JP2019097319A - Control device of vehicle - Google Patents
Control device of vehicle Download PDFInfo
- Publication number
- JP2019097319A JP2019097319A JP2017225334A JP2017225334A JP2019097319A JP 2019097319 A JP2019097319 A JP 2019097319A JP 2017225334 A JP2017225334 A JP 2017225334A JP 2017225334 A JP2017225334 A JP 2017225334A JP 2019097319 A JP2019097319 A JP 2019097319A
- Authority
- JP
- Japan
- Prior art keywords
- torque
- motor
- value
- rotational speed
- correction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000007246 mechanism Effects 0.000 claims abstract description 25
- 230000008859 change Effects 0.000 claims description 35
- 238000005259 measurement Methods 0.000 claims description 13
- 238000009795 derivation Methods 0.000 abstract 2
- 238000010586 diagram Methods 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 7
- 230000009467 reduction Effects 0.000 description 6
- 230000006872 improvement Effects 0.000 description 3
- 238000007562 laser obscuration time method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Landscapes
- Electric Propulsion And Braking For Vehicles (AREA)
- Control Of Multiple Motors (AREA)
Abstract
Description
本発明は、車両の制御装置に関し、特に2つのモータの動力を遊星機構で合流させる車両を制御する制御装置に関する。 The present invention relates to a control device for a vehicle, and more particularly to a control device for controlling a vehicle in which powers of two motors are merged by a planetary gear system.
2つのモータの動力を遊星機構で合流させて駆動力を得る車両が知られている。例えば特許文献1には、2つのモータから得られる動力を遊星歯車機構を介して1つの車両駆動軸に伝達する電動車両と、その電動車両の制御装置が記載されている。特許文献1には、2つのモータのうち、一方のモータが所定のトルクとなるように制御(トルク制御)し、他方のモータの回転数を制御(回転数制御)する電動車両の制御装置が記載されている。
There is known a vehicle which obtains driving force by combining the powers of two motors by a planetary gear system. For example,
例えば、特許文献1に記載されるように、2つのモータのうち、一方のモータをトルク制御して他方のモータを回転数制御する場合に、モータの回転速度を大きく変更しようとすると、回転数制御されているモータから得られるトルクが大きく変動してしまい、その変動が出力トルクに影響を与えてしまう場合がある。出力トルクが制御の目標値から変動してしまうと、出力トルクの変動が、車両の運転者に違和感を与えてしまうことも考えられる。
For example, as described in
本発明の目的は、2つのモータの動力を遊星機構で合流させる車両の制御において、モータ回転数を変化させた時の出力トルクの目標値からの変動を抑制することにある。 An object of the present invention is to suppress fluctuation of an output torque from a target value when motor rotational speed is changed, in control of a vehicle in which powers of two motors are joined by a planetary gear system.
本発明の具体例である車両の制御装置は、2つのモータの動力を遊星機構で合流させる車両を制御する制御装置であって、前記遊星機構の構造に応じて決まるトルク配分で前記2つのモータの一方のモータのトルク指令値と他方のモータのトルク指令値を導出する指令値導出部と、前記2つのモータの両方に対応した共用の補正トルク値を導出する補正値導出部と、を有し、前記一方のモータのトルク指令値に前記補正トルク値を加算することにより得られる補正後のトルク指令値で前記一方のモータを制御し、前記他方のモータのトルク指令値から前記補正トルク値を減算することにより得られる補正後のトルク指令値で前記他方のモータを制御することを特徴とする。 A control device of a vehicle according to an embodiment of the present invention is a control device for controlling a vehicle in which powers of two motors are merged by a planetary gear mechanism, and the two motors are controlled by torque distribution determined according to the structure of the planetary gear mechanism. A command value deriving unit for deriving a torque command value of one motor and a torque command value of the other motor, and a correction value deriving unit for deriving a common correction torque value corresponding to both of the two motors Control the one motor by the corrected torque command value obtained by adding the correction torque value to the torque command value of the one motor, and the correction torque value from the torque command value of the other motor Is controlled by the corrected torque command value obtained by subtracting.
上記具体例において、遊星機構は2つのモータの動力を合流させる。例えば、一方のモータから得られる入力トルクと他方のモータから得られる入力トルクが遊星機構において加算され、その加算結果に対応した出力トルクが得られる。つまり、2つのモータから得られる入力トルクの和に等しい(実質的に等しい場合を含む)出力トルクが得られる。そのため、例えば、2つのモータのトルク指令値の和が出力トルクの目標値となるように、各モータのトルク指令値が決定される。 In the above embodiment, the planetary mechanism combines the powers of the two motors. For example, the input torque obtained from one motor and the input torque obtained from the other motor are added in the planetary gear system, and an output torque corresponding to the addition result is obtained. That is, an output torque equal to (including substantially equal to) the sum of input torques obtained from the two motors is obtained. Therefore, for example, the torque command value of each motor is determined such that the sum of the torque command values of the two motors becomes the target value of the output torque.
そして、上記具体例においては、例えばモータの回転速度を変化させる場合に、一方のモータのトルク指令値に補正トルク値が加算され、他方のモータのトルク指令値から同じ補正トルク値が減算される。そのため、2つのモータのトルク指令値の和が補正トルク値によって変化しない。これにより、例えばモータの回転速度を変化させるために補正トルク値が加減されても、2つのモータから得られる入力トルクの和である出力トルクが目標値に維持される。 Then, in the above-mentioned specific example, for example, when changing the rotational speed of the motor, the correction torque value is added to the torque command value of one motor, and the same correction torque value is subtracted from the torque command value of the other motor. . Therefore, the sum of the torque command values of the two motors does not change according to the correction torque value. Thus, even if the correction torque value is adjusted to change, for example, the rotational speed of the motor, the output torque, which is the sum of the input torques obtained from the two motors, is maintained at the target value.
このように、上記具体例によれば、出力トルクの目標値からの変動が抑制される。これにより、例えば、モータの回転速度を変化させる場合においても、出力トルクを目標値から変動させない制御が実現できる。そのため、例えば、出力トルクが目標値から変動してしまう場合に比べて、ドライブフィーリングの向上などが期待される。 As described above, according to the specific example, the fluctuation of the output torque from the target value is suppressed. Thus, for example, even in the case of changing the rotational speed of the motor, control can be realized in which the output torque is not varied from the target value. Therefore, for example, improvement in drive feeling is expected compared to the case where the output torque fluctuates from the target value.
