JP2019065323A - Iron-based sintered shaft bearing, and iron-based sintered oil-containing shaft bearing - Google Patents
Iron-based sintered shaft bearing, and iron-based sintered oil-containing shaft bearing Download PDFInfo
- Publication number
- JP2019065323A JP2019065323A JP2017189786A JP2017189786A JP2019065323A JP 2019065323 A JP2019065323 A JP 2019065323A JP 2017189786 A JP2017189786 A JP 2017189786A JP 2017189786 A JP2017189786 A JP 2017189786A JP 2019065323 A JP2019065323 A JP 2019065323A
- Authority
- JP
- Japan
- Prior art keywords
- iron
- based sintered
- bearing
- phase
- sulfide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Sliding-Contact Bearings (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
本発明は、軸の外周面を支持する軸受面を有する鉄系焼結軸受、及び、その気孔に潤滑油が含浸された鉄系焼結含油軸受に関する。 The present invention relates to an iron-based sintered bearing having a bearing surface that supports the outer peripheral surface of a shaft, and to an iron-based sintered oil-impregnated bearing in which pores are impregnated with lubricating oil.
軸の外周面を支持する軸受面を有するすべり軸受には、従来から、焼結合金製の焼結含油軸受が多用されている。焼結含油軸受は、気孔を有する焼結合金製の焼結軸受の気孔中に潤滑油を含浸したものであり、含浸した潤滑油による自己潤滑性を付与できるため、耐焼付き性と耐摩耗性が良好で広く用いられている。 Sintered oil-impregnated bearings made of sintered alloy have been widely used in the past for slide bearings having bearing surfaces that support the outer peripheral surface of the shaft. A sintered oil-impregnated bearing is one in which a lubricating oil is impregnated in the pores of a sintered bearing made of sintered alloy having pores, and since it can impart self-lubricity with the impregnated lubricating oil, it has seizure resistance and wear resistance. Are good and widely used.
焼結含油軸受の潤滑理論を、図1を参照して説明する。焼結含油軸受の本体である焼結軸受1を構成する焼結体は、金属基地中に気孔が分散する多孔質体であり、気孔中に潤滑油2が含浸されている。焼結軸受は略円管又は略円環に形成され、その内径面で軸3を支承する。ここで、軸が回転すると、軸との摩擦熱により気孔に含浸された潤滑油が熱膨張するとともに、気孔中に含浸された潤滑油が軸の回転によって吸い出され、図1に矢印4で示すように、油圧の低い上の部分から高い油圧を受ける摺動部に向かって潤滑油が流れる。この潤滑油の流れによって軸受の内径面から軸を持ち上げて、軸受内径面と軸との金属接触を防止する。また、軸と軸受内径面の間に入り込む潤滑油の流れによって、軸は回転方向に片寄せられ、軸受内径面での油圧分布5は、図1のようになる。一方、油圧が生じても気孔を通じて潤滑油が逃げるため、気孔を通じて潤滑油が焼結軸受内を循環して、再び内径面で効果的な潤滑作用を発揮する。軸の回転が停止すると、熱膨張していた潤滑油は収縮するとともに、潤滑油が気孔中に毛細管力により吸収されて初期状態に戻る。これを繰り返すことで、長期にわたり、無給油で良好な潤滑特性が発揮される。 The lubrication theory of a sintered oil-impregnated bearing will be described with reference to FIG. The sintered body constituting the sintered bearing 1 which is the main body of the sintered oil-impregnated bearing is a porous body in which pores are dispersed in the metal matrix, and the lubricating oil 2 is impregnated in the pores. The sintered bearing is formed in a substantially circular tube or a substantially annular ring, and supports the shaft 3 at its inner diameter surface. Here, when the shaft rotates, the lubricating oil impregnated in the pores thermally expands due to the frictional heat with the shaft, and the lubricating oil impregnated in the pores is sucked out by the rotation of the shaft, as shown by the arrow 4 in FIG. As shown, the lubricating oil flows from the upper portion with low oil pressure toward the sliding portion receiving high oil pressure. This lubricating oil flow lifts the shaft from the bearing inner diameter surface to prevent metal contact between the bearing inner diameter surface and the shaft. In addition, the shaft is biased in the rotational direction by the flow of the lubricating oil entering between the shaft and the bearing inner diameter surface, and the hydraulic pressure distribution 5 on the bearing inner diameter surface is as shown in FIG. On the other hand, even if oil pressure is generated, the lubricating oil escapes through the pores, so the lubricating oil circulates in the sintered bearing through the pores and exerts an effective lubricating action on the inner diameter surface again. When the rotation of the shaft stops, the thermally expanded lubricating oil contracts and the lubricating oil is absorbed into the pores by capillary force and returns to the initial state. By repeating this, good lubrication characteristics can be exhibited without oiling for a long time.
軸受が支持する軸は、一般に安価な鉄合金からなり、焼結軸受には、銅系の焼結合金が適用された銅系焼結軸受が多用されてきた。近年、銅の価格が高騰しているため、安価な鉄を主成分とする鉄系焼結合金を用いた鉄系焼結軸受に対するニーズが高まってきている。しかし、このような鉄を主成分とする軸受の場合には、焼付き易く、また、相手部品であるシャフトを傷付け易いという欠点がある。特に、熱処理を施していない硬さが低いシャフトと、鉄を主成分とする軸受とを組み合わせて用いると、上記の現象は顕著となる。 The shaft supported by the bearing is generally made of an inexpensive iron alloy, and a copper-based sintered bearing to which a copper-based sintered alloy is applied has been widely used as a sintered bearing. In recent years, since the price of copper has risen, the need for an iron-based sintered bearing using an iron-based sintered alloy containing an inexpensive iron as a main component is increasing. However, in the case of such an iron-based bearing, there is a disadvantage that it is easy to seize and to easily damage the shaft which is a mating part. In particular, when a shaft having a low hardness not subjected to heat treatment and a bearing containing iron as a main component are used in combination, the above phenomenon becomes remarkable.
このような状況の下、特許文献1では、焼結合金の全体組成が、質量比で、Cu:2.0〜9.0%、C:1.5〜3.7%、残部:Feおよび不可避不純物からなる鉄系焼結軸受が提案されている。この軸受の内部は、面積率でフェライトが20〜85%および残部がパーライトからなる鉄合金相中に、軸受の軸方向に対して交差する方向に延在する銅相と、黒鉛相および気孔が分散する金属組織を示し、軸受面に、銅相が8〜40%の面積率で露出する。この軸受は、優れた耐摩耗性を有するとともに、鉄銅系焼結合金を用いた鉄銅系焼結軸受に匹敵する耐焼付き性および相手部品への攻撃緩和性を有することが記載されている。 Under such circumstances, in Patent Document 1, the overall composition of the sintered alloy is, by mass ratio, Cu: 2.0 to 9.0%, C: 1.5 to 3.7%, balance: Fe and Iron-based sintered bearings made of unavoidable impurities have been proposed. The inside of this bearing has a copper phase extending in a direction intersecting with the axial direction of the bearing, a graphite phase, and pores in an iron alloy phase consisting of 20 to 85% of ferrite and the balance consisting of pearlite in area ratio A dispersed metal structure is shown, and the copper phase is exposed at an area ratio of 8 to 40% on the bearing surface. This bearing is described to have excellent wear resistance and to have seizure resistance and attack relieving ability to counterpart parts comparable to that of iron-copper-based sintered bearing using iron-copper-based sintered alloy. .
また、内径面に高い面圧が作用するような軸受に用いて好適である摺動部材用鉄基焼結合金として、全体組成が、質量比で、C:0.6〜1.2%、Cu:3.5〜9.0%、Mn:0.6〜2.2%、S:0.4〜1.3%、残部:Feおよび不可避不純物からなる摺動部材用鉄基焼結合金が提案(特許文献2)されている。この合金組織は、マルテンサイト基地中に、遊離したCu相及び遊離したCu−Fe合金相の少なくとも一方が分散しているとともに、MnS相が1.0〜3.5質量%分散していることを特徴とする。 In addition, as an iron-based sintered alloy for a sliding member suitable for use in a bearing in which a high surface pressure acts on the inner diameter surface, the overall composition is, by mass ratio, C: 0.6 to 1.2%, Iron-based sintered alloy for sliding members comprising Cu: 3.5 to 9.0%, Mn: 0.6 to 2.2%, S: 0.4 to 1.3%, balance: Fe and unavoidable impurities Has been proposed (Patent Document 2). In this alloy structure, at least one of the liberated Cu phase and the liberated Cu-Fe alloy phase is dispersed in a martensitic matrix, and the MnS phase is dispersed in an amount of 1.0 to 3.5 mass%. It is characterized by
上記のように、焼結含油軸受では、軸の回転により気孔中から引き出された潤滑油が、軸の回転につれて軸と軸受内径面と間に引き込まれ、軸と軸受の内径面の間に油膜を形成することで軸と軸受の内径面の金属接触を防止して良好な潤滑特性を示す。このため、各種用途への適用が進んでいるが、良好な油膜を形成しにくい用途に対しては、その適用が進んでいない。更なる用途拡大のためには、焼結軸受のさらなる改良が必要である。 As described above, in the sintered oil-impregnated bearing, the lubricating oil drawn out from the pores by the rotation of the shaft is drawn between the shaft and the bearing inner diameter surface as the shaft rotates, and an oil film is formed between the shaft and the inner diameter surface of the bearing. By forming the above, metal contact between the shaft and the inner diameter surface of the bearing is prevented, and good lubrication characteristics are exhibited. For this reason, although the application to various uses is advanced, the application is not advanced to the use which is difficult to form a favorable oil film. For further application expansion, further improvement of the sintered bearing is necessary.
