[go: up one dir, main page]

JP2019095647A - Optical scanner and image forming apparatus including the same - Google Patents

Optical scanner and image forming apparatus including the same Download PDF

Info

Publication number
JP2019095647A
JP2019095647A JP2017225664A JP2017225664A JP2019095647A JP 2019095647 A JP2019095647 A JP 2019095647A JP 2017225664 A JP2017225664 A JP 2017225664A JP 2017225664 A JP2017225664 A JP 2017225664A JP 2019095647 A JP2019095647 A JP 2019095647A
Authority
JP
Japan
Prior art keywords
imaging optical
axis
deflector
optical
scanned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017225664A
Other languages
Japanese (ja)
Inventor
涼太 佐藤
Ryota Sato
涼太 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2017225664A priority Critical patent/JP2019095647A/en
Publication of JP2019095647A publication Critical patent/JP2019095647A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Lenses (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

To achieve miniaturization and good imaging performance in an optical scanner and an image forming apparatus including the same.SOLUTION: An optical scanner 100 comprises: a deflector 4 that deflects a light beam from a light source 1 and scans a surface to be scanned 6 in a main scanning direction; and an imaging optical system 5 that includes a plurality of imaging optical elements 5a, 5b guiding the light beam deflected by the deflector 4 to the surface to be scanned 6. An on-axis image height and an off-axis image height on the surface to be scanned 6 are different from each other in light beam scanning speed, and the optical scanner satisfies the conditional expressions: 0.15≤T/Tc≤0.25, 83°≤α<90°, and 83°≤α<90°.SELECTED DRAWING: Figure 1

Description

本発明は光走査装置に関し、例えば、レーザビームプリンタ(LBP)やデジタル複写機、マルチファンクションプリンタ(多機能プリンタ)等の画像形成装置に好適なものである。   The present invention relates to an optical scanning device, and is suitable, for example, for an image forming apparatus such as a laser beam printer (LBP), a digital copying machine, and a multifunction printer (multifunctional printer).

従来、画像形成装置に用いられる光走査装置は小型化が求められている。特許文献1には、偏向器からの光束を被走査面に導光するための結像光学系を構成する複数の結像光学素子の位置や形状を適切に設定することで、装置全体を小型化しつつ像面湾曲を補正可能な光走査装置が記載されている。また、特許文献2には、結像光学系を単一の結像光学素子で構成しつつ、被走査面を非等速で光走査するように構成することで、装置全体の小型化を実現した光走査装置が記載されている。   In the past, there has been a demand for downsizing of an optical scanning device used in an image forming apparatus. In Patent Document 1, the entire apparatus can be downsized by appropriately setting the positions and shapes of a plurality of imaging optical elements constituting an imaging optical system for guiding a light flux from a deflector to a surface to be scanned. Describes an optical scanning device capable of correcting curvature of field while developing the image. Further, in Patent Document 2, while the imaging optical system is configured by a single imaging optical element, the configuration is such that the scanning surface is scanned at a non-uniform speed, thereby achieving downsizing of the entire apparatus. An optical scanning device is described.

特開2002−48993号公報JP, 2002-48993, A 特開2015−31824号公報JP, 2015-31824, A

しかしながら、特許文献1では、装置全体の小型化のために各結像光学素子を偏向器に近づけて配置しているため、像面湾曲を良好に補正するためには各結像光学素子の光学面の形状を急峻に変化させることが必要になる。この場合、各結像光学素子の厚さが増大してしまうため、装置全体の小型化が十分ではない。   However, in Patent Document 1, since each imaging optical element is disposed close to the deflector in order to miniaturize the entire apparatus, the optical system of each imaging optical element is required to correct the curvature of field favorably. It is necessary to sharply change the shape of the surface. In this case, since the thickness of each imaging optical element is increased, the size reduction of the entire apparatus is not sufficient.

また、特許文献2では、結像光学系を単一の結像光学素子で構成しているため、装置全体の小型化のために結像光学素子を偏向器に近づけて配置した場合、結像光学素子の副走査倍率を大きくすることが必要になる。この場合、偏向器の製造誤差などに起因して、被走査面における副走査方向の照射位置ずれが生じてしまう可能性がある。   Further, in Patent Document 2, since the imaging optical system is configured of a single imaging optical element, when the imaging optical element is disposed close to the deflector for downsizing of the entire apparatus, image formation is performed. It is necessary to increase the sub-scanning magnification of the optical element. In this case, the irradiation position deviation in the sub-scanning direction on the surface to be scanned may occur due to a manufacturing error of the deflector or the like.

本発明の目的は、光走査装置及びそれを備える画像形成装置において、小型化及び結像性能の両立を実現することである。   An object of the present invention is to realize both downsizing and imaging performance in an optical scanning device and an image forming apparatus including the same.

上記目的を達成するための、本発明の一側面としての光走査装置は、光源からの光束を偏向して被走査面を主走査方向に走査する偏向器と、該偏向器により偏向された光束を前記被走査面に導光する複数の結像光学素子を含む結像光学系とを備え、前記被走査面における軸上像高と軸外像高とで光束の走査速度が異なり、前記結像光学系の光軸上において、前記偏向器の軸上偏向点から前記被走査面までの距離をTc、前記軸上偏向点から前記被走査面に最も近い結像光学素子の出射面までの距離をT、前記偏向器により最大走査角度で偏向される光線と前記被走査面に最も近い結像光学素子の入射面及び出射面との交点を各々A及びC、該交点A及びCにおける前記入射面及び出射面の接線と前記光軸との成す角度を各々αin及びαoutとするとき、0.15≦T/Tc≦0.25、83°≦αin<90°、83°≦αout<90°なる条件式を満足することを特徴とする。 In order to achieve the above object, an optical scanning device according to one aspect of the present invention includes a deflector which deflects a light flux from a light source to scan a surface to be scanned in a main scanning direction, and a light flux deflected by the deflector. An imaging optical system including a plurality of imaging optical elements for guiding light to the surface to be scanned, and the scanning speed of the light beam differs between the on-axis image height and the off-axis image height on the surface to be scanned; The distance from the on-axis deflection point of the deflector to the scan surface is Tc on the optical axis of the image optical system, and the distance from the on-axis deflection point to the exit surface of the imaging optical element closest to the scan surface The points of intersection of the light beam deflected at the maximum scanning angle by the deflector with the distance T by the deflector and the incident surface and the exit surface of the imaging optical element closest to the surface to be scanned are A and C, respectively. each alpha in and alpha ou the angle formed between the tangent line and the optical axis of the incident and exit surfaces When a, and satisfies the 0.15 ≦ T / Tc ≦ 0.25,83 ° ≦ α in <90 °, 83 ° ≦ α out <90 ° conditional expression.

本発明によれば、光走査装置及びそれを備える画像形成装置において、小型化及び結像性能の両立を実現することができる。   According to the present invention, in the optical scanning device and the image forming apparatus including the same, it is possible to realize both the miniaturization and the imaging performance.

本発明の実施例1に係る光走査装置の要部概略図。BRIEF DESCRIPTION OF THE DRAWINGS The principal part schematic of the optical scanning device which concerns on Example 1 of this invention. 実施例1に係る結像光学素子の形状を説明するための図。FIG. 6 is a view for explaining the shape of the imaging optical element according to the first embodiment. 実施例1に係る光走査装置における照射位置ずれを示す図。FIG. 6 is a diagram showing an irradiation position shift in the light scanning device according to the first embodiment. 本発明の実施例2に係る光走査装置の要部概略図。The principal part schematic of the optical scanning device concerning Example 2 of this invention. 実施例2に係る光走査装置における照射位置ずれを示す図。FIG. 7 is a diagram showing an irradiation position shift in the light scanning device according to the second embodiment. 本発明の実施形態に係る画像形成装置の要部概略図。FIG. 1 is a schematic view of an essential part of an image forming apparatus according to an embodiment of the present invention.

以下、本発明の好ましい実施形態について図面を参照しながら説明する。なお、各図面は、便宜的に実際とは異なる縮尺で描かれている場合がある。また、各図面において、同一の部材については同一の参照番号を付し、重複する説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. Note that each drawing may be drawn at a scale different from the actual scale for convenience. Moreover, in each drawing, the same reference numeral is given to the same member, and the overlapping description is omitted.

なお、以下の説明において、主走査方向とは、偏向器の回転軸(又は揺動軸)と結像光学系の光軸方向とに垂直な方向(偏向器により被走査面が光走査される方向)であり、副走査方向とは、偏向器の回転軸(又は揺動軸)に平行な方向である。また、主走査断面とは、光軸を含み主走査方向に平行な断面(副走査方向に垂直な断面)であり、副走査断面とは、結像光学系の光軸及び副走査方向に平行な断面(主走査方向に垂直な断面)である。   In the following description, the main scanning direction is the direction perpendicular to the rotation axis (or swinging axis) of the deflector and the optical axis direction of the imaging optical system (the surface to be scanned is optically scanned by the deflector) Direction), and the sub-scanning direction is a direction parallel to the rotation axis (or oscillation axis) of the deflector. The main scanning cross section is a cross section including the optical axis and parallel to the main scanning direction (cross section perpendicular to the sub scanning direction), and the sub scanning cross section is parallel to the optical axis of the imaging optical system and the sub scanning direction Cross section (cross section perpendicular to the main scanning direction).

図1は本発明の実施形態に係る光走査装置100の要部概略図であり、図1(a)は主走査断面(XY断面)を示し、図1(b)は副走査断面(ZX断面)を示している。光走査装置100は、光源1からの光束を偏向して被走査面6を主走査方向に走査する偏向器4と、偏向器4により偏向された光束を被走査面6に導光する結像光学素子5a,5bを含む結像光学系5とを備えている。また、本実施形態に係る結像光学系5は、それを通過した光束が被走査面6を非等速で走査するように構成されている。このことについて詳細に説明する。   FIG. 1 is a schematic view of the main part of the optical scanning device 100 according to the embodiment of the present invention, FIG. 1 (a) shows a main scanning cross section (XY cross section), and FIG. 1 (b) is a sub scanning cross section (ZX cross section). ) Is shown. The optical scanning device 100 deflects a light flux from the light source 1 to scan the scanned surface 6 in the main scanning direction, and an imaging which guides the light flux deflected by the deflector 4 to the scanned surface 6 An imaging optical system 5 including optical elements 5a and 5b is provided. Further, the imaging optical system 5 according to the present embodiment is configured such that the light beam passing through it scans the surface 6 at a non-uniform speed. This will be described in detail.

一般的に、光走査装置における結像光学系は、通過した光束が被走査面を等速で走査するように、偏向器の回転角度(走査角度)と被走査面での主走査方向における像高とが略比例関係となる歪曲収差(fθ特性)を有している。また、結像光学系は、被走査面における有効領域(印字領域)に良好な像(スポット)を形成するために、有効領域の全域で像面湾曲を良好に補正する必要がある。   In general, the imaging optical system in the optical scanning device is an image in the main scanning direction on the surface to be scanned and the rotational angle (scanning angle) of the deflector so that the transmitted light beam scans the surface to be scanned at the same speed. The distortion aberration (fθ characteristic) has a substantially proportional relationship with the height. Further, in order to form a good image (spot) in the effective area (printed area) on the surface to be scanned, the imaging optical system needs to properly correct the curvature of field in the entire effective area.

しかし、像面湾曲を良好に補正しつつ等速性を確保するためには、結像光学系における各光学面の主走査断面内での形状を軸上像高と軸外像高とで異ならせる必要がある。さらに、光走査装置の小型化のために結像光学系を構成する各結像光学素子を偏向器に近づけて配置した場合、各光学面の形状が急峻になってしまう。この場合、コマ収差が増大すると共に、各結像光学素子の厚さが増大して装置全体を十分に小型化することが難しくなってしまう。   However, in order to ensure uniform velocity while properly correcting curvature of field, if the shape of each optical surface in the main scanning section of the imaging optical system is different between the on-axis image height and the off-axis image height. Need to Furthermore, when the imaging optical elements constituting the imaging optical system are disposed close to the deflector for downsizing the optical scanning device, the shapes of the optical surfaces become steep. In this case, coma aberration increases, and the thickness of each imaging optical element increases, which makes it difficult to miniaturize the entire apparatus.

そこで、本実施形態に係る結像光学系5は、通過した光束が被走査面6において等速性を満たさないように(非等速で走査するように)構成されている。すなわち、本実施形態に係る光走査装置100においては、軸上像高と軸外像高とで光束の走査速度が異なっている。これにより、結像性能を保ちつつ結像光学系5をより偏向器4に近接して配置することができる。さらに、各結像光学素子の厚さの増大を抑制することができるため、装置全体の更なる小径化を実現することが可能になる。   Therefore, the imaging optical system 5 according to the present embodiment is configured such that the transmitted light flux does not satisfy the constant velocity on the surface 6 to be scanned (scans at a non-uniform velocity). That is, in the light scanning device 100 according to the present embodiment, the scanning speed of the light flux is different between the on-axis image height and the off-axis image height. Thus, the imaging optical system 5 can be disposed closer to the deflector 4 while maintaining the imaging performance. Furthermore, since an increase in the thickness of each imaging optical element can be suppressed, it is possible to realize a further reduction in the diameter of the entire apparatus.

ここで、結像光学系5の光軸上において、偏向器4の軸上偏向点から被走査面6までの距離をTc、軸上偏向点から被走査面6に最も近い結像光学素子5bの出射面までの距離をTとする。ただし、ここでの軸上偏向点とは、光源1から出射して被走査面6の軸上像高に向かう光束(軸上光束)の主光線と偏向器4の偏向面との交点(光軸と偏向面との交点)を示す。このとき、本実施形態に係る光走査装置100は、以下の条件式(1)を満足する。
0.15≦T/Tc≦0.25 (1)
Here, on the optical axis of the imaging optical system 5, the distance from the on-axis deflection point of the deflector 4 to the scanned surface 6 is Tc, and the imaging optical element 5b closest to the scanned surface 6 from the on-axis deflection point. Let T be the distance to the exit surface of. Here, the on-axis deflection point is the intersection point of the chief ray of a light beam (on-axis light beam) emitted from the light source 1 and directed to the on-axis image height of the scanned surface 6 Point of intersection between the axis and the deflection surface. At this time, the optical scanning device 100 according to the present embodiment satisfies the following conditional expression (1).
0.15 ≦ T / Tc ≦ 0.25 (1)

条件式(1)は、結像光学系5の光軸方向における配置の条件を示している。条件式(1)を満足することで、結像光学系5を構成する各結像光学素子を偏向器4に十分に近づけて配置することができる。これにより、光走査装置100を光軸方向及び主走査方向において小型化することが可能になる。   Conditional expression (1) indicates the condition of the arrangement of the imaging optical system 5 in the optical axis direction. By satisfying the conditional expression (1), each imaging optical element constituting the imaging optical system 5 can be disposed sufficiently close to the deflector 4. As a result, the optical scanning device 100 can be miniaturized in the optical axis direction and the main scanning direction.

条件式(1)の上限を上回ると、結像光学系5における被走査面6に最も近い光学面が偏向器4から離れ過ぎてしまい、その光学面の主走査方向における幅を大きくすることが必要になるため、装置全体を十分に小型化することが困難になる。また、条件式(1)の下限を下回ると、各結像光学素子が偏向器4に近づき過ぎてしまい、光源1から偏向器4に至る光路や他の部材と各結像光学素子との干渉を回避することが困難になる。あるいは、結像光学系5の副走査倍率が大きくなり過ぎてしまい、偏向器4の製造誤差(面倒れ等)に起因して、被走査面6における副走査方向の照射位置ずれ(印字位置ずれ)が生じてしまう。   When the value exceeds the upper limit of the conditional expression (1), the optical surface closest to the scan surface 6 in the imaging optical system 5 is too far from the deflector 4, and the width of the optical surface in the main scanning direction is increased. Since it becomes necessary, it is difficult to miniaturize the entire device sufficiently. If the lower limit of conditional expression (1) is exceeded, each imaging optical element approaches the deflector 4 too much, and the optical path from the light source 1 to the deflector 4 and interference between other members and each imaging optical element It will be difficult to avoid. Alternatively, the subscanning magnification of the imaging optical system 5 becomes too large, and the irradiation position deviation (the printing position deviation) in the subscanning direction on the surface 6 to be scanned due to a manufacturing error (a surface deviation etc.) of the deflector 4 ) Will occur.

また、偏向器4により偏向される光線の走査角度が最大値(θmax)となるとき、すなわち光線が最大走査角度で偏向されて最軸外像高に到達するとき、その光線を最軸外光線とする。さらに、偏向器4により偏向される光線の走査角度が最大値の半値(θmax/2)となるとき、すなわち光線が最大走査角度の半分の走査角度で偏向されて中間像高に到達するとき、その光線を中間光線とする。 Also, when the scanning angle of the light beam deflected by the deflector 4 reaches the maximum value (θ max ), that is, when the light beam is deflected at the maximum scanning angle and reaches the most off-axis image height, the light beam is most off-axis Let it be a ray. Furthermore, when the scanning angle of the light beam deflected by the deflector 4 is half the maximum value (θ max / 2), ie, the light beam is deflected at a scanning angle of half the maximum scanning angle to reach the intermediate image height. , Let that ray be a middle ray.

そして、図2(a)に示すように、主走査断面において、最軸外光線と結像光学素子5bの入射面及び出射面との交点を各々A及びC、結像光学素子5bの入射面及び出射面の交点A及びCにおける接線と光軸との成す角度を各々αin及びαoutとする。ただし、角度αin及びαoutの夫々は、各接線と光軸との成す角度のうち鋭角側の方(小さい方)を示す。このとき、本実施形態に係る光走査装置100は、以下の条件式(2)及び(3)を満足する。
83°≦αin<90° (2)
83°≦αout<90° (3)
Then, as shown in FIG. 2A, in the main scanning cross section, the intersections of the outermost off-axis ray with the incident surface and the exit surface of the imaging optical element 5b are respectively A and C, and the incident surface of the imaging optical element 5b. And the angles which the tangent of the intersections A and C of an output surface and the optical axis comprise in C are each set to (alpha) in and (alpha) out . However, each of the angles α in and α out indicates an acute angle side (smaller side) of the angle formed by each tangent and the optical axis. At this time, the optical scanning device 100 according to the present embodiment satisfies the following conditional expressions (2) and (3).
83 ° ≦ α in <90 ° (2)
83 ° ≦ α out <90 ° (3)

条件式(2)及び(3)は、被走査面6に最も近い結像光学素子5bの端部の主走査断面内における形状を示している。条件式(2)及び(3)を満足することで、結像光学素子5bの端部における各光学面の傾斜(曲がり具合)を小さくすることができ、結像光学素子5bの厚さを低減することが可能になる。   The conditional expressions (2) and (3) indicate the shapes in the main scanning section of the end portion of the imaging optical element 5b closest to the surface 6 to be scanned. By satisfying the conditional expressions (2) and (3), the inclination (degree of bending) of each optical surface at the end of the imaging optical element 5b can be reduced, and the thickness of the imaging optical element 5b is reduced. It will be possible to

条件式(2)及び(3)の上限を上回ると、結像光学素子5bの端部の主走査断面内におけるパワー(屈折力)が略ゼロになってしまうため、良好な結像性能を得ることが難しくなる。また、条件式(2)及び(3)の下限を下回ると、結像光学素子5bの端部が急峻になってしまい、結像光学素子5bの厚さを低減することが難しくなる。   If the upper limit of the conditional expressions (2) and (3) is exceeded, the power (refractive power) in the main scanning section of the end of the imaging optical element 5b will be substantially zero, so that good imaging performance can be obtained. It becomes difficult. If the lower limit of the conditional expressions (2) and (3) is not reached, the end of the imaging optical element 5b becomes sharp, and it becomes difficult to reduce the thickness of the imaging optical element 5b.

このように、本実施形態に係る光走査装置100によれば、被走査面6を非等速で走査するように構成しつつ、条件式(1)乃至(3)を同時に満足することで、小型化及び結像性能の両立を実現することができる。さらに、以下の条件式(1a)乃至(3a)を満足することがより好ましい。
0.17≦T/Tc≦0.23 (1a)
84.5°≦αin<90° (2a)
84.5°≦αout<90° (3a)
As described above, according to the optical scanning device 100 according to the present embodiment, it is possible to simultaneously satisfy the conditional expressions (1) to (3) while configuring the scanning surface 6 to scan at a nonuniform speed. Both size reduction and imaging performance can be realized. Furthermore, it is more preferable to satisfy the following conditional expressions (1a) to (3a).
0.17 ≦ T / Tc ≦ 0.23 (1a)
84.5 ° ≦ α in <90 ° (2a)
84.5 ° ≦ α out <90 ° (3a)

ここで、図2(a)に示すように、主走査断面において、光軸と結像光学素子5bの入射面との交点をA0、交点Aから交点A0までの主走査方向における距離を二等分する光軸に平行な直線と入射面との交点をA1とする。また、光軸と結像光学素子5bの出射面との交点をC0、交点Cから交点C0までの主走査方向における距離を二等分する光軸に平行な直線と出射面との交点をC1とする。そして、図2(b)に示すように、交点A1と交点A及びA0の夫々とを結ぶ直線が互いに成す角度をβin、交点C1と交点C及びC0の夫々とを結ぶ直線が互いに成す角度をβoutとする。ただし、角度βin及びβoutの夫々は、各直線の成す角度のうち鈍角側の方(大きい方)を示す。このとき、以下の条件式(4)及び(5)を満足することが望ましい。
174°≦βin<180° (4)
174°≦βout<180° (5)
Here, as shown in FIG. 2A, in the main scanning cross section, the intersection of the optical axis and the incident surface of the imaging optical element 5b is A0, and the distance in the main scanning direction from the intersection A to the intersection A0 is two. Let A1 be an intersection of a straight line parallel to the divided optical axis and the incident surface. The intersection point between the optical axis and the exit surface of the imaging optical element 5b is C0, and the intersection point between a straight line parallel to the optical axis that bisects the distance in the main scanning direction from the intersection C to the intersection point C0 is C1. I assume. Then, as shown in FIG. 2B, the angle formed by the straight lines connecting the intersection A1 and each of the intersections A and A0 is β in , the angle between the straight lines connecting the intersection C1 and each of the intersections C and C0 is mutually formed. Let be β out . However, each of the angles β in and β out indicates the obtuse angle side (larger one) of the angles formed by the respective straight lines. At this time, it is desirable to satisfy the following conditional expressions (4) and (5).
174 ° ≦ β in <180 ° (4)
174 ° ≦ β out <180 ° (5)

条件式(4)及び(5)は、被走査面6に最も近い結像光学素子5bの各光学面の主走査断面内における形状を示している。条件式(4)及び(5)を満足することで、主走査方向の全域で結像光学素子5bの各光学面の傾斜(曲がり具合)を小さくすることができ、結像光学素子5bの厚さを低減することが可能になる。   The conditional expressions (4) and (5) indicate the shapes in the main scanning section of each optical surface of the imaging optical element 5b closest to the surface 6 to be scanned. By satisfying the conditional expressions (4) and (5), the inclination (degree of bending) of each optical surface of the imaging optical element 5b can be reduced in the entire main scanning direction, and the thickness of the imaging optical element 5b can be reduced. Can be reduced.

条件式(4)及び(5)の上限を上回ると、結像光学素子5bの主走査断面内における全域にわたってパワーが略ゼロになってしまうため、良好な結像性能を得ることが難しくなる。また、条件式(4)及び(5)の下限を下回ると、主走査方向の全域にわたって結像光学素子5bの各光学面の傾斜が大きくなってしまい、結像光学素子5bの厚さの増大を抑制することが難しくなる。さらに、以下の条件式(4a)及び(5a)を満足することがより好ましい。
176°≦βin<180° (4a)
176°≦βout<180° (5a)
If the upper limits of the conditional expressions (4) and (5) are exceeded, the power will be substantially zero over the entire area in the main scanning section of the imaging optical element 5b, and it will be difficult to obtain good imaging performance. If the lower limits of the conditional expressions (4) and (5) are not reached, the inclination of each optical surface of the imaging optical element 5b increases over the entire area in the main scanning direction, and the thickness of the imaging optical element 5b increases. It becomes difficult to control Furthermore, it is more preferable to satisfy the following conditional expressions (4a) and (5a).
176 ° ≦ β in <180 ° (4a)
176 ° ≦ β out <180 ° (5a)

なお、本実施形態に係る結像光学系5は、二つの結像光学素子5a,5bで構成されているが、必要に応じて三つ以上の結像光学素子で構成されていてもよい。その場合にも、被走査面6に最も近い結像光学素子が上述した各条件式を満足することで、同様の効果を得ることができる。   Although the imaging optical system 5 according to the present embodiment is configured of two imaging optical elements 5a and 5b, it may be configured of three or more imaging optical elements as needed. Also in that case, when the imaging optical element closest to the surface 6 to be scanned satisfies the above-described conditional expressions, similar effects can be obtained.

次に、本実施形態に係る結像光学系5の走査特性について説明する。結像光学系5の走査特性は、偏向器4の走査角度をθ(deg)、軸上像高での結像係数をK[mm]、被走査面6での主走査方向における像高をY[mm]とするとき、以下の式(6)で表される。
Y=(K/B)×tan(B×θ) (6)
Next, the scanning characteristics of the imaging optical system 5 according to the present embodiment will be described. The scanning characteristic of the imaging optical system 5 is the scanning angle of the deflector 4 θ (deg), the imaging coefficient at the on-axis image height K [mm], the image height in the main scanning direction on the surface 6 to be scanned When Y [mm], it is represented by the following equation (6).
Y = (K / B) × tan (B × θ) (6)

ここで、結像係数Kは、結像光学系5に平行光が入射する場合の走査特性であるfθ特性:Y=f×θにおけるfに相当する係数であり、fθ特性を平行光以外の光束(収束光や発散光)に対して拡張するための係数である。すなわち、結像係数Kは、結像光学系5に入射する光束の収束度にかかわらず、像高Yと走査角度θとを比例関係にするための係数である。   Here, the imaging coefficient K is a coefficient corresponding to f at fθ characteristic which is a scanning characteristic when parallel light is incident on the imaging optical system 5: Y = f × θ It is a coefficient for expanding a light flux (convergent light or divergent light). That is, the imaging coefficient K is a coefficient for making the image height Y and the scanning angle θ in a proportional relationship regardless of the degree of convergence of the light beam incident on the imaging optical system 5.

また、式(6)におけるBは、結像光学系5の走査特性を決定するための係数(走査特性係数)である。式(6)は、B=0のときはY=K×θとなりfθ特性に相当するが、B≠0のときは像高Yと走査角度θとが比例関係にならない走査特性となる。例えば、B=1のときの式(6)は、Y=Ktanθとなるため、カメラ等の撮像装置に用いられる光学系の射影特性Y=ftanθに相当する。すなわち、式(6)において、走査特性係数Bを0<B<1の範囲で設定することで、射影特性Y=ftanθとfθ特性Y=fθとの間の走査特性を得ることができる。   Further, B in the equation (6) is a coefficient (scanning characteristic coefficient) for determining the scanning characteristic of the imaging optical system 5. Equation (6) is Y = K × θ when B = 0 and corresponds to the fθ characteristic, but when B ≠ 0, the scanning characteristic is such that the image height Y and the scanning angle θ do not have a proportional relationship. For example, since equation (6) when B = 1 is Y = K tan θ, it corresponds to the projection characteristic Y = f tan θ of an optical system used in an imaging device such as a camera. That is, by setting the scanning characteristic coefficient B in the range of 0 <B <1 in Equation (6), the scanning characteristic between the projection characteristic Y = f tan θ and the fθ characteristic Y = fθ can be obtained.

ここで、式(6)を走査角度θで微分すると、以下の式(7)に示すように、被走査面6での光束の走査角度θに対する走査速度が得られる。
dY/dθ=K/cos(B×θ) (7)
Here, when the equation (6) is differentiated by the scanning angle θ, the scanning speed with respect to the scanning angle θ of the light beam on the surface to be scanned 6 is obtained as shown in the following equation (7).
dY / dθ = K / cos 2 (B × θ) (7)

さらに、式(7)を軸上像高における速度dY(0)/dθ=Kで除すると、以下の式(8)に示すようになる。
(dY/dθ)/K=1/cos(B×θ) (8)
Further, when Expression (7) is divided by the velocity dY (0) / dθ = K at the axial image height, the following Expression (8) is obtained.
(DY / dθ) / K = 1 / cos 2 (B × θ) (8)

式(8)は、軸上像高に対する軸外像高での等速性のずれ量、すなわち軸上像高での部分倍率に対する軸外像高での部分倍率のずれ量(部分倍率ずれ)を表している。本実施例に係る光走査装置100は部分倍率を有するため、B≠0の場合は、軸上像高と軸外像高とで光束の走査速度が異なることになる。つまり、軸外像高における走査位置(単位時間あたりの走査距離)は部分倍率ずれに応じて間延びしてしまうため、この部分倍率ずれを考慮せずに被走査面6を走査した場合は、被走査面6に形成される像の劣化(印字性能の劣化)を招いてしまう。   Equation (8) is the amount of deviation of the constant velocity at off-axis image height with respect to the on-axis image height, that is, the deviation amount of partial magnification at off-axis image height with respect to the partial magnification at axial image height (partial magnification deviation) Represents Since the optical scanning device 100 according to the present embodiment has a partial magnification, in the case of B ≠ 0, the scanning speed of the light flux is different between the on-axis image height and the off-axis image height. That is, since the scanning position (scanning distance per unit time) at the off-axis image height extends in accordance with the partial magnification shift, the scanned surface 6 is scanned without considering the partial magnification shift. Deterioration of the image formed on the scanning surface 6 (deterioration of printing performance) is caused.

そこで、本実施形態においては、不図示の制御部により光源1の発光を制御することで、印字性能の劣化を抑制している。具体的には、部分倍率ずれに応じて光源1の変調タイミング(発光タイミング)及び変調時間(発光時間)を制御することで、被走査面6における走査位置及び走査時間を電気的に補正することができる。これにより、部分倍率ずれ及び像の劣化を補正し、fθ特性を満たす場合と同様に良好な印字性能を得ることが可能になる。制御部によって光源1を制御する場合、良好な印字性能を確保するためには、結像光学系5の部分倍率ずれが全像高で2%以内に収まるようにすることが望ましい。   Therefore, in the present embodiment, deterioration of the printing performance is suppressed by controlling the light emission of the light source 1 by a control unit (not shown). Specifically, the scanning position and scanning time on the surface to be scanned 6 are electrically corrected by controlling the modulation timing (light emission timing) and modulation time (light emission time) of the light source 1 according to the partial magnification deviation. Can. As a result, it is possible to correct the partial magnification deviation and the image deterioration and to obtain good printing performance as in the case of satisfying the fθ characteristic. When the light source 1 is controlled by the control unit, it is desirable that the partial magnification shift of the imaging optical system 5 be within 2% of the total image height in order to ensure good printing performance.

このとき、本実施形態に係る光走査装置100は、最軸外像高Y=±hにおいて以下の条件式(9)を満たすことが望ましい。
0.30≦B≦0.70 (9)
At this time, it is preferable that the optical scanning device 100 according to the present embodiment satisfy the following conditional expression (9) at the outermost off-axis image height Y = ± h.
0.30 ≦ B ≦ 0.70 (9)

条件式(9)の下限値を下回ると、部分倍率ずれが小さくなり過ぎてしまい、装置全体の小型化と光学性能との両立が難しくなる。また、条件式(9)の上限値を上回ると、部分倍率ずれが大きくなり過ぎてしまい、走査位置及び走査時間の補正が難しくなる。さらに、以下の条件式(9a)を満足することがより好ましい。
0.40≦B≦0.60 (9a)
Below the lower limit value of the conditional expression (9), the partial magnification deviation becomes too small, which makes it difficult to achieve both the downsizing of the entire apparatus and the optical performance. When the value exceeds the upper limit value of the conditional expression (9), the partial magnification deviation becomes too large, which makes it difficult to correct the scanning position and the scanning time. Furthermore, it is more preferable to satisfy the following conditional expression (9a).
0.40 ≦ B ≦ 0.60 (9a)

また、結像光学系5の光軸を含む副走査断面内における横倍率(副走査倍率)をγとするとき、以下の条件式(10)を満足することが望ましい。
3.0<|γ|<6.0 (10)
Further, when the lateral magnification (sub scanning magnification) in the sub scanning cross section including the optical axis of the imaging optical system 5 is γ, it is preferable to satisfy the following conditional expression (10).
3.0 <| γ | <6.0 (10)

条件式(10)の上限を上回るほど結像光学系5の副走査倍率が高くなると、各光学部材の製造誤差や配置誤差等に起因する照射位置ずれが大きくなってしまう。また、条件式(10)の下限を下回るほど結像光学系5の副走査倍率が低くなると、主走査方向において各結像光学素子を十分に小型化することが難しくなる。さらに、以下の条件式(10a)を満足することがより好ましい。
3.5<|γ|<5.5 (10a)
If the sub-scanning magnification of the imaging optical system 5 increases so as to exceed the upper limit of the conditional expression (10), the irradiation position deviation due to the manufacturing error, the arrangement error, etc. of each optical member becomes large. In addition, when the sub-scanning magnification of the imaging optical system 5 decreases so as to fall below the lower limit of the conditional expression (10), it becomes difficult to miniaturize each imaging optical element in the main scanning direction. Furthermore, it is more preferable to satisfy the following conditional expression (10a).
3.5 <| γ | <5.5 (10a)

また、結像光学系5の光軸上において、軸上偏向点から偏向器4に最も近い結像光学素子5aまでの距離をT1とするとき、以下の条件式(11)を満足することが望ましい。
0.20≦T1/T≦0.50 (11)
Further, when the distance from the on-axis deflection point to the imaging optical element 5a closest to the deflector 4 on the optical axis of the imaging optical system 5 is T1, the following conditional expression (11) is satisfied: desirable.
0.20 ≦ T1 / T ≦ 0.50 (11)

条件式(11)の上限を上回ると、結像光学素子5aが偏向器4から離れ過ぎてしまい、結像光学素子5aが主走査方向において大型化してしまう。また、条件式(11)の下限を下回ると、結像光学素子5aが偏向器4に近づき過ぎてしまい、光路や他の部材と結像光学素子5aとが干渉してしまう可能性が生じる。さらに、以下の条件式(11a)を満足することがより好ましい。
0.25≦T1/T≦0.45 (11a)
If the upper limit of conditional expression (11) is exceeded, the imaging optical element 5a is too far from the deflector 4, and the imaging optical element 5a becomes large in the main scanning direction. When the value goes below the lower limit of the conditional expression (11), the imaging optical element 5a approaches the deflector 4 too much, which may cause interference between the optical path and other members and the imaging optical element 5a. Furthermore, it is more preferable to satisfy the following conditional expression (11a).
0.25 ≦ T1 / T ≦ 0.45 (11a)

また、結像光学系5の光軸上において、偏向器4に最も近い結像光学素子5aから被走査面6に最も近い結像光学素子5bまでの距離をT2とするとき、以下の条件式(12)を満足することが望ましい。
0.35≦T2/T≦0.65 (12)
When the distance from the imaging optical element 5a closest to the deflector 4 to the imaging optical element 5b closest to the scan surface 6 on the optical axis of the imaging optical system 5 is T2, the following conditional expression It is desirable to satisfy (12).
0.35 ≦ T2 / T ≦ 0.65 (12)

条件式(12)の上限を上回ると、結像光学素子5aから結像光学素子5bまでの距離が大きくなり過ぎてしまい、装置全体の小型化が難しくなる。また、条件式(12)の下限を下回ると、結像光学系5の副走査倍率が大きくなり過ぎてしまい、偏向器4の製造誤差に起因する印字位置ずれが生じ易くなってしまう。さらに、以下の条件式(12a)を満足することがより好ましい。
0.40≦T2/T≦0.60 (12a)
When the value exceeds the upper limit of the conditional expression (12), the distance from the imaging optical element 5a to the imaging optical element 5b becomes too large, which makes it difficult to miniaturize the entire apparatus. If the lower limit of the conditional expression (12) is not reached, the subscanning magnification of the imaging optical system 5 becomes too large, and print position deviation due to a manufacturing error of the deflector 4 tends to occur. Furthermore, it is more preferable to satisfy the following conditional expression (12a).
0.40 ≦ T2 / T ≦ 0.60 (12a)

なお、光走査装置100では、主走査断面において結像光学系5の全系に正のパワーを持たせることが必要になる。ここで、上述した条件式(2)及び(3)や条件式(4)及び(5)を満足する場合、主走査断面における結像光学素子5bの各光学面が平面に近い形状になるため、結像光学素子5bに十分な正のパワーを持たせることが難しくなる。   In the optical scanning device 100, it is necessary to give positive power to the entire system of the imaging optical system 5 in the main scanning cross section. Here, when the conditional expressions (2) and (3) and the conditional expressions (4) and (5) described above are satisfied, each optical surface of the imaging optical element 5b in the main scanning cross section has a shape close to a plane. It becomes difficult to give the imaging optical element 5b a sufficient positive power.

そのため、主走査断面においては、偏向器4に最も近い結像光学素子5aが、被走査面6に最も近い結像光学素子5bよりも大きな正のパワーを有していることが望ましい。一方、副走査断面では、被走査面6に最も近い結像光学素子5bが、偏向器4に最も近い結像光学素子5aよりも大きな正のパワーを有していることが望ましい。このように、各結像光学素子の各断面でのパワーを適切に設定することで、良好な結像性能を得ることができる。   Therefore, in the main scanning section, it is desirable that the imaging optical element 5a closest to the deflector 4 have a larger positive power than the imaging optical element 5b closest to the surface 6 to be scanned. On the other hand, in the sub-scanning cross section, it is desirable that the imaging optical element 5 b closest to the surface 6 to be scanned has a larger positive power than the imaging optical element 5 a closest to the deflector 4. Thus, good imaging performance can be obtained by appropriately setting the power in each cross section of each imaging optical element.

具体的には、偏向器4に最も近い結像光学素子5a及び被走査面6に最も近い結像光学素子5bの主走査断面における光軸上でのパワーを各々φ1m及びφ2mとするとき、以下の条件式(13)を満足することが望ましい。
1.5≦|φ1m/φ2m|≦10 (13)
Specifically, assuming that the powers on the optical axis in the main scanning section of the imaging optical element 5a closest to the deflector 4 and the imaging optical element 5b closest to the scanned surface 6 are φ1m and φ2m, respectively. It is desirable to satisfy conditional expression (13) of
1.5 ≦ | φ1 m / φ2 m | ≦ 10 (13)

条件式(13)の上限を上回ると、結像光学素子5aの主走査断面におけるパワーが大きくなり過ぎてしまい、諸収差の補正が難しくなる。また、条件式(13)の下限を下回ると、結像光学素子5aの主走査断面におけるパワーが小さくなり過ぎてしまい、結像光学系5の全系のパワーを十分に確保することが難しくなる。さらに、以下の条件式(13a)を満足することがより好ましい。
2.0≦|φ1m/φ2m|≦8.0 (13a)
If the upper limit of the conditional expression (13) is exceeded, the power in the main scanning section of the imaging optical element 5a becomes too large, and it becomes difficult to correct various aberrations. When the value goes below the lower limit of the conditional expression (13), the power in the main scanning section of the imaging optical element 5a becomes too small, and it becomes difficult to sufficiently ensure the power of the entire imaging optical system 5. . Furthermore, it is more preferable to satisfy the following conditional expression (13a).
2.0 ≦ | φ 1 m / φ 2 m | ≦ 8.0 (13 a)

また、偏向器4に最も近い結像光学素子5a及び被走査面6に最も近い結像光学素子5bの副走査断面における光軸上でのパワーを各々φ1s及びφ2sとするとき、以下の条件式(14)を満足することが望ましい。
5.0≦|φ2s/φ1s|≦30 (14)
Further, when the powers on the optical axis in the sub-scanning cross section of the imaging optical element 5a closest to the deflector 4 and the imaging optical element 5b closest to the scanned surface 6 are φ1s and φ2s, respectively, the following conditional expressions It is desirable to satisfy (14).
5.0 ≦ | φ2s / φ1s | ≦ 30 (14)

条件式(14)の上限を上回ると、結像光学素子5bの副走査断面におけるパワーが大きくなり過ぎてしまい、諸収差の補正が難しくなる。また、条件式(14)の下限を下回ると、結像光学素子5bの副走査断面におけるパワーが小さくなり過ぎてしまい、結像光学系5の全系のパワーを十分に確保することが難しくなる。さらに、以下の条件式(14a)を満足することがより好ましい。
10≦|φ2s/φ1s|≦25 (14a)
When the value exceeds the upper limit of the conditional expression (14), the power in the sub-scanning cross section of the imaging optical element 5b becomes too large, and it becomes difficult to correct various aberrations. When the value goes below the lower limit of the conditional expression (14), the power in the sub-scanning cross section of the imaging optical element 5b becomes too small, and it becomes difficult to sufficiently secure the power of the entire system of the imaging optical system 5. . Furthermore, it is more preferable to satisfy the following conditional expression (14a).
10 ≦ | φ2s / φ1s | ≦ 25 (14a)

また、主走査断面において、偏向器4に最も近い結像光学素子5aの入射面及び出射面と最軸外光線との交点を各々F及びG、結像光学素子5aの入射面及び出射面の交点F及びGにおける接線と光軸との成す角度を各々α1in及びα1outとする。ただし、角度α1in及びα1outの夫々は、各接線と光軸との成す角度のうち鋭角側の方(小さい方)を示す。このとき、以下の条件式(15)及び(16)を満足することが望ましい。
35°≦α1in<60° (15)
25°≦α1out<50° (16)
Further, in the main scanning section, the intersections of the entrance surface and exit surface of the imaging optical element 5a closest to the deflector 4 with the off-axis ray are respectively F and G, and the entrance surface and exit surface of the imaging optical element 5a. The angles formed by the tangents at the intersection points F and G and the optical axis are denoted by α1 in and α1 out , respectively. However, each of the angles α1 in and α1 out indicates an acute angle side (smaller side) of the angle formed by each tangent and the optical axis. At this time, it is desirable to satisfy the following conditional expressions (15) and (16).
35 ° ≦ α1 in <60 ° (15)
25 ° ≦ α1 out <50 ° (16)

条件式(15)及び(16)の上限を上回ると、結像光学素子5aの端部の主走査断面内における傾斜が不十分になり、良好な結像性能を得ることが難しくなる。また、条件式(15)及び(16)の下限を下回ると、結像光学素子5aの端部の傾斜が大きくなり過ぎてしまい、結像光学素子5aの厚さを低減することが難しくなる。さらに、以下の条件式(15a)及び(16a)を満足することがより好ましい。
40°≦α1in<55° (15a)
30°≦α1out<45° (16a)
If the upper limits of the conditional expressions (15) and (16) are exceeded, the inclination of the end of the imaging optical element 5a in the main scanning section becomes insufficient, and it becomes difficult to obtain good imaging performance. If the lower limit of the conditional expressions (15) and (16) is not reached, the inclination of the end of the imaging optical element 5a becomes too large, which makes it difficult to reduce the thickness of the imaging optical element 5a. Furthermore, it is more preferable to satisfy the following conditional expressions (15a) and (16a).
40 ° ≦ α1 in <55 ° (15a)
30 ° ≦ α1 out <45 ° (16a)

[実施例1]
以下、本発明の実施例1に係る光走査装置100について説明する。本実施例に係る光走査装置100は、上述した実施形態に係る光走査装置100と同等の構成を採っているため、重複する説明を省略する。本実施例に係る光走査装置100は、光源1と、光源1からの光束を規制する開口絞り2と、光束を偏向器4の偏向面に導光する入射光学系3と、上述した偏向器4及び結像光学系5とを備えている。
Example 1
Hereinafter, the optical scanning device 100 according to the first embodiment of the present invention will be described. The optical scanning device 100 according to the present embodiment has the same configuration as that of the optical scanning device 100 according to the above-described embodiment, and thus redundant description will be omitted. The optical scanning device 100 according to the present embodiment includes a light source 1, an aperture stop 2 that regulates a light flux from the light source 1, an incident optical system 3 that guides a light flux to a deflection surface of a deflector 4, and the deflector described above And an imaging optical system 5.

光走査装置100において、光源1から出射した光束は、開口が設けられた開口絞り2を通過し、入射光学系3によって偏向器4の偏向面に導光される。光源1としては、例えば半導体レーザを用いることができ、その発光点の数は1個でも複数個でもよい。本実施例では、開口絞り2として楕円形状の開口が設けられた楕円絞りを採用しているが、開口の形状はこれに限られるものではなく、例えば矩形の開口が設けられた矩形絞り等を採用してもよい。   In the light scanning device 100, the light beam emitted from the light source 1 passes through the aperture stop 2 provided with the aperture and is guided to the deflection surface of the deflector 4 by the incident optical system 3. For example, a semiconductor laser can be used as the light source 1, and the number of light emitting points may be one or more. In this embodiment, an elliptical stop provided with an elliptical opening is adopted as the aperture stop 2. However, the shape of the opening is not limited to this, and for example, a rectangular stop provided with a rectangular opening, etc. It may be adopted.

本実施例に係る入射光学系3は、コリメータレンズ3a及びシリンドリカルレンズ3bの二つの入射光学素子で構成されている。コリメータレンズ3aは、光源1から出射した光束の主走査断面内における収束度を変換するためのものであり、本実施例では光源1からの発散光を平行光に変換している。ただし、ここでの平行光とは、厳密な平行光だけでなく、弱収束光及び弱発散光などの略平行光を含むものである。   The incident optical system 3 according to the present embodiment is composed of two incident optical elements of a collimator lens 3a and a cylindrical lens 3b. The collimator lens 3a is for converting the degree of convergence of the light beam emitted from the light source 1 in the main scanning section, and in this embodiment, converts the divergent light from the light source 1 into parallel light. However, parallel light here includes not only strictly parallel light but also substantially parallel light such as weakly convergent light and weak divergent light.

また、シリンドリカルレンズ3bは、副走査断面内においてのみパワーを有するレンズであり、コリメータレンズ3aを通過した光束を副走査断面内において集光し、偏向器4の偏向面又はその近傍に主走査方向に長い線像を形成している。なお、装置全体の更なる小型化及び低コスト化のために、コリメータレンズ3a及びシリンドリカルレンズ3bを一体化して一つのレンズとしてもよい。   The cylindrical lens 3b is a lens having power only in the sub-scanning cross section, condenses the light beam passing through the collimator lens 3a in the sub-scanning cross section, and the deflection surface of the deflector 4 or its vicinity in the main scanning direction Form a long line image. The collimator lens 3a and the cylindrical lens 3b may be integrated into one lens for further downsizing and cost reduction of the entire device.

さらに、入射光学系3に回折面を設けることで、環境温度の変化によって光源1の発振波長や各光学面の形状が変化した場合のピント変動の補償ができるようにしてもよい。例えば、環境温度が常温に対して上昇した場合、光束の長波長化と樹脂材料の伸長により屈折面のパワーは弱くなる一方で、回折面のパワーは強くなる。よって、入射光学系3に回折面を設けることで、屈折面及び回折面によるピント変動を互いにキャンセルさせることができる。   Furthermore, by providing a diffractive surface in the incident optical system 3, it is possible to compensate for focus variation when the oscillation wavelength of the light source 1 or the shape of each optical surface changes due to a change in environmental temperature. For example, when the ambient temperature rises with respect to the normal temperature, the power of the refracting surface becomes weak due to the long wavelength of the luminous flux and the elongation of the resin material, while the power of the diffractive surface becomes strong. Therefore, by providing the diffractive surface in the incident optical system 3, it is possible to mutually cancel the focus variation due to the refractive surface and the diffractive surface.

偏向器4は、不図示の駆動部(モータ等)により図中の矢印方向に一定速度で回転させられ、偏向面にて入射光学系3からの光束を偏向することで、結像光学系5を介して被走査面6における有効領域を主走査方向に走査する。本実施例では、偏向器4として四つの偏向面を有する回転多面鏡(ポリゴンミラー)を採用しているが、偏向面の数はこれに限られるものではない。また、回転多面鏡の代わりに、一つ又は二つの偏向面が揺動軸まわりに揺動する揺動ミラーを採用してもよい。   The deflector 4 is rotated at a constant speed in the direction of the arrow in the figure by a drive unit (not shown) (such as a motor), and the light flux from the incident optical system 3 is deflected by the deflection surface to obtain an imaging optical system 5. The effective area on the surface 6 to be scanned is scanned in the main scanning direction via In this embodiment, a rotary polygon mirror (polygon mirror) having four deflection surfaces is employed as the deflector 4, but the number of deflection surfaces is not limited to this. Also, instead of the rotary polygon mirror, a swing mirror in which one or two deflection surfaces swing around a swing axis may be employed.

本実施例に係る結像光学素子5a,5bの夫々は、主走査断面と副走査断面とで互いに異なるパワーを有するトーリックレンズである。結像光学系5は、偏向器4にて偏向された光束を被走査面6に導光及び集光し、主走査断面内及び副走査断面内の両方において、被走査面6又はその近傍に光源1の像を形成している。また、結像光学系5は、偏向面又はその近傍と被走査面6又はその近傍とを副走査断面において共役関係にすることより、偏向面が傾いた際の被走査面6上での走査位置ずれの低減(面倒れ補償)を行っている。   The imaging optical elements 5a and 5b according to the present embodiment are toric lenses having different powers in the main scanning cross section and the sub scanning cross section. The imaging optical system 5 guides and condenses the light beam deflected by the deflector 4 onto the surface 6 to be scanned, and in or near the surface 6 in both the main scanning cross section and the sub scanning cross section. An image of the light source 1 is formed. Further, the imaging optical system 5 performs scanning on the scan surface 6 when the deflection surface is inclined by making the deflection surface or the vicinity thereof and the scan surface 6 or the vicinity thereof in a conjugate relationship in the sub-scanning cross section. Reduction of misregistration (tilt compensation) is performed.

なお、本実施例に係る入射光学系3および結像光学系5を構成する各レンズは、樹脂材料を射出成形することで形成されたプラスチックモールドレンズであるため、ガラスレンズを採用した場合と比較して大幅なコストダウンが可能になる。また、プラスチックモールドレンズを採用することで、回折面や非球面の成形が容易になり、生産性及び光学性能の向上を図ることができる。ただし、必要に応じて、入射光学系3および結像光学系5を構成する各レンズをガラスレンズとしてもよい。   In addition, since each lens which comprises the incident optical system 3 which concerns on a present Example, and the imaging optical system 5 is a plastic molded lens formed by inject-molding a resin material, it compares with the case where a glass lens is employ | adopted And significant cost reduction is possible. In addition, by employing a plastic molded lens, molding of the diffractive surface or the aspheric surface becomes easy, and productivity and optical performance can be improved. However, if necessary, each lens constituting the incident optical system 3 and the imaging optical system 5 may be a glass lens.

本実施例に係る結像光学系5の各光学面(レンズ面)の面頂点を含む主走査断面内での形状(母線形状)は、以下の式で表される。ここでは、各光学面の面頂点と各光軸との交点を原点とし、光軸方向の軸をX軸、主走査断面内においてX軸と直交する軸をY軸、X軸及びY軸に直交する軸をZ軸、としたローカル座標系を定めている。   The shape (shape of the generatrix) in the main scanning section including the surface apex of each optical surface (lens surface) of the imaging optical system 5 according to the present embodiment is expressed by the following equation. Here, the intersection point of the surface apex of each optical surface and each optical axis is the origin, the axis in the optical axis direction is the X axis, and in the main scanning section, the axis orthogonal to the X axis is the Y axis, X axis and Y axis A local coordinate system is defined with the orthogonal axis as the Z axis.

Figure 2019095647
Figure 2019095647

ただし、Rは光軸上における主走査断面内での曲率半径(母線曲率半径)であり、k,B,B,B,B10,B12は主走査断面内での非球面係数である。各光軸(X軸)の両側(Y軸方向におけるプラス側とマイナス側)で非球面係数B〜B12の数値を互いに異ならせることで、母線形状を光軸に対して主走査方向に非対称な形状とすることができる。 Where R is the radius of curvature (radius of curvature of the main line) in the main scanning section on the optical axis, and k, B 4 , B 6 , B 8 , B 10 and B 12 are the aspheric coefficients in the main scanning section It is. By making the values of the aspheric coefficients B 4 to B 12 different from each other on both sides (plus side and minus side in the Y-axis direction) of each optical axis (X axis), the generatrix shape in the main scanning direction with respect to the optical axis It can be asymmetric.

また、本実施例に係る結像光学系5の各光学面の、主走査方向の各位置(各像高)における副走査断面内での曲率半径r´(子線曲率半径)は、以下の式で表される。ただし、rは光軸上における副走査断面内での曲率半径であり、Eは子線変化係数である。なお、子線形状は、主走査方向における各位置での母線上の面法線を含む主走査断面に垂直な断面内での面形状と言い換えることができる。 Further, the radius of curvature r ′ (the radius of curvature of the sagittal line) in the sub-scanning section at each position (each image height) in the main scanning direction of each optical surface of the imaging optical system 5 according to the present embodiment is as follows. It is expressed by a formula. However, r is the radius of curvature in the sub-scanning section on the optical axis, E i is the sagittal line variation coefficients. The sagittal shape can be reworded as a surface shape in a cross section perpendicular to the main scanning cross section including the surface normal on the generatrix at each position in the main scanning direction.

Figure 2019095647
Figure 2019095647

本実施例に係る光走査装置100の構成を表1に示す。なお、表1に記載の各距離は、結像光学系5の光軸上における値を示している。入射主光線の角度とは、入射光学系3から出射して偏向面に入射する光束の主光線と結像光学系5の光軸との成す角度を示している。偏向器の回転中心座標は、偏向器と軸上光束の主光線との交点を原点として示している。また、有効走査幅及び最大走査角度は、結像光学系5の光軸に対して対称となっており、光軸に対して一方の側の値を正、他方の側の値を負としている。   The configuration of the optical scanning device 100 according to the present embodiment is shown in Table 1. Each distance shown in Table 1 indicates a value on the optical axis of the imaging optical system 5. The angle of the incident chief ray indicates the angle formed by the chief ray of the light beam exiting from the incident optical system 3 and entering the deflection surface and the optical axis of the imaging optical system 5. The rotation center coordinates of the deflector indicate the point of intersection of the deflector and the chief ray of the on-axis light beam as the origin. Further, the effective scanning width and the maximum scanning angle are symmetrical with respect to the optical axis of the imaging optical system 5, and the value on one side with respect to the optical axis is positive and the value on the other side is negative. .

Figure 2019095647
Figure 2019095647

本実施例に係る結像光学素子5a,5bの形状を表2及び3に示す。表2及び3において、各光学面の曲率半径や非球面係数については、光軸に対して光源1と同じ側(プラス側、Upper)及び光源1とは反対側(マイナス側、Lower)とで分けて示している。また、「E±N」は「×10±N」を意味する。 Tables 2 and 3 show the shapes of the imaging optical elements 5a and 5b according to this example. In Tables 2 and 3, the radius of curvature and the aspheric coefficient of each optical surface are on the same side (plus side, Upper) as the light source 1 with respect to the optical axis and on the opposite side (minus side, Lower) to the light source 1 It shows separately. Also, “E ± N” means “× 10 ± N 2 ”.

Figure 2019095647
Figure 2019095647

Figure 2019095647
Figure 2019095647

図3に、本実施例に係る光走査装置100において、偏向器4の偏向面が設計値に対して2分倒れた(傾いた)場合の被走査面6における副走査方向の照射位置ずれを示す。図3を見てわかるように、主走査方向の全域(全像高)にわたって照射位置ずれが5μm以下に抑えられている。   In FIG. 3, in the optical scanning device 100 according to the present embodiment, the irradiation position deviation in the sub-scanning direction on the surface to be scanned 6 when the deflection surface of the deflector 4 is inclined (tilted) by 2 with respect to the design value. Show. As can be seen from FIG. 3, the irradiation position deviation is suppressed to 5 μm or less over the entire area (full image height) in the main scanning direction.

[実施例2]
以下、本発明の実施例2に係る光走査装置200について説明する。本実施例に係る光走査装置200において、上述した実施例1に係る光走査装置100と同等の構成については説明を省略する。
Example 2
Hereinafter, an optical scanning device 200 according to a second embodiment of the present invention will be described. In the optical scanning device 200 according to the present embodiment, the description of the same configuration as that of the optical scanning device 100 according to the first embodiment described above will be omitted.

図4は本実施例に係る光走査装置200の要部概略図であり、図4(a)は主走査断面を示し、図4(b)は副走査断面を示している。本実施例に係る光走査装置200の構成を表4に示し、本実施例に係る結像光学素子5a,5bの形状を表5及び6に示す。   FIG. 4 is a schematic view of a main part of the optical scanning device 200 according to the present embodiment, FIG. 4A shows a main scanning cross section, and FIG. 4B shows a sub scanning cross section. The configuration of the optical scanning device 200 according to the present embodiment is shown in Table 4, and the shapes of the imaging optical elements 5a and 5b according to the present embodiment are shown in Tables 5 and 6.

Figure 2019095647
Figure 2019095647

Figure 2019095647
Figure 2019095647

Figure 2019095647
Figure 2019095647

図5に、本実施例に係る光走査装置200において、偏向器4の偏向面が設計値に対して2分倒れた場合の被走査面6における副走査方向の照射位置ずれを示す。図5を見てわかるように、主走査方向の全域にわたって照射位置ずれが5μm以下に抑えられている。   FIG. 5 shows the irradiation position deviation in the sub-scanning direction on the surface to be scanned 6 in the case where the deflection surface of the deflector 4 is tilted by 2 with respect to the design value in the optical scanning device 200 according to this embodiment. As can be seen from FIG. 5, the irradiation position deviation is suppressed to 5 μm or less over the entire area in the main scanning direction.

表7に、実施例1及び2における上述した条件式(1)−(5)、(9)−(16)の夫々の中辺の値を示す。表7に示す通り、何れの実施例に係る光走査装置も各条件式を満足している。   Table 7 shows the values of the middle sides of the conditional expressions (1) to (5) and (9) to (16) described above in Examples 1 and 2. As shown in Table 7, the optical scanning device according to any of the embodiments satisfies each conditional expression.

Figure 2019095647
Figure 2019095647

[画像形成装置]
図6は、本発明の実施形態に係る画像形成装置104の要部概略図(副走査断面図)である。画像形成装置104は、上述した実施例における光走査装置(光走査ユニット)100を備えている。
[Image forming apparatus]
FIG. 6 is a schematic view (sub-scan sectional view) of main parts of the image forming apparatus 104 according to the embodiment of the present invention. The image forming apparatus 104 includes the light scanning device (light scanning unit) 100 in the above-described embodiment.

図6に示すように、画像形成装置104には、パーソナルコンピュータ等の外部機器117から出力されたコードデータDcが入力される。このコードデータDcは、装置内のプリンタコントローラ111によって、画像信号(ドットデータ)Diに変換され、光走査ユニット100に入力される。そして、この光走査ユニット100からは、画像信号Diに応じて変調された光束103が射出され、この光束103によって感光ドラム101の感光面(被走査面)が主走査方向に走査される。なお、プリンタコントローラ111は、前述したデータの変換だけでなく、後述するモータ115などの画像形成装置内の各部の制御を行う。   As shown in FIG. 6, code data Dc output from an external device 117 such as a personal computer is input to the image forming apparatus 104. The code data Dc is converted into an image signal (dot data) Di by a printer controller 111 in the apparatus, and is input to the light scanning unit 100. Then, a light beam 103 modulated according to the image signal Di is emitted from the light scanning unit 100, and the photosensitive surface (surface to be scanned) of the photosensitive drum 101 is scanned in the main scanning direction by the light beam 103. The printer controller 111 controls not only the data conversion described above, but also each unit in the image forming apparatus such as a motor 115 described later.

静電潜像担持体(感光体)としての感光ドラム101は、モータ115の駆動力によって時計まわりに回転している。そして、この回転に伴って、感光ドラム101の感光面が光束103に対して副走査方向に移動する。感光ドラム101の上方には、感光面を一様に帯電せしめる帯電ローラ102が感光面に当接するように設けられている。そして、帯電ローラ102によって帯電された感光面上に、光走査ユニット100からの光束103が照射されるように構成されている。   The photosensitive drum 101 as an electrostatic latent image carrier (photosensitive member) is rotated clockwise by the driving force of the motor 115. Then, with this rotation, the photosensitive surface of the photosensitive drum 101 moves relative to the light beam 103 in the sub-scanning direction. Above the photosensitive drum 101, a charging roller 102 for charging the photosensitive surface uniformly is provided in contact with the photosensitive surface. The light beam 103 from the light scanning unit 100 is irradiated onto the photosensitive surface charged by the charging roller 102.

上述したように、光束103は画像信号Diに基づいて変調されており、この光束103を照射することによって感光面上に静電潜像が形成される。この静電潜像は、光束103の照射位置よりもさらに感光ドラム101の回転方向の下流側で感光面に当接するように配設された現像器107によって、トナー像として現像される。   As described above, the luminous flux 103 is modulated based on the image signal Di, and by irradiating the luminous flux 103, an electrostatic latent image is formed on the photosensitive surface. The electrostatic latent image is developed as a toner image by a developing device 107 disposed in contact with the photosensitive surface on the downstream side in the rotational direction of the photosensitive drum 101 further than the irradiation position of the light beam 103.

現像器107によって現像されたトナー像は、感光ドラム101の下方で、感光ドラム101に対向するように配設された転写ローラ(転写器)108によって、被転写材としての用紙112上に転写される。用紙112は感光ドラム101の前方(図6において右側)の用紙カセット109内に収納されているが、手差しでも給紙が可能である。用紙カセット109端部には、給紙ローラ110が配設されており、これにより用紙カセット109内の用紙112が搬送路へ送り込まれる。   The toner image developed by the developing device 107 is transferred onto a sheet 112 as a material to be transferred by a transfer roller (transfer device) 108 disposed below the photosensitive drum 101 so as to face the photosensitive drum 101. Ru. The sheet 112 is stored in the sheet cassette 109 in front of the photosensitive drum 101 (right side in FIG. 6), but can be fed manually. A sheet feeding roller 110 is disposed at an end of the sheet cassette 109, whereby the sheet 112 in the sheet cassette 109 is fed to the conveyance path.

未定着トナー像が転写された用紙112は、さらに感光ドラム101後方(図6において左側)の定着器へと搬送される。定着器は、内部に定着ヒータ(不図示)を有する定着ローラ113と、この定着ローラ113に圧接するように配設された加圧ローラ114とで構成されている。この定着器は、転写ローラ108から搬送されてきた用紙112を定着ローラ113と加圧ローラ114との圧接部にて加圧しながら加熱することにより、用紙112上の未定着トナー像を定着させる。さらに、定着ローラ113の後方には排紙ローラ116が配設されており、トナー像が定着した用紙112は画像形成装置104の外に排出される。   The sheet 112 on which the unfixed toner image has been transferred is further conveyed to a fixing device behind the photosensitive drum 101 (left side in FIG. 6). The fixing device includes a fixing roller 113 having a fixing heater (not shown) therein, and a pressure roller 114 disposed so as to be in pressure contact with the fixing roller 113. The fixing unit fixes the unfixed toner image on the sheet 112 by heating the sheet 112 conveyed from the transfer roller 108 while pressing the sheet 112 at the pressure contact portion between the fixing roller 113 and the pressure roller 114. Further, a sheet discharge roller 116 is disposed behind the fixing roller 113, and the sheet 112 on which the toner image is fixed is discharged out of the image forming apparatus 104.

なお、光走査ユニット100、感光ドラム101、及び現像器107の夫々を複数設けることにより、画像形成装置104をカラー画像形成装置としてもよい。また、例えばCCDセンサやCMOSセンサ等のラインセンサを備えたカラー画像読取装置を、外部機器117として画像形成装置104に接続することにより、カラーデジタル複写機を構成してもよい。   The image forming apparatus 104 may be a color image forming apparatus by providing a plurality of each of the light scanning unit 100, the photosensitive drum 101, and the developing device 107. Further, a color digital copying machine may be configured by connecting a color image reading apparatus provided with a line sensor such as a CCD sensor or a CMOS sensor to the image forming apparatus 104 as the external device 117.

[変形例]
以上、本発明の好ましい実施形態及び実施例について説明したが、本発明はこれらの実施形態及び実施例に限定されず、その要旨の範囲内で種々の組合せ、変形及び変更が可能である。
[Modification]
Although the preferred embodiments and examples of the present invention have been described above, the present invention is not limited to these embodiments and examples, and various combinations, modifications, and changes are possible within the scope of the present invention.

例えば、上述した各実施例では、一つの光源からの光束により一つの被走査面を走査する構成を採っているが、これに限らず、複数の光源からの光束を一つの偏向器により同時に偏向して、複数の被走査面を走査する構成を採用してもよい。   For example, in each of the above-described embodiments, one scanning surface is scanned by light flux from one light source. However, the present invention is not limited thereto. Light flux from a plurality of light sources is simultaneously deflected by one deflector. Alternatively, a configuration for scanning a plurality of scan surfaces may be employed.

1 光源
4 偏向器
5 結像光学系
5a,5b 結像光学素子
6 被走査面
100 光走査装置
DESCRIPTION OF SYMBOLS 1 light source 4 deflector 5 imaging optical system 5a, 5b imaging optical element 6 scanned surface 100 optical scanning device

Claims (15)

光源からの光束を偏向して被走査面を主走査方向に走査する偏向器と、該偏向器により偏向された光束を前記被走査面に導光する複数の結像光学素子を含む結像光学系とを備え、
前記被走査面における軸上像高と軸外像高とで光束の走査速度が異なり、
前記結像光学系の光軸上において、前記偏向器の軸上偏向点から前記被走査面までの距離をTc、前記軸上偏向点から前記被走査面に最も近い結像光学素子の出射面までの距離をTとし、主走査断面において、前記偏向器により最大走査角度で偏向される光線と前記被走査面に最も近い結像光学素子の入射面及び出射面との交点を各々A及びC、該交点A及びCにおける前記入射面及び出射面の接線と前記光軸との成す角度を各々αin及びαoutとするとき、
0.15≦T/Tc≦0.25
83°≦αin<90°
83°≦αout<90°
なる条件式を満足することを特徴とする光走査装置。
Imaging optics including a deflector for deflecting a light beam from a light source to scan a surface to be scanned in the main scanning direction, and a plurality of imaging optical elements for guiding the light beam deflected by the deflector to the surface to be scanned Equipped with
The scanning speed of the light beam differs between the on-axis image height and the off-axis image height on the surface to be scanned,
On the optical axis of the imaging optical system, the distance from the on-axis deflection point of the deflector to the scanned surface is Tc, and the exit surface of the imaging optical element closest to the scanned surface from the on-axis deflection point The distance between the light beam and the light incident surface and the light exit surface of the imaging optical element closest to the surface to be scanned is A and C, respectively. When angles formed by tangents of the incident surface and the exit surface at the intersection points A and C and the optical axis are respectively α in and α out :
0.15 ≦ T / Tc ≦ 0.25
83 ° ≦ α in <90 °
83 ° ≦ α out <90 °
An optical scanning device characterized by satisfying the following conditional expression.
主走査断面において、前記光軸と前記被走査面に最も近い結像光学素子の入射面との交点をA0、前記交点Aから前記交点A0までの主走査方向における距離を二等分する前記光軸に平行な直線と前記入射面との交点をA1、該交点A1と前記交点A及びA0の夫々とを結ぶ直線が互いに成す角度をβinとし、前記光軸と前記被走査面に最も近い結像光学素子の出射面との交点をC0、前記交点Cから前記交点C0までの主走査方向における距離を二等分する前記光軸に平行な直線と前記出射面との交点をC1、該交点C1と前記交点C及びC0の夫々とを結ぶ直線が互いに成す角度をβoutとするとき、
174°≦βin<180°
174°≦βout<180°
なる条件式を満足することを特徴とする請求項1に記載の光走査装置。
In the main scanning section, the light which bisects the distance in the main scanning direction from the intersection point A to the intersection point A0 as A0 and the intersection point between the optical axis and the incident surface of the imaging optical element closest to the scan surface. An angle formed by a straight line parallel to the axis and the point of intersection with the incident surface is A1, and a straight line connecting the point of intersection A1 and each of the points of intersection A and A0 is β in, and is closest to the optical axis and the scanned surface The intersection point of the imaging optical element with the exit surface is C0, and the intersection point of the straight line parallel to the optical axis bisecting the distance in the main scanning direction from the intersection point C to the intersection point C0 is C1. When an angle formed by a straight line connecting the intersection point C1 and each of the intersection points C and C0 is β out ,
174 ° ≦ β in <180 °
174 ° ≦ β out <180 °
The optical scanning device according to claim 1, wherein the following conditional expression is satisfied.
前記結像光学系の光軸上における結像係数をKとし、前記偏向器により走査角度θで偏向された光線が入射する、前記被走査面での主走査方向における像高Yを
Y=(K/B)×tan(B×θ)
なる式で表すとき、前記走査角度θが最大となるときの前記像高Yにおいて
0.30≦B≦0.70
なる条件式を満足することを特徴とする請求項1又は2に記載の光走査装置。
Assuming that the imaging coefficient on the optical axis of the imaging optical system is K, and the light beam deflected at the scanning angle θ by the deflector is incident, the image height Y in the main scanning direction on the surface to be scanned is Y = ( K / B) × tan (B × θ)
In the image height Y when the scanning angle θ is maximized, 0.30 ≦ B ≦ 0.70.
The optical scanning device according to claim 1 or 2, wherein the following conditional expression is satisfied.
前記結像光学系の光軸を含む副走査断面内における横倍率をγとするとき、
3.0<|γ|<6.0
なる条件式を満足することを特徴とする請求項1乃至3の何れか一項に記載の光走査装置。
Assuming that the lateral magnification in the sub-scanning cross section including the optical axis of the imaging optical system is γ,
3.0 <| γ | <6.0
The optical scanning device according to any one of claims 1 to 3, wherein the following conditional expression is satisfied.
前記結像光学系の光軸上において、前記軸上偏向点から前記偏向器に最も近い結像光学素子までの距離をT1とするとき、
0.20≦T1/T≦0.50
なる条件式を満足することを特徴とする請求項1乃至4の何れか一項に記載の光走査装置。
Assuming that the distance from the on-axis deflection point to the imaging optical element closest to the deflector on the optical axis of the imaging optical system is T1.
0.20 ≦ T1 / T ≦ 0.50
The optical scanning device according to any one of claims 1 to 4, wherein the following conditional expression is satisfied.
前記結像光学系の光軸上において、前記偏向器に最も近い結像光学素子から前記被走査面に最も近い結像光学素子までの距離をT2とするとき、
0.35≦T2/T≦0.65
なる条件式を満足することを特徴とする請求項1乃至5の何れか一項に記載の光走査装置。
When a distance from an imaging optical element closest to the deflector to an imaging optical element closest to the scan surface is T2 on the optical axis of the imaging optical system,
0.35 ≦ T2 / T ≦ 0.65
The optical scanning device according to any one of claims 1 to 5, wherein the following conditional expression is satisfied.
前記結像光学系の軸上像高での部分倍率に対する軸外像高での部分倍率のずれ量に基づいて前記光源の発光を制御する制御部を備えることを特徴とする請求項1乃至6の何れか一項に記載の光走査装置。   7. A control unit for controlling the light emission of the light source based on the deviation amount of the partial magnification at the off-axis image height with respect to the partial magnification at the on-axis image height of the imaging optical system. The optical scanning device according to any one of the above. 前記結像光学系の光軸上における結像係数をKとし、前記偏向器により走査角度θで偏向された光線が入射する、前記被走査面での主走査方向における像高Yを
Y=(K/B)×tan(B×θ)
なる式で表すとき、1/cos(B×θ)に応じて前記光源の発光を制御する制御部を備えることを特徴とする請求項1乃至6の何れか一項に記載の光走査装置。
Assuming that the imaging coefficient on the optical axis of the imaging optical system is K, and the light beam deflected at the scanning angle θ by the deflector is incident, the image height Y in the main scanning direction on the surface to be scanned is Y = ( K / B) × tan (B × θ)
The optical scanning device according to any one of claims 1 to 6, further comprising: a control unit that controls light emission of the light source according to 1 / cos 2 (B × θ), .
0.17≦T/Tc≦0.23
なる条件式を満足することを特徴とする請求項1乃至8の何れか一項に記載の光走査装置。
0.17 ≦ T / Tc ≦ 0.23
The optical scanning device according to any one of claims 1 to 8, wherein the following conditional expression is satisfied.
84.5°≦αin<90°
84.5°≦αout<90°
なる条件式を満足することを特徴とする請求項1乃至9の何れか一項に記載の光走査装置。
84.5 ° ≦ α in <90 °
84.5 ° ≦ α out <90 °
The optical scanning device according to any one of claims 1 to 9, wherein the following conditional expression is satisfied.
前記偏向器に最も近い結像光学素子及び前記被走査面に最も近い結像光学素子の主走査断面における光軸上でのパワーを各々φ1m及びφ2mとするとき、
1.5≦|φ1m/φ2m|≦10
なる条件式を満足することを特徴とする請求項1乃至10の何れか一項に記載の光走査装置。
When the powers on the optical axis in the main scanning section of the imaging optical element closest to the deflector and the imaging optical element closest to the scan surface are φ1m and φ2m, respectively.
1.5 ≦ | φ1 m / φ2 m | ≦ 10
The optical scanning device according to any one of claims 1 to 10, wherein the following conditional expression is satisfied.
前記偏向器に最も近い結像光学素子及び前記被走査面に最も近い結像光学素子の副走査断面における光軸上でのパワーを各々φ1s及びφ2sとするとき、
5.0≦|φ2s/φ1s|≦30
なる条件式を満足することを特徴とする請求項1乃至11の何れか一項に記載の光走査装置。
When the power on the optical axis in the sub-scanning section of the imaging optical element closest to the deflector and the imaging optical element closest to the scan surface is φ1s and φ2s, respectively.
5.0 ≦ | φ2s / φ1s | ≦ 30
The optical scanning device according to any one of claims 1 to 11, wherein the following conditional expression is satisfied.
主走査断面において、前記偏向器により最大走査角度で偏向される光線と前記偏向器に最も近い結像光学素子の入射面及び出射面との交点を各々F及びG、該交点F及びGにおける前記入射面及び出射面の接線と前記光軸との成す角度を各々α1in及びα1outとするとき、
35°≦α1in<60°
25°≦α1out<50°
なる条件式を満足することを特徴とする請求項1乃至12の何れか一項に記載の光走査装置。
In the main scanning section, the points of intersection of the light beam deflected at the maximum scanning angle by the deflector and the entrance surface and exit surface of the imaging optical element closest to the deflector are respectively F and G, and the intersections at the intersection points F and G When the angles formed by the tangents of the entrance surface and the exit surface and the optical axis are α1 in and α1 out , respectively
35 ° ≦ α1 in <60 °
25 ° ≦ α1 out <50 °
The optical scanning device according to any one of claims 1 to 12, wherein the following conditional expression is satisfied.
請求項1乃至13の何れか一項に記載の光走査装置と、該光走査装置により前記被走査面に形成される静電潜像をトナー像として現像する現像器と、現像された前記トナー像を被転写材に転写する転写器と、転写された前記トナー像を前記被転写材に定着させる定着器とを備えることを特徴とする画像形成装置。   An optical scanning device according to any one of claims 1 to 13, a developing unit for developing an electrostatic latent image formed on the surface to be scanned by the optical scanning device as a toner image, and the developed toner An image forming apparatus comprising: a transfer unit configured to transfer an image to a transfer material; and a fixing unit configured to fix the transferred toner image to the transfer material. 請求項1乃至13の何れか一項に記載の光走査装置と、外部機器から出力されたデータを画像信号に変換して前記光走査装置に入力するプリンタコントローラとを備えることを特徴とする画像形成装置。   An image comprising: the optical scanning device according to any one of claims 1 to 13; and a printer controller for converting data output from an external device into an image signal and inputting the signal to the optical scanning device. Forming device.
JP2017225664A 2017-11-24 2017-11-24 Optical scanner and image forming apparatus including the same Pending JP2019095647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017225664A JP2019095647A (en) 2017-11-24 2017-11-24 Optical scanner and image forming apparatus including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017225664A JP2019095647A (en) 2017-11-24 2017-11-24 Optical scanner and image forming apparatus including the same

Publications (1)

Publication Number Publication Date
JP2019095647A true JP2019095647A (en) 2019-06-20

Family

ID=66971568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017225664A Pending JP2019095647A (en) 2017-11-24 2017-11-24 Optical scanner and image forming apparatus including the same

Country Status (1)

Country Link
JP (1) JP2019095647A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070881A1 (en) * 2022-09-28 2024-04-04 ナルックス株式会社 Scanning optical system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070881A1 (en) * 2022-09-28 2024-04-04 ナルックス株式会社 Scanning optical system
JP7629252B2 (en) 2022-09-28 2025-02-13 ナルックス株式会社 Scanning Optical System

Similar Documents

Publication Publication Date Title
JP2003066356A (en) Scanning optical device and image forming device using the same
JP6045455B2 (en) Optical scanning device and image forming apparatus using the same
US8400699B2 (en) Optical scanning device and image forming apparatus using the same
JP2009098332A (en) Optical scanning device and image forming apparatus using the same
US7557974B2 (en) Optical scanning apparatus and image forming apparatus using the same including relationship between interval between deflector and scanned surface and a natural convergent point
JP4659277B2 (en) Optical scanning device and image forming apparatus using the same
JP5896651B2 (en) Optical scanning device and image forming apparatus using the same
CN100470300C (en) Optical scanning system and image forming apparatus using the same
US9874831B2 (en) Optical scanning apparatus and image forming apparatus including the same
US7149019B2 (en) Optical scanning system and image forming apparatus using the same
JP2004070109A (en) Optical scanner and image forming apparatus using the same
JP2004070108A (en) Optical scanner and image forming apparatus using the same
JP2004184655A (en) Optical scanner and image forming apparatus using same
JP6700842B2 (en) Optical scanning device
JP2019095647A (en) Optical scanner and image forming apparatus including the same
JP2003156704A (en) Optical scanner and image forming device using the same
US10216116B2 (en) Optical scanning apparatus and image forming apparatus including the same
JP4388053B2 (en) Optical scanning device and image forming apparatus using the same
JP6188899B2 (en) Optical scanning device and image forming apparatus using the same
JP6429944B1 (en) Optical scanning device and image forming apparatus having the same
JP4636736B2 (en) Scanning optical device and image forming apparatus using the same
JP4378416B2 (en) Scanning optical device and image forming apparatus using the same
JP2019086620A (en) Optical scanner and image forming apparatus including the same
JP4227404B2 (en) Scanning optical device and image forming apparatus using the same
JP4401950B2 (en) Optical scanning device and image forming apparatus using the same