また、例えば、前記補正値導出部は、モータ回転速度の実測値を利用した演算により前記補正トルク値を導出するようにしてもよい。例えば2つのモータのうちの1つのモータから得られるモータ回転速度の実測値を利用して補正トルク値が導出される。 Further, for example, the correction value deriving unit may derive the correction torque value by calculation using an actual measurement value of the motor rotational speed. For example, the correction torque value is derived using the measured value of the motor rotational speed obtained from one of the two motors.
また、例えば、前記補正値導出部は、モータ回転速度の実測値から得られるモータ回転速度の時間変化率と目標時間変化率との差である時間変化率差に基づいて前記補正トルク値を導出するようにしてもよい。例えば、実測値から得られる時間変化率が目標時間変化率となるように補正トルク値が導出される。 Further, for example, the correction value deriving unit derives the correction torque value based on a time change rate difference which is a difference between a time change rate of the motor rotation speed obtained from an actual measurement value of the motor rotation speed and a target time change rate. You may do it. For example, the correction torque value is derived such that the time change rate obtained from the actual measurement value becomes the target time change rate.
また、例えば、前記補正値導出部は、モータ回転速度の実測値と目標回転速度との差である回転速度差が比較的大きい場合に前記時間変化率差に基づいて前記補正トルク値を導出し、前記回転速度差が比較的小さい場合に前記回転速度差に基づいて前記補正トルク値を導出するようにしてもよい。なお「回転速度差が比較的大きい」と「回転速度差が比較的小さい」は、これら2つの回転速度差を互いに比較した場合の大小関係であり、これら2つの回転速度差の相対的な大小関係を明らかにしている。例えば、回転速度差が許容範囲内ではない場合に回転速度差が比較的大きいと判断され、回転速度差が許容範囲内である場合に回転速度差が比較的小さいと判断するようにしてもよい。 Further, for example, the correction value deriving unit derives the correction torque value based on the time change rate difference when a rotational speed difference which is a difference between an actual measurement value of the motor rotational speed and a target rotational speed is relatively large. The correction torque value may be derived based on the rotational speed difference when the rotational speed difference is relatively small. Note that "the rotational speed difference is relatively large" and "the rotational speed difference is relatively small" are the magnitude relationship when these two rotational speed differences are compared with each other, and the relative magnitudes of these two rotational speed differences are I am clarifying the relationship. For example, it may be determined that the rotational speed difference is relatively large when the rotational speed difference is not within the allowable range, and it may be determined that the rotational speed difference is relatively small when the rotational speed difference is within the allowable range. .
また、例えば、前記補正値導出部は、モータ回転速度の実測値と目標回転速度との差である回転速度差に基づいて前記補正トルク値を導出することにより、前記実測値が前記目標回転速度に追従するようにフィードバック制御するようにしてもよい。例えば、回転速度差に対するPID(Proportional-Integral-Differential)演算により補正トルク値を導出するフィードバック制御(PID制御)が実行されてもよいし、回転速度差に対するPI(Proportional-Integral)演算により補正トルク値を導出するフィードバック制御(PI制御)が実行されてもよい。 Also, for example, the measured value may be the target rotational speed by deriving the correction torque value based on a rotational speed difference that is a difference between an actual measurement value of the motor rotational speed and a target rotational speed. The feedback control may be performed to follow. For example, feedback control (PID control) for deriving a correction torque value by PID (Proportional-Integral-Differential) calculation for the rotational speed difference may be executed, or correction torque by PI (Proportional-Integral) calculation for the rotational speed difference. Feedback control (PI control) may be performed to derive a value.
本発明により、2つのモータの動力を遊星機構で合流させる車両の制御において、出力トルクの目標値からの変動が抑制される。例えば、本発明の具体例によれば、モータの回転速度を変化させる場合においても、出力トルクを目標値から変動させない制御が実現できる。これにより、例えば、出力トルクが目標値から変動してしまう場合に比べて、ドライブフィーリングの向上などが期待される。 According to the present invention, in control of a vehicle in which the powers of two motors are merged by a planetary gear mechanism, fluctuation of output torque from a target value is suppressed. For example, according to the embodiment of the present invention, even when the rotational speed of the motor is changed, control can be realized in which the output torque is not varied from the target value. As a result, for example, an improvement in drive feeling and the like can be expected as compared with the case where the output torque fluctuates from the target value.