このような焼結含油軸受の適用が難しいと考えられてきた分野として、例えば、複写機等の紙送りローラや、ヘッド駆動モータ等のような、正逆に回転する軸を支承するとともに、正転、逆転それぞれの駆動時間が短い用途のための軸受がある。このような用途の場合、図2(a)に示すように、良好な潤滑油膜が形成される前に回転が停止することから、軸と軸受の内径面との金属接触が発生しやすい。 As a field where application of such sintered oil-impregnated bearings has been considered difficult, for example, while supporting forward and reverse rotating shafts such as paper feed rollers of copying machines and head drive motors, etc. There are bearings for applications where the drive time for each roll and reverse is short. In such applications, as shown in FIG. 2 (a), since the rotation is stopped before a good lubricating oil film is formed, metal contact between the shaft and the inner diameter surface of the bearing is likely to occur.
また、スクロール式圧縮機等のような、固定子に対して偏心して回転する回転子の軸を支承する軸受としての用途においては、図2(b)に示すように、軸受内径面に対して軸の位置が偏心して移動することとなる。このような用途においても、良好な潤滑油膜を形成することが難しく、軸と軸受の内径面との金属接触が発生しやすい。 Further, in an application as a bearing that supports the shaft of a rotor that rotates eccentrically with respect to the stator, such as a scroll compressor, as shown in FIG. The position of the shaft moves eccentrically. Even in such applications, it is difficult to form a good lubricating oil film, and metal contact between the shaft and the inner diameter surface of the bearing is likely to occur.
これらの用途においては、ポリテトラフルオロエチレン(PTFE)等のフッ素系樹脂で内径面を構成したすべり軸受が適用されているが、軟質なフッ素系樹脂は、摩耗が生じ易く、耐久性に問題がある。したがって、このような金属接触が発生しやすい用途であっても、良好な摺動特性を示す焼結軸受が提供できれば、焼結軸受の適用が拡大できることとなる。 In these applications, a slide bearing in which the inner diameter surface is formed of a fluorine-based resin such as polytetrafluoroethylene (PTFE) is applied, but a soft fluorine-based resin is prone to wear and has a problem with durability. is there. Therefore, the application of the sintered bearing can be expanded if it is possible to provide a sintered bearing that exhibits good sliding characteristics even in applications where such metal contact is likely to occur.
この点について、特許文献1の鉄系焼結軸受は、良好な潤滑油膜が形成できる用途に対しては優れた耐摩耗性を有し、鉄銅系焼結含油軸受に匹敵する耐焼付き性および相手部品への攻撃緩和性を有する。しかし、金属接触が発生しやすい用途に対しては、さらなる改良が必要である。 In this respect, the iron-based sintered bearing of Patent Document 1 has excellent wear resistance for applications where a good lubricating oil film can be formed, and seizure resistance and comparable to iron-copper-based sintered oil-impregnated bearings It has the ability to mitigate attacks on the other part. However, for applications where metal contact is likely to occur, further improvements are needed.
一方、特許文献2の鉄基焼結摺動部材は、遊離したCu相またはCu−Fe合金相とMnS相によって潤滑を行い、摺動特性を発揮する。この点に関して、MnS相は、原料粉末に添加したMnS粉末がそのまま残留して形成されるので、MnS相は鉄粉末どうしの粒界(粉末粒界)のみに分散する。しかし、MnS粉末は、安定で、他の粉末と反応しないので、基地を形成する鉄粉末と反応せず、従って、基地への固着性が悪い。また、鉄粉末の粒界に存在して鉄粉末粒子どうしの結合を阻害するので、基地の強度が低下する虞がある。 On the other hand, the iron-based sintered sliding member of Patent Document 2 is lubricated by the liberated Cu phase or Cu-Fe alloy phase and the MnS phase to exhibit sliding characteristics. In this regard, since the MnS phase is formed by the remaining MnS powder added to the raw material powder as it is, the MnS phase is dispersed only in grain boundaries (powder grain boundaries) of iron powders. However, the MnS powder is stable and does not react with other powders, so it does not react with the iron powder forming the matrix, and therefore the adherence to the matrix is poor. Moreover, since it exists in the grain boundary of iron powder and inhibits the binding of iron powder particles, there is a possibility that the strength of the base may be reduced.
本発明は、固着性の乏しい特許文献2の手法によらず、鉄系焼結含油軸受に対して、よりいっそうの潤滑特性の向上を果たし、金属接触が発生しやすい用途においても良好な潤滑特性を示す鉄系焼結軸受およびその製造方法、並びに、気孔に潤滑油を含浸した鉄系焼結含油軸受を提供することを目的とする。 The present invention achieves a further improvement of the lubricating characteristics to an iron-based sintered oil-impregnated bearing regardless of the method of Patent Document 2 having a poor adhesion, and a good lubricating characteristic even in applications where metal contact is likely to occur. It is an object of the present invention to provide an iron-based sintered bearing and a method for producing the same, and an iron-based sintered oil-impregnated bearing in which pores are impregnated with a lubricating oil.
本発明者らは、上記目的を達成する鉄系焼結軸受につき検討し、鉄系焼結軸受の本体を構成する鉄系焼結合金の基地中に硫化物を析出分散させることで、金属接触が発生しやすい用途においても良好な潤滑特性を示すことができ、二硫化モリブデンの利用が有用であることを見出した。
本発明の一態様によれば、鉄系焼結軸受は、軸の外周面を支持する軸受面を有し、潤滑油を含浸可能な気孔が分散する鉄系焼結合金によって構成される鉄系焼結軸受であって、記鉄系焼結合金の全体組成が、質量比で、Cu:0.5〜3%、Mo:0.3〜3.3%、C:1〜5%、S:0.2〜2.2%、残部:Fe及び不可避不純物からなり、前記鉄系焼結合金の密度が5.2〜7.2Mg/m3であり、前記鉄系焼結合金の金属組織は、前記気孔が分散する基地と、前記基地に分散する銅相及び黒鉛相と、前記基地及び前記銅相の少なくとも一方から析出して分散する硫化物相とを有し、前記基地は、ベイナイトの単相組織、ベイナイトとパーライトの混合組織、ベイナイトとフェライトの混合組織、及び、ベイナイトとパーライトとフェライトの混合組織のうちの1つの金属組織を呈することを要旨とする。
又、本発明の一態様によれば、鉄系焼結含油軸受は、前記鉄系焼結軸受と、前記鉄系焼結軸受の気孔に含浸される潤滑油とを有することを要旨とする。
The present inventors examined an iron-based sintered bearing that achieves the above object, and deposit and disperse sulfides in the base of an iron-based sintered alloy that constitutes the main body of the iron-based sintered bearing to achieve metal contact. It has been found that it can exhibit good lubricating properties even in applications where is prone to occur, and the use of molybdenum disulfide is useful.
According to one aspect of the present invention, the iron-based sintered bearing comprises an iron-based sintered alloy having a bearing surface that supports the outer peripheral surface of the shaft and in which pores capable of being impregnated with lubricating oil are dispersed. It is a sintered bearing, and the total composition of the iron-based sintered alloy is, by mass ratio, Cu: 0.5 to 3%, Mo: 0.3 to 3.3%, C: 1 to 5%, S : 0.2 to 2.2%, balance: Fe and unavoidable impurities, the density of the iron-based sintered alloy is 5.2 to 7.2 Mg / m 3 , and the metal structure of the iron-based sintered alloy The matrix has a matrix in which the pores are dispersed, a copper phase and a graphite phase dispersed in the matrix, and a sulfide phase precipitated and dispersed from at least one of the matrix and the copper phase, and the matrix is bainite Single phase structure, mixed structure of bainite and perlite, mixed structure of bainite and ferrite, and with bainite and perlite The subject matter is to present a metal structure of one of the mixed structures of ferrite.
Further, according to one aspect of the present invention, the iron-based sintered oil-impregnated bearing is characterized by having the iron-based sintered bearing and a lubricating oil impregnated in pores of the iron-based sintered bearing.
上記鉄系焼結軸受において、前記硫化物相は、前記基地及び前記銅相の少なくとも一方における結晶粒界及び結晶粒内に析出して分散する。前記硫化物相は、硫化鉄及び硫化銅によって主に構成され、前記硫化物相は、前記鉄系焼結合金の断面において、気孔を含む断面の面積に対して0.9〜6%の面積率で存在するように前記鉄系焼結合金に分散しているとよい。前記硫化物相は、粒状であり、最大粒径が50μm以下であると好適である。前記軸受面において、銅相、及び、硫化銅によって構成される硫化物相は、軸受面全体に対して5〜20%の面積率で分散していると潤滑特性の点で好適である。前記基地の金属組織断面においてベイナイトが占める割合は、面積率で10%以上であるとよい。又、前記軸受面の気孔率は、面積率で15〜30%であると含油軸受として好適である。 In the iron-based sintered bearing, the sulfide phase precipitates and disperses in grain boundaries and grains in at least one of the base and the copper phase. The sulfide phase is mainly composed of iron sulfide and copper sulfide, and the sulfide phase has an area of 0.9 to 6% with respect to the area of the cross section including pores in the cross section of the iron-based sintered alloy It is preferable that the iron-based sintered alloy is dispersed so as to be present at a rate. The sulfide phase is preferably granular and has a maximum particle size of 50 μm or less. In the bearing surface, the copper phase and the sulfide phase composed of copper sulfide are preferably dispersed in an area ratio of 5 to 20% with respect to the entire bearing surface in terms of lubricating characteristics. The proportion of bainite in the metallographic cross section of the base may be 10% or more in area ratio. Moreover, the porosity of the said bearing surface is suitable as an oil-impregnated bearing as it is 15 to 30% by area ratio.
本発明の実施形態によれば、鉄系焼結軸受は、潤滑特性について優れた改善が施され、金属接触が発生しやすい用途においても良好な潤滑特性を示すものである。 According to an embodiment of the present invention, the iron-based sintered bearing is provided with an excellent improvement in the lubricating characteristics and exhibits good lubricating characteristics even in applications where metal contact is likely to occur.
以下、本発明における鉄系焼結含油軸受の本体である鉄系焼結軸受を構成する鉄系焼結合金の金属組織および数値特定の根拠を、本発明の作用とともに説明する。 Hereinafter, the metallographic structure of the iron-based sintered alloy that constitutes the iron-based sintered bearing that is the main body of the iron-based sintered oil-impregnated oil bearing of the present invention and the basis for specifying numerical values will be described together with the operation of the present invention.
本発明において、鉄系焼結含油軸受の本体である鉄系焼結軸受は、軸の外周面を支持する軸受面を有し、Fe(鉄)を主成分とする鉄系焼結合金によって構成される。鉄系焼結合金には、潤滑油を含浸可能な気孔が分散し、気孔に潤滑油を含浸することによって、焼結含油軸受が構成される。Feは、Cu(銅)に比して安価であり、機械的強さに優れることから、鉄系焼結合金の主成分として好適な成分である。Feは、鉄粉末又は後述するFe−Mo合金粉末の形態で導入され、鉄粉末又はFe−Mo合金粉末を主成分とする原料粉末を用いることによって、鉄系焼結合金の基地が形成される。鉄系焼結合金の基地には、気孔が分散する。気孔は、粉末冶金法に起因して生じるものであり、原料粉末を圧粉成形した際の粉末粒子間の空隙が、原料粉末の結合によって形成された基地中に残留したものである。 In the present invention, the iron-based sintered bearing, which is the main body of the iron-based sintered oil-impregnated bearing, has a bearing surface for supporting the outer peripheral surface of the shaft, and is made of an iron-based sintered alloy mainly composed of Fe (iron). Be done. In the iron-based sintered alloy, pores capable of being impregnated with the lubricating oil are dispersed, and the pores are impregnated with the lubricating oil to form a sintered oil-impregnated bearing. Fe is inexpensive as compared with Cu (copper) and excellent in mechanical strength, and thus is a component suitable as a main component of an iron-based sintered alloy. Fe is introduced in the form of iron powder or an Fe-Mo alloy powder to be described later, and a base of iron-based sintered alloy is formed by using a raw material powder containing iron powder or Fe-Mo alloy powder as a main component. . Pores are dispersed in the base of the iron-based sintered alloy. The pores are generated due to the powder metallurgy method, and the voids between the powder particles when the raw material powder is compacted remain in the matrix formed by the bonding of the raw material powder.
鉄系焼結軸受を構成する鉄系焼結合金の基地の金属組織は、ベイナイトの単相組織、ベイナイトとパーライトの混合組織、ベイナイトとフェライトの混合組織、ベイナイトとパーライトとフェライトの混合組織のうちの何れか1つであるとよい。つまり、ベイナイトを含む金属組織を呈する基地であるとよい。ベイナイトは、マルテンサイトに次いで硬く、且つ、粘り強さを有するので、機械的強さが高い組織要素である。本発明の鉄系焼結合金においては、このようなベイナイトを基地の組織に用い、鉄系焼結合金の機械的強さの向上を図るとともに、耐摩耗性の向上を図る。このため、本発明の鉄系焼結軸受においては、基地の金属組織においてベイナイトが占める割合は、金属組織断面における面積率で10%以上であることが好ましい。基地の残部は、パーライト及びフェライトのうちの一方又は両方であってよい。 The metallographic structure of the base of the iron-based sintered alloy constituting the iron-based sintered bearing is a single phase structure of bainite, a mixed structure of bainite and pearlite, a mixed structure of bainite and ferrite, and a mixed structure of bainite, pearlite and ferrite It is good if it is any one of. That is, it is preferable that the base exhibits a metal structure including bainite. Bainite is a structural element with high mechanical strength because it is as hard as martensite and has toughness. In the iron-based sintered alloy of the present invention, such bainite is used for the matrix structure to improve the mechanical strength of the iron-based sintered alloy and to improve the wear resistance. For this reason, in the iron-based sintered bearing of the present invention, the proportion of bainite in the metal structure of the base is preferably 10% or more in area ratio in the metal structure section. The remainder of the matrix may be one or both of pearlite and ferrite.
フェライトは、軟質であり、相手材となる軸とのなじみ性が良好であるが、機械的強さが低い。一方、パーライトは、基地硬さが高く、機械的強さが高いが、相手材となる軸を摩耗させる虞がある。このため、鉄系焼結合金の基地の金属組織は、鉄系焼結軸受の要求特性に応じて、ベイナイト単相の金属組織、ベイナイトとパーライトの混合組織、ベイナイトとフェライトの混合組織、ベイナイトとパーライトとフェライトの混合組織のいずれかになるように、黒鉛及びMoの配合量及び配合形態によって調整するとよい(詳細は後述する)。 Ferrite is soft and has good compatibility with the shaft to be a mating material, but has low mechanical strength. On the other hand, although pearlite has high base hardness and high mechanical strength, there is a possibility that the shaft serving as the mating material may be worn away. For this reason, the base metal structure of the iron-based sintered alloy is the bainite single phase metal structure, the mixed structure of bainite and pearlite, the mixed structure of bainite and ferrite, and the bainite according to the required characteristics of the iron-based sintered bearing. It is good to adjust by the compounding quantity and the compounding form of graphite and Mo so that it may become any of the mixed structure of a pearlite and a ferrite (the detail is mentioned later).
上述したように、焼結合金には製法に起因する気孔が形成されるため、焼結合金の密度(焼結体密度)は、理論密度よりも低くなる。つまり、焼結合金の密度が高いと、気孔量は少なくなり、焼結合金の密度が低いと、気孔量は多くなる。焼結軸受においては、このような気孔を利用し、鉄系焼結合金に形成される気孔に潤滑油を含浸することで焼結軸受に潤滑性を付与し、その潤滑特性は、無給油で長期にわたって発揮される。本発明において、鉄系焼結軸受を構成する鉄系焼結合金に形成される気孔量が乏しい、すなわち鉄系焼結合金の密度が高いと、含浸される潤滑油の量が乏しくなり、良好な潤滑特性が発揮できなくなる。逆に、鉄系焼結合金に形成される気孔量が過多、すなわち鉄系焼結合金の密度が低いと、鉄系焼結合金の基地の量が少なくなる結果、鉄系焼結合金の機械的強さが低下することとなる。この観点から、鉄系焼結合金の密度は5.2〜7.2Mg/m3であるとよい。この範囲の鉄系焼結合金の密度は、鉄系焼結合金の気孔率でおよそ10〜25%に相当する。なお、焼結体の密度比は、日本工業規格(JIS)Z2505に規定の金属焼結材料の焼結密度試験方法により測定される。 As described above, since the pores resulting from the manufacturing method are formed in the sintered alloy, the density (sintered body density) of the sintered alloy is lower than the theoretical density. That is, when the density of the sintered alloy is high, the amount of pores is small, and when the density of the sintered alloy is low, the amount of pores is large. In sintered bearings, using such pores, the pores formed in the iron-based sintered alloy are impregnated with lubricating oil to impart lubricity to the sintered bearing, and its lubricating properties are oil-free It is exhibited over a long period of time. In the present invention, when the amount of pores formed in the iron-based sintered alloy forming the iron-based sintered bearing is poor, that is, the density of the iron-based sintered alloy is high, the amount of lubricating oil to be impregnated becomes poor. Lubrication characteristics can not be exhibited. Conversely, when the amount of pores formed in the iron-based sintered alloy is excessive, that is, the density of the iron-based sintered alloy is low, the amount of the base of the iron-based sintered alloy decreases, and as a result, the machine of the iron-based sintered alloy Strength will be reduced. From this viewpoint, the density of the iron-based sintered alloy may be 5.2 to 7.2 Mg / m 3 . The density of the iron-based sintered alloy in this range corresponds to approximately 10 to 25% in the porosity of the iron-based sintered alloy. In addition, the density ratio of a sintered compact is measured by the sintering density test method of the metal sintering material of prescription | regulation to Japanese Industrial Standard (JIS) Z2505.
Cuは、軟質な銅相を形成して、相手材となる軸とのなじみ性を良好なものとするとともに、潤滑性に優れる硫化銅を形成して潤滑性を向上させることが可能な成分である。Cu量が乏しいと、基地中に分散する銅相が少なくなり、上記の効果が十分に得られない。一方、高価なCuが過大であると、その分、コストが増加する。このため、Cu量は全体組成の0.5〜3質量%とする。 Cu is a component capable of forming a soft copper phase to make the compatibility with the shaft serving as the counterpart good, and forming copper sulfide excellent in lubricity to improve the lubricity. is there. If the amount of Cu is low, the copper phase dispersed in the base decreases, and the above effect can not be sufficiently obtained. On the other hand, if expensive Cu is excessive, the cost increases accordingly. Therefore, the amount of Cu is 0.5 to 3% by mass of the whole composition.
Cuは、銅粉末の形態で原料粉末に配合される。なお、銅粉末は、扁平状あるいは箔状の銅粉末を用いることが好ましい。Cu原料として扁平状の銅粉を用いると、ダイキャビティ内を原料粉末が落下する際に、コアロッドに扁平状の銅粉がまとわり付き、コアロッドに銅粉が張り付いた状態となるため、これを軸受に成形すると、摺動特性が求められる軸受内径面に露出する銅相の量が軸受内部と比較して多くなる。従って、全体組成中のCu量を削減して軸受内部のCu量が低下しても、軸受内径面に露出する銅相の量を必要量に維持することができる。この点に関し、軸受内径面に分散する銅相および硫化銅によって構成される硫化物相(後述する)の合計の適量を、面積率で軸受面全体の5〜20%とすることができ、軟質な銅相および銅相から析出する硫化銅によって、摺動特性をより向上させることができる。扁平状の銅粉は、粒径が20〜150μm程度のものを好適に用いることができる。粒径が小さい銅粉は、鉄粒子間の間隙に入り易く、過大な銅粉は、コアロッド周囲に遍在し難くなる。粒子径と厚さとの比は、2.5〜20程度であると好適である。 Cu is added to the raw material powder in the form of copper powder. As the copper powder, it is preferable to use flat or foil-like copper powder. When a flat copper powder is used as the Cu raw material, when the raw material powder falls in the die cavity, the flat copper powder clings to the core rod and the copper powder adheres to the core rod, When this is formed into a bearing, the amount of copper phase exposed to the bearing inner diameter surface where the sliding characteristics are required is increased as compared with the inside of the bearing. Therefore, even if the amount of Cu in the entire composition is reduced to reduce the amount of Cu inside the bearing, the amount of copper phase exposed on the bearing inner diameter surface can be maintained at the required amount. In this regard, the total appropriate amount of the copper phase dispersed in the bearing inner diameter surface and the sulfide phase (described later) constituted by copper sulfide can be 5 to 20% of the whole bearing surface in area ratio, and it is soft The sliding properties can be further improved by copper sulfide and copper sulfide precipitated from the copper phase. As the flat copper powder, one having a particle diameter of about 20 to 150 μm can be suitably used. Copper powder having a small particle size is likely to enter the interstices between iron particles, and excessive copper powder is less likely to be ubiquitous around the core rod. The ratio of particle diameter to thickness is preferably about 2.5 to 20.
Mo(モリブデン)は、基地を形成するFe中に固溶して基地の強化に寄与する。また、Moは、鉄基地の焼入れ性を向上させる機能を有しており、焼結後の冷却過程で基地組織中にベイナイトを形成して鉄系焼結軸受の機械的強さの向上および耐摩耗性の向上に寄与する。Mo量が乏しいと上記の効果が乏しくなる。一方、高価なMoが過大となると、その分、コストが増加する。このため、Mo量は、全体組成の0.3〜3.3質量%、好ましくは0.6〜3.0質量%とする。 Mo (molybdenum) is dissolved in Fe forming the matrix to contribute to the strengthening of the matrix. In addition, Mo has a function to improve the hardenability of iron base, and bainite is formed in the base structure in the cooling process after sintering to improve the mechanical strength and resistance of iron-based sintered bearing. It contributes to the improvement of wear resistance. If the amount of Mo is poor, the above effects become poor. On the other hand, when expensive Mo becomes excessive, the cost increases accordingly. Therefore, the Mo content is 0.3 to 3.3% by mass, preferably 0.6 to 3.0% by mass, based on the total composition.
Moは、主原料である鉄粉末に合金化させてFe−Mo合金粉末の形態で配合してよく、或いは、二硫化モリブデンとして配合してもよい。鉄粉末の代わりにFe−Mo合金粉末を用いると、Moが全体に均一に分散するので、Moの効果が基地中に均一に作用し、基地組織をベイナイト単相組織にすることができる。一方、二硫化モリブデン粉末を用いてMoを配合すると、焼結過程で二硫化モリブデンがMoとSに分解して生成したMoが基地中に拡散し、Moが拡散した部分の基地組織の焼入れ性を向上させてベイナイト相を形成する。従って、Moの拡散が乏しい部分はパーライトになる。故に、Moの配合形態を利用して、ベイナイトの生成割合を調整することが可能である。 Mo may be alloyed into iron powder which is a main raw material, and may be mix | blended in the form of Fe-Mo alloy powder, or you may mix | blend as molybdenum disulfide. When Fe-Mo alloy powder is used instead of iron powder, Mo disperses uniformly throughout, so the effect of Mo acts uniformly in the matrix, and the matrix structure can be bainite single phase texture. On the other hand, when Mo is compounded using molybdenum disulfide powder, Mo formed by the decomposition of molybdenum disulfide into Mo and S during the sintering process diffuses into the matrix, and the hardenability of the matrix structure of the portion where Mo is diffused Improve to form a bainite phase. Therefore, the part where the diffusion of Mo is poor becomes pearlite. Therefore, it is possible to adjust the production rate of bainite by using the combination form of Mo.
S(硫黄)は、基地を形成するFeと結合して硫化鉄を形成し、又、銅相を形成するCuと結合すると、硫化銅を形成する。なお、主原料である鉄粉末は、製法に起因する不可避不純物として極微量(1質量%以下)のMnを含有する。このため、ごく一部に硫化マンガンも分散し得る。これらの硫化物は、潤滑性に富むので、このような硫化物を基地中に析出分散させることで、金属接触が発生しやすい摺動条件の下でも優れた潤滑特性を発揮する基地を形成できる。本発明において、硫化物相は、具体的には上記の硫化物の全て、つまり、硫化鉄、硫化銅及び不可避不純物由来の硫化物(硫化マンガン)を含み得るものと見なされ、状況に応じて、上記硫化物の一種以上が硫化物相として焼結合金の金属組織に存在する。 S (sulfur) combines with base-forming Fe to form iron sulfide, and combines with Cu forming a copper phase to form copper sulfide. In addition, the iron powder which is a main raw material contains very trace amount (1 mass% or less) of Mn as an unavoidable impurity originating in a manufacturing method. For this reason, manganese sulfide can also be dispersed to a small extent. Since these sulfides are rich in lubricity, precipitation and dispersion of such sulfides in a matrix can form a matrix that exhibits excellent lubricating properties even under sliding conditions in which metal contact is likely to occur. . In the present invention, it is considered that the sulfide phase may specifically include all the above-mentioned sulfides, that is, iron sulfide, copper sulfide and sulfide derived from unavoidable impurities (manganese sulfide), depending on the situation. And one or more of the above sulfides exist in the metal structure of the sintered alloy as a sulfide phase.
Sは、硫化鉄粉末及び二硫化モリブデン粉末のうち少なくとも一つの形態で原料粉末に配合することで導入される。硫化鉄粉末の形態で付与されるSは、焼結工程の昇温過程において988℃を超えると、Fe−Sの共晶液相を発生し、液相焼結が進行して粉末粒子間のネックの成長を促進する。一方、二硫化モリブデンの形態でSを導入すると、昇温過程でMoSの分解によって生成するSが鉄粉末中に拡散し、988℃を超えるとFe−Sの共晶液相を発生して、液相焼結が進行し粉末粒子間のネックの成長を促進する。このようにして発生した共晶液相からSが鉄基地中に均一に拡散した後、基地の結晶粒界および結晶粒内から再度硫化鉄粒子として析出する。従って、硫化鉄粒子は、基地の結晶粒界および結晶粒内に均一に分散し、析出する硫化鉄粒子の固着性は高い。また、Sの一部が銅相に拡散して銅相中のCuと結合することが可能であり、それにより、銅相の結晶粒界および結晶粒内に硫化銅粒子として析出し得る。従って、硫化銅粒子も、このように銅相の結晶粒界および結晶粒内に析出して分散するので、固着性が高い。尚、硫化物の形成し易さについて、Fe及びCuは同程度に硫化物を形成し易く、Moは、Fe及びCuより硫化物を形成し難いことから、基地中に分散する硫化物は、主として鉄硫化物および銅硫化物である。硫化物相は、基地及び銅相の少なくとも一方において析出し、結晶粒界及び結晶粒内に存在する。 S is introduced by being mixed with the raw material powder in the form of at least one of iron sulfide powder and molybdenum disulfide powder. When S in the form of iron sulfide powder exceeds 988 ° C. in the temperature rising process of the sintering step, a eutectic liquid phase of Fe-S is generated, and liquid phase sintering proceeds to cause powder particles to separate. Promote the growth of the neck. On the other hand, when S is introduced in the form of molybdenum disulfide, S generated by decomposition of MoS diffuses into the iron powder in the temperature rising process, and when it exceeds 988 ° C., a eutectic liquid phase of Fe-S is generated, Liquid phase sintering proceeds to promote the growth of necks between powder particles. After S uniformly diffuses into the iron matrix from the eutectic liquid phase thus generated, iron sulfide particles are precipitated again from the grain boundaries of the matrix and within the crystal grains. Therefore, the iron sulfide particles are uniformly dispersed in the grain boundaries and grains of the matrix, and the fixing properties of the precipitated iron sulfide particles are high. In addition, it is possible that a part of S diffuses into the copper phase and bonds with Cu in the copper phase, whereby copper sulfide particles can be precipitated in grain boundaries and grains of the copper phase. Accordingly, the copper sulfide particles are also deposited and dispersed in the grain boundaries and grains of the copper phase as described above, and therefore, the copper sulfide particles have high adhesion. In addition, since Fe and Cu easily form sulfides to the same extent as Mo and sulfide is more difficult to form sulfides than Fe and Cu, sulfides dispersed in a matrix are: Mainly iron sulfide and copper sulfide. The sulfide phase precipitates in at least one of the matrix and the copper phase, and is present in grain boundaries and grains.
S量が乏しいと、基地中に分散する硫化物の量が減少して、潤滑特性が不十分になる。S量が過剰であると、析出する硫化物の量が過多となって基地の強度が低下し、その結果、鉄系焼結軸受を構成する鉄系焼結合金の機械的強さが低下する。このようなことから、S量は全体組成の0.2〜2.2質量%、好ましくは0.4〜2.0質量%であるとよい。このような割合である時、鉄系焼結合金の金属組織における硫化物相は、金属組織断面を観察した時の気孔を含む断面の面積に対する面積率で、0.9〜6%となる。 If the amount of S is low, the amount of sulfide dispersed in the base is reduced, resulting in insufficient lubricating properties. When the amount of S is excessive, the amount of precipitated sulfide is excessive to reduce the strength of the base, and as a result, the mechanical strength of the iron-based sintered alloy constituting the iron-based sintered bearing is reduced. . From such a thing, the amount of S should be 0.2 to 2.2% by mass, preferably 0.4 to 2.0% by mass of the whole composition. At such a ratio, the sulfide phase in the metal structure of the iron-based sintered alloy is 0.9 to 6% in area ratio to the area of the cross section including the pores when the metal structure cross section is observed.
硫化物は、金属組織中に粒状で分散することが好ましい。また、析出する硫化物粒子の大きさが粗大であると、硫化物粒子の存在箇所が偏在し、硫化物粒子の存在が乏しい箇所において、金属接触時に摩耗、凝着等が生じ易くなる。このため、硫化物相は最大粒径が50μm以下の粒子として分散する状態が好ましい。 The sulfide is preferably dispersed in the form of particles in the metal structure. In addition, when the size of the precipitated sulfide particles is coarse, the location where the sulfide particles are present is unevenly distributed, and wear, adhesion, and the like are likely to occur at the time of metal contact at locations where the presence of sulfide particles is poor. Therefore, it is preferable that the sulfide phase be dispersed as particles having a maximum particle size of 50 μm or less.
C(炭素)は、黒鉛粉末の形態で配合される。黒鉛相は、黒鉛粉末粒子が未拡散の状態で鉄系焼結合金中に残留することで形成される。このため、黒鉛相は、鉄系焼結合金の気孔中に分散する。黒鉛相は、鉄系焼結合金に潤滑性を付与する。また、黒鉛粉末の一部は、基地を構成するFe粉末粒子中に拡散して固溶し、パーライトを形成して基地の機械的強さの向上に寄与する。これによって、パーライトの単相組織、または、フェライトとパーライトとの混合組織を示す基地が生成する。 C (carbon) is compounded in the form of graphite powder. The graphite phase is formed by the graphite powder particles remaining in the non-diffused state in the iron-based sintered alloy. For this reason, the graphite phase is dispersed in the pores of the iron-based sintered alloy. The graphite phase imparts lubricity to the iron-based sintered alloy. In addition, a part of the graphite powder diffuses into Fe powder particles constituting the matrix to form a solid solution, thereby forming pearlite and contributing to the improvement of the mechanical strength of the matrix. This produces a base exhibiting a single phase structure of pearlite or a mixed structure of ferrite and pearlite.
C量が乏しいと、鉄系焼結合金中に分散する黒鉛相の量が減少し、潤滑特性が低下する。一方、C量が過多であると、分散する黒鉛相の量が過剰になり、基地の強度が低下する。その結果、鉄系焼結軸受を構成する鉄系焼結合金の機械的強さが低下する。このため、C量は全体組成の1〜5質量%であると好適である。平均粒径が40〜80μm程度の黒鉛粉末を使用すると、基地への拡散や摺動特性等の点において好適である。 If the amount of C is low, the amount of the graphite phase dispersed in the iron-based sintered alloy is reduced, and the lubricating characteristics are degraded. On the other hand, when the amount of C is excessive, the amount of dispersed graphite phase becomes excessive, and the strength of the base is lowered. As a result, the mechanical strength of the iron-based sintered alloy constituting the iron-based sintered bearing is reduced. Therefore, the amount of C is preferably 1 to 5% by mass of the total composition. Use of a graphite powder having an average particle diameter of about 40 to 80 μm is preferable in terms of diffusion to a base, sliding characteristics, and the like.
以上より、本発明の好適な実施形態において、鉄系焼結軸受を構成する鉄系焼結合金は、全体組成が、質量比で、Cu:0.5〜3%、Mo:0.3〜3.3%、C:1〜5%、S:0.2〜2.2%、残部:Feおよび不可避不純物からなり、前記鉄系焼結合金の気孔率が10〜25%である。鉄系焼結合金は、基地中に気孔、銅相及び黒鉛相が分散するとともに、硫化物相が基地及び/又は銅相から析出して分散する金属組織構造を有し、基地は、ベイナイト単相組織、ベイナイトとパーライトの混合組織、ベイナイトとフェライトの混合組織、及び、ベイナイトとパーライトとフェライトの混合組織のうちの1つの金属組織を呈する。 From the above, in the preferred embodiment of the present invention, the overall composition of the iron-based sintered alloy that constitutes the iron-based sintered bearing is, by mass ratio, Cu: 0.5 to 3%, Mo: 0.3 to It consists of 3.3%, C: 1 to 5%, S: 0.2 to 2.2%, balance: Fe and unavoidable impurities, and the porosity of the iron-based sintered alloy is 10 to 25%. The iron-based sintered alloy has a metallographic structure in which pores, a copper phase and a graphite phase are dispersed in a matrix, and a sulfide phase is precipitated and dispersed from the matrix and / or the copper phase, and the matrix is bainite single It exhibits a phase structure, a mixed structure of bainite and perlite, a mixed structure of bainite and ferrite, and a metal structure of one of a mixed structure of bainite, perlite and ferrite.
なお、硫化物相の面積率は、鉄系焼結軸受(鉄系焼結合金)の断面または表面を金属顕微鏡、電子線マイクロアナライザ(EPMA:Electron Probe Micro Analyzer)等によって観察した画像に基づいて、三谷商事株式会社製WinROOF等の画像分析ソフトウエアを用いて測定することができる。 The area ratio of the sulfide phase is based on an image obtained by observing a cross section or surface of an iron-based sintered bearing (iron-based sintered alloy) with a metallographic microscope, an electron probe micro analyzer (EPMA), or the like. Measurement can be performed using image analysis software such as WinROOF manufactured by Mitani Corporation.
本発明における鉄系焼結軸受の製造方法において、鉄系焼結軸受を構成する鉄系焼結合金の原料粉末としては、鉄粉末またはFe−Mo合金粉末に、銅粉末、黒鉛粉末、および、硫化鉄粉末及び二硫化モリブデン粉末の少なくとも一種の硫化物粉末を添加し混合して、質量比で、Cu:0.5〜3%、Mo:0.3〜3.3%、C:1〜5%、S:0.2〜2.2%、残部:Feおよび不可避不純物からなる組成に調製された混合粉末を用いることができる。 In the method of producing an iron-based sintered bearing according to the present invention, copper powder, graphite powder, and iron powder or Fe-Mo alloy powder may be used as a raw material powder of an iron-based sintered alloy that constitutes the iron-based sintered bearing. At least one sulfide powder of iron sulfide powder and molybdenum disulfide powder is added and mixed, and Cu: 0.5 to 3%, Mo: 0.3 to 3.3%, C: 1 by mass ratio The mixed powder prepared to the composition which consists of 5%, S: 0.2 to 2.2%, remainder: Fe and an unavoidable impurity can be used.
鉄系焼結軸受の製造方法は、上記の原料粉末を、軸受形状(ネットシェイプ)、すなわち、軸と摺動する内径面を備えた略円管又は略円環の形状に成形する成形工程と、得られた成形体を焼結する焼結工程を有する。成形工程において、原料粉末の成形圧力を250〜650MPaとすることで、焼結後の鉄系焼結合金の密度が5.2〜7.2Mg/m3となるように鉄系焼結軸受を製造することができる。 A method of manufacturing an iron-based sintered bearing includes the step of forming the above-mentioned raw material powder into a bearing shape (net shape), that is, a substantially circular pipe or a substantially annular shape having an inner diameter surface sliding with a shaft And a sintering step of sintering the obtained compact. In the forming step, by setting the forming pressure of the raw material powder to 250 to 650 MPa, the iron-based sintered bearing is made so that the density of the iron-based sintered alloy after sintering is 5.2 to 7.2 Mg / m 3. It can be manufactured.
焼結工程において、焼結温度が低すぎると、硫化鉄が溶融せず、鉄系焼結合金の基地中に硫化物を分散析出させることができなくなるので、焼結温度は990℃以上がよい。また、焼結温度が高すぎると、黒鉛が基地へ拡散して残留する黒鉛相が減少するとともに、銅粉末が溶融して残留する銅相が乏しくなるので、焼結温度は1080℃以下が適正である。尚、Sは、水素及び酸素と反応し易く、焼結雰囲気が酸化性のガスであると、原料粉末に導入したS成分が離脱して鉄系焼結合金中のS量が低下するので、焼結雰囲気は、非酸化性の雰囲気とする必要がある。また、露点が低い雰囲気を用いることが好ましい。本発明においては、モリブデンによる焼き入れ効果によってベイナイトが生じるので、特に焼き入れ処理を行う必要はない。 In the sintering step, if the sintering temperature is too low, the iron sulfide will not melt and it will not be possible to disperse and precipitate the sulfide in the iron-based sintered alloy matrix, so the sintering temperature should be 990 ° C or higher . If the sintering temperature is too high, the graphite diffuses to the matrix and the remaining graphite phase decreases, and the copper powder melts and the remaining copper phase becomes scarce, so the sintering temperature is suitably 1080 ° C. or less It is. S easily reacts with hydrogen and oxygen, and if the sintering atmosphere is an oxidizing gas, the S component introduced into the raw material powder is desorbed to reduce the amount of S in the iron-based sintered alloy. The sintering atmosphere needs to be a non-oxidative atmosphere. Further, it is preferable to use an atmosphere having a low dew point. In the present invention, since the hardening effect by molybdenum produces bainite, it is not necessary to carry out the hardening treatment.
本発明において、鉄系焼結含油軸受の製造方法は、上述のような鉄系焼結軸受の製造方法に従って鉄系焼結軸受を調製する工程と、潤滑油を鉄系焼結軸受に含浸する含浸工程とを有し、必要に応じて、含浸前の鉄系焼結軸受にサイジング、コイニング等の最終圧縮加工を施してもよい。潤滑油は、用途及び動作環境を勘案して各種潤滑油から適宜選択して使用することができ、例えば、鉱物油、合成炭化水素油、エステル油などから1種又は2種以上を組み合わせて使用して良い。 In the present invention, the method for producing an iron-based sintered oil-impregnated bearing comprises the steps of preparing an iron-based sintered bearing according to the method for producing an iron-based sintered bearing as described above, and impregnating the iron-based sintered bearing with a lubricating oil. The iron-based sintered bearing prior to impregnation may be subjected to final compression processing such as sizing and coining, if necessary. The lubricating oil can be appropriately selected and used from various lubricating oils in consideration of the application and the operating environment. For example, mineral oil, synthetic hydrocarbon oil, ester oil and the like are used in combination of one or more kinds. It is good.
[第1実施例]
還元鉄粉末、扁平状の銅粉末、二硫化モリブデン粉末、および、黒鉛粉末を用意し、表1に示す割合で添加し混合した原料粉末を用いて、成形圧力300MPaで、外径16mm、内径10mm、高さ10mmの円管形状に成形し、非酸化性ガス雰囲気中、1000℃で焼結を行って試料番号1〜21の軸受試料を作製した。尚、以下の測定を行うために、各試料番号について複数の焼結軸受試料を作製した。
[First embodiment]
Using a raw material powder prepared by adding reduced iron powder, flat copper powder, molybdenum disulfide powder, and graphite powder and mixed at a ratio shown in Table 1, outer diameter 16 mm, inner diameter 10 mm at a molding pressure of 300 MPa Then, it was formed into a circular tube shape with a height of 10 mm, and sintered at 1000 ° C. in a non-oxidizing gas atmosphere to prepare bearing samples of sample numbers 1 to 21. In addition, in order to perform the following measurement, several sintered bearing samples were produced about each sample number.
これらの軸受試料について、日本工業規格(JIS)Z2505に規定の金属焼結材料の焼結密度試験方法により測定した鉄系焼結合金の密度は、5.6〜6.0Mg/m3の範囲であった。 The density of the iron-based sintered alloy measured by the sintering density test method of the metal sintered material specified in Japanese Industrial Standard (JIS) Z2505 for these bearing samples is in the range of 5.6 to 6.0 Mg / m 3 Met.
また、各試料番号の軸受試料について、日本工業規格(JIS)Z2507に規定の圧環強さ試験方法により各軸受試料の圧環強さを測定した。この結果を表1に併せて示す。 Further, with respect to the bearing samples of each sample number, the radial crushing strength of each bearing sample was measured by the radial crushing strength test method defined in Japanese Industrial Standard (JIS) Z2507. The results are shown in Table 1 together.
さらに、各試料番号の軸受試料について、焼結含油軸受の内径面における摩擦係数を測定した。摩擦係数の測定は、水平にしたモータの回転軸に炭素鋼S45C製のシャフトを取り付けた。このシャフトを、ハウジングに取り付けた軸受に隙間を持たせて挿入し、ハウジングに鉛直方向の荷重を与えた状態でシャフトを回転させて行った。この試験において、周囲の温度は25℃に保持し、シャフトの回転数を500rpm、負荷面圧を0.3MPaに設定した。これらの結果を表1に併せて示す。 Furthermore, for the bearing samples of each sample number, the friction coefficient at the inner diameter surface of the sintered oil-impregnated bearing was measured. The measurement of the coefficient of friction attached the shaft made of carbon steel S45C to the rotating shaft of the leveled motor. The shaft was inserted into the bearing attached to the housing with a gap, and the shaft was rotated while a load in the vertical direction was applied to the housing. In this test, the ambient temperature was maintained at 25 ° C., the rotation speed of the shaft was set to 500 rpm, and the load surface pressure was set to 0.3 MPa. These results are shown together in Table 1.
又、上記と同様に潤滑油を含浸した各試料番号の軸受試料を用いて摩耗試験を行った。摩耗試験においては、上述の摩擦係数の測定と同じ条件で、ハウジングに取り付けた軸受試料にシャフトを挿入してハウジングに負荷を与え、120分間シャフトを回転させた後の軸受面の摺動位置における摩耗量を測定した。摩耗量の測定においては、各軸受試料について、シャフトの摺動位置を含む鉛直方向の内径を試験前に予め測定し、試験後に再度測定して、試験前後の変動量として摩耗量を算出した。結果を表1に示す。 In addition, a wear test was conducted using a bearing sample of each sample number impregnated with lubricating oil as described above. In the wear test, the shaft is inserted into the bearing sample attached to the housing under the same conditions as the measurement of the coefficient of friction described above to load the housing and rotate the shaft for 120 minutes at the sliding position of the bearing surface. The amount of wear was measured. In the measurement of the amount of wear, for each bearing sample, the inner diameter in the vertical direction including the sliding position of the shaft was measured in advance before the test, measured again after the test, and the amount of wear was calculated as the amount of fluctuation before and after the test. The results are shown in Table 1.
表1の試料番号1〜7の軸受試料を比較することで、Cu量の影響を調べることができる。表1より、Cuを含まない試料番号1の軸受試料は、軟質な銅相が形成されないことから、摩擦係数の値が大きい。Cuの添加量が0.5質量%の試料番号2の軸受試料では、軟質な銅相が形成され、摩擦係数が0.25まで低減される。また、Cu量が増加するに従って摩擦係数が低減されることがわかる。但し、Cuの添加量が増加するにつれて、圧環強さが低下し、3質量%を超える試料番号7では、圧環強さが150MPa未満になり、摩耗量も20μmを超える。これらのことから、Cu量が0.5〜3質量%の範囲において、良好な摺動特性が得られることが確認された。この結果は、良好な潤滑油膜を形成しにくい摺動条件であっても、Cu量が0.5〜3質量%の軸受は対応可能であることを示す。 By comparing the bearing samples of sample numbers 1 to 7 in Table 1, the influence of the amount of Cu can be examined. From Table 1, the bearing sample of Sample No. 1 not containing Cu has a large value of coefficient of friction because a soft copper phase is not formed. In the bearing sample of sample No. 2 in which the additive amount of Cu is 0.5% by mass, a soft copper phase is formed, and the friction coefficient is reduced to 0.25. Also, it can be seen that the coefficient of friction decreases as the amount of Cu increases. However, as the added amount of Cu increases, the radial crushing strength decreases, and in sample No. 7 exceeding 3% by mass, the radial crushing strength becomes less than 150 MPa, and the wear amount also exceeds 20 μm. From these facts, it was confirmed that good sliding characteristics can be obtained when the amount of Cu is in the range of 0.5 to 3% by mass. This result indicates that a bearing having a Cu content of 0.5 to 3% by mass is compatible even under sliding conditions in which it is difficult to form a good lubricating oil film.
一方、試料番号3,16〜21の軸受試料を比較することで、C量の影響を調べることができる。C量が0.5質量%である試料番号16の軸受試料は、黒鉛相が乏しいことから、摩擦係数の値が大きい。Cの添加量が1質量%の試料番号17の軸受試料は、充分な量の黒鉛相が形成され、摩擦係数が0.24まで低減される。また、C量が増加するに従って摩擦係数が低減することがわかる。しかし、C量が増加するに従って圧環強さは低下し、C量が5質量%を超える試料番号21の軸受試料では圧環強さが140MPaまで低下し、摩耗量の値も20μmに近い値に増加する。これらのことから、C量が0.5〜5質量%の範囲において、摺動特性が良好で、且つ、機械的特性が高い鉄系焼結含油軸受を得られることが確認された。この結果は、良好な潤滑油膜を形成しにくい摺動条件であっても、C量が0.5〜5質量%の軸受は対応可能であることを示す。 On the other hand, the influence of the amount of C can be investigated by comparing the bearing samples of sample numbers 3, 16 to 21. The bearing sample of sample No. 16 in which the amount of C is 0.5% by mass has a large value of the coefficient of friction because the graphite phase is poor. In the bearing sample of sample No. 17 in which the amount of C added is 1% by mass, a sufficient amount of graphite phase is formed, and the friction coefficient is reduced to 0.24. Also, it can be seen that the coefficient of friction decreases as the amount of C increases. However, as the amount of C increases, the radial crushing strength decreases, and for the bearing sample of sample No. 21 whose C amount exceeds 5% by mass, the radial crushing strength decreases to 140 MPa and the value of the amount of wear also increases to a value close to 20 μm. Do. From these facts, it was confirmed that an iron-based sintered oil-impregnated bearing having good sliding properties and high mechanical properties can be obtained when the amount of C is in the range of 0.5 to 5% by mass. This result indicates that a bearing having a C content of 0.5 to 5% by mass can be coped with even under sliding conditions in which it is difficult to form a good lubricating oil film.
又、試料番号3,08〜15の軸受試料を比較することで、S量の影響を調べることができる。Sを含まない試料番号8の軸受試料は、硫化物相が形成されないことから、摩擦係数及び摩耗量が大きい値となっている。これに対し、S量が0.2質量%の試料番号9の軸受試料は、硫化物相が形成され、摩擦係数が0.25に低下し、摩耗量も16μmに低減している。試料番号3,10〜13の値を考慮すると、S量が増加するに従って摩擦係数及び摩耗量が低減されることが明らかであり、Sの割合が0.2質量%以上において、摩擦係数及び摩耗量は低い値を示すので好ましい。但し、S量が増加するに従って圧環強さは低下し、S量が2.2質量%を超える試料番号15の軸受試料では圧環強さが120MPaまで低下している。これらのことから、S量が0.2〜2.2質量%の範囲において、摺動特性が良好で、且つ、機械的特性が高い鉄系焼結含油軸受を得られることが解る。好ましくは、S量が0.4〜2.0質量%になるように原料粉末を調製すると良い。上記の結果に対応して、Mo量についても0.3〜3.3質量%の範囲が好適であり、0.6〜3.0質量%の範囲が好ましいことが明らかである。この結果は、良好な潤滑油膜を形成しにくい摺動条件であっても、S量が0.2〜2.2質量%、Mo量が0.3〜3.3質量%である軸受は対応可能であることを示す。 Moreover, the influence of S amount can be investigated by comparing the bearing sample of sample numbers 3, 08-15. The bearing sample of sample No. 8 which does not contain S has large values of friction coefficient and amount of wear because a sulfide phase is not formed. On the other hand, in the bearing sample of sample No. 9 in which the S content is 0.2% by mass, a sulfide phase is formed, the friction coefficient is lowered to 0.25, and the wear amount is also reduced to 16 μm. It is clear that the coefficient of friction and the amount of wear decrease as the amount of S increases, considering the values of sample numbers 3, 10 to 13, and the coefficient of friction and the wear when the ratio of S is 0.2% by mass or more The amount is preferable because it shows a low value. However, the radial crushing strength decreases as the amount of S increases, and the radial crushing strength decreases to 120 MPa in the bearing sample of the sample No. 15 in which the amount of S exceeds 2.2 mass%. From these facts, it is understood that an iron-based sintered oil-impregnated bearing having good sliding characteristics and high mechanical characteristics can be obtained when the amount of S is in the range of 0.2 to 2.2% by mass. Preferably, the raw material powder may be prepared such that the amount of S is 0.4 to 2.0% by mass. It is clear that the range of 0.3-3.3 mass% is suitable also about Mo amount corresponding to said result, and the range of 0.6-3.0 mass% is preferable. This result indicates that bearings with an S content of 0.2 to 2.2 mass% and an Mo content of 0.3 to 3.3 mass% are compatible even under sliding conditions in which it is difficult to form a good lubricating oil film. Indicates that it is possible.
配合割合と摺動特性との相関関係において、上述したように、銅粉末及び黒鉛粉末については、配合割合の増加に従って、圧環強さが低下して摩耗量が増加する。これに対し、二硫化モリブデン粉末については、配合割合の増加に従って圧環強さは同様に低下するが、摩耗量は増加せず、逆に減少する。これは、Moの導入に起因する効果であり、Moは、Fe中に固溶して基地の強化に寄与し、鉄基地の焼き入れ性を向上させてベイナイト相を形成するので、これによって基地に粘り強さが付与されて耐摩耗性が向上すると考えられる。この点は、二硫化モリブデン粉末の代わりに硫化鉄粉末を用いてS量が同じであるように原料粉末を配合した場合に得られる鉄系焼結含油軸受において、摩耗量が相対的に多くなることによって確認されている。例えば、Moを含有しない点以外は試料番号3と同じ全体組成を有する鉄系焼結軸受(二硫化モリブデン粉末に代えて硫化鉄粉末3.3質量%を使用)において、金属組織にベイナイトは見られず、上述の摩耗試験における摩耗量の測定値は19μm程度であった。 In the correlation between the blending ratio and the sliding property, as described above, with respect to the copper powder and the graphite powder, as the blending ratio increases, the radial crushing strength decreases and the wear amount increases. On the other hand, in the case of molybdenum disulfide powder, the radial crushing strength similarly decreases with the increase of the blending ratio, but the wear amount does not increase but conversely decreases. This is an effect caused by the introduction of Mo. Mo forms a solid solution in Fe to contribute to the strengthening of the matrix and improves the hardenability of the iron matrix to form a bainite phase, thereby the matrix Persistence is given to it and it is thought that abrasion resistance improves. In this point, the amount of wear relatively increases in the iron-based sintered oil-impregnated bearings obtained when raw material powders are blended so that the amount of S is the same using iron sulfide powder instead of molybdenum disulfide powder It has been confirmed by. For example, in an iron-based sintered bearing having the same overall composition as sample No. 3 except that it does not contain Mo (using 3.3 mass% of iron sulfide powder instead of molybdenum disulfide powder), bainite appears in the metal structure The measured value of the amount of wear in the above-mentioned wear test was about 19 μm.
試料番号3,8,9及び15の鉄系焼結軸受について、電子線マイクロアナライザを用いて軸受の断面を観察し、観察画像に基づいてベイナイト組織の面積を測定し、基地中のベイナイト組織の面積率を算出した。尚、測定においては、画像分析ソフトウエア(WinROOF、三谷商事株式会社製)を使用した。その結果、ベイナイト相の割合は、モリブデンを含まない試料番号8においては0%であり、試料番号9、試料番号3、試料番号15の順にベイナイト相の割合は、3%から40%へ増加していた。又、基地のベイナイト組織以外の部分は、何れもフェライト及びパーライトから構成されていた。 For iron-based sintered bearings of sample numbers 3, 8, 9 and 15, the cross section of the bearing is observed using an electron beam microanalyzer, the area of the bainite structure is measured based on the observation image, and the bainite structure in the base is The area ratio was calculated. In the measurement, image analysis software (WinROOF, manufactured by Mitani Corporation) was used. As a result, the proportion of the bainite phase is 0% in sample No. 8 not containing molybdenum, and the proportion of the bainite phase in the order of sample No. 9, sample No. 3 and sample No. 15 increases from 3% to 40%. It was Also, all parts other than the bainite structure of the base were composed of ferrite and pearlite.
[第2実施例]
第1実施例の試料番号3の原料粉末を用い、成形圧力を変えて成形を行い、第1実施例と同様の焼結条件で焼結を行って、試料番号22〜29の軸受試料を作製した。これらの軸受試料について、第1実施例と同様にして、各軸受試料の鉄系焼結合金の密度、圧環強さ、摩擦係数及び摩耗量を測定した。これらの結果、及び、第1実施例の試料番号3における結果を併せて表2に示す。
Second Embodiment
Using the raw material powder of sample No. 3 of the first embodiment, molding is performed at different molding pressures, and sintering is performed under the same sintering conditions as in the first example to produce bearing samples of sample Nos. 22 to 29 did. With respect to these bearing samples, the density, radial crushing strength, friction coefficient and amount of wear of the iron-based sintered alloy of each bearing sample were measured in the same manner as in the first embodiment. These results and the results for sample No. 3 of the first example are shown in Table 2 together.
表2における試料番号3,22〜29を比較することで、鉄系焼結合金の密度の影響を調べることができる。摩擦係数は、密度5.0〜7.2Mg/m3の範囲において0.25以下に低減できている。気孔率が増加するに従って、軸受とシャフトの接触面積が低下して摩擦係数が低減されることが分かる。一方、圧環強さは、密度が減少するに従って低下し、密度が5.0Mg/m3の試料番号22の試料では150MPaまで低下している。摩耗量については、密度が低下するに従って減少し、摩耗量を20μm程度以下に抑制するには、5.2Mg/m3以上の密度に成形することが必要である。このことから、密度が5.2〜7.2Mg/m3の範囲において、摺動特性が良好で、且つ、機械的特性が高い鉄系焼結含油軸受を得られることが確認された。この結果は、良好な潤滑油膜を形成しにくい摺動条件であっても対応可能であることを示す。 By comparing sample numbers 3 and 22 to 29 in Table 2, the influence of the density of the iron-based sintered alloy can be examined. The coefficient of friction can be reduced to 0.25 or less in the density range of 5.0 to 7.2 Mg / m 3 . It can be seen that as the porosity increases, the contact area between the bearing and the shaft decreases and the coefficient of friction decreases. On the other hand, the radial crushing strength decreases as the density decreases, and decreases to 150 MPa in the sample of sample No. 22 whose density is 5.0 Mg / m 3 . The amount of wear decreases as the density decreases, and in order to suppress the amount of wear to about 20 μm or less, it is necessary to mold to a density of 5.2 Mg / m 3 or more. From this, it was confirmed that an iron-based sintered oil-impregnated bearing having good sliding properties and high mechanical properties can be obtained in the density of 5.2 to 7.2 Mg / m 3 . This result shows that it is possible to cope with sliding conditions in which it is difficult to form a good lubricating oil film.
本発明の鉄系焼結軸受は、基地の粘り強さを有し、潤滑油を含浸して鉄系焼結含油軸受として使用する際に、良好な潤滑油膜を形成し難く金属接触が発生し易い摺動条件の下でも、良好な潤滑特性を発揮できる。複写機等の紙送りローラや、ヘッド駆動モータ等のような、正逆に回転する軸を支承し、正転、逆転それぞれの駆動時間が短い用途のための軸受として好適であり、又、スクロール式圧縮機等のような、固定子に対して偏心して回転する回転子の軸を支承する軸受等に好適である。 The iron-based sintered bearing of the present invention has the toughness of a base, and when it is impregnated with lubricating oil and used as an iron-based sintered oil-impregnated bearing, it is difficult to form a good lubricating oil film and metal contact tends to occur. Even under sliding conditions, good lubricating characteristics can be exhibited. It is suitable as a bearing for applications that support forward and reverse rotating shafts, such as paper feed rollers for copying machines and head drive motors, and have short forward and reverse drive times, and scrolls. It is suitable for a bearing or the like that supports the shaft of a rotor that rotates eccentrically with respect to the stator, such as a compressor.
1 焼結軸受
2 潤滑油
3 軸
5 油圧分布
1 Sintered bearing 2 Lubricant 3 axis 5 Oil pressure distribution
Claims (9)
前記鉄系焼結合金の全体組成が、質量比で、Cu:0.5〜3%、Mo:0.3〜3.3%、C:1〜5%、S:0.2〜2.2%、残部:Fe及び不可避不純物からなり、
前記鉄系焼結合金の密度が5.2〜7.2Mg/m3であり、
前記鉄系焼結合金の金属組織は、前記気孔が分散する基地と、前記基地に分散する銅相及び黒鉛相と、前記基地及び前記銅相の少なくとも一方から析出して分散する硫化物相とを有し、
前記基地は、ベイナイトの単相組織、ベイナイトとパーライトの混合組織、ベイナイトとフェライトの混合組織、及び、ベイナイトとパーライトとフェライトの混合組織のうちの1つの金属組織を呈する鉄系焼結軸受。 An iron-based sintered bearing constituted of an iron-based sintered alloy having a bearing surface for supporting an outer peripheral surface of a shaft and in which pores capable of being impregnated with lubricating oil are dispersed,
The overall composition of the iron-based sintered alloy is, by mass ratio, Cu: 0.5 to 3%, Mo: 0.3 to 3.3%, C: 1 to 5%, S: 0.2 to 2. 2%, balance: Fe and inevitable impurities,
The density of the iron-based sintered alloy is 5.2 to 7.2 Mg / m 3 ,
The metal structure of the iron-based sintered alloy includes a matrix in which the pores are dispersed, a copper phase and a graphite phase dispersed in the matrix, and a sulfide phase dispersed from at least one of the matrix and the copper phase and dispersed. Have
The base is an iron-based sintered bearing exhibiting a single phase structure of bainite, a mixed structure of bainite and perlite, a mixed structure of bainite and ferrite, and a metal structure of one of a mixed structure of bainite, perlite and ferrite.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017189786A JP7024291B2 (en) | 2017-09-29 | 2017-09-29 | Iron-based sintered bearings and iron-based sintered oil-impregnated bearings |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017189786A JP7024291B2 (en) | 2017-09-29 | 2017-09-29 | Iron-based sintered bearings and iron-based sintered oil-impregnated bearings |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019065323A true JP2019065323A (en) | 2019-04-25 |
JP7024291B2 JP7024291B2 (en) | 2022-02-24 |
Family
ID=66339104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017189786A Active JP7024291B2 (en) | 2017-09-29 | 2017-09-29 | Iron-based sintered bearings and iron-based sintered oil-impregnated bearings |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7024291B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111001813A (en) * | 2019-12-28 | 2020-04-14 | 合肥波林新材料股份有限公司 | High-antifriction iron-based vulcanized powder metallurgy oil-retaining bearing material and preparation method and application thereof |
CN111139427A (en) * | 2020-01-14 | 2020-05-12 | 合肥波林新材料股份有限公司 | Iron-based sintered sulfur vapor material, shaft sleeve and preparation method thereof |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5420911A (en) * | 1977-07-18 | 1979-02-16 | Teikoku Piston Ring Co Ltd | Silnder liner material made of sintered alloys |
JP2001316780A (en) * | 2000-05-02 | 2001-11-16 | Hitachi Powdered Metals Co Ltd | Valve seat for internal combustion engine and its production method |
JP2009215630A (en) * | 2008-03-12 | 2009-09-24 | Toyota Motor Corp | Sintered connecting rod and method for production thereof |
JP2010077474A (en) * | 2008-09-25 | 2010-04-08 | Hitachi Powdered Metals Co Ltd | Iron-based sintered bearing, and method for manufacturing the same |
JP2013076152A (en) * | 2011-09-30 | 2013-04-25 | Hitachi Powdered Metals Co Ltd | Iron-based sintered sliding member and method for producing the same |
JP2014177658A (en) * | 2013-03-13 | 2014-09-25 | Hitachi Chemical Co Ltd | Iron-based sintered sliding member and production method thereof |
JP2014209023A (en) * | 2013-03-25 | 2014-11-06 | Ntn株式会社 | Vibrating motor |
WO2018100660A1 (en) * | 2016-11-30 | 2018-06-07 | 日立化成株式会社 | Ferrous sinter oil-containing bearing |
-
2017
- 2017-09-29 JP JP2017189786A patent/JP7024291B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5420911A (en) * | 1977-07-18 | 1979-02-16 | Teikoku Piston Ring Co Ltd | Silnder liner material made of sintered alloys |
JP2001316780A (en) * | 2000-05-02 | 2001-11-16 | Hitachi Powdered Metals Co Ltd | Valve seat for internal combustion engine and its production method |
JP2009215630A (en) * | 2008-03-12 | 2009-09-24 | Toyota Motor Corp | Sintered connecting rod and method for production thereof |
JP2010077474A (en) * | 2008-09-25 | 2010-04-08 | Hitachi Powdered Metals Co Ltd | Iron-based sintered bearing, and method for manufacturing the same |
JP2013076152A (en) * | 2011-09-30 | 2013-04-25 | Hitachi Powdered Metals Co Ltd | Iron-based sintered sliding member and method for producing the same |
JP2014177658A (en) * | 2013-03-13 | 2014-09-25 | Hitachi Chemical Co Ltd | Iron-based sintered sliding member and production method thereof |
JP2014209023A (en) * | 2013-03-25 | 2014-11-06 | Ntn株式会社 | Vibrating motor |
WO2018100660A1 (en) * | 2016-11-30 | 2018-06-07 | 日立化成株式会社 | Ferrous sinter oil-containing bearing |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111001813A (en) * | 2019-12-28 | 2020-04-14 | 合肥波林新材料股份有限公司 | High-antifriction iron-based vulcanized powder metallurgy oil-retaining bearing material and preparation method and application thereof |
CN111139427A (en) * | 2020-01-14 | 2020-05-12 | 合肥波林新材料股份有限公司 | Iron-based sintered sulfur vapor material, shaft sleeve and preparation method thereof |
CN111139427B (en) * | 2020-01-14 | 2022-03-11 | 合肥波林新材料股份有限公司 | Iron-based sintered sulfur vapor material, shaft sleeve and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP7024291B2 (en) | 2022-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4886545B2 (en) | Sintered oil-impregnated bearing and manufacturing method thereof | |
JP5247329B2 (en) | Iron-based sintered bearing and manufacturing method thereof | |
CN102197150B (en) | Sliding bearing with improved wear resistance and method of manufacturing same | |
US8216338B2 (en) | Bearing having improved consume resistivity and manufacturing method thereof | |
US20090311129A1 (en) | Abrasion resistant sintered copper base cu-ni-sn alloy and bearing made from the same | |
JP4749260B2 (en) | Sintered oil-impregnated bearing | |
JP2005350722A (en) | Pb-free bearing for fuel injection pump | |
EP2918693B1 (en) | Sintered alloy superior in wear resistance | |
JP6440297B2 (en) | Cu-based sintered bearing | |
JP6424983B2 (en) | Iron-based sintered oil-impregnated bearing | |
JP2019065323A (en) | Iron-based sintered shaft bearing, and iron-based sintered oil-containing shaft bearing | |
JP6819696B2 (en) | Iron-based sintered oil-impregnated bearing | |
JP2001107162A (en) | Bronze series sintered alloy, bearing using the same and their producing method | |
JP3410595B2 (en) | Iron-based sintered oil-impregnated bearing and its manufacturing method | |
JP6620391B2 (en) | Cu-based sintered sliding material and manufacturing method thereof | |
JP2001003123A (en) | Sintered alloy for oilless bearing, and its manufacture | |
JP2006111975A (en) | Self-lubricating sintered sliding material and its production method | |
JP6536866B1 (en) | Sintered bearing, sintered bearing device and rotating device | |
JP5424121B2 (en) | Sliding material | |
JP2019207030A (en) | Sintered bearing and manufacturing method thereof | |
JPH06192783A (en) | Sintered sliding member and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200803 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210428 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210511 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20210712 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210906 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220111 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220124 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7024291 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |