[go: up one dir, main page]

JP2019068622A - Rotary electric machine - Google Patents

Rotary electric machine Download PDF

Info

Publication number
JP2019068622A
JP2019068622A JP2017191974A JP2017191974A JP2019068622A JP 2019068622 A JP2019068622 A JP 2019068622A JP 2017191974 A JP2017191974 A JP 2017191974A JP 2017191974 A JP2017191974 A JP 2017191974A JP 2019068622 A JP2019068622 A JP 2019068622A
Authority
JP
Japan
Prior art keywords
rotor
receiver
cooling
shaft
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017191974A
Other languages
Japanese (ja)
Inventor
武史 小牧
Takeshi Komaki
武史 小牧
正幸 池本
Masayuki Ikemoto
正幸 池本
孝昌 竹内
Takamasa Takeuchi
孝昌 竹内
大樹 中根
Daiki Nakane
大樹 中根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Original Assignee
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd filed Critical Aisin AW Co Ltd
Priority to JP2017191974A priority Critical patent/JP2019068622A/en
Publication of JP2019068622A publication Critical patent/JP2019068622A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Motor Or Generator Cooling System (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

To solve the problems that manufacture of a rotor consisting of laminated steel plates becomes troublesome and stress of steel plates in accordance with high-speed rotation increases when a communication passage for supplying lubricant to an oil passage for cooling is formed inside the rotor.SOLUTION: Lubricant of an oil hole 9 of a shaft 2 is scattered through supply holes 21 or 27, 26 by centrifugal force based on rotation of a rotor 3, received by receivers 20, 20to be guided to an oil passage 19 for cooling. The lubricant cools the rotor while flowing through the oil passage 19 for cooling, and is diffused from an opening 19a on the opposite side to cool a coil end part of a stator.SELECTED DRAWING: Figure 3

Description

本明細書が開示する技術は、電気モータ等の回転電機に係り、詳しくは永久磁石をロータに配置した回転電機に関する。なお、回転電機は、電気エネルギーを回転力に変換するもの(力行)、回転力を電気エネルギーに変換するもの(回生)を含むが、以下、電気エネルギーを回転力に変換するモータについて代表して説明する。   The technology disclosed in the present specification relates to a rotating electrical machine such as an electric motor, and more particularly to a rotating electrical machine in which permanent magnets are arranged on a rotor. The rotating electrical machine includes one that converts electrical energy to rotational power (powering) and one that converts rotational power to electrical energy (regeneration). Hereinafter, a motor that converts electrical energy to rotational power is represented explain.

一般に、ハイブリッド車両、EV車両等の高出力を要求されるモータとして、永久磁石をロータ(回転子)に配置し、コイル(電機子巻線)をステータ(固定子)に配置した同期モータが用いられている。該同期モータのロータは、鋼板がシャフトに複数枚積層して嵌挿され、該積層鋼板に永久磁石が組込まれており、該永久磁石が積層鋼板の内部に埋込んだ埋込磁石構造と、積層鋼板の表面に組込んだ表面磁石構造がある。   In general, as a motor requiring high output of hybrid vehicles, EV vehicles, etc., a synchronous motor in which permanent magnets are disposed on a rotor (rotor) and coils (armature winding) are disposed on a stator (stator) is used. It is done. In the rotor of the synchronous motor, a plurality of steel plates are stacked and fitted on a shaft, a permanent magnet is incorporated in the laminated steel plate, and the permanent magnet is embedded in the laminated steel plate; There is a surface magnet structure incorporated in the surface of the laminated steel sheet.

従来、上記ロータにおける磁石の内径側近傍に軸方向に貫通する冷却用流路が形成され、該冷却用流路に、シャフト中心部からロータに形成された連通路を介して潤滑油が供給され、冷却効率を高めたモータが提案されている(特許文献1)。   Conventionally, a cooling flow passage penetrating in the axial direction is formed in the vicinity of the inner diameter side of the magnet in the rotor, and lubricating oil is supplied to the cooling flow passage from a central portion of the shaft through a communication passage formed in the rotor. , The motor which raised cooling efficiency is proposed (patent documents 1).

前記ロータに形成される連通路は、シャフトから離れるに連れて軸線方向における幅が小さくなる窪み及び窪みのシャフトから最も離れている部分(小面積)に連通している径方向通路からなり、シャフトからの潤滑油がロータの遠心力により上記窪みの底部に集まり、該底部に集まった潤滑油が径方向通路から冷却用流路に送られる。   The communication passage formed in the rotor is composed of a recess having a width in the axial direction decreasing with distance from the shaft and a radial passage communicating with a portion (small area) of the recess farthest from the shaft. Lubricating oil from is collected at the bottom of the recess by the centrifugal force of the rotor, and the lubricating oil collected at the bottom is sent from the radial passage to the cooling flow passage.

特開2015−89316号公報JP, 2015-89316, A

上記窪みを始めとする連通路は、ロータの内部に形成される以上、ロータを構成する積層鋼板を切欠くことにより形成される。ロータは、多数の鋼板をシャフトに嵌合して積層し、ナットで締付けることにより固定されるが、該締付け時に、上記窪み等の連通路のため、切欠かれた積層鋼板が変形する虞があり、また、連通路が細い形状である場合、シャフトに形成された油孔とのラップバラツキが生じる虞があり、ロータの製造に制約を生じる。   The communication path including the above-mentioned depression is formed by cutting out the laminated steel plates constituting the rotor as long as it is formed inside the rotor. The rotor is fixed by fitting and laminating a large number of steel plates on a shaft and tightening with a nut, but there is a risk that the notched laminated steel plates may be deformed due to a communication passage such as the above-mentioned recess when tightening. Also, in the case where the communication passage has a thin shape, there is a possibility that a wrap variation with the oil hole formed in the shaft may occur, which restricts the manufacturing of the rotor.

また、上記連通孔を形成するために一部が切欠かれた鋼板は、荷重に対して不均等になり、ロータが高速に回転する際にロータコアブリッジ等の応力が増加し、強度が低下するおそれがある。   In addition, the steel plate partially cut away to form the communication hole may become uneven with respect to the load, and when the rotor rotates at high speed, stress such as the rotor core bridge may increase and the strength may decrease. There is.

