[go: up one dir, main page]

JP2019075247A - Fuel cell stack - Google Patents

Fuel cell stack Download PDF

Info

Publication number
JP2019075247A
JP2019075247A JP2017199709A JP2017199709A JP2019075247A JP 2019075247 A JP2019075247 A JP 2019075247A JP 2017199709 A JP2017199709 A JP 2017199709A JP 2017199709 A JP2017199709 A JP 2017199709A JP 2019075247 A JP2019075247 A JP 2019075247A
Authority
JP
Japan
Prior art keywords
laminate
fuel cell
support member
outer peripheral
gravity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017199709A
Other languages
Japanese (ja)
Other versions
JP6801624B2 (en
Inventor
智暁 内山
Tomoaki Uchiyama
智暁 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017199709A priority Critical patent/JP6801624B2/en
Publication of JP2019075247A publication Critical patent/JP2019075247A/en
Application granted granted Critical
Publication of JP6801624B2 publication Critical patent/JP6801624B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】積層体の撓みを効率的に抑制すること。【解決手段】複数の単セル10が積層され、複数の単セル10のうちの一端側の単セル10aが他端側の単セル10bよりも重力方向上側に位置する積層体12と、積層体12の積層方向に沿う側面24に対向して設けられた外周部材16と、積層体12の側面24と外周部材16との間に外周部材16に組み付けられて設けられ、積層体12の側面24側に押圧されて積層体12を支持する支持部材18と、を備え、支持部材18は、積層体12を支持する力が積層体12の積層方向の中央よりも重力方向上側に偏って大きくなるように、積層体12の側面と外周部材16との間に設けられている燃料電池スタック。【選択図】図1PROBLEM TO BE SOLVED: To efficiently suppress bending of a laminated body. SOLUTION: A plurality of unit cells 10 are stacked, and a unit body 10 in which a unit cell 10a on one end side of the plurality of unit cells 10 is positioned above a unit cell 10b on the other end side in the gravity direction, and a layered body. The outer peripheral member 16 provided to face the side surface 24 of the laminated body 12 along the laminating direction, and the side surface 24 of the laminated body 12 provided between the side surface 24 of the laminated body 12 and the outer peripheral member 16 so as to be assembled to the outer peripheral member 16. And a support member 18 that is pressed to the side to support the stacked body 12, and the support member 18 has a larger force for supporting the stacked body 12 in the direction of gravity higher than the center of the stacked body 12 in the stacking direction. Thus, the fuel cell stack provided between the side surface of the laminate 12 and the outer peripheral member 16. [Selection diagram] Figure 1

Description

本発明は、燃料電池スタックに関する。   The present invention relates to a fuel cell stack.

電解質膜と電解質膜を挟持する電極とを有する単セルを積層してスタック構造とした燃料電池スタックが知られている。燃料電池スタックでは、外部から力が加わることで、複数の単セルが積層された積層体が撓み、単セル間にずれが発生することがある。そこで、単セル間のずれを抑制するために、複数の単セルが積層された積層体と積層体を収納するケースとの隙間を調整する隙間調整機構を設けた構成が知られている(例えば、特許文献1)。   There is known a fuel cell stack having a stack structure in which unit cells having an electrolyte membrane and electrodes sandwiching the electrolyte membrane are stacked. In the fuel cell stack, a force applied from the outside may cause a laminate in which a plurality of single cells are stacked to be bent, which may cause a gap between the single cells. Then, in order to control the gap between single cells, a configuration is known in which a gap adjusting mechanism is provided to adjust the gap between the stacked body in which a plurality of single cells are stacked and the case for storing the stacked body (for example, , Patent Document 1).

特開2005−71869号公報JP 2005-71869 A

特許文献1では、複数の単セルの積層方向に均等な間隔で隙間調整機構を設けて単セル間のずれを抑制している。しかしながら、複数の単セルが積層され且つ一端側の単セルが他端側の単セルよりも重力方向上側に位置する積層体に対して、積層体の撓みを効率的に抑制するという点で改善の余地が残されている。   In patent document 1, the gap adjustment mechanism is provided at equal intervals in the stacking direction of the plurality of unit cells to suppress the deviation between the unit cells. However, the improvement is achieved in that the bending of the laminate is efficiently suppressed with respect to a laminate in which a plurality of unit cells are stacked and the unit cell on one end side is positioned above the unit cell on the other end side in the gravity direction. There is room for

本発明は、上記課題に鑑みなされたものであり、積層体の撓みを効率的に抑制することを目的とする。   This invention is made in view of the said subject, and it aims at suppressing a bending of a laminated body efficiently.

本発明は、複数の単セルが積層され、前記複数の単セルのうちの一端側の単セルが他端側の単セルよりも重力方向上側に位置する積層体と、前記積層体の積層方向に沿う側面に対向して設けられた外周部材と、前記積層体の側面と前記外周部材との間に前記外周部材に組み付けられて設けられ、前記積層体の側面側に押圧されて前記積層体を支持する支持部材と、を備え、前記支持部材は、前記積層体を支持する力が前記積層体の積層方向の中央よりも重力方向上側に偏って大きくなるように、前記積層体の側面と前記外周部材との間に設けられている燃料電池スタックである。   In the present invention, a stacked body in which a plurality of single cells are stacked, and a single cell on one end side of the plurality of single cells is positioned above the single cell on the other end side in the gravity direction, and a stacking direction of the stacked body Between the outer peripheral member provided opposite to the side surface along the side, the side surface of the laminate and the outer peripheral member, and assembled by being attached to the outer peripheral member, and pressed against the side surface of the laminate; A supporting member for supporting the laminated body, and the supporting member is provided with a side surface of the laminated body such that a force for supporting the laminated body is larger toward a gravity direction upper side than a center in the laminated direction of the laminated body. It is a fuel cell stack provided between the outer peripheral member.

本発明によれば、積層体の撓みを効率的に抑制することができる。   According to the present invention, bending of the laminate can be efficiently suppressed.

図1は、実施例1に係る燃料電池スタックの透視側面図である。FIG. 1 is a transparent side view of a fuel cell stack according to a first embodiment. 図2(a)は、実施例1に係る燃料電池スタックの透視斜視図、図2(b)及び図2(c)は、積層体の角部での断面図である。2 (a) is a transparent perspective view of the fuel cell stack according to Embodiment 1, and FIG. 2 (b) and FIG. 2 (c) are cross-sectional views at the corners of the laminate. 図3は、支持部材の斜視図である。FIG. 3 is a perspective view of the support member. 図4(a)は、比較例に係る燃料電池スタックの透視側面図、図4(b)は、比較例に係る燃料電池スタックで生じる課題を説明する図である。FIG. 4 (a) is a see-through side view of a fuel cell stack according to a comparative example, and FIG. 4 (b) is a view for explaining problems that occur in the fuel cell stack according to the comparative example. 図5は、実施例1の変形例に係る燃料電池スタックの透視斜視図である。FIG. 5 is a transparent perspective view of a fuel cell stack according to a modification of the first embodiment. 図6(a)は、実施例2に係る燃料電池スタックの透視側面図、図6(b)は、実施例2の変形例に係る燃料電池スタックの透視側面図である。6 (a) is a transparent side view of a fuel cell stack according to a second embodiment, and FIG. 6 (b) is a transparent side view of a fuel cell stack according to a modification of the second embodiment. 図7は、実施例3に係る燃料電池スタックの透視側面図である。FIG. 7 is a transparent side view of a fuel cell stack according to a third embodiment. 図8は、実施例4に係る燃料電池スタックの透視側面図である。FIG. 8 is a transparent side view of a fuel cell stack according to a fourth embodiment.

以下、図面を参照して、本発明の実施例について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、実施例1に係る燃料電池スタックの透視側面図である。図1のように、実施例1の燃料電池スタック100は、積層体12と、エンドプレート14と、外周部材16と、支持部材18と、を備える。燃料電池スタック100は、例えば燃料電池自動車又は電気自動車などに搭載される。   FIG. 1 is a transparent side view of a fuel cell stack according to a first embodiment. As illustrated in FIG. 1, the fuel cell stack 100 according to the first embodiment includes a stack 12, an end plate 14, an outer peripheral member 16, and a support member 18. The fuel cell stack 100 is mounted on, for example, a fuel cell vehicle or an electric vehicle.

積層体12は、複数の単セル10が重力方向に積層されて形成されている。すなわち、複数の単セル10のうちの一端側の単セル10aは他端側の単セル10bよりも重力方向上側に位置している。なお、単セル10aが単セル10bよりも重力方向上側に位置していれば、積層体12の積層方向は重力方向に完全に一致する場合に限られず、重力方向に対して斜めに傾いた方向であってもよい。   The stacked body 12 is formed by stacking a plurality of single cells 10 in the direction of gravity. That is, the unit cell 10a on one end side of the plurality of unit cells 10 is positioned above the unit cell 10b on the other end side in the direction of gravity. In addition, as long as the single cell 10a is positioned above the single cell 10b in the direction of gravity, the stacking direction of the stacked body 12 is not limited to the case where the direction of gravity completely coincides with the direction of gravity. It may be

単セル10は、反応ガスとして燃料ガス(例えば水素)と酸化剤ガス(例えば空気)との供給を受けて発電する固体高分子形燃料電池である。単セル10は、1対のセパレータと膜電極ガス拡散層接合体(MEGA:Membrane Electrode Gas diffusion layer Assembly)とを備える。1対のセパレータは、ガス遮断性及び電子伝導性を有する部材によって形成され、MEGAに供給する燃料ガスが流れる燃料ガス流路及び酸化剤ガスが流れる酸化剤ガス流路を形成する。   The unit cell 10 is a polymer electrolyte fuel cell that receives power from a fuel gas (for example, hydrogen) and an oxidant gas (for example, air) as a reaction gas to generate electric power. The single cell 10 includes a pair of separators and a membrane electrode gas diffusion layer assembly (MEGA). The pair of separators are formed by members having gas barrier properties and electron conductivity, and form a fuel gas flow path through which the fuel gas supplied to the MEGA flows and an oxidant gas flow path through which the oxidant gas flows.

MEGAは、電解質膜と電解質膜の両側に配置された1対の触媒層とを備える膜電極接合体(MEA:Membrane Electrode Assembly)を含む。電解質膜は、スルホン酸基を有するフッ素系樹脂材料又は炭素系樹脂材料で形成された固体高分子膜であり、湿潤状態において良好なプロトン伝導性を有する。1対の触媒層は、電気化学反応を進行させる触媒を担持したカーボン粒子と、スルホン酸基を有する固体高分子であり、湿潤状態で良好なプロトン伝導性を有するアイオノマーと、を含む。MEAの両側に1対のガス拡散層が配置されている。MEAと1対のガス拡散層とによってMEGAが形成される。1対のガス拡散層は、ガス透過性及び電子伝導性を有する部材によって形成される。   MEGA includes a membrane electrode assembly (MEA: Membrane Electrode Assembly) including an electrolyte membrane and a pair of catalyst layers disposed on both sides of the electrolyte membrane. The electrolyte membrane is a solid polymer membrane formed of a fluorocarbon resin material or a fluorocarbon resin material having a sulfonic acid group, and has good proton conductivity in a wet state. One pair of catalyst layers includes carbon particles supporting a catalyst for promoting an electrochemical reaction, and an ionomer having a sulfonic acid group and being a solid polymer and having good proton conductivity in a wet state. A pair of gas diffusion layers are disposed on both sides of the MEA. The MEGA is formed by the MEA and the pair of gas diffusion layers. The pair of gas diffusion layers is formed by a member having gas permeability and electron conductivity.

エンドプレート14は、積層体12を積層方向から挟んで設けられている。エンドプレート14は、積層体12を積層方向に押し付けて単セル10同士を密着させている。エンドプレート14は、例えばステンレス鋼又はアルミニウム合金などの金属で形成される。なお、エンドプレート14と積層体12との間には、燃料電池が発電した電力を外部に取り出すためのターミナル及び単セル10とエンドプレート14とを絶縁させるインシュレータなどを備えていてもよい。   The end plate 14 is provided on both sides of the laminate 12 in the stacking direction. The end plate 14 presses the stacked body 12 in the stacking direction to bring the single cells 10 into close contact with each other. The end plate 14 is formed of, for example, a metal such as stainless steel or an aluminum alloy. A terminal for taking out the electric power generated by the fuel cell to the outside, an insulator for insulating the single cell 10 and the end plate 14 or the like may be provided between the end plate 14 and the laminate 12.

外周部材16は、積層体12の積層方向に沿う側面24に対向して設けられている。外周部材16は、例えばエンドプレート14に固定されていて、積層体12の側面24を覆って設けられている。外周部材16は、例えばステンレス鋼又はアルミニウム合金などの金属で形成されている。   The outer peripheral member 16 is provided to face the side surface 24 along the stacking direction of the stacked body 12. The outer peripheral member 16 is fixed to, for example, the end plate 14 and is provided to cover the side surface 24 of the laminate 12. The outer peripheral member 16 is formed of, for example, a metal such as stainless steel or aluminum alloy.

支持部材18は、積層体12の側面24と外周部材16との間に外周部材16に組み付けられて設けられている。支持部材18は、積層体12を積層方向で2等分した中央ライン30よりも重力方向上側に寄って設けられている。すなわち、積層体12の重力方向上側の端を一端50とし、重力方向下側の端を他端52とした場合、支持部材18は積層体12の中央ライン30よりも積層体12の一端50側に寄って設けられている。言い換えると、支持部材18を積層体12の積層方向で2等分した中央ライン32は、積層体12の中央ライン30よりも積層体12の一端50側に寄っている。一例として、支持部材18の積層体12の積層方向の長さは30mmであり、支持部材18の中央ライン32は積層体12の中央ライン30よりも積層体12の一端50側に15mmシフトしている。支持部材18は、外周部材16に設けられたネジなどの固定部材44によって積層体12の側面24側に押圧されて積層体12を支持している。   The support member 18 is assembled to the outer peripheral member 16 between the side surface 24 of the laminate 12 and the outer peripheral member 16. The support member 18 is provided closer to the upper side in the direction of gravity than the central line 30 obtained by dividing the laminate 12 into two in the stacking direction. That is, when the upper end in the gravity direction of the laminate 12 is one end 50 and the lower end in the gravity direction is the other end 52, the support member 18 is closer to the one end 50 of the laminate 12 than the central line 30 of the laminate 12. It is provided close to In other words, the central line 32 obtained by dividing the support member 18 in the laminating direction of the laminate 12 is closer to one end 50 of the laminate 12 than the central line 30 of the laminate 12. As an example, the length in the stacking direction of the stack 12 of the support member 18 is 30 mm, and the center line 32 of the support member 18 is shifted 15 mm toward the one end 50 of the stack 12 than the center line 30 of the stack 12 There is. The support member 18 is pressed to the side surface 24 side of the laminate 12 by a fixing member 44 such as a screw provided on the outer peripheral member 16 to support the laminate 12.

図2(a)は、実施例1に係る燃料電池スタックの透視斜視図、図2(b)及び図2(c)は、積層体の角部での断面図である。図2(b)は、積層体の角部のうちの支持部材が設けられた領域での断面図であり、図2(c)は、支持部材が設けられていない領域での断面図である。図2(a)のように、支持部材18は、L字型の形状を有し、積層体12の側面24のうちの4つの角部に設けられている。   2 (a) is a transparent perspective view of the fuel cell stack according to Embodiment 1, and FIG. 2 (b) and FIG. 2 (c) are cross-sectional views at the corners of the laminate. FIG.2 (b) is sectional drawing in the area | region in which the supporting member was provided among the corner | angular parts of a laminated body, FIG.2 (c) is sectional drawing in the area | region in which the supporting member is not provided. . As shown in FIG. 2A, the support member 18 has an L-shaped shape, and is provided at four corner portions of the side surface 24 of the laminate 12.

図3は、支持部材の斜視図である。図3のように、支持部材18は、例えばステンレス鋼などの金属部40と、例えば樹脂(ポリプロピレンなど)などの弾性部42と、で形成されている。金属部40は、弾性部42を覆うように設けられている。したがって、積層体12の側面24には支持部材18の弾性部42が当接する。金属部40の厚さt1及び弾性部42の厚さt2は、例えば3mmである。支持部材18の幅W、長さL、及び高さHは、例えば30mmである。なお、支持部材18は、金属部40だけで形成されていてもよいし、弾性部42だけで形成されていてもよい。支持部材18が弾性部42を含むことで、外周部材16が変形したときの変位を弾性部42で吸収でき、積層体12への影響を抑えることができる。   FIG. 3 is a perspective view of the support member. As shown in FIG. 3, the support member 18 is formed of, for example, a metal portion 40 such as stainless steel and an elastic portion 42 such as a resin (polypropylene or the like). The metal portion 40 is provided to cover the elastic portion 42. Therefore, the elastic portion 42 of the support member 18 abuts on the side surface 24 of the laminate 12. The thickness t1 of the metal portion 40 and the thickness t2 of the elastic portion 42 are, for example, 3 mm. The width W, the length L, and the height H of the support member 18 are, for example, 30 mm. The support member 18 may be formed of only the metal portion 40 or may be formed of only the elastic portion 42. Since the support member 18 includes the elastic portion 42, the elastic portion 42 can absorb the displacement when the outer peripheral member 16 is deformed, and the influence on the laminate 12 can be suppressed.

図2(b)及び図2(c)のように、外周部材16は、支持部材18が組み付けられた部分では他の部分に比べて外側に突出している。これにより、積層体12の側面24と外周部材16との間に支持部材18が設けられる空間が確保されている。支持部材18は、外周部材16に設けられたネジなどの固定部材44によって積層体12の側面24に押し付けられている。   As shown in FIG. 2B and FIG. 2C, the outer peripheral member 16 protrudes outward in the portion where the support member 18 is assembled as compared with the other portions. Thus, a space in which the support member 18 is provided between the side surface 24 of the laminate 12 and the outer peripheral member 16 is secured. The support member 18 is pressed against the side surface 24 of the laminate 12 by a fixing member 44 such as a screw provided on the outer peripheral member 16.

ここで、実施例1の燃料電池スタックの効果を説明するにあたり、比較例の燃料電池スタックについて説明する。図4(a)は、比較例に係る燃料電池スタックの透視側面図、図4(b)は、比較例に係る燃料電池スタックで生じる課題を説明する図である。図4(a)のように、比較例の燃料電池スタック500では、積層体12の側面24と外周部材16との間に支持部材18が設けられていない。その他の構成は実施例1と同じであるため説明を省略する。   Here, in describing the effects of the fuel cell stack of Example 1, the fuel cell stack of the comparative example will be described. FIG. 4 (a) is a see-through side view of a fuel cell stack according to a comparative example, and FIG. 4 (b) is a view for explaining problems that occur in the fuel cell stack according to the comparative example. As shown in FIG. 4A, in the fuel cell stack 500 of the comparative example, the support member 18 is not provided between the side surface 24 of the stack 12 and the outer peripheral member 16. The other configuration is the same as that of the first embodiment, and hence the description is omitted.

比較例1の燃料電池スタック500では、複数の単セル10が重力方向に積層されて積層体12が形成されている。このため、例えば燃料電池スタック500を備えた自動車が加減速をした場合又は他の自動車などに衝突した場合、図4(b)のように、積層体12の積層方向に交差する方向の慣性力が積層体12に働くようになる。この慣性力によって、積層体12に撓みが生じ、この撓みが大きいときには、単セル10間にずれが生じることが起こり得る。積層体12の撓みは、積層体12を積層方向で2等分した中央ライン30よりも積層体12の一端50側(重力方向上側)で起こり易い。これは以下の理由によるものである。   In the fuel cell stack 500 of Comparative Example 1, a plurality of single cells 10 are stacked in the direction of gravity to form a stack 12. Therefore, for example, when an automobile equipped with the fuel cell stack 500 accelerates or decelerates or collides with another automobile etc., as shown in FIG. 4B, the inertial force in the direction crossing the stacking direction of the stack 12 Will work on the stack 12. The inertial force may cause the laminate 12 to bend, and when this deflection is large, misalignment may occur between the single cells 10. The deflection of the laminate 12 is more likely to occur on one end 50 side (upper side in the gravity direction) of the laminate 12 than the central line 30 obtained by dividing the laminate 12 in the laminating direction. This is due to the following reasons.

すなわち、複数の単セル10が重力方向に積層された積層体12では、積層体12の重力方向下側にある単セル10ほど重力方向上側にある単セル10の重みがかかるようになる。このため、積層体12の重力方向下側にある単セル10は重力方向上側にある単セル10に比べて圧縮荷重が大きくなる。積層体12の積層方向に交差する方向の力が積層体12に加わると、単セル10のうちの剛性が比較的低いガス拡散層が変形し、この変形によって積層体12が撓むことが生じる。単セル10の変形は、大きな圧縮荷重がかかっている積層体12の重力方向下側にある単セル10では起こり難く、圧縮荷重が小さい積層体12の重力方向上側にある単セル10で起こり易い。したがって、積層体12の積層方向に交差する方向の力が積層体12に加わると、積層体12の重力方向上側は重力方向下側に比べて撓み易くなり変形量が大きくなり易い。このような理由から、図4(b)のように、積層体12の積層方向に交差する方向の慣性力が積層体12に加わると、積層体12の中央ライン30よりも積層体12の一端50側(重力方向上側)で撓みが起こり易くなる。   That is, in the multilayer body 12 in which a plurality of single cells 10 are stacked in the direction of gravity, the weight of the single cell 10 on the upper side in the direction of gravity is applied to the single cell 10 closer to the lower side in the direction of gravity. For this reason, the unit cell 10 on the lower side in the direction of gravity of the laminate 12 has a compressive load larger than that of the unit cell 10 on the upper side in the direction of gravity. When a force in a direction intersecting the stacking direction of the stack 12 is applied to the stack 12, the gas diffusion layer having a relatively low rigidity in the single cell 10 is deformed, and this deformation causes the stack 12 to bend. . The deformation of the unit cell 10 is unlikely to occur in the unit cell 10 on the lower side in the direction of gravity of the laminate 12 to which a large compressive load is applied, and is likely to occur in the unit cell 10 on the upper side of the laminate 12 in the direction of gravity. . Therefore, when a force in a direction intersecting the stacking direction of the stacked body 12 is applied to the stacked body 12, the upper side in the gravity direction of the stacked body 12 is more easily bent than the lower side in the gravity direction, and the amount of deformation tends to be large. From such a reason, as shown in FIG. 4B, when an inertial force in a direction intersecting the stacking direction of the stacked body 12 is applied to the stacked body 12, one end of the stacked body 12 than the central line 30 of the stacked body 12 Deflection easily occurs on the 50 side (upper side in the direction of gravity).

これに対し、実施例1によれば、図1のように、積層体12の側面24と外周部材16との間に、積層体12の側面24側に押圧されて積層体12を支持する支持部材18が設けられている。支持部材18は、積層体12の中央ライン30よりも積層体12の一端50側(重力方向上側)に寄って設けられていて、積層体12を支持する力が積層体12の中央ライン30より重力方向下側よりも重力方向上側で大きくなっている。すなわち、支持部材18による積層体12を支持する力が、積層体12の積層方向の中央よりも重力方向上側に偏って大きくなっている。これにより、積層体12のうちの撓みが起こり易い重力方向上側の部位を支持部材18で重点的に支持でき、積層体12の撓みを効率的に抑制することができる。例えば積層体12の積層方向の全体にわたって積層体12の側面24に支持部材18を点在して設ける場合に比べて、支持部材18の部品点数を削減しつつ、積層体12の撓みを抑制することができる。   On the other hand, according to the first embodiment, as shown in FIG. 1, between the side surface 24 of the laminate 12 and the outer peripheral member 16, the support is pressed against the side surface 24 of the laminate 12 to support the laminate 12. A member 18 is provided. The supporting member 18 is provided closer to one end 50 side (upper side in the direction of gravity) of the central line 30 of the laminated body 12 than the central line 30, and the force supporting the laminated body 12 is greater than that of the central line 30 of the laminated body 12. It is larger on the upper side in the gravity direction than on the lower side in the gravity direction. That is, the force for supporting the stack 12 by the support member 18 is larger on the upper side in the direction of gravity than the center of the stack 12 in the stacking direction. Thus, the portion of the laminate 12 on the upper side in the direction of gravity, in which bending easily occurs, can be intensively supported by the support member 18, and the bending of the laminate 12 can be efficiently suppressed. For example, the bending of the laminate 12 is suppressed while reducing the number of parts of the support member 18 as compared to the case where the support members 18 are provided on the side surface 24 of the laminate 12 in a dotted manner throughout the laminate direction of the laminate 12 be able to.

図5は、実施例1の変形例に係る燃料電池スタックの透視斜視図である。図5のように、実施例1の変形例の燃料電池スタック110では、支持部材18が、積層体12の側面24の4つの角部ではなく、各側面24の平坦部に設けられている。その他の構成は実施例1と同じであるため説明を省略する。   FIG. 5 is a transparent perspective view of a fuel cell stack according to a modification of the first embodiment. As shown in FIG. 5, in the fuel cell stack 110 according to the modification of the first embodiment, the support members 18 are provided not on the four corners of the side surface 24 of the stack 12 but on the flat portions of the side surfaces 24. The other configuration is the same as that of the first embodiment, and hence the description is omitted.

支持部材18は、実施例1のように積層体12の側面24の角部に設けられてもよいし、実施例1の変形例のように積層体12の側面24の平坦部に設けられてもよい。   The support member 18 may be provided at the corner of the side surface 24 of the laminate 12 as in the first embodiment, or provided at the flat portion of the side surface 24 of the laminate 12 as in the modification of the first embodiment. It is also good.

図6(a)は、実施例2に係る燃料電池スタックの透視側面図、図6(b)は、実施例2の変形例に係る燃料電池スタックの透視側面図である。図6(a)のように、実施例2の燃料電池スタック200では、支持部材18が積層体12の積層方向で間隔を開けて並んで積層体12の側面24に設けられている。積層体12の一端50側に位置する支持部材18は、積層体12を積層方向で3等分した3等分ライン34のうちの積層体12の一端50側に位置する3等分ライン34よりも積層体12の一端50側に寄って配置されている。積層体12の他端52側に位置する支持部材18は、積層体12の3等分ライン34のうちの積層体12の他端52側に位置する3等分ライン34よりも積層体12の一端50側に寄って配置されている。すなわち、支持部材18を積層体12の積層方向で2等分した中央ライン32は、積層体12の3等分ライン34よりも積層体12の一端50側に寄っている。その他の構成は実施例1と同じであるため説明を省略する。   6 (a) is a transparent side view of a fuel cell stack according to a second embodiment, and FIG. 6 (b) is a transparent side view of a fuel cell stack according to a modification of the second embodiment. As shown in FIG. 6A, in the fuel cell stack 200 of the second embodiment, the support members 18 are provided on the side surface 24 of the stack 12 at intervals in the stacking direction of the stack 12. The support member 18 positioned on the one end 50 side of the laminate 12 is from the trisection line 34 positioned on the one end 50 side of the laminate 12 among the three equally dividing lines 34 obtained by equally dividing the laminate 12 in the lamination direction. Are disposed close to one end 50 of the laminate 12. The supporting member 18 positioned on the other end 52 side of the laminate 12 is a portion of the lamination line 34 of the laminate 12 that is located on the other end 52 side of the lamination 12 of the laminate 12. It is disposed close to one end 50 side. That is, the central line 32 obtained by dividing the support member 18 into two in the stacking direction of the stacked body 12 is closer to the one end 50 side of the stacked body 12 than the three-part dividing line 34 of the stacked body 12. The other configuration is the same as that of the first embodiment, and hence the description is omitted.

図6(b)のように、実施例2の変形例の燃料電池スタック210では、積層体12を積層方向で2等分した中央ライン30よりも積層体12の一端50側での積層体12の側面24に、積層体12の積層方向で間隔を開けて並んだ2つの支持部材18が設けられている。積層体12の中央ライン30よりも積層体12の他端52側での積層体12の側面24に、積層体12の積層方向で1つの支持部材18が設けられている。その他の構成は実施例1と同じであるため説明を省略する。   As shown in FIG. 6B, in the fuel cell stack 210 according to the modification of the second embodiment, the stack 12 on one end 50 side of the stack 12 than the central line 30 obtained by dividing the stack 12 into two in the stacking direction. Two supporting members 18 are provided on the side surface 24 of the housing 12 at intervals in the stacking direction of the stack 12. One support member 18 is provided in the stacking direction of the stacked body 12 on the side surface 24 of the stacked body 12 on the other end 52 side of the stacked body 12 with respect to the central line 30 of the stacked body 12. The other configuration is the same as that of the first embodiment, and hence the description is omitted.

実施例2のように、積層体12の積層方向に並んで設けられた2つの支持部材18が、積層体12の3等分ライン34よりも積層体12の一端50側(重力方向上側)に寄って設けられている場合でもよい。実施例2の変形例のように、積層体12の積層方向に並んで複数の支持部材18が設けられ、積層体12の中央ライン30よりも積層体12の一端50側(重力方向上側)に設けられた支持部材18の個数が他端52側(重力方向下側)に設けられた支持部材18の個数よりも多い場合でもよい。これらの場合でも、支持部材18による積層体12を支持する力が積層体12の積層方向の中央よりも重力方向上側に偏って大きくなるため、積層体12の撓みを効率的に抑制することができる。   As in the second embodiment, the two support members 18 provided side by side in the stacking direction of the stacked body 12 are closer to one end 50 side (upper side in the gravity direction) of the three dividing lines 34 of the stacked body 12 It may be provided close to you. As in the modification of the second embodiment, a plurality of support members 18 are provided side by side in the stacking direction of the stacked body 12, and on one end 50 side (upper side in the gravity direction) of the stacked body 12 than the central line 30 of the stacked body 12. The number of support members 18 provided may be greater than the number of support members 18 provided on the other end 52 side (lower side in the direction of gravity). Even in these cases, since the force for supporting the laminate 12 by the support member 18 becomes larger toward the upper side in the direction of gravity than the center of the laminate 12 in the lamination direction, the deflection of the laminate 12 can be efficiently suppressed. it can.

図7は、実施例3に係る燃料電池スタックの透視側面図である。図7のように、実施例3の燃料電池スタック300では、積層体12の側面24に積層体12の積層方向で間隔を開けて並んだ支持部材18a及び18bが設けられている。支持部材18aは、例えば積層体12を積層方向で3等分した3等分ライン34のうちの積層体12の一端50側に位置する3等分ライン34の箇所で積層体12の側面24に設けられている。支持部材18bは、例えば積層体12の3等分ライン34のうちの積層体12の他端52側に位置する3等分ライン34の箇所で積層体12の側面24に設けられている。例えば、支持部材18aを積層体12の積層方向で2等分した中央ライン32aは積層体12の一端50側に位置する3等分ライン34に一致し、支持部材18bを積層体12の積層方向で2等分した中央ライン32bは積層体12の他端52側に位置する3等分ライン34に一致している。   FIG. 7 is a transparent side view of a fuel cell stack according to a third embodiment. As shown in FIG. 7, in the fuel cell stack 300 of the third embodiment, supporting members 18 a and 18 b are provided on the side surface 24 of the stack 12 at intervals in the stacking direction of the stack 12. The supporting member 18a is disposed on the side surface 24 of the laminate 12 at a portion of the trisection line 34 located on one end 50 side of the laminate 12 among the trisection lines 34 obtained by dividing the laminate 12 in the laminating direction. It is provided. The support member 18 b is provided on the side surface 24 of the laminate 12 at, for example, the portion of the trisection line 34 located on the other end 52 side of the trisection line 34 of the laminate 12. For example, the central line 32a obtained by dividing the support member 18a into two in the stacking direction of the stacked body 12 coincides with the trisection line 34 located on one end 50 side of the stacked body 12, and the supporting member 18b is stacked in the stacked direction of the stacked body 12 The central line 32 b divided into two at the same time coincides with the three-part dividing line 34 located on the other end 52 side of the laminate 12.

積層体12の積層方向において、支持部材18aは支持部材18bよりも長くなっている。例えば、積層体12の積層方向における長さが、支持部材18bでは30mmであるのに対し、支持部材18aでは50mmとなっている。したがって、支持部材18aが積層体12の側面24に当接する面積は支持部材18bが積層体12の側面24に当接する面積よりも大きくなっている。その他の構成は実施例1と同じであるため説明を省略する。   The support member 18 a is longer than the support member 18 b in the stacking direction of the stack 12. For example, while the length in the stacking direction of the stacked body 12 is 30 mm in the support member 18 b, it is 50 mm in the support member 18 a. Therefore, the area in which the support member 18 a abuts on the side surface 24 of the laminate 12 is larger than the area in which the support member 18 b abuts on the side surface 24 of the laminate 12. The other configuration is the same as that of the first embodiment, and hence the description is omitted.

実施例3のように、積層体12の一端50側(重力方向上側)に、積層体12の他端52側(重力方向下側)に設けられた支持部材18bが積層体12に当接する面積よりも大きな面積で当接する支持部材18aが設けられている場合でもよい。この場合でも、支持部材18a及び18bによる積層体12を支持する力が積層体12の積層方向の中央よりも重力方向上側に偏って大きくなるため、積層体12の撓みを効率的に抑制することができる。   As in the third embodiment, the area in which the support member 18 b provided on the other end 52 side (lower side in the gravity direction) of the laminated body 12 abuts on the laminated body 12 on the one end 50 side (upper side in the gravity direction) of the laminated body 12 A support member 18a may be provided that abuts on a larger area than that. Even in this case, since the force for supporting the laminate 12 by the support members 18a and 18b becomes larger toward the upper side in the direction of gravity than the center in the lamination direction of the laminate 12, the deflection of the laminate 12 is efficiently suppressed. Can.

図8は、実施例4に係る燃料電池スタックの透視側面図である。図8のように、実施例4の燃料電池スタック400では、積層体12を積層方向で3等分した3等分ライン34のうちの積層体12の一端50側に位置する3等分ライン34の箇所で積層体12の側面24に支持部材20が設けられている。積層体12の3等分ライン34のうちの積層体12の他端52側に位置する3等分ライン34の箇所で積層体12の側面24に支持部材22が設けられている。例えば、支持部材20を積層体12の積層方向で2等分した中央ライン32c及び支持部材22を2等分した中央ライン32dは積層体12の3等分ライン34に一致している。支持部材20は、支持部材22よりも高い硬度(例えば高いビッカース硬度)を有する。例えば、支持部材20はステンレス鋼などの金属で形成され、支持部材22はポリプロピレンなどの樹脂で形成されている。その他の構成は実施例1と同じであるため説明を省略する。   FIG. 8 is a transparent side view of a fuel cell stack according to a fourth embodiment. As shown in FIG. 8, in the fuel cell stack 400 according to the fourth embodiment, among the dividing lines 34 obtained by dividing the laminated body 12 in the laminating direction into three equally dividing lines 34, the equal dividing line 34 located on one end 50 side of the laminated body 12. The supporting member 20 is provided on the side surface 24 of the laminated body 12 at the position of. A support member 22 is provided on the side surface 24 of the laminate 12 at a portion of the trisection line 34 located on the other end 52 side of the laminate 12 among the trisection lines 34 of the laminate 12. For example, a central line 32 c obtained by dividing the support member 20 in the stacking direction of the laminate 12 and a central line 32 d obtained by dividing the support member 22 into two coincide with the trisection line 34 of the laminate 12. The support member 20 has a hardness (eg, high Vickers hardness) higher than that of the support member 22. For example, the support member 20 is formed of a metal such as stainless steel, and the support member 22 is formed of a resin such as polypropylene. The other configuration is the same as that of the first embodiment, and hence the description is omitted.

実施例4のように、積層体12の一端50側(重力方向上側)に設けられた支持部材20が、積層体12の他端52側(重力方向下側)に設けられた支持部材22よりも硬い場合でもよい。この場合でも、支持部材20及び22による積層体12を支持する力が積層体12の積層方向の中央よりも重力方向上側に偏って大きくなるため、積層体12の撓みを効率的に抑制することができる。   As in the fourth embodiment, the support member 20 provided on one end 50 side (upper side in the gravity direction) of the laminate 12 is closer to the other end 52 side (lower side in the gravity direction) of the laminate 12 than the support member 22. It may be hard. Even in this case, since the force for supporting the laminate 12 by the support members 20 and 22 becomes larger at the upper side in the gravity direction than at the center in the lamination direction of the laminate 12, deflection of the laminate 12 is efficiently suppressed. Can.

以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   As mentioned above, although the embodiment of the present invention has been described in detail, the present invention is not limited to such a specific embodiment, and various modifications may be made within the scope of the present invention described in the claims. Changes are possible.

10〜10b 単セル
12 積層体
14 エンドプレート
16 外周部材
18〜22 支持部材
24 側面
30 中央ライン
32〜32d 中央ライン
34 3等分ライン
40 金属部
42 弾性部
44 固定部材
50 一端
52 他端
100〜500 燃料電池スタック
10 to 10 b Single-cell 12 laminated body 14 end plate 16 outer peripheral member 18 to 22 supporting member 24 side surface 30 central line 32 to 32 d central line 34 3 equal line 40 metal part 42 elastic part 44 fixing member 50 one end 52 other end 100 to 500 fuel cell stack

Claims (1)

複数の単セルが積層され、前記複数の単セルのうちの一端側の単セルが他端側の単セルよりも重力方向上側に位置する積層体と、
前記積層体の積層方向に沿う側面に対向して設けられた外周部材と、
前記積層体の側面と前記外周部材との間に前記外周部材に組み付けられて設けられ、前記積層体の側面側に押圧されて前記積層体を支持する支持部材と、を備え、
前記支持部材は、前記積層体を支持する力が前記積層体の積層方向の中央よりも重力方向上側に偏って大きくなるように、前記積層体の側面と前記外周部材との間に設けられている燃料電池スタック。
A stacked body in which a plurality of single cells are stacked, and a single cell on one end side of the plurality of single cells is positioned above a single cell on the other side in a gravity direction.
An outer peripheral member provided opposite to a side surface along the stacking direction of the stacked body;
And a supporting member which is provided between the side surface of the laminate and the outer peripheral member and assembled to the outer circumferential member and is pressed against the side surface of the laminate to support the laminate.
The support member is provided between a side surface of the laminate and the outer peripheral member such that a force for supporting the laminate is larger on a gravity direction upper side than a center of the laminate in the lamination direction. Fuel cell stack.
JP2017199709A 2017-10-13 2017-10-13 Fuel cell stack Active JP6801624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017199709A JP6801624B2 (en) 2017-10-13 2017-10-13 Fuel cell stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017199709A JP6801624B2 (en) 2017-10-13 2017-10-13 Fuel cell stack

Publications (2)

Publication Number Publication Date
JP2019075247A true JP2019075247A (en) 2019-05-16
JP6801624B2 JP6801624B2 (en) 2020-12-16

Family

ID=66544227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017199709A Active JP6801624B2 (en) 2017-10-13 2017-10-13 Fuel cell stack

Country Status (1)

Country Link
JP (1) JP6801624B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019114473A (en) * 2017-12-25 2019-07-11 トヨタ自動車株式会社 Fuel cell unit and fuel cell vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019114473A (en) * 2017-12-25 2019-07-11 トヨタ自動車株式会社 Fuel cell unit and fuel cell vehicle

Also Published As

Publication number Publication date
JP6801624B2 (en) 2020-12-16

Similar Documents

Publication Publication Date Title
WO2011114811A1 (en) Fuel cell
JP6474843B2 (en) Separator support structure
US10818955B2 (en) Fuel cell unit and fuel cell vehicle
JP2013211240A (en) Fuel cell stack
WO2017104226A1 (en) Fuel cell stack
JP6801624B2 (en) Fuel cell stack
JP2014071943A (en) On-vehicle fuel cell system
JP7130610B2 (en) Metal separators for fuel cells, junction separators and power generation cells
JP4417204B2 (en) Fuel cell stack
JP3875606B2 (en) Fuel cell
JP6210050B2 (en) Fuel cell
JP2007184203A (en) Fuel cell
JP6772861B2 (en) Fuel cell cell stack
JP2020102382A (en) Fuel cell unit
JP2007184200A (en) Fuel cell stack
JP4427419B2 (en) Fuel cell stack
JP5645073B2 (en) Fuel cell stack
JP5434033B2 (en) FUEL CELL STACK CASE AND METHOD OF FIXING FUEL CELL STACK
JP2022067981A (en) Fuel cell
JP2008108485A (en) Fuel cell
JP2021015766A (en) Metal separator for fuel cell, junction separator, and power generation cell
JP2006073226A (en) Fuel cell stack
JP6191495B2 (en) Fuel cell stack structure
JP2006252972A (en) Fuel cell stack and manufacturing method for the same
JPWO2017026447A1 (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201109

R151 Written notification of patent or utility model registration

Ref document number: 6801624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151