起因している。2価のEuは酸化されて3価のEuとなりやすいが、水素及び窒素を含む還元力の高い還元雰囲気で焼成することにより、3価のEuが2価のEuに還元されるため、得られる酸窒化物蛍光体中に2価のEuが占める割合が増大し、高い発光強度を有する酸窒化物蛍光体が得られる。 The manufacturing method according to the third embodiment of the present invention can obtain an oxynitride phosphor having a desired composition by firing the mixture in a reducing atmosphere. When the reducing atmosphere is an atmosphere containing nitrogen gas and hydrogen gas, an oxynitride phosphor having higher emission intensity can be obtained. In the oxynitride phosphor according to the present invention, the activating element is Eu, and by firing the mixture in a reducing atmosphere, the proportion of divalent Eu contributing to light emission increases in the oxynitride phosphor. It is due to. Divalent Eu is likely to be oxidized to be trivalent Eu, but it is obtained because calcination of it in a reducing atmosphere with high reducing power including hydrogen and nitrogen reduces trivalent Eu to divalent Eu. The proportion of divalent Eu in the oxynitride phosphor is increased, and an oxynitride phosphor having high emission intensity is obtained.
焼成物を得るための焼成温度は、好ましくは1300℃以上1600℃以下の範囲内であり、より好ましくは1400℃以上1600℃以下の範囲内である。焼成温度が1300℃以上1600℃以下の範囲内であれば、目的とする組成を有し、安定した結晶構造を有し、十分な発光強度を有する酸窒化物蛍光体が得られる。焼成は、800℃以上1000℃以下の範囲内の温度で一段目の焼成を行い、徐々に加熱して1100℃以上1300℃以下の範囲内の温度で二段目の焼成を行い、焼成温度に到達する多段階の焼成を行ってもよい。一回目の焼成温度が800℃以上1000℃以下の範囲内であると、目的とする組成を有する焼成物が得やすくなるためである。二回目の焼成温度が1100℃以上1300℃以下の範囲内であると、得られる酸窒化物蛍光体の分解が抑制され、安定した結晶構造を有し、十分な発光強度を有する酸窒化物蛍光体を得やすいためである。 The firing temperature for obtaining a fired product is preferably in the range of 1300 ° C. or more and 1600 ° C. or less, more preferably in the range of 1400 ° C. or more and 1600 ° C. or less. If the firing temperature is in the range of 1300 ° C. or more and 1600 ° C. or less, an oxynitride phosphor having a target composition, a stable crystal structure, and sufficient light emission intensity can be obtained. Firing is performed by firing the first stage at a temperature in the range of 800 ° C. to 1000 ° C., and gradually heating to perform the second stage firing at a temperature in the range of 1100 ° C. to 1300 ° C. You may perform the multistep baking which arrives. When the first firing temperature is in the range of 800 ° C. or more and 1000 ° C. or less, a fired product having a target composition can be easily obtained. When the second baking temperature is in the range of 1100 ° C. or more and 1300 ° C. or less, the decomposition of the obtained oxynitride phosphor is suppressed, and the oxynitride fluorescent light having a stable crystal structure and sufficient luminous intensity It is because it is easy to get a body.
焼成は、横型管状炉又は箱型雰囲気炉を使用することができる。焼成時の圧力は、ゲージ圧で、好ましくは0.1MPa以上200MPa以下の範囲内の雰囲気で行なうことができる。焼成によって得られる酸窒化物蛍光体は、焼成温度が高温になるほど結晶構造が分解され易くなるが、前記圧力雰囲気にすることによって、結晶構造の分解が抑制され、発光強度の低下を抑制することができる。焼成雰囲気の圧力は、例えば大気圧(標準気圧約0.1MPa)であってもよく、より好ましくは0.1MPa以上100MPa以下の範囲内であり、製造の容易さの点から、さらに好ましくは1.0MPa以下である。 Firing can use a horizontal tubular furnace or a box atmosphere furnace. The pressure at the time of firing may be a gauge pressure, preferably in an atmosphere in the range of 0.1 MPa to 200 MPa. In the oxynitride phosphor obtained by firing, the crystal structure is more easily decomposed as the firing temperature becomes higher, but the decomposition of the crystal structure is suppressed by using the pressure atmosphere, and the decrease in light emission intensity is suppressed. Can. The pressure of the firing atmosphere may be, for example, atmospheric pressure (standard pressure about 0.1 MPa), more preferably in the range of 0.1 MPa or more and 100 MPa or less, and further preferably 1 in view of ease of production. .0 MPa or less.
焼成時間は、焼成温度又は焼成時の雰囲気の圧力によって適宜選択することができ、0.5時間以上20時間以内であることが好ましく、多段階の焼成を行なう場合であっても、一回の焼成時間は0.5時間以上20時間以内であることが好ましい。焼成時間が0.5時間以上20時間以内であると、得られる酸窒化物蛍光体の分解が抑制され、安定した結晶構造を有し、十分な発光強度を有する酸窒化物蛍光体が得られる。また、焼成時間が0.5時間以上20時間以内であると、生産コストも低減でき、製造時間を比較的短くすることができる。熱処理時間は、より好ましくは1時間以上15時間以内であり、さらに好ましくは1.5時間以上12時間以内である。 The firing time can be appropriately selected depending on the firing temperature or the pressure of the atmosphere at the time of firing, and is preferably 0.5 hours or more and 20 hours or less. The firing time is preferably 0.5 hours or more and 20 hours or less. When the baking time is 0.5 hours or more and 20 hours or less, the decomposition of the obtained oxynitride phosphor is suppressed, and an oxynitride phosphor having a stable crystal structure and a sufficient emission intensity can be obtained. . In addition, when the firing time is 0.5 hours or more and 20 hours or less, the production cost can be reduced, and the production time can be relatively shortened. The heat treatment time is more preferably 1 hour or more and 15 hours or less, and still more preferably 1.5 hours or more and 12 hours or less.
焼成後の後処理
本発明の第三の実施形態に係る製造方法において、焼成した後に得られる焼成物に対して、ボールミル、振動ミル、ハンマーミル、乳鉢及び乳棒等を用いて粉砕し混合する後処理を行なってもよい。後処理には、粉砕、混合の他に、さらに粒径を整えるために、篩や沈降により分級操作を行なってもよい。分級は、沈降分級、機械的分級、水力分級、遠心分級等の湿式分級、ふるい分け分級等の工業的に通常用いられる方法により行うことができる。また、後処理は、粉砕、混合、及び分級の他に、例えば分級処理後、酸洗浄処理を行ってもよい。酸洗浄処理によって、焼成物の表面に付着している不純物が除去される。酸洗浄処理には、入手しやすく安価であるため、塩酸水溶液を用いることが好ましい。塩酸水溶液中に含まれる塩酸の濃度は、焼成物の表面の不純物を除去し、焼成物の結晶構造に影響を与えない濃度であることが好ましい。
Post-Treatment after Firing In the manufacturing method according to the third embodiment of the present invention, the fired product obtained after firing is pulverized and mixed using a ball mill, a vibration mill, a hammer mill, a mortar, a pestle, etc. Processing may be performed. In the post-treatment, in addition to grinding and mixing, classification may be performed by sieving or settling to further adjust the particle size. Classification can be performed by a method usually used in industry, such as sedimentation classification, mechanical classification, hydraulic classification, wet classification such as centrifugal classification, and sieving classification. In addition to the grinding, mixing, and classification, post-treatment may be, for example, acid washing after classification. The acid cleaning treatment removes impurities attached to the surface of the fired product. It is preferable to use a hydrochloric acid aqueous solution for the acid washing treatment because it is easy to obtain and inexpensive. The concentration of hydrochloric acid contained in the aqueous hydrochloric acid solution is preferably a concentration that removes impurities on the surface of the calcined product and does not affect the crystal structure of the calcined product.
本発明の第三の実施形態に係る製造方法によって、前記式(I)で示される組成を含む酸窒化物蛍光体を得ることができる。得られた前記式(I)で示される組成を含む酸窒化物蛍光体は、高い発光強度を有し、温度特性にも優れ、高温下で作動させた場合であっても、また、高温下に長時間連続点灯させた場合であっても色調変動を抑制することができる。 By the manufacturing method according to the third embodiment of the present invention, it is possible to obtain an oxynitride phosphor including the composition represented by the formula (I). The obtained oxynitride phosphor having the composition represented by the above-mentioned formula (I) has high emission intensity and is excellent in temperature characteristics, and even when operated under high temperature, also under high temperature Even when the lamp is continuously turned on for a long time, the color tone fluctuation can be suppressed.
以下、本発明を実施例により具体的に説明する。本発明は、これらの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples. The present invention is not limited to these examples.
実施例1
混合物の調製工程
原料となる炭酸バリウム(BaCO3)、酸化ケイ素(SiO2)、窒化ケイ素(Si3N4)、酸化ユウロピウム(Eu2O3)、及び酸化イットリウム(Y2O3)を、仕込み組成が、Ba:Si:Eu:Yのモル比で、0.98:2:0.02:0.074となるように秤量し、秤量した各原料を乾式ボールミルで混合し、混合物を得た。表1に、実施例1に係る酸窒化物蛍光体を構成する各元素の仕込みモル比を示す。ここで、仕込み組成又は仕込みモル比は、酸窒化物蛍光体の原料を含む混合物中のBa、Eu、元素M及びSiの各元素のモル比を示すものである。
焼成工程
得られた混合物を窒化硼素のボート上で塊状に成形し、窒素と水素ガスを含む還元雰囲気中(水素ガス4体積%、窒素ガス96体積%)で、大気圧(標準気圧約0.1MPa)下、1450℃、10時間焼成し、焼成物を得た。得られた焼成物を瑪瑙乳鉢で粉砕し、その後、メッシュサイズが50μmの篩によりメッシュサイズを超える粗大粒子を除去し、粉砕された焼成物を、塩酸水溶液で酸洗浄し、その後、水洗いして、個々の粒子を分離させ乾燥させて、実施例1の酸窒化物蛍光体を得た。
Example 1
Preparation step of mixture Barium carbonate (BaCO 3 ), silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), europium oxide (Eu 2 O 3 ), and yttrium oxide (Y 2 O 3 ), which are raw materials, The feed composition is weighed so that the molar ratio of Ba: Si: Eu: Y is 0.98: 2: 0.02: 0.074, and the weighed raw materials are mixed by a dry ball mill to obtain a mixture. The In Table 1, the preparation molar ratio of each element which comprises the oxynitride fluorescent substance which concerns on Example 1 is shown. Here, the preparation composition or the preparation molar ratio indicates the molar ratio of each element of Ba, Eu, element M and Si in the mixture containing the raw material of the oxynitride phosphor.
Firing Step The obtained mixture is formed into a block on a boat of boron nitride, and in a reducing atmosphere containing nitrogen and hydrogen gas (4% by volume of hydrogen gas, 96% by volume of nitrogen gas), atmospheric pressure (standard pressure about 0. Baking was performed at 1450 ° C. for 10 hours under 1 MPa) to obtain a baked product. The obtained baked product is crushed in a mortar, then coarse particles exceeding the mesh size are removed by a sieve having a mesh size of 50 μm, and the crushed baked product is acid-washed with a hydrochloric acid aqueous solution and then washed with water The individual particles were separated and dried to obtain the oxynitride phosphor of Example 1.
実施例2から実施例13
原料となる炭酸バリウム(BaCO3)、酸化ケイ素(SiO2)、窒化ケイ素(Si3N4)、酸化ユウロピウム(Eu2O3)、及び各希土類元素を含む酸化物を秤量し、秤量した各原料を乾式ボールミルで混合し、混合物を得た。希土類元素を含む酸化物は、具体的には、酸化ランタン(La2O3)、酸化セリウム(CeO2)、酸化プラセオジム(Pr6O11)、酸化ネオジム(Nd2O3)、酸化ガドリウム(Gd2O3)、酸化テルビウム(Tb4O7)、酸化ジスプロシウム(Dy2O3)、酸化ホルミウム(Ho2O3)、酸化エルビウム(Er2O3)、酸化ツリウム(Tm2O3)、酸化イッテルビウム(Yb2O3)、又は酸化ルテチウム(Lu2O3)を使用した。これらの各混合物を用いたこと以外は、実施例1と同様にして、実施例2から13に係る酸窒化物蛍光体を得た。表1に、実施例2から13に係る酸窒化物蛍光体の原料を含む混合物中のBa、Eu、元素M及びSiの各元素の仕込みモル比を示す。
Example 2 to Example 13
Raw materials barium carbonate (BaCO 3 ), silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), europium oxide (Eu 2 O 3 ), and oxides containing each rare earth element were weighed and weighed. The raw materials were mixed in a dry ball mill to obtain a mixture. Specifically, oxides containing a rare earth element are, for example, lanthanum oxide (La 2 O 3 ), cerium oxide (CeO 2 ), praseodymium oxide (Pr 6 O 11 ), neodymium oxide (Nd 2 O 3 ), gadolinium oxide ( Gd 2 O 3 ), terbium oxide (Tb 4 O 7 ), dysprosium oxide (Dy 2 O 3 ), holmium oxide (Ho 2 O 3 ), erbium oxide (Er 2 O 3 ), thulium oxide (Tm 2 O 3 ) Ytterbium oxide (Yb 2 O 3 ) or lutetium oxide (Lu 2 O 3 ) was used. An oxynitride phosphor according to Examples 2 to 13 was obtained in the same manner as Example 1 except that each of these mixtures was used. Table 1 shows the preparation molar ratio of each element of Ba, Eu, element M and Si in the mixture containing the raw material of the oxynitride phosphor according to Examples 2 to 13.
比較例1
原料となる炭酸バリウム(BaCO3)、酸化ケイ素(SiO2)、窒化ケイ素(Si3N4)、及び酸化ユウロピウム(Eu2O3)を秤量し、秤量した各原料を乾式ボールミルで混合し、混合物を得た。この混合物を用いたこと以外は、実施例1と同様にして、比較例1の酸窒化物蛍光体を得た。表1に、比較例1に係る酸窒化物蛍光体の原料を含む混合物中のBa、Eu、及びSiの各元素の仕込みモル比を示す。
Comparative Example 1
The raw materials barium carbonate (BaCO 3 ), silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), and europium oxide (Eu 2 O 3 ) are weighed, and the weighed raw materials are mixed in a dry ball mill, A mixture was obtained. An oxynitride phosphor of Comparative Example 1 was obtained in the same manner as Example 1 except that this mixture was used. Table 1 shows the feed molar ratio of each element of Ba, Eu, and Si in the mixture containing the raw material of the oxynitride phosphor according to Comparative Example 1.
比較例2
原料となる炭酸バリウム(BaCO3)、酸化ケイ素(SiO2)、窒化ケイ素(Si3N4)、酸化ユウロピウム(Eu2O3)、及び酸化サマリウム(Sm2O3)を秤量し、秤量した各原料を乾式ボールミルで混合し、混合物を得た。この混合物を用いたこと以外は、実施例1と同様にして、比較例2に係る酸窒化物蛍光体を得た。表1に、比較例2に係る酸窒化物蛍光体の原料を含む混合物中のBa、Eu、元素M及びSiの各元素の仕込みモル比を示す。
Comparative example 2
Raw materials barium carbonate (BaCO 3 ), silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), europium oxide (Eu 2 O 3 ), and samarium oxide (Sm 2 O 3 ) were weighed and weighed. The raw materials were mixed in a dry ball mill to obtain a mixture. An oxynitride phosphor according to Comparative Example 2 was obtained in the same manner as Example 1, except that this mixture was used. Table 1 shows the preparation molar ratios of Ba, Eu, element M and Si in the mixture containing the raw material of the oxynitride phosphor according to Comparative Example 2.
実施例14から実施例17
原料となる炭酸バリウム(BaCO3)、酸化ケイ素(SiO2)、窒化ケイ素(Si3N4)、酸化ユウロピウム(Eu2O3)、及び各希土類元素を含む酸化物を秤量し、秤量した各原料を乾式ボールミルで混合し、混合物を得た。各希土類元素を含む酸化物は、具体的には、酸化ランタン(La2O3)、酸化セリウム(CeO2)、酸化プラセオジム(Pr6O11)、酸化ネオジム(Nd2O3)を使用した。これらの各混合物を用いたこと以外は、実施例1と同様にして、実施例14から17に係る酸窒化物蛍光体を得た。表1に、実施例14から17に係る酸窒化物蛍光体の原料を含む混合物中のBa、Eu、元素M及びSiの各元素の仕込みモル比を示す。
Example 14 to Example 17
Raw materials barium carbonate (BaCO 3 ), silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), europium oxide (Eu 2 O 3 ), and oxides containing each rare earth element were weighed and weighed. The raw materials were mixed in a dry ball mill to obtain a mixture. Specifically, the oxide containing each rare earth element used lanthanum oxide (La 2 O 3 ), cerium oxide (CeO 2 ), praseodymium oxide (Pr 6 O 11 ), neodymium oxide (Nd 2 O 3 ) . The oxynitride phosphors according to Examples 14 to 17 were obtained in the same manner as in Example 1 except that each of these mixtures was used. Table 1 shows the preparation molar ratio of each element of Ba, Eu, element M and Si in the mixture containing the raw material of the oxynitride phosphor according to Examples 14 to 17.
比較例3及び4
原料となる炭酸バリウム(BaCO3)、酸化ケイ素(SiO2)、窒化ケイ素(Si3N4)、酸化ユウロピウム(Eu2O3)、及び酸化ランタン(La2O3)を秤量し、秤量した各原料を乾式ボールミルで混合し、混合物を得た。これらの各混合物を用いたこと以外は、実施例1と同様にして、比較例3及び4に係る酸窒化物蛍光体を得た。比較例3及び4に係る酸窒化物蛍光体は、仕込み組成において、前記混合物に含まれるSiのモル比を2としたときに、前記混合物に含まれる希土類元素であるLaのモル比が0.15以上である混合物を用いて得られた。表1に、比較例3及び4に係る酸窒化物蛍光体の原料を含む混合物中のBa、Eu、元素M及びSiの各元素の仕込みモル比を示す。
Comparative Examples 3 and 4
Raw materials barium carbonate (BaCO 3 ), silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), europium oxide (Eu 2 O 3 ), and lanthanum oxide (La 2 O 3 ) were weighed and weighed. The raw materials were mixed in a dry ball mill to obtain a mixture. An oxynitride phosphor according to Comparative Examples 3 and 4 was obtained in the same manner as Example 1 except that each of these mixtures was used. In the oxynitride phosphors according to Comparative Examples 3 and 4, when the molar ratio of Si contained in the mixture is 2 in the feed composition, the molar ratio of La, which is the rare earth element contained in the mixture, is 0. Obtained using a mixture of 15 or more. Table 1 shows the preparation molar ratio of each element of Ba, Eu, element M and Si in the mixture containing the raw material of the oxynitride phosphor according to Comparative Examples 3 and 4.
組成分析
得られた各実施例1から17及び比較例1から4に係る酸窒化物蛍光体は、誘導結合プラズマ発光分析装置(Perkin Elmer(パーキンエルマー)社製)を用いてICP発光分析法により、Ba、Eu、各希土類元素M、Si、O及びNの各元素のモル比を測定した。結果を表2に示す。なお、分析した各酸窒化物蛍光体中の各元素のモル比は、Siのモル比を2として算出したモル比である。
Compositional analysis The obtained oxynitride phosphors according to Examples 1 to 17 and Comparative Examples 1 to 4 were subjected to ICP emission analysis using an inductively coupled plasma emission analyzer (manufactured by Perkin Elmer (Perkin Elmer)). The molar ratio of each element of Ba, Eu, each rare earth element M, Si, O and N was measured. The results are shown in Table 2. The molar ratio of each element in each of the oxynitride phosphors analyzed is the molar ratio calculated with the molar ratio of Si being 2.
平均粒径
得られた各実施例1から17及び比較例1から4の酸窒化物蛍光体について、レーザー回折式粒度分布測定装置(MALVERN社製、製品名:MASTER SIZER 3000)により、平均粒径を測定した。本明細書において酸窒化物蛍光体の平均粒径は、小径側からの体積累積頻度が50%に達する粒径(D50:メジアン径)である。結果を表2に示す。
Average Particle Size With respect to the oxynitride phosphors of Examples 1 to 17 and Comparative Examples 1 to 4 obtained, the average particle size was measured by a laser diffraction type particle size distribution measuring apparatus (manufactured by MALVERN, product name: MASTER SIZER 3000). Was measured. In the present specification, the average particle diameter of the oxynitride phosphor is a particle diameter (D50: median diameter) at which the volume cumulative frequency from the small diameter side reaches 50%. The results are shown in Table 2.
発光特性:発光スペクトルの測定
得られた各実施例1から17及び比較例1から4の酸窒化物蛍光体について、発光特性を測定した。酸窒化物蛍光体の粉体の発光特性は、分光蛍光光度計(大塚電子株式会社製、製品名:QE−2000)で励起光の波長を450nmとして発光スペクトルを測定した。各実施例及び比較例の酸窒化物蛍光体は、発光ピーク波長が450nmである励起光源からの光により、青緑色に発光した。実施例1から17及び比較例1、3の酸窒化物蛍光体は、発光ピーク波長が494nmであり、比較例2、4の酸窒化物蛍光体は、発光ピーク波長が493nmであった。
Luminescent Properties: Measurement of Emission Spectrum The luminescent properties of the obtained oxynitride phosphors of Examples 1 to 17 and Comparative Examples 1 to 4 were measured. The emission characteristics of the powder of the oxynitride phosphor were measured by setting a wavelength of excitation light to 450 nm with a spectrofluorimeter (product name: QE-2000, manufactured by Otsuka Electronics Co., Ltd.). The oxynitride phosphors of each example and comparative example emitted bluish green by the light from the excitation light source having an emission peak wavelength of 450 nm. The oxynitride phosphors of Examples 1 to 17 and Comparative Examples 1 and 3 had an emission peak wavelength of 494 nm, and the oxynitride phosphors of Comparative Examples 2 and 4 had an emission peak wavelength of 493 nm.
相対発光エネルギー(%)
実施例1から17及び比較例1から4に係る酸窒化物蛍光体について測定した発光スペクトルから、比較例1の酸窒化物蛍光体の発光エネルギー値を100%として、各実施例及び比較例の相対的な発光エネルギー値を求めた。なお、発光エネルギー値は、発光スペクトルにおける波長470nm以上550nm以下の範囲におけるスペクトルの積分値である。結果を表2に示す。図2は、実施例2から5及び比較例1に係る酸窒化物蛍光体の発光スペクトルを示す図である。図3は、実施例2及び14、並びに比較例1、3及び4に係る酸窒化物蛍光体の発光スペクトルを示す図である。
Relative luminescence energy (%)
From the emission spectra measured for the oxynitride phosphors according to Examples 1 to 17 and Comparative Examples 1 to 4, assuming that the emission energy value of the oxynitride phosphor of Comparative Example 1 is 100%, each Example and Comparative Example Relative luminescence energy values were determined. Note that the emission energy value is an integral value of a spectrum in a wavelength range of 470 nm or more and 550 nm or less in the emission spectrum. The results are shown in Table 2. FIG. 2 is a view showing the emission spectra of the oxynitride phosphors according to Examples 2 to 5 and Comparative Example 1. FIG. 3 is a view showing emission spectra of the oxynitride phosphors according to Examples 2 and 14 and Comparative Examples 1, 3 and 4.
SEM写真
走査型電子顕微鏡(Scanning Electron Microscope:SEM)を用いて、実施例2及び比較例1に係る酸窒化物蛍光体のSEM写真を得た。図4は実施例2の酸窒化物蛍光体のSEM写真であり、図5は比較例1の酸窒化物蛍光体のSEM写真である。
SEM photograph A SEM photograph of the oxynitride phosphor according to Example 2 and Comparative Example 1 was obtained using a scanning electron microscope (SEM). FIG. 4 is a SEM photograph of the oxynitride phosphor of Example 2, and FIG. 5 is a SEM photograph of the oxynitride phosphor of Comparative Example 1.
酸窒化物蛍光体の考察
表2に示すように、Euと共に、Eu及びSmを除く希土類元素からなる群から選択される少なくとも1種の希土類元素を含む実施例1から17に係る酸窒化物蛍光体は、450nmに発光ピーク波長を有する発光素子からの光によって効率よく励起されて、Euの他に希土類元素を含まない比較例1と比べて、相対発光エネルギーが大きくなった。実施例1から17に係る酸窒化物蛍光体は、前記式(I)で示される組成を有し、賦活元素であるEuと、Eu及びSmを除く希土類元素からなる群から選択される少なくとも1種の元素Mを含む。この元素Mの化合物が、焼成工程においてフラックスとして機能することで、欠陥が少なく結晶性の高い酸窒化物蛍光体を得ることができたと推測された。
Consideration of Oxynitride Phosphor As shown in Table 2, the oxynitride fluorescence according to Examples 1 to 17 containing Eu and at least one rare earth element selected from the group consisting of rare earth elements excluding Eu and Sm. The body was efficiently excited by the light from the light emitting element having a light emission peak wavelength at 450 nm, and the relative light emission energy was increased as compared with Comparative Example 1 containing no rare earth element other than Eu. The oxynitride phosphor according to Examples 1 to 17 has a composition represented by the above-mentioned formula (I), and is at least one selected from the group consisting of an activating element Eu and a rare earth element other than Eu and Sm. Contains the element M of the species. It was surmised that the compound M of the element M functions as a flux in the firing step, thereby obtaining an oxynitride phosphor with few defects and high crystallinity.
表2に示すように、比較例2に係る酸窒化物蛍光体は、Smを含み、Euを除く希土類元素を含まない比較例1に係る酸窒化物蛍光体よりも相対発光エネルギーが減少した。比較例2に係るSmを含む酸窒化物蛍光体の相対発光エネルギーが減少したメカニズムは明らかではないが、SmがEuと同じ2価の正の電荷となりやすく、3価の正の電荷となりやすい元素Mと比べて、蛍光体の組成において、酸素や窒素の負の電荷と、Ba、Eu、Sm及びSiの正の電荷とのバランスをとり難く、蛍光体の組成に組み込まれ難い。よって、Smの化合物が、焼成工程においてフラックスとしての機能が弱かったために、高い結晶性を有する蛍光体が得られなかったと推測される。表1に示すように、比較例3及び4に係る酸窒化物蛍光体は、原料となる混合物に含まれる希土類元素であるLaの仕込みモル比が0.15以上であったため、得られた比較例3及び4に係る酸窒化物蛍光体は、前記式(I)で示される組成において、元素Mのモル比を表す変数bが0.07を超えていた。そのため比較例3及び4に係る酸窒化物蛍光体は、結晶構造中に取り込まれる元素Mが多すぎて、賦活剤であるEuの発光に寄与するはずのエネルギーが元素Mに吸収されたため、相対発光エネルギーが減少したと推測された。 As shown in Table 2, in the oxynitride phosphor according to Comparative Example 2, the relative emission energy was reduced as compared to the oxynitride phosphor according to Comparative Example 1 including Sm and not including a rare earth element other than Eu. Although the mechanism by which the relative light emission energy of the oxynitride phosphor containing Sm according to Comparative Example 2 decreases is not clear, the element is apt to easily become a positive charge with the same bivalent charge as that for Eu and a trivalent positive charge. Compared to M, it is difficult to balance the negative charge of oxygen or nitrogen and the positive charge of Ba, Eu, Sm and Si in the composition of the phosphor, and it is difficult to be incorporated in the composition of the phosphor. Therefore, it is presumed that a phosphor having high crystallinity can not be obtained because the compound of Sm has a weak function as a flux in the firing step. As shown in Table 1, in the oxynitride phosphors according to Comparative Examples 3 and 4, since the preparation molar ratio of La which is a rare earth element contained in the mixture as the raw material was 0.15 or more, the obtained comparison In the oxynitride phosphors according to Examples 3 and 4, the variable b representing the molar ratio of the element M exceeded 0.07 in the composition represented by the formula (I). Therefore, the oxynitride phosphors according to Comparative Examples 3 and 4 are relative to each other because the energy which should contribute to the light emission of the activator Eu is absorbed by the element M because the element M incorporated into the crystal structure is too much. It was estimated that the light emission energy decreased.
図2に示すように、実施例2から5に係る酸窒化物蛍光体の発光スペクトルは、比較例1に係る酸窒化物蛍光体の発光スペクトルよりも、相対強度が高くなった。 As shown in FIG. 2, the emission spectra of the oxynitride phosphors according to Examples 2 to 5 had a relative intensity higher than that of the oxynitride phosphor according to Comparative Example 1.
図3に示すように、実施例2及び14に係る酸窒化物蛍光体は、前記式(I)で示される組成において、元素MであるLaのモル比を表す変数bが0を超えて0.07以下の範囲であり、比較例1に比べて相対強度が高くなる傾向が見られた。一方、図3に示すように、比較例3及び4に係る酸窒化物蛍光体は、前記式(I)で示される組成において、元素Mのモル比を表す変数bが0.07を超えるため、結晶構造中に取り込まれるLaが多すぎて、発光に寄与するエネルギーがLaに吸収されて、比較例1よりも相対強度が低下した。 As shown in FIG. 3, in the oxynitride phosphors according to Examples 2 and 14, the variable b representing the molar ratio of La, which is the element M, exceeds 0 in the composition represented by the formula (I). It was in the range of .07 or less, and the relative strength tended to be higher than that of Comparative Example 1. On the other hand, as shown in FIG. 3, in the oxynitride phosphors according to Comparative Examples 3 and 4, the variable b representing the molar ratio of the element M exceeds 0.07 in the composition represented by the formula (I). The energy to contribute to light emission was absorbed by La when the amount of La incorporated into the crystal structure was too large, and the relative intensity was lower than in Comparative Example 1.
図4のSEM写真に示すように、実施例2に係る酸窒化物蛍光体は、表面が比較的滑らかであり、比較例1に係る酸窒化物蛍光体よりも粒径が大きくなる傾向が見られた。表2に示すように、実施例12を除き、実施例2から11及び実施例13から17に係る酸窒化物蛍光体は、比較例1に係る酸窒化物蛍光体よりも平均粒径が大きくなった。実施例2に酸窒化物蛍光体の表面が比較的滑らかであるのは、欠陥が少なく結晶性の高い蛍光体粒子が得られたためと推測された。 As shown in the SEM photograph of FIG. 4, the oxynitride phosphor according to Example 2 has a relatively smooth surface, and the particle diameter tends to be larger than that of the oxynitride phosphor according to Comparative Example 1. It was done. As shown in Table 2, except for Example 12, the oxynitride phosphors according to Examples 2 to 11 and Examples 13 to 17 have a larger average particle diameter than the oxynitride phosphor according to Comparative Example 1. became. The relatively smooth surface of the oxynitride phosphor in Example 2 is presumed to be due to the fact that phosphor particles with few defects and high crystallinity are obtained.
一方、図5のSEM写真に示すように、比較例1に係る酸窒化物蛍光体は、蛍光体粒子の表面に微細な空孔が形成されていることが確認できた。比較例1に係る酸窒化物蛍光体の粒子表面の微細な空孔は、不安定なBaが多く結晶構造中に取り込まれ、後処理などによって不安定なBaが除去されたたことによって形成された空孔であると推測される。 On the other hand, as shown in the SEM photograph of FIG. 5, in the oxynitride phosphor according to Comparative Example 1, it was confirmed that fine pores were formed on the surface of the phosphor particles. Fine vacancies on the particle surface of the oxynitride phosphor according to Comparative Example 1 are formed by incorporating a large amount of unstable Ba into the crystal structure and removing the unstable Ba by post-treatment or the like. Is presumed to be a void.
実施例1から5、実施例14から17及び比較例1から4に係る発光装置の製造
図1に示すように、発光素子10として発光ピーク波長が450nmである窒化物半導体からなるLEDチップを成形体40の凹部の底面に配置し、発光素子10と第1のリード20及び第2のリード30を、それぞれワイヤ60で接続した。発光装置が発する混色光のCIE色度座標xが0.128付近、yが0.150付近となるように、実施例1から5、実施例14から17及び比較例1から4に係る酸窒化物蛍光体を第一蛍光体71として、シリコーン樹脂に添加し、混合分散して蛍光部材用の組成物を得た。この蛍光体部材用の組成物を、成形体40の凹部に適量注入し、蛍光用組成物中の樹脂を硬化させて蛍光部材50を形成し、発光装置100を得た。
Production of light emitting devices according to Examples 1 to 5 and Examples 14 to 17 and Comparative Examples 1 to 4 As shown in FIG. 1, an LED chip made of a nitride semiconductor having a light emission peak wavelength of 450 nm as a light emitting element 10 is formed. The light emitting element 10 was connected to the first lead 20 and the second lead 30 by wires 60, respectively. Oxynitriding according to Examples 1 to 5, 14 to 17 and Comparative Examples 1 to 4 so that the CIE chromaticity coordinates x of mixed light emitted from the light emitting device are around 0.128 and y is around 0.150 A substance fluorescent substance was added to a silicone resin as a first fluorescent substance 71, mixed and dispersed to obtain a composition for a fluorescent member. An appropriate amount of the composition for a phosphor member was injected into the recess of the molded body 40, and the resin in the composition for a fluorescent material was cured to form a fluorescent member 50. Thus, a light emitting device 100 was obtained.
発光装置の評価
発光特性
実施例2から5及び比較例1に係る各発光装置について、発光スペクトルを分光蛍光光度計(株式会社日立ハイテクノロジーズ、製品名:F−4500)を用いて測定した。結果を図6に示す。
Evaluation Luminescent Properties of Light Emitting Device The emission spectrum of each of the light emitting devices according to Examples 2 to 5 and Comparative Example 1 was measured using a spectrofluorimeter (Hitachi High-Technologies Corporation, product name: F-4500). The results are shown in FIG.
発光装置の信頼性評価1
連続点灯後の相対光束(Po)
実施例1から5、実施例14から17、及び比較例1から4に係る発光装置を85℃、電流150mAで、1000時間連続点灯させた。積分球を使用した全光束測定装置により、1000時間連続点灯後の比較例1の発光装置の光束を測定し、この連続点灯後の比較例1の発光装置の光束を100%とした場合における、各実施例1から5、実施例14から17及び比較例1から4に係る発光装置の相対光束(%)を算出した。結果を表3に示す。
Reliability evaluation of light emitting device 1
Relative luminous flux (Po) after continuous lighting
The light emitting devices according to Examples 1 to 5 and Examples 14 to 17 and Comparative Examples 1 to 4 were continuously lit at 85 ° C. and a current of 150 mA for 1000 hours. The luminous flux of the light emitting device of Comparative Example 1 after continuous lighting for 1000 hours is measured by a total luminous flux measuring device using an integrating sphere, and the luminous flux of the light emitting device of Comparative Example 1 after this continuous lighting is 100% The relative luminous flux (%) of the light emitting device according to each of Examples 1 to 5 and Examples 14 to 17 and Comparative Examples 1 to 4 was calculated. The results are shown in Table 3.
発光装置の信頼性評価2
保管前後のCIE色度座標y値の差分Δyの変動値及び相対変動率(%)
実施例1から5、実施例14から17及び比較例1から4に係る各発光装置を85℃、電流150mAで、1000時間連続点灯させた。連続点灯前のCIE色度座標におけるy1値と、1000時間連続点灯後のCIE色度座標におけるy2値を、マルチチャンネル分光器(浜松ホトニクス株式会社、製品名:PMA−12)を用いて測定し、y1値とy2値の差分Δyを絶対値として算出した。結果を表3に示す。1000時間連続点灯前後の比較例1の発光装置の差分Δyを100%とし、各実施例1から5、実施例14から17及び比較例1から4に係る発光装置のΔyの相対変動率(%)として表わした。結果を表3に示す。図7は、実施例2から5及び比較例1に係る発光装置の初期から1000時間連続点灯後のΔy変動値を示すグラフである。図8は、実施例2及び14並びに比較例1、3及び4に係る発光装置の初期から1000時間連続点灯後のΔy変動値を示すグラフである。
Evaluation of reliability of light emitting devices 2
Fluctuation value and relative fluctuation rate (%) of difference Δy of CIE chromaticity coordinate y value before and after storage
The light emitting devices according to Examples 1 to 5 and Examples 14 to 17 and Comparative Examples 1 to 4 were continuously lit at 85 ° C. and a current of 150 mA for 1000 hours. Measure y1 value in CIE chromaticity coordinates before continuous lighting and y2 value in CIE chromaticity coordinates after continuous lighting for 1000 hours using a multi-channel spectroscope (Hamamatsu Photonics Co., Ltd., product name: PMA-12) The difference Δy between the y1 value and the y2 value was calculated as an absolute value. The results are shown in Table 3. Assuming that the difference Δy of the light emitting device of Comparative Example 1 before and after continuous lighting for 1000 hours is 100%, the relative fluctuation rate (%) of Δy of the light emitting device according to each of Examples 1 to 5, 14 to 17 and Comparative Examples 1 to 4 Expressed as). The results are shown in Table 3. FIG. 7 is a graph showing Δy fluctuation values after 1000 hours of continuous lighting from the beginning of the light emitting devices according to Examples 2 to 5 and Comparative Example 1. FIG. 8 is a graph showing Δy fluctuation values after continuous lighting for 1000 hours from the beginning of the light emitting devices according to Examples 2 and 14 and Comparative Examples 1 and 3.
酸窒化物蛍光体の信頼性評価
温度特性評価:相対発光エネルギー(%)
実施例14から17及び比較例1に係る酸窒化物蛍光体について、室温(25℃)から300℃の温度範囲の各温度において、発光ピーク波長が450nmである励起光源からの光によって励起させた酸窒化物蛍光体の発光スペクトルを、分光蛍光光度計(日立ハイテクサイエンス社製、製品名:F−4500E)で測定した。各実施例及び比較例に係る酸窒化物蛍光の25℃で測定した発光スペクトルのエネルギー値を100%として、各温度における各実施例及び比較例の酸窒化物蛍光体の相対的な発光スペクトルのエネルギー値(相対発光エネルギー(%))を求めた。なお、エネルギー値は、各温度において求めた発光スペクトルにおける波長470nm以上550nm以下の範囲内の相対的な積分値である。図9は、実施例14から17及び比較例1に係る酸窒化物蛍光体について、室温(25℃)から300℃の温度範囲における各温度に対する相対発光エネルギー(%)を示すグラフである。
Reliability Evaluation Temperature Characteristic Evaluation of Oxynitride Phosphors: Relative Emission Energy (%)
The oxynitride phosphors according to Examples 14 to 17 and Comparative Example 1 were excited by light from an excitation light source having an emission peak wavelength of 450 nm at each temperature in a temperature range of room temperature (25 ° C.) to 300 ° C. The emission spectrum of the oxynitride phosphor was measured by a spectrofluorimeter (manufactured by Hitachi High-Tech Science, product name: F-4500E). The relative emission spectra of the oxynitride phosphors of each Example and Comparative Example at each temperature, where the energy value of the emission spectrum measured at 25 ° C. of the oxynitride fluorescence according to each Example and Comparative Example is 100% The energy value (relative luminescence energy (%)) was determined. Note that the energy value is a relative integral value within the wavelength range of 470 nm or more and 550 nm or less in the emission spectrum obtained at each temperature. FIG. 9 is a graph showing relative emission energy (%) with respect to each temperature in the temperature range of room temperature (25 ° C.) to 300 ° C. for the oxynitride phosphors according to Examples 14 to 17 and Comparative Example 1.
発光装置の考察
表3に示すように、Euと共に、Eu及びSmを除く希土類元素からなる群から選択される少なくとも1種の希土類元素を含む実施例1から5及び実施例15から17に係る酸窒化物蛍光体を用いた発光装置は、相対光束が高くなった。実施例14に係る発光装置は、相対光束は比較例1に係る発光装置よりも若干低下したものの、1000時間保管後のΔyの変動値は実施例1から5及び実施例15から17に係る発光装置よりも小さく、Δy相対変動率も58.9%と最も小さく、85℃の比較的高温下で長時間連続点灯させ続けた場合であっても、色調変動が抑制されていた。
Discussion of Light-Emitting Device As shown in Table 3, the acid according to Examples 1 to 5 and Examples 15 to 17 containing Eu and at least one rare earth element selected from the group consisting of Eu and rare earth elements excluding Sm. In the light emitting device using the nitride phosphor, the relative luminous flux became high. Although the relative luminous flux of the light emitting device according to Example 14 was slightly lower than that of the light emitting device according to Comparative Example 1, the fluctuation value of Δy after storage for 1000 hours was the light emission according to Examples 1 to 5 and Examples 15 to 17. It is smaller than the apparatus, and the Δy relative fluctuation rate is also the smallest as 58.9%, and the color tone fluctuation is suppressed even when continuous lighting is continued at a relatively high temperature of 85 ° C. for a long time.
一方、表3に示すように、比較例2に係る発光装置は、Smを含み、蛍光体の結晶性が低いためか、85℃の比較的高温下で長時間連続点灯させ続けると、比較例1を超えてΔyの変動値が大きくなり、また、Δy相対変動率も大きくなり、色調が変動した。
比較例3及び4に係る発光装置は、発光装置に含まれる比較例3及び4に係る酸窒化物蛍光体が前記式(I)で示される組成において、Laのモル比を表す変数bが0.07を超えており、結晶構造中に取り込まれるLaが多すぎて、発光に寄与するエネルギーがLaに吸収されると推測されるため、相対光束が比較例1よりも低くなった。
On the other hand, as shown in Table 3, the light emitting device according to Comparative Example 2 contains Sm, and the crystallinity of the phosphor is low, so if it is kept continuously lit at a relatively high temperature of 85 ° C. for a long time, Comparative Example The fluctuation value of Δy becomes large beyond 1 and the relative fluctuation rate of Δy also becomes large, and the color tone fluctuates.
In the light emitting devices according to Comparative Examples 3 and 4, the oxynitride phosphor according to Comparative Examples 3 and 4 included in the light emitting device has a variable b representing a molar ratio of La in the composition represented by the formula (I). The relative luminous flux is lower than that of Comparative Example 1 because it is estimated that the light flux exceeds .07 and the energy contributing to the light emission is absorbed by La because too much La is incorporated into the crystal structure.
図6に示すように、実施例2から5に係る発光装置の発光スペクトルは、480nm以上520nm以下の波長範囲の相対強度が、比較例1に係る発光装置の発光スペクトルの480nm以上520nm以下の波長範囲の相対強度よりも高くなり、発光特性が改善されていた。 As shown in FIG. 6, in the emission spectra of the light emitting devices according to Examples 2 to 5, the relative intensity of the wavelength range of 480 nm or more and 520 nm or less is a wavelength of 480 nm or more and 520 nm or less of the emission spectrum of the light emitting device according to Comparative Example 1 The light emission characteristics were improved because the relative intensity of the range was higher.
図7に示すように、Euと共に、La、Ce、Pr及びNdからなる群から選択される少なくとも1種の希土類元素を含む実施例2から5の酸窒化物蛍光体を用いた実施例2から5の発光装置は、85℃の比較的高温下で1000時間の長時間連続点灯させ続けた場合であっても、同条件で連続点灯させ続けた比較例1の発光装置よりも、Δyの変動値が小さく、色調変動が抑制され、温度特性が良好であることが確認できた。これは、欠陥が少なく結晶性の高い酸窒化物蛍光体を含むためである、と推測された。 As shown in FIG. 7, from Example 2 using the oxynitride phosphors of Examples 2 to 5 containing Eu and at least one rare earth element selected from the group consisting of La, Ce, Pr and Nd. The light emitting device of No. 5 has a variation of Δy as compared with the light emitting device of Comparative Example 1 in which the continuous lighting is continued under the same conditions even when the lighting is continued continuously for a long time of 1000 hours under a relatively high temperature of 85 ° C. It was confirmed that the value was small, color tone fluctuation was suppressed, and the temperature characteristics were good. It was speculated that this is because the film contains an oxynitride phosphor with few defects and high crystallinity.
図8に示すように、実施例2及び14に係る発光装置は、前記式(I)で示される組成において、元素MであるLaのモル比を表す変数bが0を超えて0.07以下の範囲であれば、85℃の比較的高温下で1000時間の長時間連続点灯させ続けた場合に、Δyの変動値が小さくなり、色調変動がより抑制され、温度特性がより改善されることが確認できた。一方、比較例3及び4に係る発光装置は、前記式(I)で示される組成において、元素MであるLaのモル比を表す変数bが0.07を超えて大きくなると、実施例14に係る発光装置ほど色調変動が抑制されていなかった。 As shown in FIG. 8, in the light emitting devices according to Examples 2 and 14, in the composition represented by the formula (I), the variable b representing the molar ratio of La which is the element M exceeds 0 and is 0.07 or less If the lamp is continuously lit for a long time of 1000 hours at a relatively high temperature of 85 ° C., the fluctuation value of Δy becomes small, the color tone fluctuation is further suppressed, and the temperature characteristic is further improved. Was confirmed. On the other hand, in the light emitting devices according to Comparative Examples 3 and 4, when the variable b representing the molar ratio of La, which is the element M in the composition represented by the formula (I), becomes larger than 0.07, The color tone variation was not suppressed as much as the light emitting device.
酸窒化物蛍光体の考察
図9に示すように、実施例14から17に係る酸窒化物蛍光体は、室温の25℃から300℃の温度範囲における各温度で発光させた場合であっても、比較例1に係る酸窒化物蛍光体に比べて相対発光エネルギーの減少が抑制されており、色調変動が抑制されていた。実施例14から17に係る酸窒化物蛍光体は、欠陥が少なく結晶性の高いため、300℃の高温下で作動させた場合であっても、色調変動を抑制することができ、温度特性が良好であった。
Discussion of Oxynitride Phosphors As shown in FIG. 9, the oxynitride phosphors according to Examples 14 to 17 emit light at temperatures ranging from 25 ° C. to 300 ° C. at room temperature. Compared to the oxynitride phosphor according to Comparative Example 1, the decrease in relative emission energy is suppressed, and the color tone variation is suppressed. Since the oxynitride phosphors according to Examples 14 to 17 have few defects and high crystallinity, they can suppress color tone fluctuation even when operated at a high temperature of 300 ° C., and have temperature characteristics It was good.
本発明の酸窒化物蛍光体は、励起光源と組み合わせて発光装置を構成することができる。本発明の発光装置は、照明用光源、LEDディスプレイ、液晶用バックライト光源、信号機、照明式スイッチ、各種センサ及び各種インジケータ等に好適に利用できる。 The oxynitride phosphor of the present invention can be combined with an excitation light source to constitute a light emitting device. The light emitting device of the present invention can be suitably used for a light source for illumination, an LED display, a backlight light source for liquid crystal, a traffic light, an illumination switch, various sensors, various indicators, and the like.
10:発光素子、40:成形体、42:樹脂部、50:蛍光部材、71:第一蛍光体、72:第二蛍光体、100:発光装置。 10: light emitting element, 40: molded body, 42: resin part, 50: fluorescent member, 71: first phosphor, 72: second phosphor, 100: light emitting device.
Claims (10)
(Ba1−aEua)1−bMbSi2O2+cN2+d (I)
(式(I)中、Mは、Eu及びSmを除く希土類元素からなる群から選択される少なくとも1種の元素であり、a、b、c及びdは、それぞれ0<a≦1.0、0<b≦0.07、−0.3<c<0.3、−0.3<d<0.3を満たす数である。) The oxynitride fluorescent substance containing the composition shown by following formula (I).
(Ba 1-a Eu a) 1-b M b Si 2 O 2 + c N 2 + d (I)
In the formula (I), M is at least one element selected from the group consisting of rare earth elements other than Eu and Sm, and a, b, c and d each satisfy 0 <a ≦ 1.0, 0 <b ≦ 0.07, −0.3 <c <0.3, −0.3 <d <0.3.
Baを含む化合物、Euを含む化合物、Eu及びSmを除く希土類元素からなる群から選択される少なくとも1種の元素Mを含む化合物、Siを含む化合物を含み、前記化合物のいずれかが酸素を含む化合物であり、必要に応じて前記化合物のいずれかが窒素を含む化合物である混合物を調製し、その混合物を焼成することを含む、酸窒化物蛍光体の製造方法。 It is a manufacturing method of the oxynitride fluorescent substance as described in any one of Claim 1 to 4, Comprising:
A compound containing Ba, a compound containing Eu, a compound containing at least one element M selected from the group consisting of Eu and rare earth elements other than Sm, a compound containing Si, any of the aforementioned compounds contain oxygen A method of producing an oxynitride phosphor, which comprises preparing a mixture which is a compound, and, if necessary, any of the compounds is a compound containing nitrogen, and firing the mixture.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/224,216 US11060025B2 (en) | 2017-12-26 | 2018-12-18 | Oxynitride fluorescent material, light emitting device, and method for producing oxynitride fluorescent material |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017250026 | 2017-12-26 | ||
JP2017250026 | 2017-12-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019116615A true JP2019116615A (en) | 2019-07-18 |
JP6747497B2 JP6747497B2 (en) | 2020-08-26 |
Family
ID=67304042
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018233446A Active JP6747497B2 (en) | 2017-12-26 | 2018-12-13 | Oxynitride phosphor, light emitting device, and method for manufacturing oxynitride phosphor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6747497B2 (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000345152A (en) * | 1999-06-07 | 2000-12-12 | Nichia Chem Ind Ltd | Yellow light emitting afterglow photoluminescent phosphor |
JP2004186278A (en) * | 2002-11-29 | 2004-07-02 | Toyoda Gosei Co Ltd | Light emitting device and light emitting method |
JP2004189996A (en) * | 2002-10-16 | 2004-07-08 | Nichia Chem Ind Ltd | Oxynitride fluorescent material and method for producing the same |
JP2004277547A (en) * | 2003-03-14 | 2004-10-07 | Nichia Chem Ind Ltd | Oxynitride fluorophor and light-emiiting device using the same |
JP2006152242A (en) * | 2004-08-10 | 2006-06-15 | Ishihara Sangyo Kaisha Ltd | Luminous material and process for producing the same |
JP2009527612A (en) * | 2006-02-22 | 2009-07-30 | オスラム ゲゼルシャフト ミット ベシュレンクテル ハフツング | Luminescent substance, light source having the luminescent substance, and manufacturing method for the luminescent substance |
JP2013047349A (en) * | 2006-09-15 | 2013-03-07 | Mitsubishi Chemicals Corp | Fluorescent substance, fluorescent substance-containing composition, light-emitting device, image display device, and illuminating device |
JP2015061902A (en) * | 2013-08-22 | 2015-04-02 | パナソニックIpマネジメント株式会社 | Yellow fluorescent substance, light emission device, illumination device, and vehicle |
JP2015131898A (en) * | 2014-01-10 | 2015-07-23 | 電気化学工業株式会社 | Fluorescent material and light-emitting device |
WO2017006725A1 (en) * | 2015-07-07 | 2017-01-12 | 大電株式会社 | Blue-green-light-emitting phosphor, light-emitting element, light-emitting device, and white-light-emitting device |
-
2018
- 2018-12-13 JP JP2018233446A patent/JP6747497B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000345152A (en) * | 1999-06-07 | 2000-12-12 | Nichia Chem Ind Ltd | Yellow light emitting afterglow photoluminescent phosphor |
JP2004189996A (en) * | 2002-10-16 | 2004-07-08 | Nichia Chem Ind Ltd | Oxynitride fluorescent material and method for producing the same |
JP2004186278A (en) * | 2002-11-29 | 2004-07-02 | Toyoda Gosei Co Ltd | Light emitting device and light emitting method |
JP2004277547A (en) * | 2003-03-14 | 2004-10-07 | Nichia Chem Ind Ltd | Oxynitride fluorophor and light-emiiting device using the same |
JP2006152242A (en) * | 2004-08-10 | 2006-06-15 | Ishihara Sangyo Kaisha Ltd | Luminous material and process for producing the same |
JP2009527612A (en) * | 2006-02-22 | 2009-07-30 | オスラム ゲゼルシャフト ミット ベシュレンクテル ハフツング | Luminescent substance, light source having the luminescent substance, and manufacturing method for the luminescent substance |
JP2013047349A (en) * | 2006-09-15 | 2013-03-07 | Mitsubishi Chemicals Corp | Fluorescent substance, fluorescent substance-containing composition, light-emitting device, image display device, and illuminating device |
JP2015061902A (en) * | 2013-08-22 | 2015-04-02 | パナソニックIpマネジメント株式会社 | Yellow fluorescent substance, light emission device, illumination device, and vehicle |
JP2015131898A (en) * | 2014-01-10 | 2015-07-23 | 電気化学工業株式会社 | Fluorescent material and light-emitting device |
WO2017006725A1 (en) * | 2015-07-07 | 2017-01-12 | 大電株式会社 | Blue-green-light-emitting phosphor, light-emitting element, light-emitting device, and white-light-emitting device |
Also Published As
Publication number | Publication date |
---|---|
JP6747497B2 (en) | 2020-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101168178B1 (en) | Phospher and method for production thereof, and luminous utensil | |
JP3837588B2 (en) | Phosphors and light emitting devices using phosphors | |
TWI399422B (en) | Phosphor, manufacturing method thereof and lighting fixture | |
JP4052136B2 (en) | Sialon oxynitride phosphor and method for producing the same | |
JP5110518B2 (en) | Phosphor, method of manufacturing the same, and lighting fixture | |
WO2006101096A1 (en) | Fluorescent substance, process for producing the same, and luminescent device | |
WO2007099862A1 (en) | Phosphor, method for producing same, and light-emitting device | |
JPWO2006033418A1 (en) | Phosphor, method for producing the same, and light emitting device | |
KR20140140050A (en) | Oxynitride phosphor powder | |
WO2018056447A1 (en) | Phosphor, light-emitting device, illumination device, and image display device | |
WO2014061748A1 (en) | Wavelength conversion member and light-emitting device employing same | |
CN107557005B (en) | Manufacturing method of nitride phosphor | |
JP2018109080A (en) | Green phosphor, light emitting element and light emitting device | |
JP5187817B2 (en) | Phosphors and light emitting devices | |
JP6414190B2 (en) | Method for manufacturing phosphor | |
US11060025B2 (en) | Oxynitride fluorescent material, light emitting device, and method for producing oxynitride fluorescent material | |
JP2019065112A (en) | Aluminate phosphor, light emitting device, and method of manufacturing aluminate phosphor | |
JP6028858B2 (en) | Oxynitride phosphor powder | |
JP6540784B2 (en) | Method for producing aluminate phosphor, aluminate phosphor and light emitting device | |
JP2020109850A (en) | Method of manufacturing light-emitting device | |
JP7248906B2 (en) | Nitride phosphor and light emitting device | |
JP6747497B2 (en) | Oxynitride phosphor, light emitting device, and method for manufacturing oxynitride phosphor | |
US10829688B2 (en) | Aluminate fluorescent material and light emitting device | |
JP7174238B2 (en) | Halophosphate phosphor and light-emitting device | |
US10214689B2 (en) | Fluorescent material and light emitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191203 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191129 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200123 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200707 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200720 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6747497 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |