[go: up one dir, main page]

JP2019102106A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2019102106A
JP2019102106A JP2017227790A JP2017227790A JP2019102106A JP 2019102106 A JP2019102106 A JP 2019102106A JP 2017227790 A JP2017227790 A JP 2017227790A JP 2017227790 A JP2017227790 A JP 2017227790A JP 2019102106 A JP2019102106 A JP 2019102106A
Authority
JP
Japan
Prior art keywords
bit line
data
semiconductor device
column selection
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017227790A
Other languages
English (en)
Inventor
弘行 ▲高▼橋
弘行 ▲高▼橋
Hiroyuki Takahashi
吉田 昌弘
Masahiro Yoshida
昌弘 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2017227790A priority Critical patent/JP2019102106A/ja
Priority to US16/152,103 priority patent/US10720203B2/en
Priority to CN201811420438.XA priority patent/CN109935257B/zh
Publication of JP2019102106A publication Critical patent/JP2019102106A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4091Sense or sense/refresh amplifiers, or associated sense circuitry, e.g. for coupled bit-line precharging, equalising or isolating
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • G11C11/40607Refresh operations in memory devices with an internal cache or data buffer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/4076Timing circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/408Address circuits
    • G11C11/4082Address Buffers; level conversion circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4093Input/output [I/O] data interface arrangements, e.g. data buffers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4096Input/output [I/O] data management or control circuits, e.g. reading or writing circuits, I/O drivers or bit-line switches 
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4097Bit-line organisation, e.g. bit-line layout, folded bit lines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4099Dummy cell treatment; Reference voltage generators
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/408Address circuits
    • G11C11/4087Address decoders, e.g. bit - or word line decoders; Multiple line decoders
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4094Bit-line management or control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/06Sense amplifiers; Associated circuits, e.g. timing or triggering circuits
    • G11C7/08Control thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Databases & Information Systems (AREA)
  • Dram (AREA)

Abstract

【課題】面積の増大を抑えつつ書き込み速度を向上させた半導体装置を提供する。【解決手段】本発明にかかる半導体装置は、行列状に複数配置されたメモリセル111と、メモリセル111の各行に設けられた複数のワード線112と、メモリセル111の各列に設けられた複数のビット線対113と、ビット線対113の電位差を増幅するセンスアンプ130と、ビット線対113にデータを伝達するデータ線対140と、データ線対140からデータを受け取ることを許可するカラム選択回路170と、複数のカラム選択回路170に対してカラム選択信号を送信するカラムデコーダ150と、カラムデコーダ150が複数のカラム選択回路170に対してカラム選択信号を送信した後に複数のセンスアンプ130の活性化を行うセンスアンプ制御回路160とを備える。【選択図】図1

Description

本発明は半導体装置に関し、例えば書き込み速度を向上させた半導体装置に関する。
DRAM(Dynamic Random Access Memory)などの記憶装置の動作を高速化させるための提案が種々行われている。例えば、特許文献1には、書き込み動作を高速化させるため異なるカラムのメモリセルに連続してデータを書き込む技術が記載されている。
特許文献1に開示された半導体装置は、カラム選択ゲートにより選択されたメモリセルアレイのカラムのセンスアンプを、メモリセルアレイの他のカラムのセンスアンプとは独立して活性化させるセンスアンプ制御回路を有する。そして、選択されたカラムのセンスアンプの活性化は、カラム選択ゲートによるカラムの選択と同時、又はそれ以降に行われる。
特開平10−162577号公報
しかし、特許文献1に記載されている従来技術では選択されるカラムごとに対応したセンスアンプを個別に活性化させる必要がある。そのため、かかる半導体装置は、センスアンプ制御回路をカラムごとに分離して備え、かつ、センスアンプ制御回路に対応した信号線を備えることになる。したがって、半導体装置の面積が増大するという問題があった。
その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
一実施の形態によれば、半導体装置は、
行列状に複数配置されたメモリセルと、
前記メモリセルの各行に設けられた複数のワード線と、
前記メモリセルの各列に設けられた複数のビット線対と、
前記ビット線対の電位差を増幅するセンスアンプと、
前記ビット線対にデータを伝達するデータ線対と、
前記ビット線対と前記データ線対とが接続することを許可するカラム選択回路と、
複数の前記カラム選択回路に対してカラム選択信号を送信するカラムデコーダと、
前記カラムデコーダが複数の前記カラム選択回路に対して前記カラム選択信号を送信した後に複数の前記センスアンプの活性化を行うセンスアンプ制御回路と、
を備えるものである。
前記一実施の形態によれば、面積の増大を抑えつつ書き込み速度を向上させた半導体装置を提供することが出来る。
実施の形態1にかかる半導体装置のブロック図である。 実施の形態1にかかる半導体装置のセンスアンプ及び周辺の回路図である。 実施の形態1にかかる半導体装置のサブアレイの回路図である。 実施の形態1にかかる半導体装置のデータ書き込み時のタイミング図である。 実施の形態1の変形例にかかる半導体装置のブロック図である。 実施の形態2にかかる第1のパターンにおけるタイミング図である。 実施の形態2にかかる第2のパターンにおけるタイミング図である。 実施の形態2にかかる第3のパターンにおけるタイミング図である。 実施の形態2にかかる第4のパターンにおけるタイミング図である。 実施の形態2にかかる半導体装置の容量比とビット線対間電位との関係を示すグラフである。 実施の形態2にかかる半導体装置の容量比とビット線対間電位との関係を示すグラフである。 実施の形態3にかかる半導体装置のブロック図である。 実施の形態3にかかる半導体装置のタイミング図である。 実施の形態4にかかる半導体装置のブロック図である。 実施の形態4にかかる半導体装置のタイミング図である。 実施の形態5にかかる半導体装置のメモリセル周辺の回路図である。 実施の形態5にかかる半導体装置のセンスアンプ周辺の回路図である。 実施の形態6にかかる半導体装置のデータ書き込み時のタイミング図である。
以下、図面を参照しつつ、実施の形態について説明する。なお、図面は簡略的なものであるから、この図面の記載を根拠として実施の形態の技術的範囲を狭く解釈してはならない。また、同一の要素には、同一の符号を付し、重複する説明は省略する。
以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、応用例、詳細説明、補足説明等の関係にある。また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。
さらに、以下の実施の形態において、その構成要素(動作ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数等(個数、数値、量、範囲等を含む)についても同様である。
説明の明確化のため、以下の記載及び図面は、適宜、省略、及び簡略化がなされている。また、様々な処理を行う機能ブロックとして図面に記載される各要素は、ハードウェア的には、CPU(Central Processing Unit)、メモリ、その他の回路で構成することができ、ソフトウェア的には、メモリにロードされたプログラムなどによって実現される。したがって、これらの機能ブロックがハードウェアのみ、ソフトウェアのみ、またはそれらの組合せによっていろいろな形で実現できることは当業者には理解されるところであり、いずれかに限定されるものではない。なお、各図面において、同一の要素には同一の符号が付されており、必要に応じて重複説明は省略されている。
以降の説明において信号がHレベルであるとは、信号がハイレベルであることを意味する。信号がハイレベルであるとは、例えば信号の電圧が電源電圧VDDであることを意味する。また、信号がLレベルであるとは、信号がローレベルであることを意味する。信号がローレベルであるとは、例えば信号の電圧が接地電圧GNDであることを意味する。
<実施の形態1>
以下、図1を参照しながら実施の形態1の構成について説明する。図1は、実施の形態1にかかる半導体装置のブロック図である。
図1に示す半導体装置100は、DRAM装置である。DRAM装置は、いずれかのワード線及びビット線対を選択することにより、対応するメモリセルにデータを記憶し、又は対応するメモリセルのデータを読み出す装置である。半導体装置100は、主な構成として、セルアレイ110、ロウデコーダ120、センスアンプ130、カラムデコーダ150、センスアンプ制御回路160を少なくとも有している。
セルアレイ110は、行列状に複数配置されたメモリセル111と、メモリセル111の各行に設けられた複数のワード線112と、メモリセル111の各列に設けられた複数のビット線対113とを少なくとも含んでいる。メモリセル111は、ワード線とビット線に対応して設けられたDRAM装置のメモリセルである。すなわち、メモリセル111はワード線112からゲート信号を受け取るトランジスタと、ビット線から受け取る電荷を蓄えるキャパシタとを有している。
ワード線112は、行列状に複数配置されたメモリセル111の各行に対応して設けられている。ワード線112は、ロウデコーダ120と接続し、ロウデコーダ120からの選択信号をメモリセル111に出力する。
ビット線対113は、ビット線114とビット線115からなる。ここで、ビット線対を構成するビット線のうち一方のビット線を、対応するメモリセル111に対してデータを伝達する第1ビット線とし、他方のビット線を、第1ビット線との電位差を比較するための第2ビット線とする。第1ビット線に接続されるメモリセル111は、活性化状態のワード線112により選択されている。一方、第2ビット線に接続されるメモリセル111は、ワード線により選択されていない。
センスアンプ130は、ビット線対113の電位差を増幅する回路である。図1に示すように、半導体装置100は、複数のビット線対113に対応して複数のセンスアンプ130を備えている。センスアンプ130は、ビット線対113に接続している。また、センスアンプ130は、センスアンプ制御回路160に接続し、センスアンプ制御回路160から活性化信号SAP及びSANを受け取る。センスアンプ130は、活性化信号SAP及びSANを受け取ることにより、ビット線対113の電位差を増幅する。
また、複数のセンスアンプ130のそれぞれに対応してカラム選択回路170が設けられている。カラム選択回路170は、カラムデコーダ150からカラム選択信号(Y0〜Yn)をそれぞれ受け取る。また、センスアンプ130は、カラム選択回路170を介してデータ線対140に接続している。複数のセンスアンプ130のうち、カラム選択信号を受け取ったカラム選択回路170に対応するセンスアンプ130は、データ線対140に接続し、データ線対140からデータを受け取る。
カラムデコーダ150は、読出コマンド信号(Read)又は書込コマンド信号(Write)と共にアドレス信号(Address)を外部から受け取り、受け取ったアドレス信号に基づいて、カラム選択信号(Y0〜Yn)を生成し、カラム選択回路170にそれぞれ出力する。また、カラムデコーダ150は、各コマンド信号とアドレス信号に基づいて連続したカラム選択信号を出力することが可能である。
センスアンプ制御回路160は、センスアンプ130を活性化させる。具体的には、センスアンプ制御回路160は、センスアンプに対するイネーブル信号SENを外部から受け取ると、受け取ったイネーブル信号SENに応じて、複数のセンスアンプ130に対して活性化信号SAP及びSANを出力する。また、本実施の形態にかかるセンスアンプ制御回路160は、読出コマンド信号又は書込コマンド信号を外部から受け取り、受け取ったコマンド信号に応じて、活性化信号SAP及びSANの出力タイミングを調節する。
つぎに、図2を参照しながら、センスアンプ130及び周辺回路について説明する。図2は、実施の形態1にかかる半導体装置のセンスアンプ及び周辺の回路図である。図2に示した回路図は、ビット線対113にセンスアンプ130、カラム選択回路170、プリチャージ回路180、及びデータ線対140が接続されている。尚、ビット線対113のうち、第1ビット線114は、BLTとも称される。また、第2ビット線115は、BLNとも称される。
プリチャージ回路180は、ビット線対113を予め設定された電圧にプリチャージする。予め設定された電圧は、例えば、半導体装置100の電源電圧VDDに対する中間電圧HVDDである。プリチャージ回路180は、トランジスタPT、PN、EQを有している。トランジスタPTは、ビット線BLTと電源電圧端子TMとの間に設けられている。トランジスタPNは、ビット線BLNと電源電圧端子TMとの間に設けられている。トランジスタEQは、ビット線BLTとビット線BLNとの間に設けられている。トランジスタPT、PN、EQはそれぞれN型MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)である。トランジスタPT、PN、EQのそれぞれのゲートには、プリチャージ信号PDLが供給される。プリチャージ信号PDLがHレベルの場合、トランジスタPT、PN、EQは全てオンになる。そのため、ビット線対113はいずれも中間電圧HVDDにプリチャージされる。一方、プリチャージ信号PDLがLレベルの場合、トランジスタPT、PN、EQは全てオフになる。そのため、ビット線対113はいずれもプリチャージされない。
センスアンプ130は、ビット線対113の電位差、すなわちビット線BLTとビット線BLNとの電位差を増幅するための回路である。センスアンプ130は、トランジスタT1〜T4を有している。トランジスタT1及びT3はP型MOSFETである。トランジスタT2及びT4はN型MOSFETである。トランジスタT1及びT3のソースは、センスアンプ制御回路160から活性化信号SAPが供給される。トランジスタT1のゲートは、トランジスタT3のドレイン、ビット線BLN、トランジスタT4のソース、及びトランジスタT2のゲートと接続している。トランジスタT3のゲートは、トランジスタT1のドレイン、ビット線BLT、トランジスタT2のソース、及びトランジスタT4のゲートと接続している。トランジスタT2及びT4のドレインは、センスアンプ制御回路160から活性化信号SANが供給される。
カラム選択回路170は、カラムデコーダ150から供給される信号に応じて、ビット線対113とデータ線対140とを接続し、又は切断する回路である。カラム選択回路170は、カラム選択ゲートYT及びYNを有している。カラム選択ゲートYT及びYNは、いずれもN型MOSFETである。カラム選択ゲートYT及びYNは、カラムデコーダ150からカラム選択信号Yが供給される。カラムデコーダ150からカラム選択信号YとしてHレベルの信号が供給されると、カラム選択回路170は、データ線DTとビット線BLTとを接続し、データ線DNとビット線BLNとを接続する。一方、カラムデコーダ150からカラム選択信号YとしてLレベルの信号が供給されると、カラム選択回路170は、データ線DTとビット線BLTとを切断するとともに、データ線DNとビット線BLNとを切断する。
データ線対140は、例えばメモリセル111にデータを書き込む場合に、データ出力回路(不図示)から供給されるデータをビット線対113に伝達する。あるいは、データ線対140は、例えばメモリセル111のデータを読み出す場合に、ビット線対113のデータを外部に伝達する。
次に、図3を参照しながら、セルアレイが有するサブアレイの例について説明する。図3は、実施の形態1にかかる半導体装置のサブアレイの回路図である。図3に示すサブアレイ116は、図1を参照しながら説明したメモリセル111、ワード線112、ビット線対113、センスアンプ130をそれぞれ複数有している。
メモリセル111は、行列状に配置され、各メモリセル111は、図3において縦線として示したワード線112(WL0〜WL1)と接続している。また、各メモリセル111は、図3において横線として示したビット線対113の内第1ビット線114又は第2ビット線115のいずれかと接続している。
ビット線対113のうち、ワード線112により選択されるメモリセル111に接続しているものは、第1ビット線114である。図3においてワード線112のうち、WL1が活性化されている。そのため、WL1に対応するメモリセル111に接続しているビット線BLT00〜BLT30、及びBLT0n〜BLT3nは、第1ビット線114である。一方、図3においてワード線112のうち、WL0及びWL2は非選択である。そのため、WL0及びWL2に対応するメモリセル111に接続しているビット線BLN00〜BLN30、BLN0n〜BLN3nは、第2ビット線115である。
尚、非選択のワード線WL2と交差するビット線BLN00とビット線BLN20との間には、ビット線117が設けられている。同様に、ビット線BLN0nとビット線BLN2nとの間には、ビット線117が設けられている。ビット線117は、選択されていないカラムに対応するビット線である。このように、第2ビット線115は、選択されていないカラムに対応するビット線と隣接している。
このように、一のビット線対のうち、ワード線112により選択されているメモリセルに接続しているものは、第1ビット線となる。そして、第1ビット線に対応したセンスアンプ130に接続し、第1ビット線と電位差を比較するためのビット線は、第2ビット線となる。つまり、ワード線112の活性化状態を切り替えることにより、ビット線対の第1ビット線と第2ビット線とは入れ替わる。
一のセンスアンプ130は、一のビット線対113、すなわち、第1ビット線114と、第2ビット線115と、それぞれ接続している。例えば図3においてセンスアンプのSA00は、第1ビット線であるBLT00と、第2ビット線であるBLN00と接続している。
また、一のセンスアンプ130は、一のデータ線対140と接続している。例えば図3においてセンスアンプのSA00は、データ線対140からデータDT0及びDN0を受け取る。また、センスアンプ130は、カラムデコーダ150から供給されるカラム選択信号を受け取る。例えば、センスアンプのSA00は、カラム選択信号Y0を受け取ると、カラム選択ゲートがオンになる。そして、データ線対DT0/DN0とビット線対BLT00/BLN00とが接続される。また、複数のセンスアンプ130は、共通の一のデータ線対140に接続される。例えば図3において、センスアンプSA00〜センスアンプSA0nは、それぞれ異なるカラム選択信号Y0〜Ynにより選択され、選択されたセンスアンプがデータ線対DT0/DN0に接続される。
また、センスアンプ130は、センスアンプ制御回路160に接続し、活性化信号又は非活性化信号であるSAP、SAN、EQをそれぞれ受け取る。センスアンプ130はセンスアンプ制御回路160から活性化信号を受け取ると、かかるセンスアンプ130が接続しているビット線対の電位差を増幅する。
図3に示すサブアレイ116は、一のカラム選択信号によって四つのカラム選択ができるようになっている。換言すると、カラムデコーダ150は、一のカラム選択信号を四つのカラム選択ゲート(不図示)に対して出力。すなわち、4ビットデータを扱う構成となっている。例えば、カラム選択信号Y0は、ビット線対のBLT00及びBLN00と、ビット線対のBLT10及びBLN10と、ビット線対のBLT20及びBLN20と、ビット線対のBLT30及びBLN30とに対応するカラム選択ゲートに対して出力される。同様に、カラム選択信号Ynは、ビット線対のBLT0n及びBLN0nと、ビット線対のBLT1n及びBLN1nと、ビット線対のBLT2n及びBLN2nと、ビット線対のBLT3n及びBLN3nとに対応するカラム選択ゲートに対して出力される。
セルアレイ110は、図3に示すようなサブアレイ116を複数有する構成である。すなわち、半導体装置100は、複数のメモリセル111と複数のセンスアンプ130とが配列され、複数のセンスアンプ130に接続した一のセンスアンプ制御回路160を有するサブアレイ116を複数備える。このような構成により、半導体装置100は、面積の増大を抑えることが出来る。
次に、図4を参照しながら、半導体装置100の動作について説明する。図4は、実施の形態1にかかる半導体装置のデータ書き込み時のタイミング図である。実施の形態1にかかる半導体装置は、連続カラム選択を行うものである。すなわち、一のワード線選択に対して複数のカラム選択を行う。図4は説明を単純化するために、図3に示したサブアレイ116の内、ワード線WL1に接続される二つのメモリセルMC00、MC0nであって共通のデータ線対DT0/DN0を介してデータを書き込む場合を示している。メモリセルMC00は、ビット線対BL00を構成するビット線BLT00およびBLN00のうち第1のビット線であるBLT00に接続されているものとする。メモリセルMC0nはビット線BL0nを構成するビット線BLT0nおよびBLN0nのうち第1のビット線であるBLT0nに接続されているものとする。メモリセルMC00は、メモリセルMC00は、図3において、ビット線BLT00とワード線WL1とが交差する位置に配置されたメモリセルに相当する。同様に、メモリセルMC0nは、図3において、ビット線BLT0nとワード線WL1とが交差する位置に配置されたメモリセルに相当する。
図4の例では、カラム選択信号Y0およびYnが順次活性化され、メモリセルのMC00に対して、データ“0”からデータ“1”に書き換える処理を行い、メモリセルのMC0nに対して、データ“1”からデータ“0”に書き換える処理を行う例を説明する。尚、以降の説明において、メモリセルに対してデータ“0”を書き込むとは、メモリセルが有しているキャパシタの電圧をLレベルに遷移させることをいう。また、以降の説明において、メモリセルに対してデータ“1”を書き込むとは、メモリセルが有しているキャパシタの電圧をHレベルに遷移させることをいう。
まず、初期状態として、時刻t0より前に、プリチャージ回路180は、ビット線対BL00及びBL0nに対して中間電圧HVDDをプリチャージしている。また、ワード線WL1の電圧はLレベルである。また、センスアンプに対するイネーブル信号SENはLレベルであるため、センスアンプ130は活性化されていない。カラム選択信号Y0及びYnはいずれもLレベルである。すなわち、データ線対140と、ビット線対のBL00及びBL0nとはいずれも非導通状態である。なお、データ線対140の電圧はいずれも中間電圧HVDDである。
時刻t0に、プリチャージ信号PDLは、HレベルからLレベルに遷移する。これにより、ビット線BLT00、BLN00、BLT0n、及びBLN0nはそれぞれフローティング状態になる。また、時刻t0において、データ線対140のうち、データ線DN0の電圧レベルは、Lレベルに遷移する。
次に、時刻t1において、ワード線WL1の電圧は、LレベルからHレベルに遷移する。ワード線WL1の電圧がHレベルになることにより、メモリセルMC00及びMC0nに保持されたデータに応じてそれぞれのビット線電位が変化する。また、カラム選択信号Y0は、LレベルからHレベルに遷移する。これにより、メモリセルMC00に対応するカラム選択ゲートはオンになる。したがって、データ線DT0は、ビット線BLT00と接続状態となる。同時に、データ線DN0は、ビット線BLN00と接続状態となる。つまり、中間電圧HVDDであったビット線BLN00は、Lレベルのデータ線DN0と接続する。そのため、ビット線BLN00の電圧は、チャージシェアにより下降を開始する。一方、中間電圧HVDDのビット線BLT00は、中間電圧HVDDのデータ線DT0と接続する。そのため、ビット線BLT00の電圧は、中間電圧HVDDに維持される。
また、ワード線WL1の電圧がHレベルに遷移すると、メモリセルのMC0nはデータ“1”を保持しているため、メモリセルMC0nに接続するビット線BLT0nの電圧はチャージシェアにより中間電圧HVDDから徐々に上昇する。
次に、時刻t2において、カラム選択信号Y0はHレベルからLレベルに遷移する。カラム選択信号Y0がLレベルに遷移することにより、ビット線BLN00は、データ線DN0との接続を遮断する。すなわち、ビット線BLN00の電圧は下降が止まり、かかる電圧が維持される。一方、ビット線BLT00は、対応するメモリセルMC00がデータ“0”を保持していたため、ビット線BLT00の電圧は、チャージシェアにより徐々に下降を開始する。
次に、時刻t3において、カラム選択信号Y1がLレベルからHレベルに遷移する。これにより、メモリセルMC0nのカラム選択ゲートはオンになる。したがって、データ線DT0とビット線BLT0nとが接続状態となる。同時に、データ線DN0とビット線BLN0nとが接続状態となる。尚、データ線DT0及びデータ線DN0は、時刻t2と時刻t3との間に、電圧を反転させている。電圧が中間電圧HVDDから徐々に上昇していたビット線BLT0nは、Lレベルのデータ線DT0と接続する。したがって、ビット線BLT0nの電圧は、チャージシェアにより下降を開始する。一方、中間電圧HVDDのビット線BLN0nは、中間電圧HVDDのデータ線DN0と接続する。そのため、ビット線BLN0nの電圧は、中間電圧HVDDに維持される。
次に、時刻t4において、カラム選択信号Y1はHレベルからLレベルに遷移する。カラム選択信号Y1がLレベルに遷移することにより、ビット線BLT0nは、データ線DTとの接続を遮断する。尚、Lレベルのデータ線DTの電圧は、カラム選択信号Y1がLレベルになった後に、中間電圧HVDDに遷移する。
同じく時刻t4において、センスアンプに対するイネーブル信号SENは、LレベルからHレベルに遷移する。これにより、複数のセンスアンプ130は活性化する。すなわち、メモリセルのMC00に対応するセンスアンプ130は、ビット線BLT00とビット線BLN00との電位差を増幅する。これにより、メモリセルのMC0はデータ“0”からデータ“1”に書き換えられる。同時に、メモリセルのMC0nに対応するセンスアンプ130は、ビット線BLT0nとビット線BLN0nとの電位差を増幅する。これにより、メモリセルのMC0nはデータ“1”からデータ“0”に書き換えられる。
次に、メモリセルのMC00及びMC0nのデータが書きかえられた後、時刻t5に、ワード線WL1の電圧がHレベルからLレベルに遷移する。これにより、メモリセルのMC00及びMC0nは非選択となる。同時に、プリチャージ信号PDLは、LレベルからHレベルに遷移する。これにより、ビット線BLT00、BLN00、BLT0n、及びBLN0nの電圧はそれぞれ中間電圧HVDDに遷移する。また、センスアンプ130に対するイネーブル信号はHレベルからLレベルに遷移する。これによりセンスアンプ130は非活性化状態となる。
以上のように、本実施の形態における半導体装置100は、カラムを選択しビット線対に対してデータを書き込んだあとにセンスアンプの活性化を行う方式(アーリーライト方式)が採用されている。さらに、本実施の形態における半導体装置100は、カラムデコーダ150が複数のカラム選択ゲートに対して対応するカラム選択信号を順次供給した後に、対応する複数のセンスアンプ130の活性化を行う。例えば、図4の時刻t4において、先にカラム選択信号が供給されたカラムに対応するビット線BLT00とビット線BLN00との電位差は、センスアンプ130が増幅可能な大きさであればよい。そのため、カラムデコーダ150は、データ線対に接続した第1ビット線または第2ビット線の電圧が、データ線対と同じ電圧になる前にカラム選択信号の出力を切り替えることができる。したがって、カラム選択信号がHレベルに遷移している時間を短くすることが可能である。また、半導体装置100は、複数のセンスアンプ130を同時に活性化させることができる。そのため、半導体装置100は、センスアンプごとにセンスアンプ制御回路を設ける必要がない。このような構成により、実施の形態1は、面積の増大を抑えつつ書き込み速度を向上させた半導体装置を提供することが出来る。
また、図4に示したように、データ線DT0及びデータ線DN0は、ビット線対に、ビット線対のプリチャージ電位と同じか、又はプリチャージ電位より低い電位を伝達する。つまり、メモリセルにデータ“1”を書き込む場合は、データ線DT0を中間電圧とし、データ線DN0をLレベルにする。また、メモリセルにデータ“0”を書き込む場合は、データ線DN0を中間電圧とし、データ線DT0をLレベルにする。このようなデータ線の電位をビット線に伝達することで第1ビット線114と第2ビット線115とに電位差をつけ、センスアンプ130により、かかる電位差を増幅させて書込み動作を行う。これにより、実施の形態1にかかる半導体装置100は、カラム選択信号を昇圧する昇圧回路が不要になる。なお、データ線DT0及びデータ線DN0の波形パタンはこれに限定されない。メモリセルにデータ”1”を書き込む場合に、データ線DT0をHレベルとし、データ線DN0をLレベルとしてもよい。また、メモリセルにデータ”0”を書き込む場合は、データ線DT0をLレベルとし、データ線DN0をHレベルとしてもよい。また、データ線のプリチャージ電位をHレベルとしても、中間電圧HVDDとしてもよい。
<実施の形態1の変形例>
図5を参照しながら、実施の形態1の変形例について説明する。図5は、実施の形態1の変形例にかかる半導体装置のブロック図である。図5に示す半導体装置101は、タイミング制御回路190を有している点において、図1に示した半導体装置100と異なる。
タイミング制御回路190は、カラムデコーダ150がカラム選択信号の送信を終了するタイミングと、センスアンプ制御回路160が複数のセンスアンプ130を活性化させるタイミングとを制御する。カラムデコーダ150は、タイミング制御回路190から受け取ったコマンド信号に基づき、カラム選択信号を出力する。また、センスアンプ制御回路160は、タイミング制御回路190により、カラム選択信号の出力が終了した後に、複数のセンスアンプ130を活性化させる。
具体的には、例えば、タイミング制御回路190は、カラムデコーダ150に対して書き込み処理を行うためのカラム選択を指示する。そして、書き込み処理のためのカラム選択が終了する時間に応じて、センスアンプ制御回路160に対して、センスアンプ130を活性化する指示を出力する。書き込み処理のためのカラム選択が終了する時間は、タイミング制御回路190がクロックをカウントすることにより、予め設定された時間が経過することを監視してもよい。また、タイミング制御回路190は、カラムデコーダ150からフィードバック信号をタイミング制御回路190に対して出力することをトリガとして動作してもよい。当該フィードバック信号は、カラムデコーダ150によって、カラム選択が終了したことを判定した結果を用いて生成されてもよい。また、カラム選択が終了したことを判定するために、例えば、カラムアドレスが一定期間入力されないことを検出してもよい。また、タイミング制御回路190は、カラム選択信号の出力が終了すると共に、センスアンプ130に対するイネーブル信号を、センスアンプ制御回路160に対して出力してもよい。
また、タイミング制御回路190は、バーストモードによる書き込みにおけるタイミング制御をおこなってもよい。例えば、タイミング制御回路190により、カラムデコーダ150は、バースト処理に伴うカラム選択信号を出力する。また、タイミング制御回路190により、センスアンプ制御回路160は、バースト処理に伴うカラム選択信号の出力が終了した後に、複数のセンスアンプ130を活性化させる。
このような構成により、半導体装置101は、面積の増大を抑えつつ、書き込み速度を向上させることができる。
<実施の形態2>
次に、図6〜11を参照しながら、実施の形態2について説明する。発明者らは、実施の形態1において説明したアーリーライト方式を採用した半導体装置について、書き込み速度を最適化するための検討をおこなった。発明者らは、かかる半導体装置において、ワード選択信号がHレベルに遷移し、選択されたワード線に対応する複数のビット線対にカラム選択信号が送信された後に、センスアンプにより増幅が行われるまでの、ビット線対の電圧の推移を調査した。以下に、かかる調査のうち4つのパターンについて詳細を説明する。
尚、以降に示す図6〜9では、主要な信号として、ワード線WLの選択信号、カラム選択信号Yn、及びセンスアンプに対するイネーブル信号SEをそれぞれ例示している。また、それぞれのパターンに対応する任意のメモリセルをメモリセルMCnとして、メモリセルMCnの電圧VMC、メモリセルMCnに対応する第1ビット線BLTnの電圧、第1ビット線BLTnに対応する参照電圧を有する第2ビット線BLNnの電圧をそれぞれ例示している。プリチャージ電圧やデータ線対などの信号は省略されているが、省略されている信号は、図4を参照しながら説明した場合と同様に、適宜機能している。また、図6〜9は、時刻tsから時刻teまでの間における4つのパターンにそれぞれ着目して信号波形を示しているが、これらは複数のメモリセルを書き換える一連の動作のうち、着目するメモリセルに関連するパターンのみを示したものである。
図6は、実施の形態2にかかる第1のパターンにおけるタイミング図である。第1のパターンは、カラムデコーダが出力するカラム選択信号のうちの初期段階のカラム選択信号によりメモリセルがデータ“1”からデータ“0”に書き換えられる場合のビット線対の電圧を示している。すなわち、第1パターンでは、メモリセルの電圧VMCは、HレベルからLレベルに書き換えられる。尚、初期段階とは、例えば、カラムデコーダが連続して出力するカラム選択信号の内、開始時刻から10パーセントが経過した時点までをいう。
まず、時刻tsにおいて、ワード線WLの選択信号がLレベルからHレベルに遷移する。これによりメモリセルMCnのゲート信号がオン状態になる。そのため、メモリセルMCnの電圧VMCは、Hレベルから徐々に下降する。
次に、時刻t11において、カラム選択信号YnがLレベルからHレベルに遷移する。これによりメモリセルMCnに対応するビット線対に対応するカラム選択ゲートがオン状態となる。そのため、メモリセルMCnに対応するビット線対はデータ線対と接続する。第1パターンでは、メモリセルMCnをデータ“0”に書き換えるため、データ線対により、第1ビット線BLTnの電圧が下げられる。一方、第2ビット線BLNnの電圧は、中間電圧HVDDを維持される。
次に、時刻t12に、カラム選択信号YnはHレベルからLレベルに遷移する。第1ビット線BLTnの電圧は、電圧Vwまで下降している。一方、メモリセルMCnの電圧VMCはHレベルから下降しているものの、第1ビット線BLTnの電圧Vwより高い。そのため、時刻t12以降、メモリセルMCnの電圧VMCと第1ビット線BLTnの電圧は、チャージシェアにより互いに近づくように推移する。すなわち、メモリセルMCnの電圧VMCは下降し、第1ビット線BLTnの電圧は上昇する。時刻t12から所定の時間が経過すると、メモリセルMCnの電圧VMCと、第1ビット線BLTnの電圧とは同じ値となる。
次に、時刻teまでに、カラムデコーダ150が全ての対応するカラム選択信号の送信を終了する。そして、時刻teに、センスアンプに対するイネーブル信号SEがLレベルからHレベルに遷移する。これにより、ワード線WLの選択信号に対応する複数のセンスアンプ130が活性化される。センスアンプ130が活性化されることにより、第1ビット線BLTnと第2ビット線BLNnの電位差は増幅される。そして、第1ビット線BLTnと第2ビット線BLNnの電位差が増幅されると、メモリセルMCnの電圧VMCはLレベルに下降する。
時刻teにおいて、第1ビット線BLTnと第2ビット線BLNnとの電位差は、ΔVである。ΔVの値が予め設定された値より大きい場合、センスアンプ130は、かかる電位差を正しく増幅させることが出来る。一方、ΔVの値が予め設定された値より大きくない場合、センスアンプ130は、かかる電位差を正しく増幅させることが出来ない。つまり、時刻t12における電圧Vwが時刻teまでに上昇することを考慮したうえで、カラム選択信号Ynの活性化期間を設定するとよい。
図7は、実施の形態2にかかる第2のパターンにおけるタイミング図である。第2のパターンは、カラムデコーダが出力するカラム選択信号のうちの末期段階のカラム選択信号によりメモリセルがデータ“1”からデータ“0”に書き換えられる場合のビット線対の電圧を示している。すなわち、第2パターンでは、メモリセルの電圧VMCは、HレベルからLレベルに書き換えられる。尚、末期段階とは、例えば、カラムデコーダが連続して出力するカラム選択信号の内、終了時刻から10パーセントが遡った時点以降をいう。
まず、時刻tsに、ワード線WLの選択信号がLレベルからHレベルに遷移する。これによりメモリセルMCnのゲート信号がオン状態になる。そのため、メモリセルMCnの電圧VMCは、Hレベルから徐々に下降する。一方、第1ビット線BLTnの電圧は、チャージシェアにより、中間電圧HVDDから徐々に上昇する。そして、時刻tsから所定の時間が経過すると、メモリセルMCnの電圧VMCと、第1ビット線BLTnの電圧とは同じ値となる。
次に、時刻t21に、カラム選択信号YnがLレベルからHレベルに遷移する。これによりメモリセルMCnに対応するビット線対に対応するカラム選択ゲートがオン状態となる。そのため、メモリセルMCnに対応するビット線対はデータ線対と接続する。第2パターンでは、メモリセルMCnをデータ“0”に書き換えるため、データ線対により、第1ビット線BLTnの電圧が下げられる。一方、第2ビット線BLNnの電圧は中間電圧HVDDを維持される。
次に、時刻t22に、カラム選択信号YnはHレベルからLレベルに遷移する。第1ビット線BLTnの電圧は、電圧Vwまで下降している。一方、メモリセルMCnの電圧VMCはHレベルから下降しているものの、第1ビット線BLTnの電圧Vwより高い。そのため、時刻t22以降、メモリセルMCnの電圧VMCと第1ビット線BLTnの電圧は、チャージシェアにより互いに近づくように推移する。すなわち、メモリセルMCnの電圧VMCは下降し、第1ビット線BLTnの電圧は上昇する。時刻t22から所定の時間が経過すると、メモリセルMCnの電圧VMCと、第1ビット線BLTnの電圧とは同じ値となる。
次に、時刻teまでに、カラムデコーダ150が全ての対応するカラム選択信号の送信を終了する。そして、時刻teに、センスアンプに対するイネーブル信号SEがLレベルからHレベルに遷移する。これにより、ワード線WLの選択信号に対応する複数のセンスアンプ130が活性化される。センスアンプ130が活性化されることにより、第1ビット線BLTnと第2ビット線BLNnの電位差は増幅される。そして、第1ビット線BLTnと第2ビット線BLNnの電位差が増幅されると、メモリセルMCnの電圧VMCはLレベルに下降する。
時刻teにおいて、第1ビット線BLTnと第2ビット線BLNnとの電位差は、ΔVである。ΔVの値が予め設定された値より大きい場合、センスアンプ130は、かかる電位差を正しく増幅させることが出来る。一方、ΔVの値が予め設定された値より大きくない場合、センスアンプ130は、かかる電位差を正しく増幅させることが出来ない。つまり、時刻t22における電圧Vwが時刻teまでに上昇することを考慮したうえで、カラム選択信号Ynの長さを設定するとよい。
図8は、実施の形態2にかかる第3のパターンにおけるタイミング図である。第3のパターンは、カラムデコーダが出力するカラム選択信号のうちの初期段階のカラム選択信号によりメモリセルがデータ“0”からデータ“1”に書き換えられる場合のビット線対の電圧を示している。すなわち、第3パターンでは、メモリセルの電圧VMCは、LレベルからHレベルに書き換えられる。
まず、時刻tsに、ワード線WLの選択信号がLレベルからHレベルに遷移する。これによりメモリセルMCnのゲート信号がオン状態になる。そのため、メモリセルMCnの電圧VMCは、Lレベルから徐々に上昇する。一方、第1ビット線BLTnの電圧は、チャージシェアにより、中間電圧HVDDから徐々に下降する。
次に、時刻t31に、カラム選択信号YnがLレベルからHレベルに遷移する。これによりメモリセルMCnに対応するビット線対に対応するカラム選択ゲートがオン状態となる。そのため、メモリセルMCnに対応するビット線対はデータ線対と接続する。第3パターンでは、メモリセルMCnをデータ“1”に書き換えるため、データ線対により、第2ビット線BLNnの電圧が下げられる。一方、第1ビット線BLTnは、データ線から中間電圧HVDDを供給されるため、中間電圧HVDDまで上昇する。
次に、時刻t32に、カラム選択信号YnはHレベルからLレベルに遷移する。第2ビット線BLNnの電圧は、電圧Vwまで下降しており、この電圧が維持される。一方、メモリセルMCnの電圧VMCはLレベルから上昇しているものの、第1ビット線BLTnの電圧より低い。そのため、時刻t32以降、メモリセルMCnの電圧VMCと第1ビット線BLTnの電圧は、チャージシェアにより互いに近づくように推移する。すなわち、メモリセルMCnの電圧VMCは上昇し、第1ビット線BLTnの電圧は下降する。時刻t32から所定の時間が経過すると、メモリセルMCnの電圧VMCと、第1ビット線BLTnの電圧とは同じ値となる。
次に、時刻teまでに、カラムデコーダ150が全ての対応するカラム選択信号の送信を終了する。そして、時刻teに、センスアンプに対するイネーブル信号SEがLレベルからHレベルに遷移する。これにより、ワード線WLの選択信号に対応する複数のセンスアンプ130が活性化される。センスアンプ130が活性化されることにより、第1ビット線BLTnと第2ビット線BLNnの電位差は増幅される。そして、第1ビット線BLTnと第2ビット線BLNnの電位差が増幅されると、メモリセルMCnの電圧VMCはHレベルに上昇する。
時刻teにおいて、第1ビット線BLTnと第2ビット線BLNnとの電位差は、ΔVである。ΔVの値が予め設定された値より大きい場合、センスアンプ130は、かかる電位差を正しく増幅させることが出来る。一方、ΔVの値が予め設定された値より大きくない場合、センスアンプ130は、かかる電位差を正しく増幅させることが出来ない。つまり、時刻t32における第1ビット線BLTnの電圧が時刻t3までに下降することを加味したうえで、カラム選択信号Ynの長さを設定するとよい。
図9は、実施の形態2にかかる第4のパターンにおけるタイミング図である。第4のパターンは、カラムデコーダが出力するカラム選択信号のうちの末期段階のカラム選択信号によりメモリセルがデータ“0”からデータ“1”に書き換えられる場合のビット線対の電圧を示している。すなわち、第3パターンでは、メモリセルの電圧VMCは、LレベルからHレベルに書き換えられる。
まず、時刻tsに、ワード線WLの選択信号がLレベルからHレベルに遷移する。これによりメモリセルMCnのゲート信号がオン状態になる。そのため、メモリセルMCnの電圧VMCは、Lレベルから徐々に上昇する。一方、第1ビット線BLTnの電圧は、チャージシェアにより、中間電圧HVDDから徐々に下降する。
次に、時刻t41に、カラム選択信号YnがLレベルからHレベルに遷移する。これによりメモリセルMCnに対応するビット線対に対応するカラム選択ゲートがオン状態となる。そのため、メモリセルMCnに対応するビット線対はデータ線対と接続する。第4パターンでは、メモリセルMCnをデータ“1”に書き換えるため、データ線対により、第2ビット線BLNnの電圧が下げられる。一方、第1ビット線BLTnは、データ線から中間電圧HVDDを供給されるため、中間電圧HVDDまで上昇する。
次に、時刻t42に、カラム選択信号YnはHレベルからLレベルに遷移する。第2ビット線BLNnの電圧は、電圧Vwまで下降しており、この電圧が維持される。一方、メモリセルMCnの電圧VMCはLレベルから上昇しているものの、第1ビット線BLTnの電圧より低い。そのため、時刻t42以降、メモリセルMCnの電圧VMCと第1ビット線BLTnの電圧は、チャージシェアにより互いに近づくように推移する。すなわち、メモリセルMCnの電圧VMCは上昇し、第1ビット線BLTnの電圧は下降する。時刻t42から所定の時間が経過すると、メモリセルMCnの電圧VMCと、第1ビット線BLTnの電圧とは同じ値となる。
次に、時刻teまでに、カラムデコーダ150が全ての対応するカラム選択信号の送信を終了する。そして、時刻teに、センスアンプに対するイネーブル信号SEがLレベルからHレベルに遷移する。これにより、ワード線WLの選択信号に対応する複数のセンスアンプ130が活性化される。センスアンプ130が活性化されることにより、第1ビット線BLTnと第2ビット線BLNnの電位差は増幅される。そして、第1ビット線BLTnと第2ビット線BLNnの電位差が増幅されると、メモリセルMCnの電圧VMCはHレベルに上昇する。
時刻teにおいて、第1ビット線BLTnと第2ビット線BLNnとの電位差は、ΔVである。ΔVの値が予め設定された値より大きい場合、センスアンプ130は、かかる電位差を正しく増幅させることが出来る。一方、ΔVの値が予め設定された値より大きくない場合、センスアンプ130は、かかる電位差を正しく増幅させることが出来ない。つまり、時刻t42における第1ビット線BLTnの電圧が時刻teまでに下降することを加味したうえで、カラム選択信号Ynの長さを設定するとよい。
次に、図10及び図11を参照しながら、カラム選択信号Ynの活性化期間と、セルアレイの容量との関係を検討した結果を説明する。発明者らは、カラム選択信号Ynの開始時刻、カラム選択信号Ynの活性化期間、及び第1ビット線BLTnに接続するメモリセルの数等をパラメータとして更に検討を進めた。図10は、実施の形態2にかかる半導体装置の容量比とビット線対間電位との関係を示すグラフである。図10において、縦軸は図6〜図9に示した時刻t3における第1ビット線BLTnと第2ビット線BLNnとの電位差ΔVである。すなわち、縦軸に示したΔVは、センスアンプ130が増幅する直前のビット線対間の電位差である。図10において、横軸は、第1ビット線BLTnの浮遊容量Cbとメモリセルの容量Csとの容量比Cb/Csである。より具体的には、容量比Cb/Csは、第1ビット線BLTnの浮遊容量Cbを第1ビット線BLTnに接続するメモリセルの容量Csで除した値である。尚、図10に示したデータは半導体装置の電源電圧VDDが1.0Vの場合である。
図10において、実線で示した曲線HL1は、カラム選択信号Ynの活性化期間が後述のHL3、HL4の場合より短く、且つ、カラムデコーダが出力する複数のカラム選択信号のうちの初期段階に出力される場合であって、メモリセルがデータ“1”からデータ“0”に書き換えられる場合のものである。曲線HL1によれば、かかる場合の半導体装置の容量比Cb/Csが1.0のときに、ΔVは0.06V付近である。そして、曲線HL1は、容量比Cb/Csを増加させると、それに伴いΔVの値も増加する。容量比Cb/Csの増加に伴い、容量比Cb/Csの増加に対するΔVの増加率は徐々に低下する。そのため、曲線HL1は、図10に示すように、右側の傾きが緩やかになっている。そして、曲線HL1は、容量比Cb/Csが4.0のときに、ΔVは0.17V付近である。
次に、破線で示した曲線HL2は、カラム選択信号Ynの活性化期間が後述のHL3、HL4の場合より短く、且つ、カラムデコーダが出力するカラム選択信号のうちの末期段階に出力される場合であって、メモリセルがデータ“1”からデータ“0”に書き換えられる場合のものである。
次に、実線で示した曲線HL3は、カラム選択信号Ynの活性化期間が前述のHL1、HL2の場合より長く、且つ、カラムデコーダが出力するカラム選択信号のうちの初期段階に出力される場合であって、メモリセルがデータ“1”からデータ“0”に書き換えられる場合のものである。
次に、破線で示した曲線HL4は、カラム選択信号Ynの長さが後述のHL1、HL2の場合より長く、且つ、カラムデコーダが出力するカラム選択信号のうちの末期段階に出力される場合であって、メモリセルがデータ“1”からデータ“0”に書き換えられる場合のものである。
曲線HL1〜HL4を比較すると、曲線HL1は、全ての容量比において、電位差ΔVがもっとも低い。また、曲線HL2は、曲線HL1より電位差ΔVが高く、曲線HL3より低い。曲線HL3は、曲線HL2より電位差ΔVが高く、曲線HL4より低い。そして、曲線HL4は、全ての曲線のうち最も電位差ΔVが高い。
次に、図11に、メモリセルがデータ“0”からデータ“1”に書き換えられる場合である点を除き、図10に示した曲線と同じ条件の曲線を示す。図11は、実施の形態2にかかる半導体装置の容量比とビット線対間電位との関係を示すグラフである。
図11において、実線で示した曲線LH1は、カラム選択信号Ynの活性化期間が後述のLH3、LH4の場合より短く、且つ、カラムデコーダが出力するカラム選択信号のうちの初期段階に出力される場合であって、メモリセルがデータ“0”からデータ“1”に書き換えられる場合のものである。曲線LH1は、曲線HL1と同様の曲線を描いているが、容量比1.0において電位差ΔVが0.11V付近であり、容量比4.0において電位差ΔVが0.2C付近である。
図11において、破線で示した曲線LH2は、カラム選択信号Ynの活性化期間が後述のLH3、LH4の場合より短く、且つ、カラムデコーダが出力するカラム選択信号のうちの末期段階に出力される場合であって、メモリセルがデータ“0”からデータ“1”に書き換えられる場合のものである。
図11において、実線で示した曲線LH3は、カラム選択信号Ynの活性化期間が前述のLH1、LH2の場合より長く、且つ、カラムデコーダが出力するカラム選択信号のうちの初期段階に出力される場合であって、メモリセルがデータ“0”からデータ“1”に書き換えられる場合のものである。
図11において、破線で示した曲線LH4は、カラム選択信号Ynの長さが後述のLH1、LH2の場合より長く、且つ、カラムデコーダが出力するカラム選択信号のうちの初期段階に出力される場合であって、メモリセルがデータ“0”からデータ“1”に書き換えられる場合のものである。
曲線LH1〜LH4を比較すると、曲線LH1は、全ての容量比において、電位差ΔVがもっとも低い。また、曲線LH2は、容量比0.8から2.5付近にかけては、曲線LH3より電位差ΔVが低く、容量比2.5から4.6付近にかけては、曲線LH3より電位差ΔVが高い。そして、曲線LH4は、全ての曲線のうち最も電位差ΔVが高い。
以上に示すように、発明者らは、書き込み処理における種々のパターンを比較し、カラム選択信号Ynと、容量比とが最適化できる条件について検討した。本実施の形態において、センスアンプ130が誤動作なく増幅できる限界の電位差は、0.05Vである。センスアンプ130が誤操作しないようマージンを多くとるためには、例えば、HL1とHL3とを比較すれば明らかなように、カラム選択信号Ynの活性化期間を長くする方が良い。しかし、カラム選択信号Ynの活性化期間を長くすると、当然に、書き込み処理に時間がかかり、結果、書き込み処理速度が低下する。したがって、センスアンプ130が誤動作を起こさず、カラム選択信号Ynの活性化期間を短くすることが望まれる。また、容量比は、低いほど設計の自由度を向上させることができる。すなわち、メモリセルあたりのビット線の長さが短い方が、設計の自由度が向上する。以上の条件を鑑みたうえで、発明者らは、図10及び図11の調査結果を観察した。
図10及び図11に示した種々のパターンにおいて、曲線HL1は、上述したセンスアンプ130が誤動作なく増幅できる限界の電位差に近い。曲線HL1は、容量比が低下すると、電位差ΔVも低下する傾向がある。そのため、半導体装置が正常動作するためには、曲線HL1の容量比Cb/Csが1.0以上であることが条件となる。また、発明者らは、一般的なプロセスにより製造されたDRAM装置において、ビット線当たりメモリセルが256個接続されている場合に、容量比Cb/Csが8程度であることを見出した。したがって、ビット線当たりのメモリセル数は、256を8で除した値である32個の場合に、容量比Cb/Csが1.0となる。すなわち、ビット線当たりのメモリセル数を32個以上に設定することにより、半導体装置の書き込み速度を向上させつつ、面積の増大を抑えることができる。換言すると、例えば実施の形態1にかかる半導体装置100において、第1ビット線114に、メモリセル111が32個以上接続されている場合、書き込み速度を向上させつつ、面積の増大を抑えることができる好適な条件となる。
<実施の形態3>
次に、図12及び図13を参照しながら、実施の形態3について説明する。図12は、実施の形態3にかかる半導体装置のブロック図である。実施の形態3にかかる半導体装置300は、いわゆるレイトライト方式をさらに有する点において、実施の形態1にかかる半導体装置100と異なる。レイトライト方式を有する半導体装置300は、書込み要求が発行された場合、外部装置から与えられた書込アドレス及び書込データが、半導体装置内に設けられたバッファに一時的に記憶される。一時的に記憶されたアドレス信号及びデータは、次に書き込み要求が発行されたときに、メモリセルに書き込まれる。
図12に示す半導体装置300は、セルアレイ110、ロウデコーダ120、センスアンプ130、カラムデコーダ150、及びカラム選択回路170を備える。また、半導体装置300は、アドレス信号レジスタ310、アドレスバッファ311、コマンドレジスタ312、コマンド制御回路313、ロウ制御回路314、カラム制御回路315、データバッファ316、書込データレジスタ317、読出データレジスタ318、及びデータ入出力回路319をさらに有している。
アドレス信号レジスタ310は、外部からアドレス信号を受け取り、受け取ったアドレス信号を記憶する。アドレスバッファ311は、アドレス信号レジスタ310に接続し、レイトライト方式にかかる読み書きタイミングに応じて設定されるアドレス信号を記憶する。アドレスバッファ311は、コマンド制御回路の指示により、記憶したアドレス信号をロウデコーダ120及びカラムデコーダ150に供給する。
コマンドレジスタ312は、外部から受け取ったコマンド信号を記憶する。コマンド信号とは、読出コマンドの信号又は書込コマンドの信号である。
コマンド制御回路313は、コマンドレジスタ312からコマンド信号を受け取り、受け取ったコマンドに応じて、アドレスバッファ311と、ロウ制御回路314と、カラム制御回路315と、データバッファ316とに、それぞれ指示を送る。より具体的には、コマンド制御回路313は、書込処理にかかるデータ及びかかるデータ対応するメモリセルのアドレス信号を、予め設定された期間遅延させて出力させる。すなわち、コマンド制御回路313は、いわゆるレイトライト方式の制御を行う。
ロウ制御回路314は、コマンド制御回路313から指示を受け取り、受け取った指示に応じて、読出処理又は書込処理に応じたロウ選択信号の出力を、ロウデコーダ120に指示する。また、ロウ制御回路314は、センスアンプ130及びカラム制御回路315に対しても、読出処理又は書込処理に応じた指示を送る。
カラム制御回路315は、コマンド制御回路313と、ロウ制御回路314とから、それぞれ信号を受け取り、受け取った信号に応じて、カラムデコーダ150と、センスアンプ130とに指示を送る。
データバッファ316は、書込データレジスタ317に接続し、レイトライト方式にかかる書込みタイミングに応じて設定されるアドレス信号に応じたデータを記憶する。また、データバッファ316は、コマンド制御回路313の指示により、記憶したデータを、データ線対140に伝達する。
書込データレジスタ317は、データ入出力回路319から書込データを受け取り、受け取ったデータを記憶する。読出データレジスタ318は、データ線対140を介してセルアレイ110の読出データを受け取り、受け取ったデータを記憶する。
次に、図13を参照しながら、実施の形態3にかかる半導体装置の処理について説明する。図13は、実施の形態3にかかる半導体装置のタイミング図である。実施の形態3にかかる半導体装置300は、書込処理と、読出処理とを同じクロック数ごとに、交互に行うように設定されている。
サイクルCY1において、半導体装置300は、外部から書込コマンドを受ける(ステップS301)。半導体装置300は、書込コマンドと共に、書込アドレスA1を受ける。サイクルCY1に供給された書込アドレスA1は、アドレスバッファ311に送られる。書込アドレスA1は、サイクルCY1ではセルアレイ110に出力されず、アドレスバッファ311に保持され、次回の書込コマンドであるサイクルCY3に出力される。
また、データ入出力回路319は、書込アドレスA1に対応する書込データD1が供給される。供給された書込データD1は、データバッファ316に送られる。書込データD1は、サイクルCY1ではセルアレイ110に出力されず、データバッファ316に保持され、次回の書込コマンドであるサイクルCY3に出力される。
次に、サイクルCY2において、半導体装置300は、外部から読出コマンドを受ける(ステップS301)。半導体装置300は、読出コマンドと共に、読出アドレスA2が供給される。コマンド制御回路313は、供給された読出アドレスA2を、サイクルCY2の時間内に、ロウデコーダ120及びカラムデコーダ150にそれぞれ出力する。半導体装置300は、読出アドレスA2に対応したメモリセルのデータを読み出し、読出データQ1を、読出データレジスタ318に記憶させる。
尚、読出データQ1の読出処理は、サイクルCY2においてワード線の選択信号WS2が終了した時点で読出データレジスタ318にデータが残っているため、サイクルCY3が開始した後にも行われる。また、本実施の形態に採用するアーリーライト方式では、ワード線の選択信号WS1の出力後に、書込データをビット線に入力することになる。そのため、レイトライト方式を採用しない場合、サイクルCY2の読み出しデータが残っていると、サイクルCY3における書込データの供給が遅延するおそれがある。
次に、サイクルCY3において、半導体装置300は、外部から書込コマンドを受ける(ステップS303)。半導体装置300は、書込コマンドと共に、書込アドレスA3が供給される。サイクルCY3に供給された書込アドレスA3は、アドレスバッファ311に送られる。書込アドレスA3は、サイクルCY3ではセルアレイ110に出力されずアドレスバッファ311に保持され、次回の書込コマンドのサイクルに出力される。一方、コマンド制御回路313は、アドレスバッファ311に対して、それまでアドレスバッファ311に保持されていた前回の書込コマンドにて指定された書込アドレスA1をロウデコーダ120に出力するように指示する。
また、半導体装置300は、書込コマンドに応じて、書込アドレスA3に対応するデータD3が供給される。サイクルCY3に供給されたデータD3は、データバッファ316に送られる。書込みデータD3は、サイクルCY3ではセルアレイ110に出力されず、データバッファ316に保持され、次回の書込コマンドのサイクルに出力される。
サイクルCY3において、コマンド制御回路313は、アドレスバッファ311に対して、前回の書込みコマンドであるサイクルCY1においてアドレスバッファ311に記憶された書込アドレスA1をロウデコーダ120に出力するよう指示する。同様に、コマンド制御回路313は、サイクルCY1においてデータバッファ316に記憶された書込データD1をカラムデコーダ150に出力するように指示する。つまり、サイクルCY3において、半導体装置300は、前回受けた書込コマンドに対応した書込処理を行う。
このように、レイトライト方式において、書込データは、アドレスバッファに一時的に記憶される。そのため、レイトライト方式を採用した半導体装置は、読み出しデータの出力が完了するのを待つことなく、予め記憶しておいた書込データを利用して書込み動作を開始することが出来る。また、アーリーライト方式をさらに採用した場合、書込みサイクルにおいて、ロウデコーダ及びカラムデコーダは、読出しサイクルのデータ出力終了後に、書込みデータを受け取ればよい。そのため、レイトライト方式及びアーリーライト方式を採用した半導体装置は、読出しサイクルから書込みサイクルに切り替える際に待ち時間を確保する必要がない。したがって、アーリーライト方式とレイトライト方式とを併用することにより、実施形態3にかかる半導体装置300は、処理の遅延を低減させ、データ処理性能を向上させることができる。
<実施の形態4>
次に、図14及び図15を参照しながら、実施の形態4について説明する。図14は、実施の形態4にかかる半導体装置のブロック図である。図14に示した半導体装置400は、サブアレイのダミーマットを有している点、及び、ダミーマットを制御する回路を有している点において、実施の形態1と異なる。半導体装置400は、サブアレイごとに読み書き処理を行う構成となっている。また、半導体装置400は、読出処理されているサブアレイのデータをダミーマット416にコピーし、コピー元のサブアレイに代えて、ダミーマット416を用いることができる。
半導体装置400は、セルアレイ110に複数のサブアレイ(MAT0〜MATn)を有する。また、半導体装置400は、ダミーマット制御回路410、タグレジスタ411、判定回路412、リフレッシュ回路413、メインメモリ制御回路414、ダミーメモリ制御回路415、及び、ダミーマット416を有している。
ダミーマット制御回路410は、外部から読出し又は書込みのコマンド信号を受け取り、受け取ったコマンド信号に応じて、タグレジスタ411、判定回路412、及びダミーメモリ制御回路415にコマンド信号を送る。
タグレジスタ411は、外部からアドレス信号を受け取る。また、タグレジスタ411は、ダミーマット制御回路410から読出し又は書込みのコマンド信号を受け取り、読出コマンドに対応するアドレス信号を、予め設定された回数分記憶する。また、タグレジスタ411は、記憶した過去の読み出しコマンドに対応するアドレス信号を判定回路412に送信する。
判定回路412は、タグレジスタ411から過去の読み出しコマンドに対応するアドレス信号を受け取る。また、判定回路412は、外部から現在要求を受けている要求アドレス信号を受け取り、受け取った要求アドレス信号が、過去の読み出しコマンドに対応するアドレス信号に含まれるか否かを判定する。さらに、判定回路412は、ダミーマット制御回路410から読出し又は書込みのコマンド信号を受け取る。そして、判定回路412は、外部から受け取った読出処理の要求アドレス信号が、タグレジスタ411から受け取った過去の読み出しコマンドに対応するアドレス信号に含まれる場合、かかる要求アドレス信号に対応するダミーマット416のデータを読み出すための指示をダミーメモリ制御回路415に送る。同時に、判定回路412は、リフレッシュ回路413に対して、セルアレイ110のリフレッシュ処理を指示する。
リフレッシュ回路413は、外部から読出し又は書込みのコマンド信号及びアドレス信号を受け取る。また、リフレッシュ回路413は、判定回路412からリフレッシュ処理の指示を受け取る。そして、リフレッシュ回路413は、受け取った信号に応じて、メインメモリ制御回路414に対してリフレッシュ動作を行う指示を送る。例えば、半導体装置400は、外部から書込コマンドを受け取った場合、書込処理のサイクルに、任意のサブアレイに対するリフレッシュ処理を併せて行う。また、半導体装置400は、外部から読出コマンドを受け取った場合、判定回路412の指示に応じて、任意のサブアレイに対するリフレッシュ処理を行う。
このように、リフレッシュ回路413を機能させることにより、外部からリフレッシュ処理を指示する回数を低減させることが出来る。また、判定回路412及びリフレッシュ回路413を機能させることにより、外部からリフレッシュ処理を指示することなく、図14に示した回路構成内において、適宜、リフレッシュ処理を行う、Hidden−Refreshを実現することが出来る。Hidden−Refreshとは、半導体装置の外部からリフレッシュ処理を指示することなく、且つ、リフレッシュ処理のための遅延を発生させることなく、半導体装置内においてリフレッシュ処理を行うことをいう。
メインメモリ制御回路414は、セルアレイ110の読み書き処理を行うための回路を有している。すなわち、メインメモリ制御回路414は、例えば、カラムデコーダ、ロウデコーダ、センスアンプなどを有している。
ダミーメモリ制御回路415は、判定回路412から判定結果を受け取り、外部からアドレス信号を受け取り、ダミーマット制御回路410から、読出し又は書込みのコマンド信号を受け取る。また、ダミーメモリ制御回路415は、受け取った信号に応じて、ダミーマット416に対して読出処理又は書込処理を行う。より具体的には、例えば、ダミーメモリ制御回路415は、判定回路412により、要求アドレス信号が過去のアドレス信号に含まれる場合に、要求アドレス信号に対応するデータを、ダミーマット416から読み出す。
次に、図15を参照しながら、実施の形態4にかかる半導体装置の処理について説明する。図15は、実施の形態4にかかる半導体装置のタイミング図である。
実施の形態4にかかる半導体装置400は、書込処理と、読出処理とを同じクロック数ごとに、交互に行うように設定されている。図15において、半導体装置400は、外部から書込コマンドを受け取る。同時に、半導体装置400は、書込コマンドに対応したアドレス信号A1を受け取り、かかるアドレス信号A1に対応した書込処理を行う。
ところで、半導体装置400は、実施の形態1において説明したアーリーライト方式による処理を行う。そのため、読み出し処理の時間に比べて書込処理の時間が短い。そこで、図15に示すように、書込コマンドの処理時間内に、リフレッシュアドレスを指示するコマンドを含めることが出来る。つまり、半導体装置400は、書込処理におけるセンスアンプ活性化の後に、任意のサブアレイに対してリフレッシュ処理を行う。
このような構成により、半導体装置400は、書込サイクルにおいて、書込コマンド及びリフレッシュアドレスを指示するコマンドを受け取る仕様とすることができる。また、半導体装置400は、図14に示した回路構成内において、適宜リフレッシュアドレスを指示するコマンドを発行する、Hidden−Refreshを実現することが出来る。したがって、実施の形態4は、データ処理の効率を向上させた半導体装置を提供することが出来る。
<実施の形態5>
次に、図16及び図17を参照しながら、実施の形態5について説明する。実施の形態5にかかる半導体装置は、センスアンプの回路構成が実施の形態1にかかる半導体装置100と異なる。
図16は、実施の形態5にかかる半導体装置のセンスアンプ周辺の回路図である。図16に示すように、ノードN03は、トランジスタT2のドレイン側とトランジスタT4のドレイン側とを接続している。そして、センスアンプ130は、ノードN03と接地電圧との間にトランジスタT5を有している。つまり、センスアンプ130は、図2に示した実施の形態1にかかる半導体装置100に対して、電源電圧端子との間に活性または非活性を切り替えるスイッチ素子であるトランジスタT5をさらに備える。
トランジスタT5は、センスアンプのトランジスタT2又はT4が誤ってオン状態になった場合の誤動作を抑制する。例えば、図16において、データ線DNがLレベル、データ線DTが中間電圧HVDDレベルであるとき、カラム選択信号Yがオンになると、データ線DNに接続した第2ビット線115がLレベルとなり、データ線DTに接続した第1ビット線114が中間電圧HVDDとなる。このとき、トランジスタT4のゲートに接続しているノードN01は中間電圧HVDDとなる。そして、トランジスタT4のソースに接続しているノードN02はLレベルである。この場合、センスアンプを構成するトランジスタT4がオンする可能性がある。ノードN03がほかのセンスアンプとの共通ノードである場合には、この共通ノードの電圧レベルが引き下げられ、活性化前の非選択センスアンプが意図せず増幅動作を開始してしまう可能性がある。そこで、図16に示すようにセンスアンプ毎にトランジスタT5を設けることによって、センスアンプが誤って起動してしまうことを抑制することが出来る。
図17は、実施の形態5にかかる半導体装置のメモリセル周辺の回路図である。実施の形態5にかかる半導体装置500は、センスアンプSA00とセンスアンプSA20とがノードSAN0により接続されており、ノードSAN0と接地電圧との間に、トランジスタT50を有している。同様に、半導体装置500は、センスアンプSA0nとセンスアンプSA2nとがノードSANnにより接続されており、ノードSANnと接地電圧との間に、トランジスタT5nを有している。つまり、実施の形態5にかかる半導体装置500は、共通のカラム選択信号に接続する複数のセンスアンプごとに分離された共通ノードを有し、スイッチ素子は、かかる共通ノードと接地電圧との間に設けられている。
このような構成にすることにより、トランジスタT5nは、カラム選択が連続して行われる場合に、非選択カラムのセンスアンプへ電流が回り込むことを防ぐことが出来る。よって、実施の形態5にかかる半導体装置500は、センスアンプが誤って動作することを抑制することができる。
<実施の形態6>
次に、実施の形態6について説明する。実施の形態6にかかる半導体装置は、データ線対140の電圧及び、カラム選択信号の電圧が、実施の形態1にかかる半導体装置100とは異なる。
図3に示したサブアレイ116の構成は、本実施の形態にかかる半導体装置に適用される。図3を参照しながら説明したように、第2ビット線115は、選択されていないカラムに対応するビット線と隣接している。一方、選択されているカラムに対応する第1ビット線は互いに隣接している。例えば、カラム選択信号Y0に対応する第2ビット線115(ビット線BLN00及びビット線BLN20)は、選択されていないカラムに対応するビット線117と隣接している。選択されていないカラムに対応するビット線117は、中間電圧HVDDにプリチャージされた状態である。そして、選択されているカラムに対応する第1ビット線114のうち、例えばビット線BLT00とビット線BLT10とは互いに隣接している。このような構成により、第2ビット線115の間は、第1ビット線114と比べて隣接する信号線からノイズを受けにくい。
次に、図18を参照しながら実施の形態6にかかる半導体装置の処理について説明する。図18は、実施の形態6にかかる半導体装置のデータ書き込み時のタイミング図である。図18は、図4に示した例と同様に、説明を単純化するために、一のワード線112が2つのメモリセル(MC00及びMC0n)を活性化させる場合を示している。メモリセルのMC00は、第1ビット線114に相当するBLT00と、第2ビット線115に相当するBLN00とに対応している。メモリセルのMC0nは、第1ビット線114に相当するBLT0nと、第2ビット線115に相当するBLN0nとに対応している。また、カラム選択信号のY0は、ビット線対のBL00に対応している。カラム選択信号のYnは、ビット線対のBL0nに対応している。
図18の例では、メモリセルのMC00に対して、データ“0”からデータ“1”に書き換える処理、すなわち、メモリセルMC00が有しているキャパシタの電圧をLレベルからHレベルに遷移させる処理を行う。また、メモリセルのMC0nに対して、データ“1”からデータ“0”に書き換える処理、すなわち、メモリセルMC00が有しているキャパシタの電圧をHレベルからLレベルに遷移させる処理を行う。
まず、初期状態として、時刻t0より前に、プリチャージ回路180は、ビット線対のBL00及びBL0nに対して中間電圧HVDDをプリチャージしている。また、ワード線WL1の電圧はLレベルである。また、センスアンプに対するイネーブル信号SENはLレベルであるため、センスアンプ130は活性化されていない。カラム選択信号Y0及びY1はいずれもLレベルである。すなわち、データ線対140と、ビット線対のBL00及びBL0nとはいずれも非導通状態である。なお、データ線対140の電圧はいずれも中間電圧HVDDである。
時刻t0に、プリチャージ信号PDLは、HレベルからLレベルに遷移する。これにより、ビット線BLT00、BLN00、BLT0n、及びBLN0nはそれぞれフローティング状態になる。また、データ線対140のうち、データ線DT0の電圧レベルは中間電圧HVDDが維持される。データ線対140のうち、データ線DN0の電圧レベルは、Lレベルに遷移する。
次に、時刻t1において、ワード線WL1の電圧は、LレベルからHレベルに遷移する。ワード線WL1の電圧がHレベルになることにより、メモリセルMC00及びMC0nは活性化される。また、カラム選択信号Y0は、LレベルからHレベルに遷移する。これにより、メモリセルMC00のカラム選択ゲートはオンになる。ここで、カラム選択信号Y0、YnのHレベルは、VDDよりも高い電圧に設定されている。例えば、カラム選択信号Y0、Ynは、昇圧回路によりVDDより高い電圧を出力するように設定されている。これにより、ゲート選択回路が有するN型MOSFETは、電源電圧VDDの信号を伝達することが出来る。
メモリセル0のカラム選択ゲートがオンになると、データ線DT0とビット線BLT00とが接続状態となる。同時に、データ線DN0とビット線BLN00とが接続状態となる。中間電圧HVDDのビット線BLN00は、Lレベルのデータ線DN0と接続すると、チャージシェアにより徐々に電圧を下げる。一方、中間電圧HVDDのビット線BLT00は、中間電圧HVDDのデータ線DT0と接続する。
また、ワード線WL1の電圧がHレベルに遷移したことにより、メモリセル1は活性化される。このとき、メモリセルのMC0nはデータ“1”に相当するHレベルの電圧であり、ビット線BLT0nは中間電圧HVDDである。そのため、メモリセルMC0nに接続するビット線BLT0nはチャージシェアにより徐々に電圧が上昇する。
次に、時刻t2において、ビット線BLN00の電圧が予め設定された値より低くなる。そこで、カラム選択信号Y0はHレベルからLレベルに遷移する。カラム選択信号Y0がLレベルに遷移することにより、ビット線BLN00は、データ線DN0との接続を遮断する。すなわち、ビット線BLN00の電圧は下降が止まり、かかる電圧が維持される。また、カラム選択信号Y0がLレベルに遷移することにより、ビット線BLT00は、データ線DT0との接続を遮断する。このとき、ビット線BLT00に接続するメモリセルのMC00がデータ“0”に相当するLレベルの電圧である。そのため、ビット線BLT00の電圧は、チャージシェアにより徐々に下降を開始する。
時刻t2と時刻t3との間に、データ線DN0は、LレベルからHレベルに遷移する。本実施の形態にかかるデータ線対は、第1ビット線114に接続するデータ線DT0の電圧を中間電圧HVDDに維持しておき、第2ビット線115に接続するデータ線DN0の電圧をHレベル又はLレベルに切り替える。メモリセルに対して“0”を書き込む場合は、データ線DN0をHレベルに設定する。一方、メモリセルに対して“1”を書き込む場合は、データ線DN0をLレベルに設定する。つまり、本実施の形態にかかるデータ線対は、第1ビット線114に対して、ビット線対113のプリチャージ電圧を維持させるとともに、第2ビット線115に対して、ビット線対113のプリチャージ電圧より高い電位か、又はプリチャージ電位より低い電位のいずれかを伝達する構成となっている。このように、本実施の形態にかかるビット線対は、第1ビット線114に対して、プリチャージ電圧である中間電圧HVDDを維持させる。一方、本実施の形態にかかるビット線対は、第1ビット線114と比べて隣接する信号線からノイズを受けにくい第2ビット線115に対して、Hレベル又はLレベルの電圧を供給する。本実施の形態にかかる半導体装置は、このようにしてメモリセルの書込みを行う。
次に、時刻t3において、カラム選択信号YnがLレベルからHレベルに遷移する。これにより、メモリセル1のカラム選択ゲートはオンになる。したがって、データ線DT0は、ビット線BLT0nと接続状態となる。同時に、データ線DN0は、ビット線BLN0nと接続状態となる。中間電圧HVDDから徐々に上昇していたビット線BLT0nの電圧は、データ線DT0と接続することによりと、中間電圧HVDDに下降する。一方、ビット線BLN0nの電圧は、Hレベルの電圧を有するデータ線DN0と接続することにより、上昇する。
次に、時刻t4において、ビット線BLT0nの電圧が予め設定された値より低くなる。そこで、カラム選択信号YnはHレベルからLレベルに遷移する。カラム選択信号YnがLレベルに遷移することにより、ビット線BLT0nは、データ線DT0との接続を遮断する。尚、Hレベルだったデータ線DN0の電圧は、カラム選択信号YnがLレベルになった後に、中間電圧HVDDに遷移する。
同じく時刻t4に、センスアンプに対するイネーブル信号SENは、LレベルからHレベルに遷移する。これにより、複数のセンスアンプ130は活性化する。すなわち、メモリセルのMC00に対応するセンスアンプ130は、ビット線BLT00とビット線BLN00との電位差を増幅する。これにより、メモリセルのMC00はHレベルに遷移する。そのため、メモリセルのMC00はデータ“0”からデータ“1”に書き換えられる。同時に、メモリセルのMC0nに対応するセンスアンプ130は、ビット線BLT0nとビット線BLN0nとの電位差を増幅する。これにより、メモリセルのMC0nはLレベルに遷移する。そのため、メモリセルのMC0nはデータ“1”からデータ“0”に書き換えられる。
以上に説明した構成により、実施の形態6にかかる半導体装置は、面積の増大を抑えつつ書き込み速度を向上させた半導体装置の動作を安定させることができる。
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は既に述べた実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の変更が可能であることはいうまでもない。
100、101、300、400、500 半導体装置
110 セルアレイ
111 メモリセル
112 ワード線
113 ビット線対
114 第1ビット線
115 第2ビット線
116 サブアレイ
120 ロウデコーダ
130 センスアンプ
140 データ線対
150 カラムデコーダ
160 センスアンプ制御回路
170 カラム選択回路
180 プリチャージ回路
190 タイミング制御回路
310 アドレス信号レジスタ
311 アドレスバッファ
312 コマンドレジスタ
313 コマンド制御回路
314 ロウ制御回路
315 カラム制御回路
316 データバッファ
317 書込データレジスタ
318 読出データレジスタ
319 データ入出力回路
410 ダミーマット制御回路
411 タグレジスタ
412 判定回路
413 リフレッシュ回路
414 メインメモリ制御回路
415 ダミーメモリ制御回路
416 ダミーマット

Claims (17)

  1. 行列状に複数配置されたメモリセルと、
    前記メモリセルの各行に設けられた複数のワード線と、
    前記メモリセルの各列に設けられた複数のビット線対と、
    前記ビット線対の電位差を増幅するセンスアンプと、
    前記ビット線対にデータを伝達するデータ線対と、
    前記データ線対からデータを受け取ることを許可するカラム選択回路と、
    複数の前記カラム選択回路に対してカラム選択信号を送信するカラムデコーダと、
    前記カラムデコーダが複数の前記カラム選択回路に対して前記カラム選択信号を送信した後に複数の前記センスアンプの活性化を行うセンスアンプ制御回路と、
    を備える半導体装置。
  2. 前記カラムデコーダが前記カラム選択信号の送信を終了するタイミングと、前記センスアンプ制御回路が前記複数のセンスアンプを活性化させるタイミングとを制御するタイミング制御回路をさらに備える、
    請求項1に記載の半導体装置。
  3. 前記タイミング制御回路により、前記カラムデコーダは、バースト処理に伴う前記カラム選択信号を出力し、
    前記タイミング制御回路により、前記センスアンプ制御回路は、前記バースト処理に伴う前記カラム選択信号の出力が終了した後に、複数の前記センスアンプを活性化させる、
    請求項2に記載の半導体装置。
  4. 前記データ線対は、前記ビット線対に、前記ビット線対のプリチャージ電位と同じか、又は前記プリチャージ電位より低い電位を伝達する、
    請求項1に記載の半導体装置。
  5. 前記カラムデコーダは、前記データ線対に接続した前記ビット線対の電圧が、前記データ線対の電圧と同じ電圧になる前に前記カラム選択信号の出力を切り替える、
    請求項1に記載の半導体装置。
  6. 複数の前記メモリセルと複数の前記センスアンプとが配列され、前記複数のセンスアンプに接続した一の前記センスアンプ制御回路を有するサブアレイを複数備える、
    請求項1に記載の半導体装置。
  7. 前記カラムデコーダは、一の前記カラム選択信号を複数対の前記ビット線対に対して出力する、
    請求項1に記載の半導体装置。
  8. 前記ビット線対のうち、対応する前記メモリセルに対して前記データを伝達するビット線には、前記メモリセルが32個以上接続されている、
    請求項1に記載の半導体装置。
  9. 書込処理におけるデータを一時的に記憶するデータバッファと、
    前記データバッファに記憶した前記データに対応する前記メモリセルのアドレス信号を一時的に記憶するアドレスバッファと、
    前記データの前記書込処理及び読出処理を制御するコマンド制御回路と、
    をさらに有し、
    前記コマンド制御回路は、前記書込処理にかかる前記データ及び前記データに対応する前記メモリセルのアドレス信号を、予め設定された期間遅延させて出力させる、
    請求項1に記載の半導体装置。
  10. 前記メモリセルと前記センスアンプとをそれぞれ複数有するサブアレイと、
    複数の前記サブアレイを有するメモリセルアレイと、
    書き込み処理における前記センスアンプの活性化の後に、任意のサブアレイに対してリフレッシュ処理を行うリフレッシュ制御回路と、
    をさらに備える請求項1に記載の半導体装置。
  11. 前記サブアレイと同様の構成を有し、過去に読出処理を受けたサブアレイのデータをコピーして記憶するダミーマットと、
    前記コピーした前記データに対応したアドレス信号を過去のアドレス信号として一時的に記憶するタグレジスタと、
    現在の読出し要求アドレスの要求アドレス信号が、前記タグレジスタに記憶した前記過去のアドレス信号に含まれるか否かを判定する判定回路と、
    前記判定回路により前記要求アドレス信号が前記過去のアドレス信号に含まれると判定された場合に、前記要求アドレス信号に対応するデータを前記ダミーマットから読み出すダミーメモリ制御部と、
    前記ダミーマットから前記データを読み出す間に、前記リフレッシュ制御回路が所定のサブアレイに対してリフレッシュ処理を行う、
    請求項10に記載の半導体装置。
  12. 前記センスアンプは、電源電圧端子との間に活性または非活性を切り替えるスイッチ素子をさらに備える、
    請求項1に記載の半導体装置。
  13. 前記センスアンプは、共通の前記カラム選択信号に接続する複数の前記センスアンプごとに分離された共通ノードを有し、
    前記スイッチ素子は、前記共通ノードと接地電圧との間に設けられる、
    請求項12に記載の半導体装置。
  14. 前記ビット線対は、対応する前記メモリセルに対して前記データを伝達する第1ビット線と、前記第1ビット線との電位差を比較するための第2ビット線とを有し、
    前記第2ビット線は、選択されていないカラムに対応するビット線と隣接する、
    請求項1に記載の半導体装置。
  15. 前記データ線対は、前記第1ビット線に対して、前記ビット線対のプリチャージ電圧を維持させるとともに、
    前記第2ビット線に対して、前記ビット線対のプリチャージ電位より高い電位か、又は前記プリチャージ電位より低い電位のいずれかを伝達する、
    請求項14に記載の半導体装置。
  16. 請求項1に記載の半導体装置は、ダイナミックランダムアクセスメモリである、
    半導体装置。
  17. 行列状に複数配置されたメモリセルと、
    前記メモリセルの各行に設けられた複数のワード線と、
    前記メモリセルの各列に設けられた複数のビット線対と、
    前記ビット線対の電位差を増幅するセンスアンプと、
    前記ビット線対にデータを伝達するデータ線対と、
    前記データ線対からデータを受け取ることを許可するカラム選択回路と、
    複数の前記カラム選択回路に対してカラム選択信号を送信するカラムデコーダと、
    前記カラムデコーダが複数の前記カラム選択回路に対して前記カラム選択信号を送信した後に複数の前記センスアンプの活性化を行うセンスアンプ制御回路と、
    を備え、
    書込みサイクル時間が読出しサイクル時間よりも短い、
    る半導体装置。
JP2017227790A 2017-11-28 2017-11-28 半導体装置 Pending JP2019102106A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017227790A JP2019102106A (ja) 2017-11-28 2017-11-28 半導体装置
US16/152,103 US10720203B2 (en) 2017-11-28 2018-10-04 Semiconductor device including sense amplifier contorl circuit
CN201811420438.XA CN109935257B (zh) 2017-11-28 2018-11-26 半导体器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017227790A JP2019102106A (ja) 2017-11-28 2017-11-28 半導体装置

Publications (1)

Publication Number Publication Date
JP2019102106A true JP2019102106A (ja) 2019-06-24

Family

ID=66632603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017227790A Pending JP2019102106A (ja) 2017-11-28 2017-11-28 半導体装置

Country Status (3)

Country Link
US (1) US10720203B2 (ja)
JP (1) JP2019102106A (ja)
CN (1) CN109935257B (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10796729B2 (en) 2019-02-05 2020-10-06 Micron Technology, Inc. Dynamic allocation of a capacitive component in a memory device
US11194726B2 (en) 2019-02-25 2021-12-07 Micron Technology, Inc. Stacked memory dice for combined access operations
CN114360609B (zh) * 2020-10-13 2024-09-20 长鑫存储技术有限公司 数据写入方法
EP4012711A4 (en) 2020-10-13 2022-11-16 Changxin Memory Technologies, Inc. DATA WRITING METHOD
CN115083471B (zh) * 2021-03-10 2025-03-11 华邦电子股份有限公司 半导体存储装置
KR20220142875A (ko) * 2021-04-15 2022-10-24 에스케이하이닉스 주식회사 인메모리 연산을 수행하는 반도체 장치 및 그 동작 방법
US20240212736A1 (en) * 2022-12-22 2024-06-27 Micron Technology, Inc. Word line charge integration
CN116030853B (zh) * 2023-03-28 2023-08-11 长鑫存储技术有限公司 列控制电路以及存储装置
CN116564375B (zh) * 2023-07-12 2023-12-01 长鑫存储技术有限公司 存储器及其配置方法和读取控制方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5136543A (en) * 1989-05-12 1992-08-04 Mitsubishi Denki Kabushiki Kaisha Data descrambling in semiconductor memory device
JP2673395B2 (ja) * 1990-08-29 1997-11-05 三菱電機株式会社 半導体記憶装置およびそのテスト方法
US5453951A (en) * 1994-08-26 1995-09-26 Townsend And Townsend Khourie And Crew Fast voltage equilibration of complementary data lines following write cycle in memory circuits
JPH10162577A (ja) 1996-12-02 1998-06-19 Toshiba Corp 半導体記憶装置及びデータ書き込み方法
CN1231918C (zh) * 2000-08-31 2005-12-14 恩益禧电子股份有限公司 半导体存储装置及其测试方法和测试电路
JP2003196983A (ja) * 2001-12-27 2003-07-11 Mitsubishi Electric Corp 半導体記憶装置
JP4544808B2 (ja) * 2002-04-09 2010-09-15 富士通セミコンダクター株式会社 半導体記憶装置の制御方法、および半導体記憶装置
JP4203384B2 (ja) * 2003-09-11 2008-12-24 パナソニック株式会社 半導体装置
JP5133073B2 (ja) * 2007-07-23 2013-01-30 ルネサスエレクトロニクス株式会社 半導体記憶装置及びデータの格納方法
JP2014096191A (ja) * 2012-11-09 2014-05-22 Renesas Electronics Corp 半導体記憶装置

Also Published As

Publication number Publication date
CN109935257A (zh) 2019-06-25
US10720203B2 (en) 2020-07-21
CN109935257B (zh) 2024-07-12
US20190164591A1 (en) 2019-05-30

Similar Documents

Publication Publication Date Title
JP2019102106A (ja) 半導体装置
US8223568B2 (en) Semiconductor memory device adopting improved local input/output line precharging scheme
US6147925A (en) Semiconductor device allowing fast sensing with a low power supply voltage
US6134169A (en) Semiconductor memory device
US8559254B2 (en) Precharging circuit and semiconductor memory device including the same
KR100780613B1 (ko) 반도체 메모리 소자 및 그 구동방법
US7499367B2 (en) Semiconductor memory device having stacked bank structure
US8730742B2 (en) Device
US6795372B2 (en) Bit line sense amplifier driving control circuits and methods for synchronous drams that selectively supply and suspend supply of operating voltages
US6456563B1 (en) Semiconductor memory device that operates in sychronization with a clock signal
US20170148499A1 (en) Semiconductor device with single ended main i/o line
US11501824B2 (en) Volatile memory device and data sensing method thereof
US9076503B2 (en) Semiconductor device
KR20110025487A (ko) 반도체 메모리 장치
US20110069573A1 (en) Semiconductor memory device
JP2006031880A (ja) 強誘電体メモリ
KR101470529B1 (ko) 반도체 메모리 장치 및 이 장치의 센스 앰프 제어 방법
JP2004071119A (ja) 半導体記憶装置
US6674685B2 (en) Semiconductor memory device having write column select gate
JP2001184866A (ja) 半導体記憶装置
US6643214B2 (en) Semiconductor memory device having write column select gate
US8395962B2 (en) Semiconductor memory device and method for operating the same
US8547765B2 (en) Semiconductor device having sense amplifiers
KR102548033B1 (ko) 반도체 기억장치
CN119068940A (zh) 存储器设备及其操作方法