そこで、本技術に係る回転電機は、ロータに形成される冷却用流路に冷却用液体(潤滑油)をシャフトから供給する際、ロータの外側を通って供給することにより、上述した課題を解決した。   Therefore, the rotary electric machine according to the present technology solves the above-mentioned problems by supplying the cooling liquid (lubricating oil) to the cooling flow path formed in the rotor from the shaft through the outside of the rotor. did.

本解決手段は、コイルが巻回されたステータと、
シャフトに固定されて積層された複数の積層鋼板及び該積層鋼板に組込まれた複数の磁石を有するロータと、
前記磁石の近傍において前記積層鋼板を軸方向に貫通して形成された複数の冷却用流路と、
前記シャフトの中心部の油孔の冷却用液体を該シャフトの外周に供給する供給孔と、
前記ロータの側面に取付けられ、前記冷却用流路に連通し、かつ外径側が覆われると共に内径側が開口しているレシーバと、を備え、
前記シャフトの油孔の冷却用液体を、前記ロータの回転による遠心力により前記供給孔から飛散し、前記ロータの軸方向外側を通って前記レシーバで受け、前記冷却用流路に供給する、
ことを特徴とする回転電機にある。
The solution includes a stator wound with a coil,
A rotor having a plurality of laminated steel plates fixed and laminated to a shaft and a plurality of magnets incorporated in the laminated steel plates;
A plurality of cooling channels formed by axially penetrating the laminated steel plate in the vicinity of the magnet;
A supply hole for supplying a cooling liquid for cooling the oil hole at the center of the shaft to the outer periphery of the shaft;
A receiver attached to a side surface of the rotor and in communication with the cooling flow passage, the outer diameter side being covered and the inner diameter side being open,
The liquid for cooling the oil hole of the shaft is scattered from the supply hole by the centrifugal force due to the rotation of the rotor, passes through the axial direction outer side of the rotor, is received by the receiver, and is supplied to the cooling flow path.
The electric rotating machine is characterized by

ロータを構成する積層鋼板に連通路を形成する必要がない。   There is no need to form a communication passage in the laminated steel plate that constitutes the rotor.

本発明の実施の形態による回転電機(モータ)を示し、図2のA−A線断面図。The rotary electric machine (motor) by embodiment of this invention is shown, and the AA sectional view taken on the line of FIG. 回転電機のロータを示す側面図。The side view showing the rotor of rotation electrical machinery. 他の実施の形態による回転電機(モータ)を示し、図4のB−B線断面図。The rotary electric machine (motor) by other embodiment is shown, and the BB sectional drawing of FIG. 他の実施の形態の回転電機のロータを示す側面図。The side view which shows the rotor of the rotary electric machine of other embodiment.

以下、図面に沿って、本発明を同期モータ(回転電機)に用いた実施の形態について説明する。同期モータ1は、図1に示すように、シャフト2に組込まれたロータ3と、固定部材であるケース(図示せず)に固定されたステータ5とを有する。ロータ3は、多数枚のケイ素鋼板6…が軸方向に積層されており、ステータ5は、コイル7が巻回されている。上記シャフト2は、ケースにベアリングにより回転自在に支持されており、中心部に油孔9を有し、かつ外周部にキー溝10が形成され、軸方向一方に外径方向に突出したフランジ11が形成され、軸方向他方にネジ溝12が形成されている。   An embodiment in which the present invention is used for a synchronous motor (rotary electric machine) will be described below with reference to the drawings. As shown in FIG. 1, the synchronous motor 1 has a rotor 3 incorporated in the shaft 2 and a stator 5 fixed to a case (not shown) which is a fixing member. The rotor 3 has a large number of silicon steel plates 6... Stacked in the axial direction, and the stator 5 has a coil 7 wound thereon. The shaft 2 is rotatably supported by a bearing in a case, has an oil hole 9 at its central portion, and has a key groove 10 formed on its outer peripheral portion, and a flange 11 projecting radially outward in one axial direction. Is formed, and the screw groove 12 is formed on the other side in the axial direction.

前記ロータ3を構成する鋼板6は、内径方向に突出する突部を上記キー溝10に嵌合して、上記シャフト2に嵌挿され、該シャフト2に多数枚回り止めされて積層される。これら積層鋼板6は、その一端(始めの1枚)を上記フランジ11に当接して、その他端(最後の1枚)にワッシャ13を当接してナット15を上記ネジ溝12に螺合することにより、締付けられてロータ3を構成する。これら積層鋼板6の外径側部分には、図2に示すように、交互に傾斜方向を逆にして傾斜した貫通孔が多数形成され、これら貫通孔に永久磁石16が埋込まれている。従って、磁石16は、表面側と裏面側とが交互にS極とN極とになり、ロータ3の外周部分に交互に所定量傾斜して円周状に多数個埋込まれる。   The steel plate 6 constituting the rotor 3 is fitted with a projection projecting in the inner diameter direction in the key groove 10, fitted in the shaft 2, held in rotation by a large number of the shaft 2, and stacked. One end (the first one) of these laminated steel plates 6 abuts against the flange 11 and the other end (the last one) abuts the washer 13 so that the nut 15 is screwed into the screw groove 12 Are tightened to constitute the rotor 3. As shown in FIG. 2, a large number of through holes are formed in the outer diameter side of the laminated steel plates 6 with the inclination directions reversed alternately, and permanent magnets 16 are embedded in these through holes. Therefore, the magnet 16 has the S pole and the N pole alternately on the front surface side and the back surface side, and is alternately embedded in the outer peripheral portion of the rotor 3 by a predetermined amount and circumferentially embedded with a predetermined amount.

前記ロータ3を構成する鋼板6には、図2に示すように、上記交互に傾斜して隣接する磁石16の外径側の間部分Cを中央としてその内径側に近接して、多数(10個)の冷却用油路(流路)19が貫通して形成されており、その左右端は、ロータ3の側面に開口19a,19bしている。該冷却用油路19は、ロータ3を軸方向に貫通して形成され、その外径側中央部分が磁石16の外径側隣接間隔Cの中央部に対向して、各磁石の八字状に傾斜した最も外径側部分に近接して配置された断面略矩形状からなる。なお、各磁石16の配置、その数等は、図2に示すものに限らず、どのようなものでもよく、また上記冷却用油路19の形状及び配置は、断面略矩形に限らず、円形、略三角形、各磁石の内周面に沿って拡がる円弧形等のどのような形状でもよい。   As shown in FIG. 2, a large number of steel plates 6 constituting the rotor 3 are arranged close to each other on the inner diameter side with the portion C between the outer diameters of the adjacent magnets 16 alternately inclined as the center. The left and right ends of the cooling oil passage (flow passage) 19 are formed in the side surfaces of the rotor 3 with openings 19a and 19b. The cooling oil passage 19 is formed so as to penetrate the rotor 3 in the axial direction, and the outer diameter side central portion thereof opposes the central portion of the outer diameter side adjacent space C of the magnet 16 to form an eight shape of each magnet. It has a substantially rectangular cross section disposed close to the inclined most outer diameter side portion. The arrangement of the magnets 16 and the number thereof are not limited to those shown in FIG. 2 and may be any shape, and the shape and arrangement of the cooling oil passage 19 are not limited to the substantially rectangular cross section, and may be circular. It may have any shape such as a substantially triangular shape or an arc shape extending along the inner circumferential surface of each magnet.

上記ロータ3の一端面には、上記各冷却用油路19の開口部19aの上方部分を覆うようにレシーバ20が接着等により固着されている。レシーバ20は、冷却用油路の周方向幅より僅かに大きく、外径側が覆われると共に内径側が開口した半カップ形状からなり、内径側から飛散した潤滑油(冷却用液体)を受けて冷却用油路19に導く。これらレシーバ20は、すべて、ロータ3の軸方向一側面に、各冷却用油路19の開口部19aに設置されている。なお、レシーバ20はロータ3の左右最外端の鋼板6に設けているが、これは、左右端の鋼板6の外側面に非磁性体からなるエンドプレートを固定し、該エンドプレートに、上記各レシーバ20を接着、溶接、ビス等で固着して設けてもよい。各レシーバは、プラスチック又は板金等により薄くて軽い形態が好ましい。   A receiver 20 is fixed to one end surface of the rotor 3 by adhesion or the like so as to cover an upper portion of the opening 19a of each of the cooling oil passages 19. The receiver 20 has a half cup shape slightly larger than the circumferential width of the cooling oil passage and covered on the outer diameter side and opened on the inner diameter side, and receives lubricating oil (cooling liquid) scattered from the inner diameter side for cooling It leads to the oil passage 19. The receivers 20 are all installed at the opening 19 a of each cooling oil passage 19 on one side surface in the axial direction of the rotor 3. Although the receiver 20 is provided on the steel plates 6 at the outermost left and right ends of the rotor 3, the end plate made of nonmagnetic material is fixed to the outer surface of the steel plates 6 at the left and right ends. Each receiver 20 may be fixed by adhesion, welding, screws or the like. Each receiver is preferably thin and light in plastic or sheet metal or the like.

前記シャフト2のフランジ11部分には、シャフト中心部の油孔9から該フランジ11の外周面に貫通する潤滑油(冷却用液体)の供給孔21が上記各レシーバ20に対向して複数個形成されている。また、フランジ11部分には上記レシーバ用供給孔21に隣接して、上記レシーバ20から外れてステータ5のコイルエンド部に潤滑油を飛散するコイル用供給孔22が複数個形成されている。   A plurality of lubricating oil (cooling liquid) supply holes 21 penetrating from the oil hole 9 at the central portion of the shaft to the outer peripheral surface of the flange 11 are formed in a plurality of portions facing the respective receivers 20 at the flange 11 portion of the shaft 2 It is done. Further, a plurality of coil supply holes 22 which are separated from the receiver 20 and scatter the lubricating oil on the coil end portion of the stator 5 are formed adjacent to the receiver supply hole 21 in the flange 11 portion.

上述した本モータ(回転電機)1は、ステータ5のコイルに電力が供給されると、ロータ3が回転して、シャフト2から車両の走行装置に伝達される。また、車両の慣性力又はエンジンからの回転トルクがシャフト2に伝達され、ロータ3が回転すると、ステータ5に発生した電力がバッテリ等に送られる。いずれの場合では、ロータ3は、高速で回転し、ロータ3における磁石16の近くの積層鋼板6に界磁を生じ、ステータ5のコイル7に電流が流れて、発熱する。   When electric power is supplied to the coils of the stator 5, the above-described motor (rotating electric machine) 1 rotates the rotor 3 and is transmitted from the shaft 2 to the traveling device of the vehicle. Further, the inertial force of the vehicle or the rotational torque from the engine is transmitted to the shaft 2, and when the rotor 3 rotates, the power generated in the stator 5 is sent to the battery or the like. In either case, the rotor 3 rotates at high speed, a field is generated on the laminated steel plate 6 near the magnet 16 in the rotor 3, and current flows through the coil 7 of the stator 5 to generate heat.

シャフト2の油孔9にオイルポンプからの潤滑油(冷却用液体)が供給され、該潤滑油は、シャフト2のフランジ11に形成された各供給孔21,22から、ロータ3の回転による遠心力により外径方向に飛散される(J,J)。供給孔21から噴出された潤滑油は、専らレシーバ20により受けられ、軸方向一端の開口19aから冷却用油路19に導かれる(J)。該冷却用油路19の潤滑油は、上記界磁によるロータ3の磁石16及び積層鋼板6の発熱を冷却しつつ、軸方向右側に流れ(J)、ロータ3の他端の開口19aから排出され、該排出された潤滑油は、ロータ3の回転に伴う遠心力により外径方向に飛散して(J)、ステータ5の他端のコイルエンド部の発熱を冷却する。 The lubricating oil (cooling liquid) from the oil pump is supplied to the oil hole 9 of the shaft 2, and the lubricating oil is centrifuged by the rotation of the rotor 3 from the respective supply holes 21 and 22 formed in the flange 11 of the shaft 2. It is scattered in the outer diameter direction by force (J 1 , J 4 ). The lubricating oil ejected from the supply hole 21 is exclusively received by the receiver 20, and is led to the cooling oil passage 19 from the opening 19a at one axial end (J 1 ). The lubricating oil in the cooling oil passage 19 flows to the right in the axial direction (J 2 ) while cooling the heat generation of the magnet 16 of the rotor 3 and the laminated steel plate 6 by the above-mentioned field (J 2 ). The discharged lubricating oil is scattered in the outer diameter direction by the centrifugal force accompanying the rotation of the rotor 3 (J 3 ) to cool the heat generated at the coil end portion of the other end of the stator 5.

シャフト2のフランジ11に形成されたコイル用供給孔22から噴出した潤滑油は、レシーバ20にて受けられず、ロータの回転による遠心力によりその間を通ってステータ5の一端部のコイルエンド部に直接飛散され(J)、該コイルエンド部の発熱を冷却する。なお、上述した実施の形態は、シャフト2からの潤滑油を、レシーバ用供給孔21とコイル用供給孔22とに分配して、それぞれ潤滑油を供給したが、供給孔を、レシーバ用とオイル用とを共用して半分としてもよい。即ち、供給孔21の配置をレシーバ20に対向する位置から少しずらして、レシーバ20の周方向幅が比較的狭いことと相俟って、上記供給孔21から噴出される潤滑油の約半分がレシーバ20に受けられて冷却用油路19を介して他端のコイルエンド部に供給され、上記潤滑油の残の約半分は、レシーバに受けられずに、一端のコイルエンド部に直接供給してもよい。 The lubricating oil spouted from the coil supply hole 22 formed in the flange 11 of the shaft 2 is not received by the receiver 20, and the coil end portion of one end portion of the stator 5 passes through in between by the centrifugal force due to the rotation of the rotor. It is directly scattered (J 4 ) to cool the heat generated at the coil end. In the embodiment described above, although the lubricating oil from the shaft 2 is distributed to the receiver supply hole 21 and the coil supply hole 22 and the lubricating oil is supplied respectively, the supply holes are used for the receiver and the oil. You may share it and use it as half. That is, by displacing the arrangement of the supply holes 21 a little from the position facing the receiver 20 and combining with the circumferential width of the receiver 20 being relatively narrow, about half of the lubricating oil ejected from the supply holes 21 is It is received by the receiver 20 and supplied to the coil end of the other end via the cooling oil passage 19, and the other half of the lubricating oil is supplied directly to the coil end of one end without being received by the receiver. May be

これにより、ロータ3の冷却用油路19及びステータのコイルエンド部に、ロータ内部の鋼板6に連通路を形成することなく、シャフト2から直接供給することが可能となり、各鋼板の形状を全部同一としてかつ重量アンバランスのない単純構造とすることができる。従って、ロータ内部の連通孔を、ロータを構成する鋼板の締付け固定で、変形したり潰したりすることがなく、また鋼板組立時のシャフトの径方向孔と鋼板の連通孔の整合等の面倒な作業を必要とせず、同一形状の鋼板の組付けによりロータの製造が容易となり、かつ信頼性も向上する。また、各鋼板は、荷重に対して安定した同一形状からなり、ロータが高速回転しても不均等で不自然な応力が作用することなく、高い強度からなり、高い遠心力が作用する高速回転でも安定した滑らかな回転が可能となる。   As a result, it is possible to directly supply from the shaft 2 to the cooling oil passage 19 of the rotor 3 and the coil end portion of the stator without forming a communication passage in the steel plate 6 inside the rotor. It can be a simple structure that is identical and has no weight imbalance. Therefore, the communication holes in the rotor are not deformed or crushed by the tightening and fixing of the steel plates constituting the rotor, and the alignment of the radial holes of the shaft and the communication holes of the steel plates during steel plate assembly etc. Assembling the steel plates of the same shape does not require work, and the manufacture of the rotor is facilitated, and the reliability is also improved. In addition, each steel plate has the same shape that is stable against load, and even when the rotor rotates at high speed, non-uniform and unnatural stress does not act, it has high strength and high centrifugal force acts at high speed. But stable and smooth rotation is possible.

ついで、図3及び図4に沿って、一部変更した実施の形態について説明する。なお、モータの構成自体は、先の実施の形態と同様なので、同一符号を付して説明を省略する。   Next, a partially modified embodiment will be described with reference to FIGS. 3 and 4. In addition, since the configuration itself of the motor is the same as that of the previous embodiment, the same reference numerals are given and the description is omitted.

モータ(回転電機)1のロータ3は、同様に、積層鋼板6を貫通した冷却用油路(流路)19が多数(10個)形成されている。これら冷却用油路19の内の半分、即ち1個おきに、ロータ3の軸方向一端面に開口する開口部19aを覆うようにレシーバ20が設けられており、他の半分のレシーバ20は、ロータ3の軸方向他端において冷却用油路19の開口部19aを覆うように設けられている。即ち、円周状に配置された多数の冷却用油路19は、交互に軸方向一端又は他端にレシーバ20,20が取付けられ、レシーバのない側は単に開口部19aとなっている。レシーバ20,20は、先の実施の形態のレシーバ20に比して周方向幅広になっており、内径側の開口面積が大きくなって、多くの潤滑油を受け取ることができる。なお、先の実施の形態と同様に、レシーバ20,20は、最外側の鋼板6に直接取付けられても、またエンドプレートに取付けられてもよい。 Motor (rotary electric machine) 1 2 of the rotor 3, similarly, the cooling oil passage (passage) 19 is a large number (10) formed penetrating the laminated steel plate 6. Half of these cooling oil passage 19, that is, every other, and the receiver 20 1 is provided to cover the opening 19a which opens in the axial direction one end face of the rotor 3, the other half Receiver 20 2 Is provided so as to cover the opening 19 a of the cooling oil passage 19 at the other axial end of the rotor 3. That is, a number of cooling oil passage 19 disposed circumferentially, the alternating receiver 20 1, 20 2 in the axial direction one end or the other is attached to the side with no receiver is simply an opening portion 19a . Receiver 20 1, 20 2 is different from the receiver 20 of the previous embodiment has become circumferentially wide, and the opening area of the inner diameter side is increased, it is possible to receive more lubricating oil. Similarly to the previous embodiment, the receiver 20 1, 20 2, be mounted directly to steel 6 outermost, or may be attached to the end plate.

シャフト2のフランジ11には、上記ロータ一端側のレシーバ20に対向するように油孔9から外周面に向けて供給孔21が形成されている。シャフト2のロータ3の軸方向他端側(右側)には、ナット15により積層鋼板6が締付けているが、本実施の形態にあっては、該ナット15と積層鋼板6の間の油路用プレート25が介在している。該油路用プレート25は、シャフト2のキー溝10に係合して、鋼板6と同様にシャフトに対して回り止めされて位置決めされている。該油路用プレート25には、他端側のレシーバ20に対向するように軸方向に貫通する多数の供給孔26が形成されている。シャフト2の上記プレート25が嵌合する位置に対応して、油孔9から外周面に向けて径方向油孔27が形成されており、これら油孔27の外周面の開口は、上記嵌合したプレート25の供給孔26に整合する。なお、油孔用プレート25は、シャフト2に一体に設けられており、該プレート25に形成された供給孔26は、前記フランジ11に形成された供給孔22と同様に、の潤滑油をシャフト外周に供給するシャフト2の供給孔である。 The flange 11 of the shaft 2, the supply hole 21 is formed toward the outer circumferential surface of the oil hole 9 so as to face the receiver 20 1 of the rotor end side. The laminated steel plate 6 is tightened by the nut 15 on the other axial end side (right side) of the rotor 3 of the shaft 2, but in the present embodiment, the oil path between the nut 15 and the laminated steel plate 6 A plate 25 intervenes. The oil passage plate 25 engages with the key groove 10 of the shaft 2 and is positioned against the shaft in the same manner as the steel plate 6. The oil path plate 25, a number of supply holes 26 penetrating in the axial direction so as to face the receiver 20 2 of the other end side is formed. Radial oil holes 27 are formed from the oil holes 9 toward the outer peripheral surface corresponding to the position where the plate 25 of the shaft 2 is fitted. The openings on the outer peripheral surface of these oil holes 27 are the above-mentioned fitting It aligns with the feed hole 26 of the plate 25. The oil hole plate 25 is integrally provided on the shaft 2, and the supply hole 26 formed on the plate 25 is a shaft of lubricating oil similar to the supply hole 22 formed on the flange 11. It is a supply hole of the shaft 2 which supplies the outer periphery.

従って、本モータ(回転電機)1は、一側面では、シャフト2の油孔9の潤滑油は、遠心力によりフランジ11の供給孔21から飛散して幅広のレシーバ20で略全量受けられて、冷却用油路19に導かれる(J)。冷却用油路19の潤滑油は、磁石16及び鋼板6を冷却しつつ軸方向に流れて(J)、他側面の開口部19aから放出され、遠心力によりステータ他側面のコイルエンド部に飛散され(J)、該コイルエンド部を冷却する。 Accordingly, the motor (rotary electric machine) 1 2, in one aspect, the lubricant oil holes 9 of the shaft 2 is received substantially total volume wide receiver 20 1 scattered from the supply hole 21 of the flange 11 by the centrifugal force Then, it is led to the cooling oil passage 19 (J 1 ). The lubricating oil in the cooling oil passage 19 flows in the axial direction while cooling the magnet 16 and the steel plate 6 (J 2 ), and is released from the opening 19a on the other side, and is centrifugally forced to the coil end of the other side It is scattered (J 3 ) to cool the coil end.

ロータ3の他側面では、シャフト2の油孔9の潤滑油は、シャフト2の径方向油孔27及びプレート25の供給孔26を通って、遠心力に飛散されて、同様の幅広のレシーバ20で略全量受けられて冷却用油路19に導かれる(J)。同様に、該潤滑油は、冷却用油路19を流れつつロータ3を冷却して(J)、一側面の開口部19aから飛散される。該飛散された潤滑油は、遠心力によりステータ5の一側面のコイルエンド部に供給され、該コイルエンド部を冷却する。 On the other side of the rotor 3, the lubricating oil of the oil holes 9 of the shaft 2 is scattered by centrifugal force through the radial oil holes 27 of the shaft 2 and the supply holes 26 of the plate 25, and similar wide receivers 20 Substantially the entire amount is received at 2 and led to the cooling oil passage 19 (J 5 ). Similarly, the lubricating oil cools the rotor 3 while flowing through the cooling oil passage 19 (J 6 ), and is splashed from the opening 19 a on one side. The splashed lubricating oil is supplied to the coil end of one side of the stator 5 by centrifugal force to cool the coil end.

本実施の形態にあっては、先の実施の形態の機能に加えてレシーバ20,20がロータ3の左右に分散されて同数ずつ配置されるので、ロータ3の回転安定度を更に向上することができ、またレシーバ、冷却用油路により同じ形態で左右に潤滑油を分配するので、冷却も左右に均等して行うことができる。なお、磁石、冷却用油路の配置等は、先の実施の形態と同様に、様々な変更が可能である。また、プレート25に形成した供給孔26により右側のレシーバに潤滑油を供給したが、シャフト2からレシーバ20の潤滑油の供給は、鋼板又はエンドプレート外側面の凹溝等の他の形状でもよい。また、上記幅広のレシーバ20,20は、先の実施の形態(図1,図2参照)にも適用可能である。 In the present embodiment, since the receiver 20 1, 20 2 in addition to the functions of the above embodiment is arranged by the same number are distributed to the right and left rotor 3, further improve the rotational stability of the rotor 3 Also, since the lubricating oil is distributed to the left and right in the same form by the receiver and the cooling oil passage, the cooling can be equally performed to the left and right. In addition, various changes are possible for the arrangement of the magnet, the cooling oil passage, etc., as in the previous embodiment. Although lubrication oil being supplied to the right side of the receiver by a supply hole 26 formed in the plate 25, supply from the shaft 2 of the receiver 20 2 of the lubricating oil, also other shapes of the groove or the like of the steel plate or the end plate outer surface Good. Further, the receiver 20 1, 20 2 of the wide, the above embodiment (see FIGS. 1 and 2) is also applicable to.

なお、上記モータ1のロータ3は、磁石16を積層鋼板6の内部に埋込んだ埋込み磁石構造としたが、これは、ロータの外周面に磁石を組付けた表面磁石構造でもよい。また、磁石16の配置は、図2、図4に示すような八字状構造に限らず、どのような配置構造でもよい。冷却用油路19は、矩形状に限らず、断面円形、周方向に拡がる扁平形状等の他の形状でもよく、また磁石16に対する配置も、傾斜する磁石の外径側端が互いに隣接する間に冷却用油孔の周方向中央が対抗するように配置したが、これはどのような配置でもよい。高い出力が要求される車両駆動用のモータ(回転電機)に通用して好適であるが、これに限らず、どのようなモータに適用してもない。   Although the rotor 3 of the motor 1 has an embedded magnet structure in which the magnet 16 is embedded in the laminated steel plate 6, it may have a surface magnet structure in which the magnet is assembled on the outer peripheral surface of the rotor. Further, the arrangement of the magnets 16 is not limited to the eight-letter structure as shown in FIGS. 2 and 4 and may be any arrangement structure. The cooling oil passage 19 is not limited to a rectangular shape, and may have other shapes such as a circular cross section, a flat shape expanding in the circumferential direction, and the arrangement with respect to the magnet 16 while the outer diameter side ends of the inclined magnets are adjacent to each other The circumferential center of the cooling oil hole is arranged to face each other, but this may be any arrangement. The present invention is suitable for a vehicle drive motor (a rotating electric machine) that requires a high output, but is not limited to this, and it is not applicable to any motor.

[本実施形態のまとめ]
本技術は、コイル(7)が巻回されたステータ(5)と、
シャフト(2)に固定されて積層された複数の積層鋼板(6)及び該積層鋼板に組込まれた複数の磁石(16)を有するロータ(3)と、
前記磁石(3)の近傍において前記積層鋼板を軸方向に貫通して形成された複数の冷却用流路(19)と、
前記シャフト(2)の中心部の油孔(9)の冷却用液体を該シャフトの外周に供給する供給孔(21)(26,27)と、
前記ロータの側面に取付けられ、前記冷却用流路(19)に連通し、かつ外径側が覆われると共に内径側が開口しているレシーバ(20)(21,21)と、を備え、
前記シャフト(2)の油孔(9)の冷却用液体を、前記ロータ(3)の回転による遠心力により前記供給孔(21)(26,27)から飛散し、前記ロータの軸方向外側を通って前記レシーバ(20,20)で受け、前記冷却用流路(19)に供給する、
ことを特徴とする回転電機にある。
[Summary of this embodiment]
In the present technology, a stator (5) wound with a coil (7),
A rotor (3) having a plurality of laminated steel plates (6) fixed and laminated to a shaft (2) and a plurality of magnets (16) incorporated in the laminated steel plate;
A plurality of cooling channels (19) formed by axially penetrating the laminated steel plate in the vicinity of the magnet (3);
Supply holes (21), (26, 27) for supplying liquid for cooling the oil hole (9) at the center of the shaft (2) to the outer periphery of the shaft;
The receiver (20) (21 1 , 21 2 ) attached to the side surface of the rotor and in communication with the cooling flow passage (19) and covered on the outer diameter side and open on the inner diameter side;
The liquid for cooling the oil hole (9) of the shaft (2) is scattered from the supply holes (21) (26, 27) by the centrifugal force caused by the rotation of the rotor (3), and the axial direction outer side of the rotor is Through the receiver (20, 20 2 ) and supply it to the cooling channel (19)
The electric rotating machine is characterized by

ロータ回転に基づく遠心力により、シャフトの供給孔から冷却用液体を飛散し、該飛散した冷却用液体は、ロータの軸方向外側を通ってレシーバに受けられ、冷却用流路に供給される。従って、ロータを構成する積層鋼板に、冷却用流路に冷却用液体を供給する連通路を設ける必要がなく、積層鋼板を締付けてシャフトに固定する際、上記連通路を変形したり潰したりすることはなく、またシャフトに形成した油孔と連通路との整合作業を必要とせず、ロータを容易かつ高い精度で製造することができる。また、ロータを構成する積層鋼板は、すべて同一形状とし、かつ重量アンバランスのない単純な形状とすることができ、ロータの高い回転にあっても、安定して回転し、荷重強度を向上して信頼性の高い製品を得ることができる。   The cooling liquid is splashed from the feed hole of the shaft by the centrifugal force based on the rotor rotation, and the splashed cooling liquid passes through the axial direction outer side of the rotor and is received by the receiver and fed to the cooling flow path. Therefore, there is no need to provide a communication passage for supplying a cooling liquid to the cooling flow passage in the laminated steel plate constituting the rotor, and when the laminated steel plate is tightened and fixed to the shaft, the communication passage is deformed or crushed. Also, the rotor can be manufactured easily and with high accuracy without the need for the alignment operation between the oil hole formed in the shaft and the communication passage. In addition, all laminated steel plates that make up the rotor can have the same shape and a simple shape without weight imbalance, and can stably rotate even with high rotation of the rotor to improve load strength. And reliable products can be obtained.

例えば図1、図2を参照して、前記レシーバ(20)は、前記ロータ(3)の軸方向一側面に、すべての前記冷却用流路の一端開口部(19a)に対応して取付けられ、
前記シャフト(2)の供給孔(21,22)から飛散される冷却用液体は、前記レシーバ(20)と該レシーバから外れて前記ステータ(7)の軸方向一端のコイルエンド部とに向うように分配され、
前記レシーバから外れた冷却用液体(J)は、前記ステータ(7)の軸方向一端のコイルエンド部に直接供給され、前記レシーバ(20)に受けられた冷却用液体(J)は、前記冷却用流路(19)を流れて(J)、前記ロータ(3)を冷却しつつ軸方向他端の開口部(19a)から放散されて前記ステータ(7)の軸方向他端のコイルエンド部に供給されてなる(J)。
For example, referring to FIGS. 1 and 2, the receiver (20) is attached to one axial side of the rotor (3) in correspondence with one end opening (19a) of all the cooling channels. ,
The cooling liquid splashed from the supply holes (21, 22) of the shaft (2) is directed to the receiver (20) and the coil end portion of one end of the stator (7) in the axial direction while being separated from the receiver Distributed to
The cooling liquid (J 4 ) removed from the receiver is directly supplied to the coil end portion at one axial end of the stator (7), and the cooling liquid (J 1 ) received by the receiver (20) is It flows through the cooling flow path (19) (J 2 ), and is dissipated from the opening (19a) at the other axial end while cooling the rotor (3), and the other axial end of the stator (7) It is supplied to the coil end (J 3 ).

ロータの一側面にすべてのレシーバを取付けると、フランジ等のシャフト自体に供給孔を形成することができ、レシーバの取付け作業及び供給孔の形成作業が容易となり、生産性を向上してコストダウンを図ることができる。また、ロータ一側面にレシーバを取付けても、ステータの両端のコイルエンド部に確実に冷却用液体を供給して、ロータ及びステータの冷却効率を確保し得る。   If all the receivers are attached to one side of the rotor, the supply holes can be formed in the shaft itself such as flanges, the installation work of the receivers and the formation work of the supply holes become easy, and the productivity is improved and the cost is reduced. Can be Also, even if the receiver is attached to one side of the rotor, the cooling liquid can be reliably supplied to the coil end portions at both ends of the stator to ensure the cooling efficiency of the rotor and the stator.

例えば図3、図4を参照して、前記レシーバ(20,20)は、前記ロータ(3)の軸方向一側面の前記冷却用流路(19)の一端開口部(19a)と、前記ロータの軸方向他端面の前記冷却用流路の他端開口部とに対応するように分配して配置され、
前記ロータの一側面側のレシーバ(20)に対向する前記シャフト(2)の供給孔(21)から飛散される冷却用液体を、前記ロータ(3)の一側面側のレシーバ(20)で受け(J)、前記冷却用流路(19)を流れつつ前記ロータ(3)を冷却して(J)、軸方向他端の開口部(19a)から放散されて前記ステータ(7)の軸方向他端のコイルエンド部に供給され(J)、
前記ロータの他側面側のレシーバ(20)に対向する前記シャフトの供給孔(27,26)から飛散される冷却用液体を、前記ロータの他側面側のレシーバ(20)で受け(J)、前記冷却用流路(19)を流れつつ前記ロータ(3)を冷却して(J)、軸方向一端の開口部(19a)から放散されて前記ステータ(7)の軸方向一端のコイルエンド部に供給されてなる(J)。
For example FIG. 3, with reference to FIG. 4, the receiver (20 1, 20 2), the one end opening of the cooling channel (19) in the axial direction one side of the rotor (3) and (19a), Distributed so as to correspond to the other end opening of the cooling flow path on the other axial end face of the rotor,
Said shaft opposite the receiver (20 1) of one side of the rotor a cooling liquid to be scattered from the supply hole (21) in (2), one side surface of the receiver of the rotor (3) (20 1) in receiving (J 1), said cooling flow path of the rotor while flow (19) (3) was cooled (J 2), wherein is dissipated from the opening of the axial end (19a) the stator (7 (J 3 ), supplied to the coil end of the other axial end of
The cooling liquid is scattered from a supply hole of the shaft opposite the receiver (20 2) of the other side of the rotor (27, 26), received at the other side of the receiver of the rotor (20 2) (J 5 ) The rotor (3) is cooled while flowing through the cooling channel (19) (J 6 ) and dissipated from the opening (19a) at one end in the axial direction to end in the axial direction of the stator (7) Is supplied to the coil end part of (J 7 ).

ロータの両側面に分配してレシーバを配置すると、シャフトからの冷却用液体は、レシーバ、冷却用流路、ステータのコイルエンド部と同じ経路で左右両面に供給されるので、ロータ及びステータの冷却効率を安定すると共に、ステータに作用する遠心力もロータの左右にて同じとなり、ロータの回転安定性を向上することができる。   When the receivers are distributed on both sides of the rotor, the cooling liquid from the shaft is supplied to the left and right sides in the same path as the receiver, the cooling flow path, and the coil end portion of the stator. While the efficiency is stabilized, the centrifugal force acting on the stator is also the same on the left and right of the rotor, and the rotational stability of the rotor can be improved.

前記レシーバ(20,20)は、内径側開口が前記冷却用流路(19)の開口部(19a)の幅より広く、前記各供給孔(21)(27,26)から飛散される冷却用液体の略全量を受けることが可能である。 The receiver (20 1, 20 2) is wider than the width of the opening of the inner diameter side opening said cooling flow path (19) (19a), is scattered from said respective supply hole (21) (27 and 26) It is possible to receive substantially all of the cooling liquid.

レシーバの内径側開口部の幅を、冷却用流路の開口部の幅より広くすると、シャフトの供給孔から飛散される冷却用液体の飛散がロータの回転により放射方向からずれても、該幅広いレシーバで効率よく受けることができる。   If the width of the inner diameter side opening of the receiver is made wider than the width of the opening of the cooling channel, the scattering of the cooling liquid splashed from the supply hole of the shaft is wide even if the dispersion of the cooling liquid deviates from the radial direction by the rotation of the rotor. It can be efficiently received by the receiver.

1 回転電機(モータ)
2 シャフト
3 ロータ
5 ステータ
6 積層鋼板
7 コイル
9 油孔
16 磁石
19 冷却用流路(油路)
19a 開口部
20,20,20 レシーバ
21,22,26,27 供給孔
1 Rotating electric machine (motor)
Reference Signs List 2 shaft 3 rotor 5 stator 6 laminated steel plate 7 coil 9 oil hole 16 magnet 19 cooling flow path (oil path)
19a Openings 20, 20 1 , 20 2 Receivers 21, 22, 26, 27 Supply holes

Claims (4)

コイルが巻回されたステータと、
シャフトに固定されて積層された複数の積層鋼板及び該積層鋼板に組込まれた複数の磁石を有するロータと、
前記磁石の近傍において前記積層鋼板を軸方向に貫通して形成された複数の冷却用流路と、
前記シャフトの中心部の油孔の冷却用液体を該シャフトの外周面に供給する供給孔と、
前記ロータの側面に取付けられ、前記冷却用流路に連通し、かつ外径側が覆われると共に内径側が開口しているレシーバと、を備え、
前記シャフトの油孔の冷却用液体を、前記ロータの回転による遠心力により前記供給孔から飛散し、前記ロータの軸方向外側を通って前記レシーバで受け、前記冷却用流路に供給する、
回転電機。
A stator wound with a coil;
A rotor having a plurality of laminated steel plates fixed and laminated to a shaft and a plurality of magnets incorporated in the laminated steel plates;
A plurality of cooling channels formed by axially penetrating the laminated steel plate in the vicinity of the magnet;
A supply hole for supplying a cooling liquid for cooling an oil hole at a central portion of the shaft to an outer peripheral surface of the shaft;
A receiver attached to a side surface of the rotor and in communication with the cooling flow passage, the outer diameter side being covered and the inner diameter side being open,
The liquid for cooling the oil hole of the shaft is scattered from the supply hole by the centrifugal force due to the rotation of the rotor, passes through the axial direction outer side of the rotor, is received by the receiver, and is supplied to the cooling flow path.
Electric rotating machine.
前記レシーバは、前記ロータの軸方向一側面に、すべての前記冷却用流路の一端開口部に対応して取付けられ、
前記シャフトの供給孔から飛散される冷却用液体は、前記レシーバと該レシーバから外れて前記ステータの軸方向一端のコイルエンド部とに向うように分配され、
前記レシーバから外れた冷却用液体は、前記ステータの軸方向一端のコイルエンド部に直接供給され、前記レシーバに受けられた冷却用液体は、前記冷却用流路を流れて、前記ロータを冷却しつつ軸方向他端の開口部から放散されて前記ステータの軸方向他端のコイルエンド部に供給されてなる、
請求項1記載の回転電機。
The receiver is attached to one axial side of the rotor correspondingly to one end opening of all the cooling channels.
The cooling liquid splashed from the supply hole of the shaft is distributed so as to be separated from the receiver and the receiver and to a coil end portion at one axial end of the stator.
The cooling liquid removed from the receiver is directly supplied to the coil end portion at one axial end of the stator, and the cooling liquid received by the receiver flows through the cooling flow path to cool the rotor. While being dissipated from the opening at the other axial end and supplied to the coil end at the other axial end of the stator,
The rotary electric machine according to claim 1.
前記レシーバは、前記ロータの軸方向一側面の前記冷却用流路の一端開口部と、前記ロータの軸方向他端面の前記冷却用流路の他端開口部とに対応するように分配して配置され、
前記ロータの一側面側のレシーバに対向する前記シャフトの供給孔から飛散される冷却用液体を、前記ロータの一側面側のレシーバで受け、前記冷却用流路を流れつつ前記ロータを冷却して、軸方向他端の開口部から放散されて前記ステータの軸方向他端のコイルエンド部に供給され、
前記ロータの他側面側のレシーバに対向する前記シャフトの供給孔から飛散される冷却用液体を、前記ロータの他側面側のレシーバで受け、前記冷却用流路を流れつつ前記ロータを冷却して、軸方向一端の開口部から放散されて前記ステータの軸方向一端のコイルエンド部に供給されてなる、
請求項1記載の回転電機。
The receiver is distributed to correspond to an opening at one end of the cooling flow passage on one axial side of the rotor and to an opening at the other end of the cooling flow passage on the other axial end of the rotor. Placed
The cooling liquid splashed from the supply hole of the shaft facing the receiver on one side of the rotor is received by the receiver on one side of the rotor, and the rotor is cooled while flowing through the cooling flow path. , And dissipated from the opening at the other axial end and supplied to the coil end at the other axial end of the stator;
The cooling liquid scattered from the supply hole of the shaft facing the receiver on the other side of the rotor is received by the receiver on the other side of the rotor, and the rotor is cooled while flowing through the cooling flow path. And dissipating from the opening at one end in the axial direction and being supplied to the coil end at one end in the axial direction of the stator,
The rotary electric machine according to claim 1.
前記レシーバは、内径側開口が前記冷却用流路の開口部の幅より広く、前記各供給孔から飛散される冷却用液体の略全量を受けることが可能である、
請求項1ないし3のいずれか1項記載の回転電機。
In the receiver, the inner diameter side opening is wider than the width of the opening of the cooling flow passage, and can receive substantially the whole amount of the cooling liquid scattered from the supply holes.
The rotary electric machine according to any one of claims 1 to 3.
JP2017191974A 2017-09-29 2017-09-29 Rotary electric machine Pending JP2019068622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017191974A JP2019068622A (en) 2017-09-29 2017-09-29 Rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017191974A JP2019068622A (en) 2017-09-29 2017-09-29 Rotary electric machine

Publications (1)

Publication Number Publication Date
JP2019068622A true JP2019068622A (en) 2019-04-25

Family

ID=66338015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017191974A Pending JP2019068622A (en) 2017-09-29 2017-09-29 Rotary electric machine

Country Status (1)

Country Link
JP (1) JP2019068622A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109716636A (en) * 2016-09-16 2019-05-03 西门子股份公司 Rotor with coil device and winding support
DE112023000543T5 (en) 2022-06-15 2024-10-31 Hitachi Astemo, Ltd. Rotating electric machine and vehicle drive device equipped therewith

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109716636A (en) * 2016-09-16 2019-05-03 西门子股份公司 Rotor with coil device and winding support
CN109716636B (en) * 2016-09-16 2020-12-15 劳斯莱斯德国有限两合公司 Rotor with coil arrangement and winding carrier
US11264885B2 (en) 2016-09-16 2022-03-01 Rolls-Royce Deutschland Ltd & Co Kg Rotor with a coil arrangement and a winding carrier
DE112023000543T5 (en) 2022-06-15 2024-10-31 Hitachi Astemo, Ltd. Rotating electric machine and vehicle drive device equipped therewith

Similar Documents

Publication Publication Date Title
JP5772544B2 (en) Cooling structure of rotating electric machine
US9729027B2 (en) Cooling structure of rotary electric machine
US10778053B2 (en) Rotor structure of rotary electric machine
JP5188593B2 (en) Generator motor cooling structure and generator motor
KR101316978B1 (en) Cooling structure of generator motor, and generator motor
JP2019161750A (en) Rotor of rotary electric machine
CN108696019B (en) End plate for rotor of switched reluctance motor
JP2014230393A (en) Rotary electric machine
JP5129870B2 (en) Generator motor cooling structure and generator motor
JP5652638B2 (en) Rotor for rotating electrical machines
JP2020014285A (en) Rotary electric machine
JP2012161134A (en) Rotary electric machine
JP2013258889A (en) Induction motor
JP2019068622A (en) Rotary electric machine
US9257881B2 (en) Rotating electric machine
KR101290840B1 (en) Lubricating structure for generator motor, and generator motor
JP2013046463A (en) Rotary electric machine
JP5730740B2 (en) Rotating electric machine
JP2013207930A (en) Stator structure of rotary electric machine
JP2014072921A (en) Rotary electric machine
JP2011142787A (en) Cooling structure for electric motor
JP2012210120A (en) Rotary electric machine
CN221127054U (en) Rotor shaft for a rotor assembly of an electric machine, rotor assembly and electric machine
JP5387476B2 (en) Motor cooling device
JP2020108209A (en) Dynamo-electric machine