図1は、本発明の実施において好適な車両の制御装置の具体例を示す図である。図1には、制御装置10を備えた車両の具体例が図示されている。図1に示す具体例において、車両は、制御装置10の他に、第1モータ21と第2モータ22と遊星機構30を備えており、第1モータ21と第2モータ22の2つのモータ(電動機)から得られる動力を遊星機構30で合流させて駆動力を得る。
FIG. 1 is a view showing a specific example of a control device of a vehicle suitable for practicing the present invention. A specific example of a vehicle provided with a control device 10 is shown in FIG. In the specific example shown in FIG. 1, the vehicle includes a
図1に示す具体例において、車両の制御装置10は、トルク指令値導出部12と補正トルク値導出部14を備えている。トルク指令値導出部12は、遊星機構30の構造に応じて決まるトルク配分で、第1モータ21のトルク指令値Tm1と第2モータ22のトルク指令値Tm2を導出する。補正トルク値導出部14は、第1モータ21と第2モータ22の両方に対応した共用の補正トルク値ΔTを導出する。例えば、第1モータ21に取り付けられたセンサSから得られる測定値である実回転速度N1を利用した演算により、補正トルク値ΔTが導出される。
In the specific example shown in FIG. 1, the control device 10 of the vehicle includes a torque command
そして、制御装置10は、第1モータ21のトルク指令値Tm1に補正トルク値ΔTを加算することにより得られる補正後のトルク指令値Tm1´で第1モータ21を制御し、第2モータ22のトルク指令値Tm2から補正トルク値ΔTを減算することにより得られる補正後のトルク指令値Tm2´で第2モータ22を制御する。
Then, the control unit 10, the
なお、制御装置10は、例えばCPUやプロセッサ等のハードウェアを利用して実現することができる。例えばトルク指令値導出部12と補正トルク値導出部14がCPUやプロセッサ等の演算デバイスにより実現される。また、制御装置10の実現において、必要に応じてメモリ等のデバイスや電気電子回路が利用されてもよい。
The control device 10 can be realized, for example, using hardware such as a CPU and a processor. For example, the torque command
また、図1に示す具体例では、様々な構造(タイプ)の遊星機構30を利用することができる。そこで、遊星機構30の代表的な構成例を以下に説明する。なお、図1に示す遊星機構30の具体例は、以下に説明する代表的な構成例に限定されない。
Also, in the embodiment shown in FIG. 1,
図2は、遊星機構30の構成例1を示す図である。図2には、シングルピニオンプラネタリを用いた遊星機構30の具体例が図示されている。
FIG. 2 is a view showing a configuration example 1 of the
図2の遊星機構30は、サンギアSと、サンギアSを取り囲むように位置するリングギアRと、サンギアSとリングギアRに噛み合う複数のピニオン(プラネタリピニオン)Pと、複数のピニオンPを回転可能に支持するキャリア(プラネタリキャリア)Cを備えている。遊星機構30の3要素であるサンギアSとリングギアRとキャリアCは、共通の回転軸線周りを回転する。
The
第1モータ21は、リングギアRに接続されている。より具体的には、第1モータ21の出力軸31が入力歯車対34を介してリングギアRに接続されている。なお、第1モータ21とリングギアRは、複数の歯車対を介して接続されてもよし、ベルトやチェーンなどを用いた伝動要素を介して接続されてもよい。
The
第2モータ22は、サンギアSに接続されている。より具体的には、第2モータ22の出力軸32がサンギアSに固定されている。なお、第2モータ22とサンギアSは、1対以上の歯車対を介して接続されてもよいし、ベルトやチェーンなどを用いた伝動要素を介して接続されてもよい。
The
図2に示す構成例1では、キャリアCが出力要素となる。キャリアCには出力軸36が結合されている。そして、出力軸36は、出力歯車列42と最終減速機44を介して駆動輪52に接続されている。なお、出力歯車列42は、減速比を変更可能にするための変速機構を含んでもよい。
In the configuration example 1 shown in FIG. 2, the carrier C is an output element. An
図2に示す構成例1において、遊星機構30のギア比ρは、サンギアSの歯数ZsとリングギアRの歯数Zrの比(ρ=Zs/Zr)である。
In Configuration Example 1 shown in FIG. 2, the gear ratio ρ of the
図3は、遊星機構30の構成例1に対応した共線図である。つまり、図2に例示した遊星機構30の各要素(サンギアS,リングギアR,キャリアC)の回転速度の関係を図示したものが図3の共線図である。
FIG. 3 is a collinear diagram corresponding to the configuration example 1 of the
図3において、縦軸方向は回転速度に対応しており、符号S,C,Rで示す3本の縦軸(矢印)が、それぞれ、サンギアSの回転速度,キャリアCの回転速度,リングギアRの回転速度を示している。また、図3の共線図におけるρは、遊星機構30(シングルピニオンプラネタリを用いた構成例1)のギア比ρであり、遊星機構30(図2)が備えるサンギアSの歯数ZsとリングギアRの歯数Zrの比(ρ=Zs/Zr)である。 In FIG. 3, the vertical axis direction corresponds to the rotational speed, and the three vertical axes (arrows) indicated by the symbols S, C and R indicate the rotational speed of the sun gear S, the rotational speed of the carrier C, and the ring gear, respectively. The rotation speed of R is shown. Further, ρ in the alignment chart of FIG. 3 is a gear ratio ρ of the planetary gear system 30 (example 1 of the configuration using a single pinion planetary gear), and the number of teeth Zs of the sun gear S provided in the planetary gear system 30 (FIG. 2) and the ring The ratio of the number of teeth Zr of the gear R (ρ = Zs / Zr).
遊星機構30では、3つの要素のうちの2つの要素の回転速度が定まると、残り1つの要素の回転速度が決定する。この関係を示したものが共線図である。共線図において、3つの要素の回転速度は、3本の縦軸に交差する直線上に常に存在する。
In the
そのため、1つの要素の回転速度を固定すると、他の2つの要素の回転速度は、互いに関連をもって変化する。例えば、キャリアCの回転速度を固定し、サンギアSの回転速度を変化させると、その変化量に対して、リングギアRの回転速度の変化量はζ倍となる。この変化量の比率であるζを遊星歯車比と記す。遊星歯車比ζは、遊星機構30の機械的な構造により決定する。例えば、構成例1(シングルピニオンプラネタリ)においては、遊星歯車比ζがギア比ρに等しい(ζ=ρ)。
Therefore, if the rotational speed of one element is fixed, the rotational speeds of the other two elements change in relation to each other. For example, when the rotational speed of the carrier C is fixed and the rotational speed of the sun gear S is changed, the amount of change in the rotational speed of the ring gear R is multiplied with respect to the amount of change. The ratio, which is the ratio of this amount of change, is referred to as a planetary gear ratio. The planetary gear ratio 決定 is determined by the mechanical structure of the
遊星機構30では、3要素のトルクの総和は0(ゼロ)である。つまり、2つの入力トルクの和と出力トルクは等しい。例えば、構成例1では、第1モータ21から得られる入力トルクTm1であるサンギアトルクと、第2モータ22から得られる入力トルクTm2であるリングギアトルクの和が、出力トルク(出力軸トルク)TOであるキャリアトルクに等しい。つまり数1式に示す関係が成立する。
また、各要素の回転速度が維持されるトルクバランスは、2つの入力トルクの比が遊星歯車比ζとなるトルク配分(ζ=Tm1/Tm2)で実現される。構成例1では、遊星歯車比ζがギア比ρに等しい(ζ=ρ)ことから、数2式に示す関係が成立する。
そして、数1式と数2式から、入力トルクTm1と出力トルクTOの関係を示す数3式、入力トルクTm2と出力トルクTOの関係を示す数4式が導かれる。
したがって、遊星機構30が構成例1の場合に、トルク指令値導出部12(図1)は、出力トルクTOの目標値(要求出力軸トルクTO)が与えられると、数3式から第1モータ21のトルク指令値Tm1を算出し、数4式から第2モータ22のトルク指令値Tm2を算出する。つまり、遊星機構30の構造(ギア比ρ)に応じて決まるトルク配分となるように、第1モータ21のトルク指令値Tm1と第2モータ22のトルク指令値Tm2が算出される。
Therefore, when the
図4は、遊星機構30の構成例2を示す図である。図4には、ダブルピニオンプラネタリを用いた遊星機構30の具体例が図示されている。
FIG. 4 is a view showing a configuration example 2 of the
図4の遊星機構30は、サンギアSと、サンギアSを取り囲むように位置するリングギアRを備えている。また、図4の遊星機構30は、サンギアSと噛み合う内側ピニオン(内側プラネタリピニオン)Piと、リングギアRと内側ピニオンPiに噛み合う外側ピニオン(外側プラネタリピニオン)Poを備えており、さらに、内側ピニオンPiと外側ピニオンPoを回転可能に支持するキャリア(プラネタリキャリア)Cを備えている。遊星機構30の3要素であるサンギアSとリングギアRとキャリアCは、共通の回転軸線周りを回転する。
The
第1モータ21は、サンギアSに接続されている。より具体的には、第1モータ21の出力軸31がサンギアSに固定されている。なお、第1モータ21とサンギアSは、1対以上の歯車対を介して接続されてもよいし、ベルトやチェーンなどを用いた伝動要素を介して接続されてもよい。
The
第2モータ22は、キャリアCに接続されている。より具体的には、第2モータ22の出力軸32がキャリアCに固定されている。なお、第2モータ22とキャリアCは、1対以上の歯車対を介して接続されてもよいし、ベルトやチェーンなどを用いた伝動要素を介して接続されてもよい。
The
図4に示す構成例2では、リングギアRが出力要素となる。リングギアRの外周には出力ギア37が設けられている。そして、出力ギア37は、出力歯車列42と最終減速機44を介して駆動輪52に接続されている。なお、出力歯車列42は、減速比を変更可能にするための変速機構を含んでもよい。
In Configuration Example 2 shown in FIG. 4, the ring gear R is an output element. An
図4に示す構成例2において、遊星機構30のギア比ρは、サンギアSの歯数ZsとリングギアRの歯数Zrの比(ρ=Zs/Zr)である。
In Configuration Example 2 shown in FIG. 4, the gear ratio ρ of the
図5は、遊星機構30の構成例2に対応した共線図である。つまり、図4に例示した遊星機構30の各要素(サンギアS,リングギアR,キャリアC)の回転速度の関係を図示したものが図5の共線図である。
FIG. 5 is a collinear diagram corresponding to Configuration Example 2 of the
図5において、縦軸方向は回転速度に対応しており、符号S,C,Rで示す3本の縦軸(矢印)が、それぞれ、サンギアSの回転速度,キャリアCの回転速度,リングギアRの回転速度を示している。また、図5の共線図におけるρは、遊星機構30(ダブルピニオンプラネタリを用いた構成例2)のギア比ρであり、遊星機構30(図4)が備えるサンギアSの歯数ZsとリングギアRの歯数Zrの比(ρ=Zs/Zr)である。 In FIG. 5, the vertical axis direction corresponds to the rotational speed, and the three vertical axes (arrows) indicated by symbols S, C and R indicate the rotational speed of the sun gear S, the rotational speed of the carrier C, and the ring gear, respectively. The rotation speed of R is shown. Further, ρ in the alignment chart of FIG. 5 is the gear ratio ρ of the planetary gear system 30 (configuration example 2 using the double pinion planetary gear), and the number of teeth Zs of the sun gear S provided in the planetary gear system 30 (FIG. 4) and the ring The ratio of the number of teeth Zr of the gear R (ρ = Zs / Zr).
遊星機構30では、3つの要素のうちの2つの要素の回転速度が定まると、残り1つの要素の回転速度が決定する。この関係を示したものが共線図である。共線図において、3つの要素の回転速度は、3本の縦軸に交差する直線上に常に存在する。
In the
また、遊星機構30では、3要素のトルクの総和は0(ゼロ)である。つまり、2つの入力トルクの和と出力トルクは等しい。例えば、構成例2では、第1モータ21から得られる入力トルクTm1であるサンギアトルクと、第2モータ22から得られる入力トルクTm2であるキャリアトルクの和が、出力トルク(出力軸トルク)TOであるリングギアトルクに等しい。つまり、前述の数1式に示す関係が成立する。
Further, in the
さらに、図4,図5に示す構成例2では、各要素の回転速度が維持されるトルクバランスが、数5式に示す関係によって実現される。
そして、数1式と数5式から、入力トルクTm1と出力トルクTOの関係を示す数6式、入力トルクTm2と出力トルクTOの関係を示す数7式が導かれる。
したがって、遊星機構30が構成例2の場合に、トルク指令値導出部12(図1)は、出力トルクTOの目標値(要求出力軸トルクTO)が与えられると、数6式から第1モータ21のトルク指令値Tm1を算出し、数7式から第2モータ22のトルク指令値Tm2を算出する。つまり、遊星機構30の構造(ギア比ρ)に応じて決まるトルク配分となるように、第1モータ21のトルク指令値Tm1と第2モータ22のトルク指令値Tm2が算出される。
Therefore, when the
図6は、遊星機構30の構成例3を示す図である。図6には、2つのサンギアによるラビニオ機構からリングギアを取り除いた遊星機構30の具体例が図示されている。
FIG. 6 is a view showing a configuration example 3 of the
図6の遊星機構30は、第1モータ21が接続される第1サンギアS1と、第2モータ22が接続される第2サンギアS2を備えている。第1サンギアS1は、第1モータ21の出力軸31に結合され、第2サンギアS2は、第2モータ22の出力軸32に結合される。
The
また、図6の遊星機構30は、第1サンギアS1と噛み合う複数の外側ピニオン(外側プラネタリピニオン)Poと、第2サンギアS2と噛み合う複数の内側ピニオン(内側プラネタリピニオン)Piを備えている。また、対応関係にある各外側ピニオンPoと各内側ピニオンPiも互いに噛み合っている。さらに、図6の遊星機構30は、複数の外側ピニオンPoと複数の内側ピニオンPiを回転可能に支持するキャリア(プラネタリキャリア)Cを備えている。
Further, the
図6の遊星機構30の3要素である第1サンギアS1と第2サンギアS2とキャリアCは、共通の回転軸線周りを回転する。また、図6に示す構成例3では、キャリアCが出力要素となる。キャリアCは出力ギア38を備えており、出力ギア38は、出力歯車列42と最終減速機44を介して駆動輪52に接続されている。なお、出力歯車列42は、減速比を変更可能にするための変速機構を含んでもよい。
The first sun gear S1, the second sun gear S2, and the carrier C, which are the three elements of the
また、図6に示す構成例3において、第1サンギアS1の歯数はZS1であり、第2サンギアS2の歯数はZS2である。 In the configuration example 3 shown in FIG. 6, the number of teeth of the first sun gear S1 is a Z S1, the number of teeth of the second sun gear S2 are a Z S2.
図7は、遊星機構30の構成例3に対応した共線図である。つまり、図6に例示した遊星機構30の各要素(第1サンギアS1,第2サンギアS2,キャリアC)の回転速度の関係を図示したものが図7の共線図である。
FIG. 7 is a collinear diagram corresponding to Configuration Example 3 of the
図7において、縦軸方向は回転速度に対応しており、符号S1,S2,Cで示す3本の縦軸(矢印)がそれぞれ、第1サンギアS1の回転速度,第2サンギアS2の回転速度,キャリアCの回転速度を示している。また、図7の共線図におけるZS2/ZS1は、遊星機構30(図6に示す構成例3)が備える第2サンギアの歯数ZS2と第1サンギアS1の歯数ZS1の比(ZS2/ZS1)である。 In FIG. 7, the vertical axis direction corresponds to the rotational speed, and the three vertical axes (arrows) indicated by the symbols S1, S2 and C indicate the rotational speed of the first sun gear S1 and the rotational speed of the second sun gear S2, respectively. , The rotation speed of the carrier C. The ratio of Z S2 / Z S1 is a planetary mechanism 30 (configuration example shown in FIG. 6. 3) and the number of teeth Z S2 of the second sun gear provided to the number of teeth Z S1 of the first sun gear S1 in the diagram of FIG 7 (Z S2 / Z S1 ).
遊星機構30では、3つの要素のうちの2つの要素の回転速度が定まると、残り1つの要素の回転速度が決定する。この関係を示したものが共線図である。共線図において、3つの要素の回転速度は、3本の縦軸に交差する直線上に常に存在する。
In the
また、遊星機構30では、3要素のトルクの総和は0(ゼロ)である。つまり、2つの入力トルクの和と出力トルクは等しい。例えば、構成例3では、第1モータ21から得られる入力トルクTm1であるサンギア1トルクと、第2モータ22から得られる入力トルクTm2であるサンギア2トルクの和が、出力トルク(出力軸トルク)TOであるキャリアトルクに等しい。つまり、前述の数1式に示す関係が成立する。
Further, in the
さらに、図6,図7に示す構成例3では、各要素の回転速度が維持されるトルクバランスが、数8式に示す関係によって実現される。
そして、数1式と数8式から、入力トルクTm1と出力トルクTOの関係を示す数9式、入力トルクTm2と出力トルクTOの関係を示す数10式が導かれる。
したがって、遊星機構30が構成例3の場合に、トルク指令値導出部12(図1)は、出力トルクTOの目標値(要求出力軸トルクTO)が与えられると、数9式から第1モータ21のトルク指令値Tm1を算出し、数10式から第2モータ22のトルク指令値Tm2を算出する。つまり、遊星機構30の構造(歯数ZS2と歯数ZS1の比ZS2/ZS1)に応じて決まるトルク配分となるように、第1モータ21のトルク指令値Tm1と第2モータ22のトルク指令値Tm2が算出される。
Therefore, when the
遊星機構30の代表的な構成例1〜3において、出力トルクTOの目標値(要求出力軸トルクTO)を達成しつつ、各要素の回転速度が維持されるトルクバランスを実現するトルク配分(トルク指令値Tm1とトルク指令値Tm2)は以上のとおりである。
In a typical configuration examples 1 to 3 of the
図1に戻り、制御装置10は、例えばモータの回転速度を変化させる場合に、補正トルク値を利用する。補正トルク値は、補正トルク値導出部14によって導出される。補正トルク値導出部14は、第1モータ21と第2モータ22の両方に対応した共用の補正トルク値ΔTを導出する。
Returning to FIG. 1, the control device 10 uses the correction torque value, for example, when changing the rotational speed of the motor. The correction torque value is derived by the correction torque
そして、制御装置10は、例えば、第1モータ21の回転速度を速めたい場合に、トルク指令値導出部12が導出するトルク指令値Tm1に、補正トルク値導出部14が導出する補正トルク値ΔTを加算し、これにより得られる補正後のトルク指令値Tm1´(数11式)によって第1モータ21を制御する。さらに、制御装置10は、トルク指令値導出部12が導出するトルク指令値Tm2から、補正トルク値導出部14が導出する補正トルク値ΔTを減算し、これにより得られる補正後のトルク指令値Tm2´(数12式)によって第2モータ22を制御する。
こうして、補正後のトルク指令値Tm1´とトルク指令値Tm2´によってトルクバランスが崩れることにより、補正トルク値ΔTが正の値であれば、第1モータ21の回転速度が上昇し始め、第2モータ22の回転速度が低下し始める。
Thus, the torque balance is broken by the corrected torque command value Tm1 'and the torque command value Tm2 ', so that if the correction torque value ΔT is a positive value, the rotational speed of the
また、補正後の出力トルクTO´は、補正後のトルク指令値Tm1´と補正後のトルク指令値Tm2´の和(TO´=Tm1´+Tm2´)となる。補正後のトルク指令値Tm1´と補正後のトルク指令値Tm2´は、それぞれ、数11式と数12式によって得られる。したがって、補正後の出力トルクTO´と補正前の出力トルクTOは、数13式の関係を満たすことになる。つまり、補正後の出力トルクTO´と補正前の出力トルクTOが等しく、補正前後における出力トルクが目標値(要求出力軸トルクTO)に維持される。
なお、例えば第1モータ21の回転速度を遅くしたい場合には、トルク指令値Tm1から補正トルク値ΔT(正の値)を減算した補正後のトルク指令値Tm1´によって第1モータ21を制御し、トルク指令値Tm2に同じ補正トルク値ΔTを加算した補正後のトルク指令値Tm2´によって第2モータ22を制御すればよい。これにより、第1モータ21の回転速度が低下し始め、第2モータ22の回転速度が上昇し始める。この場合においても、補正前後において出力トルクは目標値(要求出力軸トルクTO)に維持される。
Incidentally, for example, for slowing down the rotational speed of the
このように、図1に示す制御装置10によれば、例えばモータの回転速度を変化させる場合に、一方のモータのトルク指令値に補正トルク値が加算され、他方のモータのトルク指令値から同じ補正トルク値が減算される。そのため、2つのモータのトルク指令値の和が補正トルク値によって変化しない。これにより、例えばモータの回転速度を変化させるために補正トルク値が加減されても、2つのモータから得られる入力トルクの和である出力トルクが目標値に維持される。 As described above, according to the control device 10 shown in FIG. 1, for example, when changing the rotational speed of the motor, the correction torque value is added to the torque command value of one motor, and the same as the torque command value of the other motor The correction torque value is subtracted. Therefore, the sum of the torque command values of the two motors does not change according to the correction torque value. Thus, even if the correction torque value is adjusted to change, for example, the rotational speed of the motor, the output torque, which is the sum of the input torques obtained from the two motors, is maintained at the target value.
したがって、図1に示す制御装置10によれば、出力トルクの目標値からの変動が抑制される。これにより、例えば、モータの回転速度を変化させる場合においても、出力トルクを目標値から変動させない制御が実現できる。そのため、例えば、出力トルクが目標値から変動してしまう場合に比べて、ドライブフィーリングの向上などが期待される。 Therefore, according to control device 10 shown in FIG. 1, the fluctuation of the output torque from the target value is suppressed. Thus, for example, even in the case of changing the rotational speed of the motor, control can be realized in which the output torque is not varied from the target value. Therefore, for example, improvement in drive feeling is expected compared to the case where the output torque fluctuates from the target value.
図8は、図1の制御装置10による制御の具体例1を示すフローチャートである。図8のフローチャートに基づいて制御装置10による制御の具体例1を説明する。なお、図1に示した構成(部分)については以下の説明において図1の符号を利用する。 FIG. 8 is a flowchart showing a specific example 1 of control by the control device 10 of FIG. A first specific example of control by the control device 10 will be described based on the flowchart of FIG. 8. In addition, about the structure (part) shown in FIG. 1, the code | symbol of FIG. 1 is used in the following description.
図8に示す具体例1では、まず、出力トルクの目標値となる要求出力軸トルクTOが決定される(S1)。要求出力軸トルクTOは、例えば、車両の運転者により操作されるアクセルの開度などに応じて決定される。 In Example 1 shown in FIG. 8, first, the required output shaft torque T O to be the target value of the output torque is determined (S1). The required output shaft torque TO is determined, for example, according to the opening degree of an accelerator operated by the driver of the vehicle.
次に、制御装置10は、目標回転速度N1refと実回転速度N1の差である回転速度差ΔNを算出する(S2)。目標回転速度N1refは、第1モータ21の回転速度を変化させる際の目標となる回転速度である。例えば、第2モータ22の回転速度が第1モータ21の目標回転速度N1refとなる場合もある。また、実回転速度N1は、第1モータ21の実際の回転速度であり、例えば、第1モータ21に取り付けられたセンサSから得られる測定値である。
Next, the control device 10 calculates a rotational speed difference ΔN that is the difference between the target
続いて、制御装置10は、回転速度差ΔNが許容範囲Ntol内か否かを判定する(S3)。許容範囲Ntolは回転速度差ΔNの大きさを判定するための基準値である。例えば、回転速度差ΔNの絶対値が許容範囲Ntolよりも小さい場合(|ΔN|<Ntol)に回転速度差ΔNが許容範囲Ntol内と判定され、回転速度差ΔNの絶対値が許容範囲Ntol以上の場合(|ΔN|≧Ntol)に回転速度差ΔNが許容範囲Ntol内ではないと判定される。 Subsequently, the control device 10 determines whether the rotational speed difference ΔN is within the allowable range N tol (S3). The allowable range N tol is a reference value for determining the magnitude of the rotational speed difference ΔN. For example, when the absolute value of the rotational speed difference ΔN is smaller than the allowable range N tol (| ΔN | <N tol ), the rotational speed difference ΔN is determined to be within the allowable range N tol and the absolute value of the rotational speed difference ΔN is allowable It is determined that the rotational speed difference ΔN is not within the allowable range N tol in the case of the range N tol (| ΔN | ≧ N tol ).
回転速度差ΔNが許容範囲Ntol内であれば、定常時の補正トルク値が算出される(S4)。補正トルク値導出部14は、目標回転速度N1refと実回転速度N1の差である回転速度差ΔNに基づいて補正トルク値ΔTを算出する。例えば、回転速度差ΔNに定常時の比例ゲインKsを乗算することにより、補正トルク値ΔT(ΔT=Ks・ΔN)が算出される。
If the rotational speed difference ΔN is within the allowable range N tol , a steady-state correction torque value is calculated (S4). The correction torque
一方、回転速度差ΔNが許容範囲Ntol内でなければ、回転速度の時間変化率が算出される(S5)。補正トルク値導出部14は、センサSから得られる実回転速度N1に関する時間tの微分値(dN1/dt)を算出し、その微分値を第1モータ21の回転速度の時間変化率dN1/dtとする。
On the other hand, if the rotational speed difference ΔN is not within the allowable range N tol , the time change rate of the rotational speed is calculated (S5). The correction torque
そして、過渡時の補正トルク値が算出される(S6)。補正トルク値導出部14は、目標時間変化率ref(dN1/dt)と、実回転速度N1に基づく実測値である時間変化率dN1/dtの差である時間変化率差に基づいて、補正トルク値ΔTを算出する。例えば、時間変化率差に対して過渡時の比例ゲインKaを乗算することにより、補正トルク値ΔT(ΔT=Ka・(ref(dN1/dt)−dN1/dt))が算出される。
Then, a correction torque value at the time of transition is calculated (S6). Based on the time change rate difference which is the difference between the target time change rate ref (dN 1 / dt) and the time change rate dN 1 / dt which is an actual measurement value based on the actual rotation speed N 1 , the correction torque
目標時間変化率ref(dN1/dt)は、モータ回転速度の急激な変化を抑えるための時間変化率dN1/dtの目標値である。したがって、例えば、実測値である時間変化率dN1/dtが目標時間変化率ref(dN1/dt)と等しくなるように、補正トルク値ΔTを算出することが望ましい。これにより、モータ回転速度が許容範囲Ntolを超えて大きく変化する場合においても、モータ回転速度の急激な変化を抑えつつ、モータ回転速度を変化させることができる。 The target time change rate ref (dN 1 / dt) is a target value of the time change rate dN 1 / dt for suppressing a rapid change of the motor rotational speed. Therefore, for example, it is desirable to calculate the correction torque value ΔT such that the time change rate dN 1 / dt which is the actual measurement value becomes equal to the target time change rate ref (dN 1 / dt). As a result, even when the motor rotation speed greatly changes beyond the allowable range N tol , the motor rotation speed can be changed while suppressing a rapid change of the motor rotation speed.
S4における処理またはS6における処理により補正トルク値ΔTが得られると、制御装置10は、トルク指令値Tm1に補正トルク値ΔTを加算することにより補正後のトルク指令値Tm1´を算出し、トルク指令値Tm2から補正トルク値ΔTを減算することにより補正後のトルク指令値Tm2´を算出する(S7)。 When the correction torque value ΔT obtained by the processing in the processing or S6 in S4, the control unit 10 calculates the torque command value T m1 'after correction by adding the correction torque value ΔT to the torque command value T m1, calculating the torque command value T m @ 2 'after the correction by subtracting the correction torque value ΔT from the torque command value T m2 (S7).
こうして、補正後のトルク指令値Tm1´によって第1モータ21が制御され、補正後のトルク指令値Tm2´によって第2モータ22が制御される。そして、例えば、第1モータ21の実回転速度N1が目標回転速度N1refに到達すると(N1=N1ref)、補正トルク値ΔTがゼロ(ΔT=0)にされる。なお、実回転速度N1が目標回転速度N1refに実質的に等しい(例えば差が許容値以下)場合に、補正トルク値ΔTがゼロ(ΔT=0)にされてもよい。
Thus, 'the
図8に示す具体例1によれば、回転速度差ΔNが許容範囲Ntol内でありモータ回転速度の変化が小さい場合に、定常時の補正トルク値ΔTにより、目標回転速度N1refを維持するように第1モータ21の回転速度が制御される。また、図8の具体例1において、回転速度差ΔNが許容範囲Ntolを超えるほどモータ回転速度を大きく変化させる場合には、過渡時の補正トルク値ΔTにより、モータ回転速度の急激な変化を抑えつつ、目標回転速度N1refに達するように第1モータ21の回転速度が制御される。そのため、モータ回転速度を大きく変化させる場合でも、車両の運転者に与える違和感が軽減され、望ましくは違和感が解消される。
According to specific example 1 shown in FIG. 8, when rotational speed difference ΔN is within allowable range N tol and the change in motor rotational speed is small, target rotational speed N 1ref is maintained by correction torque value ΔT in steady state. Thus, the rotational speed of the
図9は、図1の制御装置10による制御の具体例2を示すフローチャートである。図9に示す具体例2においても、まず、出力トルクの目標値となる要求出力軸トルクTOが決定される(S1)。要求出力軸トルクTOは、例えば、車両の運転者により操作されるアクセルの開度などに応じて決定される。
FIG. 9 is a flowchart showing a second specific example of control by the control device 10 of FIG. Also in
次に、制御装置10は、目標回転速度N1refと実回転速度N1の差である回転速度差ΔNを算出する(S2)。目標回転速度N1refは、第1モータ21の回転速度を変化させる際の目標となる回転速度である。例えば、第2モータ22の回転速度が第1モータ21の目標回転速度N1refとなる場合もある。また、実回転速度N1は、第1モータ21の実際の回転速度であり、例えば、第1モータ21に取り付けられたセンサSから得られる測定値である。
Next, the control device 10 calculates a rotational speed difference ΔN that is the difference between the target
続いて、補正トルク値が算出される(S3)。補正トルク値導出部14は、目標回転速度N1refと実回転速度N1の差である回転速度差ΔNに基づくPID演算により、補正トルク値ΔT(ΔT=(Kp+Ki/s+Kd・s)・ΔN)を算出する。なお、PI演算により、補正トルク値ΔT(ΔT=(Kp+Ki/s)・ΔN)が算出されてもよい。 Subsequently, a correction torque value is calculated (S3). The correction torque value ΔT (ΔT = (Kp + Ki / s + Kd · s) · ΔN) is calculated by the PID calculation based on the rotational speed difference ΔN which is the difference between the target rotational speed N 1ref and the actual rotational speed N 1. Calculate The correction torque value ΔT (ΔT = (Kp + Ki / s) · ΔN) may be calculated by PI calculation.
補正トルク値ΔTが得られると、制御装置10は、トルク指令値Tm1に補正トルク値ΔTを加算することにより補正後のトルク指令値Tm1´を算出し、トルク指令値Tm2から補正トルク値ΔTを減算することにより補正後のトルク指令値Tm2´を算出する(S4)。 When the correction torque value ΔT is obtained, the controller 10 calculates the torque command value T m1 'after correction by adding the correction torque value ΔT to the torque command value T m1, correction torque from the torque command value T m2 The torque command value T m2 'after correction is calculated by subtracting the value ΔT (S4).
こうして、補正後のトルク指令値Tm1´によって第1モータ21が制御され、補正後のトルク指令値Tm2´によって第2モータ22が制御される。そして、例えば、第1モータ21の実回転速度N1が目標回転速度N1refに到達すると(N1=N1ref)、補正トルク値ΔTがゼロ(ΔT=0)にされる。なお、実回転速度N1が目標回転速度N1refに実質的に等しい(例えば差が許容値以下)場合に、補正トルク値ΔTがゼロ(ΔT=0)にされてもよい。
Thus, 'the
図9に示す具体例2では、例えば、PID演算またはPI演算により補正トルク値ΔTを算出するフィードバック制御が実行され、これにより、例えばモータ回転速度を目標値に追従させる制御が実現される。 In the second specific example shown in FIG. 9, for example, feedback control that calculates the correction torque value ΔT by PID calculation or PI calculation is performed, whereby control that causes, for example, the motor rotational speed to follow a target value is realized.
以上、本発明の好適な実施形態を説明したが、上述した実施形態は、あらゆる点で単なる例示にすぎず、本発明の範囲を限定するものではない。本発明は、その本質を逸脱しない範囲で各種の変形形態を包含する。 While the preferred embodiments of the present invention have been described above, the above-described embodiments are merely illustrative in every respect, and do not limit the scope of the present invention. The present invention includes various modifications without departing from the essence thereof.
10 制御装置、12 トルク指令値導出部、14 補正トルク値導出部、21 第1モータ、22 第2モータ、30 遊星機構。 10 control device, 12 torque command value deriving unit, 14 correction torque value deriving unit, 21 first motor, 22 second motor, 30 planetary mechanism.
Claims (5)
前記遊星機構の構造に応じて決まるトルク配分で前記2つのモータの一方のモータのトルク指令値と他方のモータのトルク指令値を導出する指令値導出部と、
前記2つのモータの両方に対応した共用の補正トルク値を導出する補正値導出部と、
を有し、
前記一方のモータのトルク指令値に前記補正トルク値を加算することにより得られる補正後のトルク指令値で前記一方のモータを制御し、前記他方のモータのトルク指令値から前記補正トルク値を減算することにより得られる補正後のトルク指令値で前記他方のモータを制御する、
ことを特徴とする車両の制御装置。 A control device for controlling a vehicle in which powers of two motors are merged by a planetary mechanism,
A command value deriving unit that derives a torque command value of one of the two motors and a torque command value of the other motor by torque distribution determined according to the structure of the planetary gear system;
A correction value deriving unit that derives a common correction torque value corresponding to both of the two motors;
Have
The one motor is controlled by the corrected torque command value obtained by adding the correction torque value to the torque command value of the one motor, and the correction torque value is subtracted from the torque command value of the other motor Control the other motor with the corrected torque command value obtained by
A control device of a vehicle characterized in that.
前記補正値導出部は、モータ回転速度の実測値を利用した演算により前記補正トルク値を導出する、
ことを特徴とする車両の制御装置。 In the control device of a vehicle according to claim 1,
The correction value deriving unit derives the correction torque value by calculation using an actual measurement value of motor rotational speed.
A control device of a vehicle characterized in that.
前記補正値導出部は、モータ回転速度の実測値から得られるモータ回転速度の時間変化率と目標時間変化率との差である時間変化率差に基づいて前記補正トルク値を導出する、
ことを特徴とする車両の制御装置。 In the control device for a vehicle according to claim 2,
The correction value deriving unit derives the correction torque value based on a time change rate difference which is a difference between a time change rate of the motor rotation speed obtained from an actual measurement value of the motor rotation speed and a target time change rate.
A control device of a vehicle characterized in that.
前記補正値導出部は、モータ回転速度の実測値と目標回転速度との差である回転速度差が比較的大きい場合に前記時間変化率差に基づいて前記補正トルク値を導出し、前記回転速度差が比較的小さい場合に前記回転速度差に基づいて前記補正トルク値を導出する、
ことを特徴とする車両の制御装置。 In the vehicle control device according to claim 3,
The correction value deriving unit derives the correction torque value based on the time change rate difference when the rotational speed difference which is the difference between the measured value of the motor rotational speed and the target rotational speed is relatively large, and the rotational speed Deriving the correction torque value based on the rotational speed difference when the difference is relatively small;
A control device of a vehicle characterized in that.
前記補正値導出部は、モータ回転速度の実測値と目標回転速度との差である回転速度差に基づいて前記補正トルク値を導出することにより、前記実測値が前記目標回転速度に追従するようにフィードバック制御する、
ことを特徴とする車両の制御装置。
In the control device for a vehicle according to claim 2,
The correction value deriving unit follows the target rotation speed by deriving the correction torque value based on a rotation speed difference which is a difference between the actual measurement value of the motor rotation speed and the target rotation speed. To feedback control,
A control device of a vehicle characterized in that.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017225334A JP6958284B2 (en) | 2017-11-24 | 2017-11-24 | Vehicle control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017225334A JP6958284B2 (en) | 2017-11-24 | 2017-11-24 | Vehicle control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019097319A true JP2019097319A (en) | 2019-06-20 |
JP6958284B2 JP6958284B2 (en) | 2021-11-02 |
Family
ID=66972166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017225334A Active JP6958284B2 (en) | 2017-11-24 | 2017-11-24 | Vehicle control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6958284B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021093827A (en) * | 2019-12-10 | 2021-06-17 | 株式会社豊田中央研究所 | Power transmission mechanism |
CN114103623A (en) * | 2022-01-27 | 2022-03-01 | 坤泰车辆系统(常州)股份有限公司 | Pure electric mode torque distribution method of dual-motor hybrid drive system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001309507A (en) * | 2000-04-24 | 2001-11-02 | Aisin Aw Co Ltd | Controlling device and controlling method for hybrid vehicle |
JP2004147491A (en) * | 2002-08-26 | 2004-05-20 | Nissan Motor Co Ltd | Vibration control device and vibration control method of hybrid vehicle |
-
2017
- 2017-11-24 JP JP2017225334A patent/JP6958284B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001309507A (en) * | 2000-04-24 | 2001-11-02 | Aisin Aw Co Ltd | Controlling device and controlling method for hybrid vehicle |
JP2004147491A (en) * | 2002-08-26 | 2004-05-20 | Nissan Motor Co Ltd | Vibration control device and vibration control method of hybrid vehicle |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021093827A (en) * | 2019-12-10 | 2021-06-17 | 株式会社豊田中央研究所 | Power transmission mechanism |
JP7063317B2 (en) | 2019-12-10 | 2022-05-09 | 株式会社豊田中央研究所 | Power transmission mechanism |
CN114103623A (en) * | 2022-01-27 | 2022-03-01 | 坤泰车辆系统(常州)股份有限公司 | Pure electric mode torque distribution method of dual-motor hybrid drive system |
CN114103623B (en) * | 2022-01-27 | 2022-04-12 | 坤泰车辆系统(常州)股份有限公司 | Pure electric mode torque distribution method of dual-motor hybrid drive system |
Also Published As
Publication number | Publication date |
---|---|
JP6958284B2 (en) | 2021-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA3065760C (en) | Control method and control device for electric vehicle | |
JP4617716B2 (en) | Electric power steering device | |
JP5411978B2 (en) | Servo control device with a function to correct the amount of expansion and contraction of the ball screw | |
EP3156308B1 (en) | Steering control apparatus | |
US9317028B2 (en) | Electric motor control device | |
JPWO2004101346A1 (en) | Steering control device | |
JP6790452B2 (en) | Steering control device | |
EP2567881A2 (en) | Inertia compensation with frequency dependent damping | |
JP2019097319A (en) | Control device of vehicle | |
US20210229739A1 (en) | Control apparatus for steering system | |
US11225148B2 (en) | Controller for vehicle | |
JP5333193B2 (en) | Control device for right / left driving force adjusting device for vehicle | |
JP6728633B2 (en) | Electric vehicle control method and control device | |
JP2017225278A (en) | Control method for electric vehicle and control apparatus therefor | |
JP2020203499A (en) | Turning controller | |
JP2017192248A (en) | Control method for electric vehicle, and control apparatus therefor | |
JP6208345B2 (en) | Motor control device, motor drive device, and electric vehicle | |
JP5040730B2 (en) | Control device for electric power steering device | |
WO2015166837A1 (en) | Engine torque estimation device for hybrid vehicles | |
JP6360013B2 (en) | Load balance control device | |
JP5827191B2 (en) | Vehicle steering control device | |
JP7251129B2 (en) | vehicle controller | |
JP6331351B2 (en) | Control device for hybrid vehicle | |
JP7294813B2 (en) | Rudder control device | |
JP2017088141A (en) | Electric power steering device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201013 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20201013 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20201013 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210721 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210907 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210920 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6958284 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |