JP2019064865A - Method for producing metal-ceramic bonded substrate - Google Patents
Method for producing metal-ceramic bonded substrate Download PDFInfo
- Publication number
- JP2019064865A JP2019064865A JP2017191721A JP2017191721A JP2019064865A JP 2019064865 A JP2019064865 A JP 2019064865A JP 2017191721 A JP2017191721 A JP 2017191721A JP 2017191721 A JP2017191721 A JP 2017191721A JP 2019064865 A JP2019064865 A JP 2019064865A
- Authority
- JP
- Japan
- Prior art keywords
- area
- metal
- region
- ceramic
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 174
- 239000000919 ceramic Substances 0.000 title claims abstract description 144
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 32
- 239000000463 material Substances 0.000 claims abstract description 89
- 229910052751 metal Inorganic materials 0.000 claims abstract description 75
- 239000002184 metal Substances 0.000 claims abstract description 75
- 238000005219 brazing Methods 0.000 claims description 81
- 239000010936 titanium Substances 0.000 claims description 35
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 33
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 23
- 229910052719 titanium Inorganic materials 0.000 claims description 23
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 21
- 229910052802 copper Inorganic materials 0.000 claims description 21
- 239000010949 copper Substances 0.000 claims description 21
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 9
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 238000003892 spreading Methods 0.000 abstract description 14
- 230000007547 defect Effects 0.000 abstract description 9
- 230000035939 shock Effects 0.000 abstract description 5
- 230000000593 degrading effect Effects 0.000 abstract 1
- 238000009736 wetting Methods 0.000 description 13
- 230000002093 peripheral effect Effects 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 9
- 238000005304 joining Methods 0.000 description 8
- 238000007650 screen-printing Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- 229910017944 Ag—Cu Inorganic materials 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910018125 Al-Si Inorganic materials 0.000 description 1
- 229910018520 Al—Si Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Ceramic Products (AREA)
- Manufacturing Of Printed Wiring (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
本発明は、金属−セラミックス接合基板の製造方法に関し、特に、ろう材を介して金属板がセラミックス基板に接合された金属−セラミックス接合基板の製造方法に関する。 The present invention relates to a method of manufacturing a metal-ceramic bonded substrate, and more particularly to a method of manufacturing a metal-ceramic bonded substrate in which a metal plate is bonded to a ceramic substrate through a brazing material.
従来、電気自動車、電車、工作機械などの大電力を制御するために、パワーモジュールが使用されている。このようなパワーモジュール用の絶縁基板として、ろう材を介して金属板がセラミックス基板に接合された金属−セラミックス接合基板が使用されている。 Conventionally, power modules are used to control high power of electric vehicles, trains, machine tools and the like. As such an insulating substrate for a power module, a metal-ceramic bonded substrate in which a metal plate is bonded to a ceramic substrate via a brazing material is used.
このような金属−セラミックス接合基板では、セラミックス基板の反りやうねりが大きいと、セラミックス基板にろう材を塗布して金属板を加熱接合したときに、反りやうねりが大きい部分に対応する金属板にろう材が接触せずに、未接合欠陥になる。このような未接合部があると、金属−セラミックス接合基板の放熱性が低下したり、部分放電が生じ易くなるという問題があり、特に、部分放電は微小ボイドでも生じ易い。 In such a metal-ceramic bonding substrate, when the ceramic substrate has large warpage or waviness, when a brazing material is applied to the ceramic substrate and the metal plate is heat-joined, a metal plate corresponding to a portion where the warpage or waviness is large is used. Without the brazing material coming in contact, it becomes an unbonded defect. If such an unjoined portion is present, there is a problem that the heat dissipation of the metal-ceramic bonded substrate is reduced, and partial discharge is likely to occur. In particular, partial discharge is likely to occur even with a microvoid.
このような問題を解消するため、金属体とセラミック体とを接合するろう材層の厚さを26〜100μmに厚くすることにより、接合処理時にろう材が溶融して生ずる液相の量を増やして接合界面にろう材を十分に広がり易くし、ろう材層中、あるいはろう材層と金属体ないしセラミック体との界面などに空隙や隙間などの欠陥を形成し難くすることが提案されている(例えば、特許文献1参照)。 In order to eliminate such problems, the thickness of the brazing material layer for joining the metal body and the ceramic body is increased to 26 to 100 μm, thereby increasing the amount of liquid phase generated by melting the brazing material during the joining process. It has been proposed to make it easy to spread the brazing material to the joint interface and to make it difficult to form defects such as voids or gaps in the brazing material layer or at the interface between the brazing material layer and the metal or ceramic body. (See, for example, Patent Document 1).
また、セラミック基板と金属板との接合面内に、メッシュ状の接合部分と、非接合部分とを存在させ、接合面に対する非接合部分の面積比率を5〜50%にすること(例えば、特許文献2参照)、セラミックス基板の金属板との接合面にろう材を点状または線状に塗布すること(例えば、特許文献3参照)などが提案されている。 In addition, a mesh-like joined portion and a non-joined portion exist in the joined surface of the ceramic substrate and the metal plate, and the area ratio of the non-joined portion to the joined surface is 5 to 50% (for example, patent) Patent Document 2), and application of a brazing material in a point-like or linear manner to a bonding surface of a ceramic substrate to a metal plate (see, for example, Patent Document 3).
しかし、特許文献1のように、ろう材を厚くすると、未接合欠陥を防止することはできるが、金属−セラミックス接合基板の場合は、ろう材の厚さは通常10〜20μmであり、ろう材の厚さを40μm程度に厚くすると、金属−セラミックス接合基板の耐熱衝撃性が悪くなるという問題がある。 However, as in Patent Document 1, if the brazing material is thickened, non-joining defects can be prevented, but in the case of a metal-ceramic bonding substrate, the thickness of the brazing material is usually 10 to 20 μm, and the brazing material If the thickness of the above is increased to about 40 .mu.m, there is a problem that the thermal shock resistance of the metal-ceramic bonding substrate is deteriorated.
また、特許文献2〜3のように、ろう材を点状または線状に塗布すると、ろう材の濡れ広がりが不十分で、金属−セラミックス接合基板の金属板とセラミックス基板の接合領域の面積が十分ではないという問題がある。 Also, as in Patent Documents 2 and 3, when the brazing material is applied in the form of dots or lines, the wetting and spreading of the brazing material is insufficient, and the area of the bonding region of the metal plate of the metal-ceramic bonding substrate and the ceramic substrate is There is a problem that it is not enough.
したがって、本発明は、このような従来の問題点に鑑み、セラミックス基板の少なくとも一方の面にろう材を介して金属板を接合する、金属−セラミックス接合基板の製造方法において、ろう材の濡れ広がりを十分にし、未接合欠陥を防止し、耐熱衝撃性の低下を防止することができる、金属−セラミックス接合基板の製造方法を提供することを目的とする。 Therefore, in view of such conventional problems, the present invention, in a method of manufacturing a metal-ceramic bonding substrate in which a metal plate is joined to at least one surface of a ceramic substrate through a brazing material, the wetting and spreading of the brazing material It is an object of the present invention to provide a method for producing a metal-ceramic bonded substrate, which can sufficiently reduce non-bonded defects and prevent a decrease in thermal shock resistance.
本発明者らは、上記課題を解決するために鋭意研究した結果、セラミックス基板の少なくとも一方の面にろう材を介して金属板を接合する、金属−セラミックス接合基板の製造方法において、ろう材を塗布する塗布領域とろう材を塗布しない非塗布領域の一方の領域が互いに離間して配置される多数の小領域からなるとともに、他方の領域が一方の領域の多数の小領域の各々の内部にそれぞれ配置される多数の微小領域と一方の領域の多数の小領域間で延びる領域とからなるように、セラミックス基板の少なくとも一方の面にろう材を塗布することにより、ろう材の濡れ広がりを十分にし、未接合欠陥を防止し、耐熱衝撃性の低下を防止することができる、金属−セラミックス接合基板の製造方法を提供することができることを見出し、本発明を完成するに至った。 MEANS TO SOLVE THE PROBLEM As a result of earnestly researching in order to solve the said subject, the present inventors join the metal material to the metal-ceramics joining board | substrate which joins a metal plate to at least one surface of a ceramic substrate through a brazing material. The application area to be applied and the non-application area to which the brazing material is not applied consist of a large number of small areas spaced from each other, and the other area is inside each of the small areas of one area. By applying a brazing material to at least one surface of the ceramic substrate so as to consist of a large number of micro areas arranged respectively and an area extending between a large number of small areas of one area, the wetting and spreading of the brazing material is sufficient. It has been found that the present invention can provide a method for producing a metal-ceramic bonded substrate that can prevent non-bonded defects and prevent the decrease in thermal shock resistance. The has been completed.
すなわち、本発明による金属−セラミックス接合基板の製造方法は、セラミックス基板の少なくとも一方の面にろう材を介して金属板を接合する、金属−セラミックス接合基板の製造方法において、ろう材を塗布する塗布領域とろう材を塗布しない非塗布領域の一方の領域が互いに離間して配置される多数の小領域からなるとともに、他方の領域が一方の領域の多数の小領域の各々の内部にそれぞれ配置される多数の微小領域と一方の領域の多数の小領域間で延びる領域とからなるように、セラミックス基板の少なくとも一方の面にろう材を塗布することを特徴とする。 That is, in the method of manufacturing a metal-ceramic bonding substrate according to the present invention, the metal material is bonded to at least one surface of the ceramic substrate via the brazing material. The area and one area of the non-applied area not coated with brazing material consist of a large number of small areas spaced apart from one another, and the other area is arranged inside of each of the small areas of one area. A brazing material is applied to at least one surface of the ceramic substrate so as to be composed of a large number of minute regions and a region extending between a large number of small regions in one region.
この金属−セラミックス接合基板の製造方法において、一方の領域の小領域の形状が多角形であり、他方の領域の微小領域の形状が一方の領域の小領域の多角形と略同一の形状の多角形であり、一方の領域の小領域の多角形の各辺がそれらの辺に対向する他方の領域の微小領域の多角形の各辺に対してそれぞれ略平行に延びるとともに、一方の領域の小領域の多角形の各辺がそれらの辺に対向する小領域の多角形の一辺に対してそれぞれ略平行に延びるのが好ましい。この場合、非塗布領域が一方の領域であり、一方の領域の小領域の多角形の各辺とそれらの辺に対向する他方の領域の微小領域の多角形の各辺との間隔がそれぞれ0.2mm以下であるのが好ましい。あるいは、非塗布領域が他方の領域であり、一方の領域の小領域の多角形の各辺とそれらの辺に対向する小領域の多角形の一辺との間隔がそれぞれ0.2mm以下であるのが好ましい。この場合、多角形が略正六角形であり、多数の微小領域の各々の微小領域の対辺間隔が0.2mm以下であるのが好ましい。 In this method of manufacturing a metal-ceramic bonding substrate, the shape of the small area of one area is a polygon, and the shape of the small area of the other area is substantially the same as the polygon of the small area of the one area. Each side of the polygon of the small area of one area is substantially parallel to each side of the polygon of the small area of the other area opposite to the side, and the small area of one area is small. Preferably, each side of the polygon of the region extends substantially parallel to one side of the polygon of the small region facing the side. In this case, the non-application region is one region, and the distance between each side of the polygon of the small region of one region and each side of the polygon of the small region of the other region opposite to the side is 0 It is preferable that it is 0.2 mm or less. Alternatively, the non-coated area is the other area, and the distance between each side of the small area polygon of one area and one side of the small area polygon opposite to the side is 0.2 mm or less. Is preferred. In this case, it is preferable that the polygon is a substantially regular hexagon, and the distance between opposite sides of each of the micro areas of the plurality of micro areas is 0.2 mm or less.
また、上記の金属−セラミックス接合基板の製造方法において、多角形が略正六角形であるのが好ましい。また、塗布領域と非塗布領域の合計の面積に対する塗布領域の面積が30〜80%であるのが好ましい。 Further, in the method of manufacturing a metal-ceramic bonding substrate described above, it is preferable that the polygon is a substantially regular hexagon. The area of the coated area is preferably 30 to 80% of the total area of the coated area and the non-coated area.
また、本発明による金属−セラミックス接合基板は、セラミックス基板の少なくとも一方の面に活性金属含有ろう材を介して金属板が接合された金属−セラミックス接合基板において、金属板のセラミックス基板と対向する面に対する、金属板とセラミックス基板の接合領域の面積率が97%以上であり、この接合領域の略全領域に活性金属含有ろう材中の活性金属が存在するとともに、活性金属含有ろう材中の活性金属が濃縮した領域が存在することを特徴とする。 The metal-ceramic bonding substrate according to the present invention is a metal-ceramic bonding substrate in which a metal plate is bonded to at least one surface of a ceramic substrate via an active metal-containing brazing material, a surface of the metal plate facing the ceramic substrate. And the area ratio of the joint region of the metal plate and the ceramic substrate is 97% or more, and the active metal in the active metal-containing brazing material exists in substantially the entire region of the joint region and the activity in the active metal-containing brazing material It is characterized in that there is a region enriched in metal.
この金属−セラミックス接合基板において、活性金属含有ろう材が、ろう材中の金属成分を100質量%とすると、5〜40質量%の銅と、1〜10質量%の活性金属と、1〜10質量%の錫と、残部として銀を含むのが好ましい。また、セラミックス基板が窒化アルミニウム基板であり、活性金属がチタンであり、活性金属が濃縮した領域が、金属板と活性金属ろう材の一部を除去したセラミックス基板の表面について、走査型電子顕微鏡(SEM)により反射電子像を撮影して観察したときに、走査型電子顕微鏡のエネルギー分散型X線分光法による特性X線のAl(Kα)に対するTi(Kα)のピーク面積比[Ti(Kα)/Al(Kα)]が0.2以上になる領域であるのが好ましい。また、接合領域に対する活性金属が濃縮した領域の面積率が20〜40%であるのが好ましい。 In this metal-ceramic bonding substrate, when the active metal-containing brazing material contains 100% by mass of the metal component in the brazing material, 5 to 40% by mass of copper, 1 to 10% by mass of active metal, 1 to 10% by mass It is preferred to include wt% tin and the balance silver. In addition, a scanning electron microscope (Ceramic substrate is an aluminum nitride substrate, an active metal is titanium, and a region where the active metal is concentrated is the surface of the ceramic substrate from which a metal plate and a part of the active metal brazing material have been removed). Peak area ratio of Ti (Kα) to Al (Kα) of characteristic X-rays by energy dispersive X-ray spectroscopy of a scanning electron microscope when the reflected electron image is photographed and observed by SEM) [Ti (Kα) It is preferable that the region is such that / Al (Kα)] is 0.2 or more. Moreover, it is preferable that the area ratio of the area | region which the active metal concentrated with respect to a joining area | region is 20 to 40%.
本発明によれば、セラミックス基板の少なくとも一方の面にろう材を介して金属板を接合する、金属−セラミックス接合基板の製造方法において、ろう材の濡れ広がりを十分にし、未接合欠陥を防止し、耐熱衝撃性の低下を防止することができる、金属−セラミックス接合基板の製造方法を提供することができる。 According to the present invention, in the method of manufacturing a metal-ceramic bonded substrate in which a metal plate is bonded to at least one surface of the ceramic substrate via the brazing material, the wetting and spreading of the brazing material is made sufficient to prevent unjoined defects. It is possible to provide a method of manufacturing a metal-ceramic bonding substrate that can prevent the reduction in thermal shock resistance.
本発明による金属−セラミックス接合基板の製造方法の実施の形態では、セラミックス基板の少なくとも一方の面にろう材を介して金属板を接合する、金属−セラミックス接合基板の製造方法において、ろう材を塗布する塗布領域とろう材を塗布しない非塗布領域の一方の領域が互いに離間して配置される多数の小領域からなるとともに、他方の領域が一方の領域の多数の小領域の各々の内部にそれぞれ配置される多数の微小領域と一方の領域の多数の小領域間で延びる領域とからなるように、セラミックス基板の少なくとも一方の面にろう材を塗布する。 In an embodiment of a method of manufacturing a metal-ceramic bonding substrate according to the present invention, a brazing material is applied in a method of manufacturing a metal-ceramic bonding substrate in which a metal plate is bonded to at least one surface of the ceramic substrate via the brazing material. The application area and the non-application area where the brazing material is not applied consists of a large number of small areas spaced from each other, and the other area is inside each of the large areas of one area. A brazing material is applied to at least one surface of the ceramic substrate so as to consist of a large number of micro areas to be arranged and an area extending between a large number of small areas of one area.
この金属−セラミックス接合基板の製造方法において、一方の領域の小領域とその小領域の内部に配置される他方の領域の微小領域との(最大)間隔は、好ましくは0.2mm以下(さらに好ましくは0.1〜0.2mm)であり、一方の領域の小領域とその小領域に隣接する小領域との(最大)間隔は、好ましくは0.2mm以下(さらに好ましくは0.1〜0.2mm)である。 In this method of manufacturing a metal-ceramic bonding substrate, the (maximum) distance between the small area of one area and the small area of the other area arranged inside the small area is preferably 0.2 mm or less (more preferably) Is 0.1 to 0.2 mm), and the (maximum) distance between a small area of one area and a small area adjacent to the small area is preferably 0.2 mm or less (more preferably 0.1 to 0). .2 mm).
また、上記の金属−セラミックス接合基板の製造方法において、一方の領域の小領域の形状が多角形であり、他方の領域の微小領域の形状が一方の領域の小領域の多角形と略同一の形状の多角形であり、一方の領域の小領域の多角形の各辺がそれらの辺に対向する他方の領域の微小領域の多角形の各辺に対してそれぞれ略平行に延びるとともに、一方の領域の小領域の多角形の各辺がそれらの辺に対向する(隣接する)小領域の多角形の一辺に対してそれぞれ略平行に延びるのが好ましい。この場合、一方の領域の小領域の多角形の各辺とそれらの辺に対向する他方の領域の微小領域の多角形の各辺との(最大)間隔は、それぞれ好ましくは0.2mm以下(さらに好ましくは0.1〜0.2mm)であり、一方の領域の小領域の多角形の各辺とそれらの辺に対向する小領域の多角形の一辺との(最大)間隔は、それぞれ好ましくは0.2mm以下(さらに好ましくは0.1〜0.2mm)である。また、多角形は、略三角形、略四角形、略五角形、略六角形などのいずれでもよいが、略正六角形であるのが好ましい。 Further, in the method of manufacturing a metal-ceramic bonding substrate described above, the shape of the small region of one region is a polygon, and the shape of the minute region of the other region is substantially the same as the polygon of the small region of one region. A polygon of a shape, each side of the polygon of the small area of one area extending substantially parallel to each side of the polygon of the small area of the other area opposite to those sides, Preferably, each side of the small area polygon of the area extends substantially parallel to one side of the small area polygon facing (adjacent to) each side. In this case, the (maximum) distance between each side of the polygon of the small area of one area and each side of the polygon of the small area of the other area opposite to those sides is preferably 0.2 mm or less (each More preferably, it is 0.1 to 0.2 mm), and the (maximum) distance between each side of the polygon of the small area of one area and one side of the polygon of the small area opposite to the side is preferably each Is 0.2 mm or less (more preferably 0.1 to 0.2 mm). The polygon may be any of a substantially triangular shape, a substantially square shape, a substantially pentagonal shape, a substantially hexagonal shape, etc., but a substantially regular hexagonal shape is preferable.
また、上記の金属−セラミックス接合基板の製造方法において、塗布領域と非塗布領域の合計の面積に対する塗布領域の面積は、好ましくは30〜80%(さらに好ましくは40〜70%)である。 Further, in the above-described method of manufacturing a metal-ceramic bonded substrate, the area of the coated area with respect to the total area of the coated area and the non-coated area is preferably 30 to 80% (more preferably 40 to 70%).
なお、上記の金属−セラミックス接合基板の製造方法において、セラミックス基板として、長さ10〜150mm(好ましくは50mm以上)、幅10〜150mm(好ましくは50mm以上)、厚さ0.2〜2.0mm程度の窒化アルミニウム、アルミナ、窒化珪素などを主成分とするセラミックス基板を使用することができる。このセラミックス基板の主面の長さ2インチ当たり反り量は、45μm以上であるのが好ましく、69μm以上であるのがさらに好ましい。金属板は、銅、銅合金、アルミニウムまたはアルミニウム合金からなるのが好ましい。ろう材は、活性金属を含むペーストからなるろう材であるのが好ましく、Ag−Cu系ろう材や、Al−Si系ろう材を使用するのが好ましい。このろう材は、スクリーン印刷などにより塗布するのが好ましく、ろう材の塗布量は、0.008〜0.013mg/cm2であるのが好ましい。 In the method of manufacturing a metal-ceramic bonding substrate described above, the ceramic substrate has a length of 10 to 150 mm (preferably 50 mm or more), a width of 10 to 150 mm (preferably 50 mm or more), and a thickness of 0.2 to 2.0 mm. A ceramic substrate mainly composed of aluminum nitride, alumina, silicon nitride or the like can be used. The amount of warpage per 2 inches of the main surface of the ceramic substrate is preferably 45 μm or more, more preferably 69 μm or more. The metal plate is preferably made of copper, a copper alloy, aluminum or an aluminum alloy. The brazing material is preferably a brazing material comprising a paste containing an active metal, and it is preferable to use an Ag-Cu-based brazing material or an Al-Si-based brazing material. The brazing material is preferably applied by screen printing or the like, and the application amount of the brazing material is preferably 0.008 to 0.013 mg / cm 2 .
このような金属−セラミックス接合基板の製造方法により、接合予定領域(塗布領域と非塗布領域の合計の面積)に対する接合領域の面積率が97%の金属−セラミックス接合基板を製造することができる。 According to such a method for manufacturing a metal-ceramic bonded substrate, it is possible to manufacture a metal-ceramic bonded substrate having an area ratio of 97% of a bonded region to a region to be bonded (the total area of a coated region and a non-coated region).
このようにして製造した金属−セラミックス接合基板の金属板上に回路パターン形状などのレジストマスクを形成した後、薬液により金属板とろう材の不要な部分をエッチングして除去することにより、金属回路板などを形成し、必要に応じて、金属回路板などをめっきして、金属−セラミックス接合回路基板を製造することができる。 After forming a resist mask having a circuit pattern shape or the like on the metal plate of the metal-ceramic bonding substrate thus manufactured, unnecessary portions of the metal plate and the brazing material are etched away to remove the metal circuit. A board etc. can be formed and a metal circuit board etc. can be plated as needed, and a metal-ceramics joining circuit board can be manufactured.
以下、本発明による金属−セラミックス接合基板の製造方法の実施例について詳細に説明する。 Hereinafter, an embodiment of a method of manufacturing a metal-ceramic bonded substrate according to the present invention will be described in detail.
[実施例1]
図1に示すパターン10(図3に示す塗布領域12の略六角形の小領域の一辺の長さa=0.34mm、隣接する小領域間の間隔b=0.19mm、小領域の対辺間隔c=0.589mm、小領域の対角長d=0.68mm、非塗布領域14の略六角形の微小領域の対辺間隔e=0.19mm、塗布領域12の小領域の一辺とこの辺に対向する非塗布領域14の微小領域の一辺との間の間隔f=0.199mm)のスクリーン版(200メッシュ)を使用して、71mm×60mm×0.635mmの大きさの窒化アルミニウム基板の両面に、85質量%の銀と7質量%の銅と5質量%の錫と(活性金属成分としての)3質量%のチタンを含有するペースト状の活性金属含有ろう材を厚さ40μmになるようにスクリーン印刷し、それぞれの面のろう材上に72mm×61mm×0.25mmの銅板を配置し、真空中で850℃に加熱して窒化アルミニウム基板の両面に銅板を接合することにより、金属−セラミックス接合基板を製造した。なお、スクリーン版による非塗布領域14の面積に対する塗布領域12の面積の割合(面積率)を計算すると、58.3%であった。
Example 1
In
このようにして得られた45個の金属−セラミックス接合基板について、超音波探傷機により接合領域の面積が97%以上か否かを調べたところ、いずれも97%以上であり、97%未満の金属−セラミックス接合基板の数は0個であり、ろう材の濡れ広がりが十分であった。また、銅板が窒化アルミニウム基板のそれぞれの面の周縁部から剥がれている部分(未接合部)があるか否かを目視により観察したところ、いずれも未接合部はなかった。 The 45 metal-ceramic bonded substrates thus obtained were examined by an ultrasonic flaw detector to determine whether the area of the bonded region is 97% or more. All were 97% or more and less than 97%. The number of the metal-ceramic bonding substrates was zero, and the wetting and spreading of the brazing material was sufficient. Moreover, when it was visually observed whether the copper plate has peeled off from the peripheral part of each surface of the aluminum nitride board | substrate (unjoined part), it was not unjoined in any case.
また、得られた10個の金属−セラミックス接合基板について、各々の金属−セラミックス接合基板に対して室温から10分間で380℃まで昇温させて10分間保持した後に5分間で室温に戻す通炉処理を5回繰り返したときに、窒化アルミニウム基板にクラックが発生するか否かを目視により観察したところ、いずれもクラックの発生はなかった。また、上記の通炉処理を10回繰り返しても、いずれもクラックの発生はなく、通炉処理を繰り返しても(クラックの発生などの)異常が生じない通炉回数(通炉耐量)は10回以上であった。 In addition, for each of the obtained 10 metal-ceramic bonded substrates, the temperature is raised from the room temperature to 380 ° C. in 10 minutes for each metal-ceramic bonded substrate, held for 10 minutes, and then returned to room temperature in 5 minutes. When the processing was repeated five times, it was visually observed whether or not a crack was generated in the aluminum nitride substrate, but no crack was generated in any case. Moreover, even if the above-described furnace-passing treatment is repeated 10 times, no cracks are generated in any case, and even if the furnace-passing treatment is repeated, the number of times of furnace-passing (the furnace tolerance) is not abnormal. It was over time.
[実施例2]
図1に示すパターン10(図3に示す塗布領域12の略六角形の小領域の一辺の長さa=0.28mm、隣接する小領域間の間隔b=0.14mm、小領域の対辺間隔c=0.485mm、小領域の対角長d=0.56mm、非塗布領域14の略六角形の微小領域の対辺間隔e=0.14mm、塗布領域12の小領域の一辺とこの辺に対向する非塗布領域14の微小領域の一辺との間の間隔f=0.173mm)のスクリーン版を使用した以外は、実施例1と同様の方法により、金属−セラミックス接合基板を製造した。なお、スクリーン版による非塗布領域14の面積に対する塗布領域12の面積の割合(面積率)を計算すると、59.0%であった。
Example 2
このようにして得られた45個の金属−セラミックス接合基板について、超音波探傷機により接合領域の面積が97%以上か否かを調べたところ、いずれも97%以上であり、97%未満の金属−セラミックス接合基板の数は0個であり、ろう材の濡れ広がりが十分であった。また、銅板が窒化アルミニウム基板のそれぞれの面の周縁部から剥がれている部分(未接合部)があるか否かを目視により観察したところ、いずれも未接合部はなかった。 The 45 metal-ceramic bonded substrates thus obtained were examined by an ultrasonic flaw detector to determine whether the area of the bonded region is 97% or more. All were 97% or more and less than 97%. The number of the metal-ceramic bonding substrates was zero, and the wetting and spreading of the brazing material was sufficient. Moreover, when it was visually observed whether the copper plate has peeled off from the peripheral part of each surface of the aluminum nitride board | substrate (unjoined part), it was not unjoined in any case.
また、得られた10個の金属−セラミックス接合基板について、実施例1と同様の通炉処理を5回繰り返したときに、窒化アルミニウム基板にクラックが発生するか否かを目視により観察したところ、いずれもクラックの発生はなかった。また、実施例1と同様の通炉処理を10回繰り返しても、いずれもクラックの発生はなく、通炉耐量は10回以上であった。 In addition, with respect to the obtained ten metal-ceramic bonded substrates, when the same furnace treatment as in Example 1 was repeated five times, it was visually observed whether or not a crack was generated in the aluminum nitride substrate, There were no cracks in any case. Moreover, even if the same furnace treatment as in Example 1 was repeated 10 times, no cracks occurred in any case, and the furnace tolerance was 10 times or more.
[実施例3]
図2に示すパターン110(図3に示す非塗布領域114の略六角形の小領域の一辺の長さa=0.34mm、隣接する小領域間の間隔b=0.19mm、小領域の対辺間隔c=0.589mm、小領域の対角長d=0.68mm、塗布領域112の略六角形の微小領域の対辺間隔e=0.19mm、非塗布領域114の小領域の一辺とこの辺に対向する塗布領域112の微小領域の一辺との間の間隔f=0.199mm)のスクリーン版を使用した以外は、実施例1と同様の方法により、金属−セラミックス接合基板を製造した。なお、スクリーン版による非塗布領域114の面積に対する塗布領域112の面積の割合(面積率)を計算すると、54.1%であった。
[Example 3]
In the
このようにして得られた45個の金属−セラミックス接合基板について、超音波探傷機により接合領域の面積が97%以上か否かを調べたところ、いずれも97%以上であり、97%未満の金属−セラミックス接合基板の数は0個であり、ろう材の濡れ広がりが十分であった。また、銅板が窒化アルミニウム基板のそれぞれの面の周縁部から剥がれている部分(未接合部)があるか否かを目視により観察したところ、いずれも未接合部はなかった。 The 45 metal-ceramic bonded substrates thus obtained were examined by an ultrasonic flaw detector to determine whether the area of the bonded region is 97% or more. All were 97% or more and less than 97%. The number of the metal-ceramic bonding substrates was zero, and the wetting and spreading of the brazing material was sufficient. Moreover, when it was visually observed whether the copper plate has peeled off from the peripheral part of each surface of the aluminum nitride board | substrate (unjoined part), it was not unjoined in any case.
また、得られた10個の金属−セラミックス接合基板について、実施例1と同様の通炉処理を5回繰り返したときに、窒化アルミニウム基板にクラックが発生するか否かを目視により観察したところ、いずれもクラックの発生はなかった。また、実施例1と同様の通炉処理を10回繰り返した場合や15回繰り返した場合も、いずれもクラックの発生はなく、20回繰り返した場合にクラックが発生した金属−セラミックス接合基板が3個あったが、通炉耐量は15回以上であった。 In addition, with respect to the obtained ten metal-ceramic bonded substrates, when the same furnace treatment as in Example 1 was repeated five times, it was visually observed whether or not a crack was generated in the aluminum nitride substrate, There were no cracks in any case. Further, even when the same furnace treatment as in Example 1 is repeated 10 times or 15 times, no cracks are generated in any case, and when the metal-ceramics bonded substrate is cracked 20 times when repeated 20 times. However, the furnace resistance was more than 15 times.
なお、得られた金属−セラミックス接合基板について、その主面に略垂直な断面を走査型電子顕微鏡(SEM)により1000倍の反射電子像を撮影して観察したところ、銅板がろう材を介して窒化アルミニウム基板に接合されており、塗布領域と非塗布領域のいずれもボイドが認められず、未接合欠陥が認められなかった。 When a cross section approximately perpendicular to the main surface of the obtained metal-ceramic bonding substrate is observed by scanning a reflected electron image at a magnification of 1000 with a scanning electron microscope (SEM), the copper plate has a brazing material interposed therebetween. It bonded to the aluminum nitride board | substrate, the void was not recognized any of the application | coating area | region and the non-application | coating area | region, and the unjoined defect was not recognized.
また、得られた金属−セラミックス接合基板を65質量%の濃硝酸に10分程度浸漬して銅板とろう材の一部を溶解除去した後、銅板とろう材の一部が除去された窒化アルミニウム基板の表面をSEMにより加速電圧20kVとして100倍の反射電子像を撮影して観察したところ、図6に示すように、スクリーン版の非塗布領域に略対応する部分に、活性金属含有ろう材中のチタンが濃縮して検出された(白い)領域(SEMのエネルギー分散型X線分光法(EDS)による特性X線のAl(Kα)に対するTi(Kα)のピーク面積比Ti(Kα)/Al(Kα)が0.36の領域)があり、その領域を取り囲む領域とその領域の内部に、活性金属含有ろう材中のチタンが検出されるがチタンが濃縮して検出された領域と比べて極めて小さく検出されるピーク強度の(灰色の)領域(SEMのEDS特性X線のAl(Kα)に対するTi(Kα)のピーク面積比Ti(Kα)/Al(Kα)が0.008の領域)があり、金属−セラミックス接合基板の接合界面において接合領域により活性金属含有ろう材中のチタンの分布が異なることがわかった。なお、図6の反射電子像を画像処理により2値化して、活性金属含有ろう材中のチタンが濃縮して検出された領域の全接合領域に対する面積比を求めたところ、28.0%であった。 In addition, the obtained metal-ceramic bonding substrate is immersed in 65 mass% concentrated nitric acid for about 10 minutes to dissolve and remove a copper plate and a part of the brazing material, and then aluminum nitride in which the copper plate and a part of the brazing material are removed. The surface of the substrate was observed by scanning a 100 × backscattered electron image with an accelerating voltage of 20 kV by SEM, as shown in FIG. 6, in a portion substantially corresponding to the non-coated area of the screen plate, in the active metal-containing brazing material The peak area ratio of Ti (Kα) to Al (Kα) of the characteristic X-ray detected by the (white) region where the titanium concentration is concentrated (SEM: energy dispersive X-ray spectroscopy (EDS) Ti (Kα) / Al There is a region (Kα) of 0.36), and titanium in the active metal-containing brazing material is detected in the region surrounding the region and inside the region, compared to the region where titanium is concentrated and detected. Extremely small There is a (gray) region of peak intensity to be detected (peak area ratio of Ti (Kα) to Al (Kα) of EDS characteristic X-ray of SEM to a region of Ti (Kα) / Al (Kα) of 0.008) It was found that the distribution of titanium in the active metal-containing brazing material differs depending on the bonding region at the bonding interface of the metal-ceramic bonding substrate. When the reflection electron image in FIG. 6 is binarized by image processing and the area ratio of the region detected by concentration of titanium in the active metal-containing brazing material to the entire bonding region is determined, it is 28.0%. there were.
また、SEMにより活性金属含有ろう材中のチタンが濃縮して検出された(白い)領域の断面をSEMのEDSにより特性X線像を撮影して観察したところ、窒化アルミニウム基板と活性金属含有ろう材との界面において、チタンが濃縮して検出された領域のチタン濃縮層の厚さは約1μmであり、それ以外の領域(チタンが濃縮せずに拡散して均一に分布して検出された領域)のチタン拡散層の厚さは約20μmであった。 In addition, when a cross section of a (white) region detected by concentration of titanium in the active metal-containing brazing material by SEM is observed by observing a characteristic X-ray image by EDS of SEM, the aluminum nitride substrate and the active metal-containing brazing material At the interface with the material, the thickness of the titanium enrichment layer in the region where titanium was concentrated and detected was about 1 μm, and in the other regions (the titanium was diffused and detected without being concentrated and uniformly distributed The thickness of the titanium diffusion layer in the region) was about 20 μm.
[実施例4]
図2に示すパターン110(図3に示す非塗布領域114の略六角形の小領域の一辺の長さa=0.28mm、隣接する小領域間の間隔b=0.14mm、小領域の対辺間隔c=0.485mm、小領域の対角長d=0.56mm、塗布領域112の略六角形の微小領域の対辺間隔e=0.14mm、非塗布領域114の小領域の一辺とこの辺に対向する塗布領域112の微小領域の一辺との間の間隔f=0.173mm)のスクリーン版を使用した以外は、実施例1と同様の方法により、金属−セラミックス接合基板を製造した。なお、スクリーン版による非塗布領域114の面積に対する塗布領域112の面積の割合(面積率)を計算すると、53.4%であった。
Example 4
In the
このようにして得られた45個の金属−セラミックス接合基板について、超音波探傷機により接合領域の面積が97%以上か否かを調べたところ、いずれも97%以上であり、97%未満の金属−セラミックス接合基板の数は0個であり、ろう材の濡れ広がりが十分であった。また、銅板が窒化アルミニウム基板のそれぞれの面の周縁部から剥がれている部分(未接合部)があるか否かを目視により観察したところ、いずれも未接合部はなかった。 The 45 metal-ceramic bonded substrates thus obtained were examined by an ultrasonic flaw detector to determine whether the area of the bonded region is 97% or more. All were 97% or more and less than 97%. The number of the metal-ceramic bonding substrates was zero, and the wetting and spreading of the brazing material was sufficient. Moreover, when it was visually observed whether the copper plate has peeled off from the peripheral part of each surface of the aluminum nitride board | substrate (unjoined part), it was not unjoined in any case.
また、得られた10個の金属−セラミックス接合基板について、実施例1と同様の通炉処理を5回繰り返したときに、窒化アルミニウム基板にクラックが発生するか否かを目視により観察したところ、いずれもクラックの発生はなかった。また、実施例1と同様の通炉処理を10回繰り返した場合や15回繰り返した場合も、いずれもクラックの発生はなく、20回繰り返した場合にクラックが発生した金属−セラミックス接合基板が1個あったが、通炉耐量は15回以上であった。 In addition, with respect to the obtained ten metal-ceramic bonded substrates, when the same furnace treatment as in Example 1 was repeated five times, it was visually observed whether or not a crack was generated in the aluminum nitride substrate, There were no cracks in any case. Also, even when the same furnace treatment as in Example 1 is repeated 10 times or 15 times, no cracks are generated in any case, and a metal-ceramic bonded substrate in which a crack is generated when repeated 20 times is 1 However, the furnace resistance was more than 15 times.
[実施例5]
図2に示すパターン110(図3に示す非塗布領域114の略六角形の小領域の一辺の長さa=0.77mm、隣接する小領域間の間隔b=0.40mm、小領域の対辺間隔c=1.335mm、小領域の対角長d=1.54mm、塗布領域112の略六角形の微小領域の対辺間隔e=0.94mm、非塗布領域114の小領域の一辺とこの辺に対向する塗布領域112の微小領域の一辺との間の間隔f=0.20mm)のスクリーン版を使用した以外は、実施例1と同様の方法により、金属−セラミックス接合基板を製造した。なお、スクリーン版による非塗布領域114の面積に対する塗布領域112の面積の割合(面積率)を計算すると、70%であった。
[Example 5]
In the
このようにして得られた45個の金属−セラミックス接合基板について、超音波探傷機により接合領域の面積が97%以上か否かを調べたところ、いずれも97%以上であり、ろう材の濡れ広がりが十分であった。また、銅板が窒化アルミニウム基板のそれぞれの面の周縁部から剥がれている部分(未接合部)があるか否かを目視により観察したところ、いずれも未接合部はなかった。 The 45 metal-ceramic bonded substrates thus obtained were examined by an ultrasonic flaw detector to determine whether the area of the bonded region is 97% or more. The spread was enough. Moreover, when it was visually observed whether the copper plate has peeled off from the peripheral part of each surface of the aluminum nitride board | substrate (unjoined part), it was not unjoined in any case.
また、得られた10個の金属−セラミックス接合基板について、実施例1と同様の通炉処理を5回繰り返したときに、窒化アルミニウム基板にクラックが発生するか否かを目視により観察したところ、いずれもクラックの発生はなかった。また、実施例1と同様の通炉処理を10回繰り返した場合や15回繰り返した場合も、いずれもクラックの発生はなく、20回繰り返した場合にクラックが発生した金属−セラミックス接合基板が1個あったが、通炉耐量は15回以上であった。 In addition, with respect to the obtained ten metal-ceramic bonded substrates, when the same furnace treatment as in Example 1 was repeated five times, it was visually observed whether or not a crack was generated in the aluminum nitride substrate, There were no cracks in any case. Also, even when the same furnace treatment as in Example 1 is repeated 10 times or 15 times, no cracks are generated in any case, and a metal-ceramic bonded substrate in which a crack is generated when repeated 20 times is 1 However, the furnace resistance was more than 15 times.
また、得られた金属−セラミックス接合基板について、実施例3と同様の方法により、その主面に略垂直な断面をSEMにより反射電子像を撮影して観察したところ、塗布領域と非塗布領域のいずれもボイドが認められず、未接合欠陥が認められなかった。 In the metal-ceramic bonding substrate obtained, when a cross section approximately perpendicular to the main surface was photographed and observed by SEM using a method similar to that of Example 3, the coated region and the non-coated region were obtained. In all cases, no void was observed, and no unjoined defect was observed.
また、得られた金属−セラミックス接合基板について、実施例3と同様の方法により、銅板とろう材の一部が除去された窒化アルミニウム基板の表面をSEMにより反射電子像を撮影して観察したところ、図6と同様に、スクリーン版の非塗布領域に略対応する部分に、活性金属含有ろう材中のチタンが濃縮して検出された(白い)領域(SEMのEDSによる特性X線のAl(Kα)に対するTi(Kα)のピーク面積比Ti(Kα)/Al(Kα)が0.3の領域)があり、その領域を取り囲む領域とその領域の内部に、活性金属含有ろう材中のチタンが検出されるがチタンが濃縮して検出された領域と比べて極めて小さく検出されるピーク強度の(灰色の)領域(SEMのEDSによる特性X線のAl(Kα)に対するTi(Kα)のピーク面積比Ti(Kα)/Al(Kα)が0.024の領域)があり、金属−セラミックス接合基板の接合界面において接合領域により活性金属含有ろう材中のチタンの分布が異なることがわかった。なお、上記の反射電子像を画像処理により2値化して、活性金属含有ろう材中のチタンが濃縮して検出された領域の全接合領域に対する面積比を求めたところ、31.0%であった。 In addition, with respect to the obtained metal-ceramic bonding substrate, the surface of the aluminum nitride substrate from which a copper plate and a part of the brazing material have been removed is observed by SEM using a method similar to the third embodiment. Similarly to FIG. 6, (white) area detected by concentration of titanium in the active metal-containing brazing material in a portion substantially corresponding to the non-coated area of the screen plate (white (characteristic X-ray Al by SEM EDS There is a peak area ratio Ti (Kα) / Al (Kα) of 0.3 area of Ti (Kα) to Kα), titanium in the active metal-containing brazing material in the area surrounding the area and inside the area (Gray) region of the peak intensity detected (gray) with a very small detection compared to the region where titanium is detected as concentrated but the concentration of Ti (K α) to Al (K α) characteristic X-ray by SEM EDS There is an area ratio Ti (Kα) / Al region of (K [alpha) is 0.024), the metal - the distribution of the titanium of the active metal-containing brazing material is found to differ by a bonding region in the bonded interface of ceramic bonding substrate. In addition, it was 31.0% when the above-mentioned backscattered electron image was binarized by image processing, and the area ratio to the whole joining area of the area detected by concentration of titanium in the active metal-containing brazing material was determined. The
また、SEMにより活性金属含有ろう材中のチタンが濃縮して検出された(白い)領域の断面をSEMのEDSにより特性X線像を撮影して観察したところ、窒化アルミニウム基板と活性金属含有ろう材との界面において、チタンが濃縮して検出された領域のチタン濃縮層の厚さは約1μmであり、それ以外の領域(チタンが濃縮せずに拡散して均一に分布して検出された領域)のチタン拡散層の厚さは約20μmであった。 In addition, when a cross section of a (white) region detected by concentration of titanium in the active metal-containing brazing material by SEM is observed by observing a characteristic X-ray image by EDS of SEM, the aluminum nitride substrate and the active metal-containing brazing material At the interface with the material, the thickness of the titanium enrichment layer in the region where titanium was concentrated and detected was about 1 μm, and in the other regions (the titanium was diffused and detected without being concentrated and uniformly distributed The thickness of the titanium diffusion layer in the region) was about 20 μm.
[比較例1]
窒化アルミニウム基板の両面の全面にろう材を厚さ18μmになるように塗布(塗布重量は実施例1の±10%以内)した以外は、実施例1と同様の方法により、金属−セラミックス接合基板を製造した。なお、スクリーン版による非塗布領域の面積に対する塗布領域の面積の割合(面積率)は100%である。
Comparative Example 1
A metal-ceramic bonding substrate was prepared by the same method as in Example 1, except that the brazing material was applied to the entire surface on both sides of the aluminum nitride substrate to a thickness of 18 μm (the coating weight is within ± 10% of Example 1). Manufactured. The ratio (area ratio) of the area of the coated area to the area of the non-coated area by the screen plate is 100%.
このようにして得られた170個の金属−セラミックス接合基板について、銅板が窒化アルミニウム基板のそれぞれの面の周縁部から剥がれている部分(未接合部)があるか否かを目視により観察したところ、60個の金属−セラミックス接合基板に未接合部があった。 In the 170 metal-ceramic bonded substrates thus obtained, it was visually observed whether or not there is a portion (unbonded portion) where the copper plate is peeled from the peripheral portion of each surface of the aluminum nitride substrate. There were unjoined parts on 60 metal-ceramic bonded substrates.
また、得られた5個の金属−セラミックス接合基板について、実施例1と同様の通炉処理を5回繰り返したときに、窒化アルミニウム基板にクラックが発生するか否かを目視により観察したところ、いずれもクラックの発生はなかった。また、実施例1と同様の通炉処理を10回繰り返した場合に、クラックが発生した金属−セラミックス接合基板が2個、15回繰り返した場合にクラックが発生した金属−セラミックス接合基板が4個、15回繰り返した場合にクラックが発生した金属−セラミックス接合基板が5個であり、通炉耐量は5回以上であった。 Further, with respect to the obtained five metal-ceramic bonding substrates, when the same furnace treatment as in Example 1 was repeated five times, it was visually observed whether or not a crack was generated in the aluminum nitride substrate, There were no cracks in any case. Moreover, when the same furnace treatment as in Example 1 is repeated ten times, two metal-ceramic bonded substrates with cracks are generated, and when repeated 15 times, four metal-ceramic bonded substrates generated with cracks. The number of metal-ceramic bonding substrates in which cracking occurred when repeated 15 times was five, and the furnace resistance was 5 times or more.
[比較例2]
図4に示すパターン210(塗布領域212の略六角形の小領域の一辺の長さa=0.75mm、隣接する小領域間の間隔b=0.43mm、小領域の対辺間隔c=1.299mm、小領域の対角長d=1.5mm)の(a〜dが大きく微小領域を有しない)スクリーン版を使用した以外は、実施例1と同様の方法により、金属−セラミックス接合基板を製造した。なお、スクリーン版による非塗布領域214の面積に対する塗布領域212の面積の割合(面積率)を計算すると、62.4%であった。
Comparative Example 2
In the
このようにして得られた24個の金属−セラミックス接合基板について、超音波探傷機により接合領域の面積が97%以上か否かを調べたところ、97%未満の金属−セラミックス接合基板の数は5個であり、ろう材の濡れ広がりが十分でなかった。また、銅板が窒化アルミニウム基板のそれぞれの面の周縁部から剥がれている部分(未接合部)があるか否かを目視により観察したところ、いずれも未接合部はなかった。 The number of metal-ceramic bonded substrates less than 97% was determined by examining whether the area of the bonded region is 97% or more with an ultrasonic flaw detector for the 24 metal-ceramic bonded substrates obtained in this manner. There were five, and the wetting and spreading of the brazing material was not sufficient. Moreover, when it was visually observed whether the copper plate has peeled off from the peripheral part of each surface of the aluminum nitride board | substrate (unjoined part), it was not unjoined in any case.
また、得られた10個の金属−セラミックス接合基板について、実施例1と同様の通炉処理を5回繰り返したときに、窒化アルミニウム基板にクラックが発生するか否かを目視により観察したところ、いずれもクラックの発生はなかった。また、実施例1と同様の通炉処理を10回繰り返した場合も、いずれもクラックの発生はなく、15回繰り返した場合にクラックが発生した金属−セラミックス接合基板が1個あったが、通炉耐量は10回以上であった。 In addition, with respect to the obtained ten metal-ceramic bonded substrates, when the same furnace treatment as in Example 1 was repeated five times, it was visually observed whether or not a crack was generated in the aluminum nitride substrate, There were no cracks in any case. Further, even when the same furnace treatment as in Example 1 was repeated 10 times, no cracks were generated in any case, and when repeated 15 times, there was one metal-ceramic bonded substrate in which a crack was generated. The furnace capacity was 10 times or more.
[比較例3]
図4に示パターン210(塗布領域212の略六角形の小領域の一辺の長さa=0.25mm、隣接する小領域間の間隔b=0.16mm、小領域の対辺間隔c=0.433mm、小領域の対角長d=0.5mm)の(微小領域を有しないため塗布領域の幅が0.2mmを超える)スクリーン版を使用した以外は、実施例1と同様の方法により、金属−セラミックス接合基板を製造した。なお、スクリーン版による非塗布領域214の面積に対する塗布領域212の面積の割合(面積率)を計算すると、60.3%であった。
Comparative Example 3
In the
このようにして得られた45個の金属−セラミックス接合基板について、超音波探傷機により接合領域の面積が97%以上か否かを調べたところ、97%未満の金属−セラミックス接合基板の数は5個であり、ろう材の濡れ広がりが十分でなかった。また、銅板が窒化アルミニウム基板のそれぞれの面の周縁部から剥がれている部分(未接合部)があるか否かを目視により観察したところ、いずれも未接合部はなかった。 The 45 metal-ceramic bonded substrates thus obtained were examined using an ultrasonic flaw detector to determine whether the area of the bonded region is 97% or more. The number of metal-ceramic bonded substrates less than 97% is There were five, and the wetting and spreading of the brazing material was not sufficient. Moreover, when it was visually observed whether the copper plate has peeled off from the peripheral part of each surface of the aluminum nitride board | substrate (unjoined part), it was not unjoined in any case.
また、得られた10個の金属−セラミックス接合基板について、実施例1と同様の通炉処理を5回繰り返したときに、窒化アルミニウム基板にクラックが発生するか否かを目視により観察したところ、いずれもクラックの発生はなかった。また、実施例1と同様の通炉処理を10回繰り返した場合も、いずれもクラックの発生はなく、15回繰り返した場合にクラックが発生した金属−セラミックス接合基板が1個あったが、通炉耐量は10回以上であった。 In addition, with respect to the obtained ten metal-ceramic bonded substrates, when the same furnace treatment as in Example 1 was repeated five times, it was visually observed whether or not a crack was generated in the aluminum nitride substrate, There were no cracks in any case. Further, even when the same furnace treatment as in Example 1 was repeated 10 times, no cracks were generated in any case, and when repeated 15 times, there was one metal-ceramic bonded substrate in which a crack was generated. The furnace capacity was 10 times or more.
[比較例4]
図4に示すパターン210(塗布領域212の略六角形の小領域の一辺の長さa=0.26mm、隣接する小領域間の間隔b=0.21mm、小領域の対辺間隔c=0.450mm、小領域の対角長d=0.52mm)の(微小領域を有しないため塗布領域の幅が0.2mmを超えるとともに非塗布領域の幅も0.2mmを超える)スクリーン版を使用した以外は、実施例1と同様の方法により、金属−セラミックス接合基板を製造した。なお、スクリーン版による非塗布領域214の面積に対する塗布領域212の面積の割合(面積率)を計算すると、53.0%であった。
Comparative Example 4
In the
このようにして得られた45個の金属−セラミックス接合基板について、超音波探傷機により接合領域の面積が97%以上か否かを調べたところ、97%未満の金属−セラミックス接合基板の数は7個であり、ろう材の濡れ広がりが十分でなかった。また、銅板が窒化アルミニウム基板のそれぞれの面の周縁部から剥がれている部分(未接合部)があるか否かを目視により観察したところ、いずれも未接合部はなかった。 The 45 metal-ceramic bonded substrates thus obtained were examined using an ultrasonic flaw detector to determine whether the area of the bonded region is 97% or more. The number of metal-ceramic bonded substrates less than 97% is There were seven, and the wetting and spreading of the brazing material was not sufficient. Moreover, when it was visually observed whether the copper plate has peeled off from the peripheral part of each surface of the aluminum nitride board | substrate (unjoined part), it was not unjoined in any case.
また、得られた10個の金属−セラミックス接合基板について、実施例1と同様の通炉処理を5回繰り返したときに、窒化アルミニウム基板にクラックが発生するか否かを目視により観察したところ、いずれもクラックの発生はなかった。また、実施例1と同様の通炉処理を10回繰り返しても、いずれもクラックの発生はなく、通炉耐量は10回以上であった。 In addition, with respect to the obtained ten metal-ceramic bonded substrates, when the same furnace treatment as in Example 1 was repeated five times, it was visually observed whether or not a crack was generated in the aluminum nitride substrate, There were no cracks in any case. Moreover, even if the same furnace treatment as in Example 1 was repeated 10 times, no cracks occurred in any case, and the furnace tolerance was 10 times or more.
[比較例5]
図5に示すパターン310(非塗布領域314の略六角形の小領域の一辺の長さa=0.25mm、隣接する小領域間の間隔b=0.16mm、小領域の対辺間隔c=0.433mm、小領域の対角長d=0.5mm)の(微小領域を有しないため非塗布領域の幅が0.2mmを超える)スクリーン版を使用した以外は、実施例1と同様の方法により、金属−セラミックス接合基板を製造した。なお、スクリーン版による非塗布領域314の面積に対する塗布領域312の面積の割合(面積率)を計算すると、52.1%であった。
Comparative Example 5
このようにして得られた45個の金属−セラミックス接合基板について、超音波探傷機により接合領域の面積が97%以上か否かを調べたところ、97%未満の金属−セラミックス接合基板の数は15個であり、ろう材の濡れ広がりが十分でなかった。また、銅板が窒化アルミニウム基板のそれぞれの面の周縁部から剥がれている部分(未接合部)があるか否かを目視により観察したところ、いずれも未接合部はなかった。 The 45 metal-ceramic bonded substrates thus obtained were examined using an ultrasonic flaw detector to determine whether the area of the bonded region is 97% or more. The number of metal-ceramic bonded substrates less than 97% is It was 15 pieces, and the wetting and spreading of the brazing material was not sufficient. Moreover, when it was visually observed whether the copper plate has peeled off from the peripheral part of each surface of the aluminum nitride board | substrate (unjoined part), it was not unjoined in any case.
また、得られた10個の金属−セラミックス接合基板について、実施例1と同様の通炉処理を5回繰り返したときに、窒化アルミニウム基板にクラックが発生するか否かを目視により観察したところ、いずれもクラックの発生はなかった。また、実施例1と同様の通炉処理を10回繰り返しても、いずれもクラックの発生はなく、通炉耐量は10回以上であった。 In addition, with respect to the obtained ten metal-ceramic bonded substrates, when the same furnace treatment as in Example 1 was repeated five times, it was visually observed whether or not a crack was generated in the aluminum nitride substrate, There were no cracks in any case. Moreover, even if the same furnace treatment as in Example 1 was repeated 10 times, no cracks occurred in any case, and the furnace tolerance was 10 times or more.
[比較例6]
図5に示すパターン310(非塗布領域314の略六角形の小領域の一辺の長さa=0.26mm、隣接する小領域間の間隔b=0.21mm、小領域の対辺間隔c=0.450mm、小領域の対角長d=0.52mm)の(微小領域を有しないため非塗布領域の幅が0.2mmを超えるとともに塗布領域の幅も0.2mmを超える)スクリーン版を使用した以外は、実施例1と同様の方法により、金属−セラミックス接合基板を製造した。なお、スクリーン版による非塗布領域314の面積に対する塗布領域312の面積の割合(面積率)を計算すると、59.4%であった。
Comparative Example 6
In the
このようにして得られた45個の金属−セラミックス接合基板について、超音波探傷機により接合領域の面積が97%以上か否かを調べたところ、97%未満の金属−セラミックス接合基板の数は16個であり、ろう材の濡れ広がりが十分でなかった。また、銅板が窒化アルミニウム基板のそれぞれの面の周縁部から剥がれている部分(未接合部)があるか否かを目視により観察したところ、いずれも未接合部はなかった。 The 45 metal-ceramic bonded substrates thus obtained were examined using an ultrasonic flaw detector to determine whether the area of the bonded region is 97% or more. The number of metal-ceramic bonded substrates less than 97% is There were 16 and the wetting and spreading of the brazing material was not sufficient. Moreover, when it was visually observed whether the copper plate has peeled off from the peripheral part of each surface of the aluminum nitride board | substrate (unjoined part), it was not unjoined in any case.
また、得られた10個の金属−セラミックス接合基板について、実施例1と同様の通炉処理を5回繰り返したときに、窒化アルミニウム基板にクラックが発生するか否かを目視により観察したところ、いずれもクラックの発生はなかった。また、実施例1と同様の通炉処理を10回繰り返しても、いずれもクラックの発生はなく、通炉耐量は10回以上であった。 In addition, with respect to the obtained ten metal-ceramic bonded substrates, when the same furnace treatment as in Example 1 was repeated five times, it was visually observed whether or not a crack was generated in the aluminum nitride substrate, There were no cracks in any case. Moreover, even if the same furnace treatment as in Example 1 was repeated 10 times, no cracks occurred in any case, and the furnace tolerance was 10 times or more.
これらの実施例および比較例の金属−セラミックス接合基板の製造条件および特性を表1〜表2に示す。 The manufacturing conditions and characteristics of the metal-ceramic bonded substrates of these Examples and Comparative Examples are shown in Tables 1 and 2.
10、110.210、310 スクリーン版のパターン
12、112、212、312 塗布領域
14、114、214、314 非塗布領域
10, 110. 210, 310
Claims (11)
The metal-ceramic bonding substrate according to any one of claims 8 to 10, wherein an area ratio of a region in which the active metal is concentrated to the bonding region is 20 to 40%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017191721A JP6970576B2 (en) | 2017-09-29 | 2017-09-29 | Manufacturing method of metal-ceramic bonded substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017191721A JP6970576B2 (en) | 2017-09-29 | 2017-09-29 | Manufacturing method of metal-ceramic bonded substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019064865A true JP2019064865A (en) | 2019-04-25 |
JP6970576B2 JP6970576B2 (en) | 2021-11-24 |
Family
ID=66337788
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017191721A Active JP6970576B2 (en) | 2017-09-29 | 2017-09-29 | Manufacturing method of metal-ceramic bonded substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6970576B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05319946A (en) * | 1992-05-22 | 1993-12-03 | Ibiden Co Ltd | Ceramic substrate joined to metallic plate |
JPH06172051A (en) * | 1992-09-01 | 1994-06-21 | Ibiden Co Ltd | Ceramic substrate bound to metal plate and its production |
JPH09157055A (en) * | 1995-12-06 | 1997-06-17 | Dowa Mining Co Ltd | Metal-ceramic composite substrate having spot or line joint and its production |
JP2006279035A (en) * | 2005-03-04 | 2006-10-12 | Dowa Mining Co Ltd | Ceramic circuit board and manufacturing method thereof |
-
2017
- 2017-09-29 JP JP2017191721A patent/JP6970576B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05319946A (en) * | 1992-05-22 | 1993-12-03 | Ibiden Co Ltd | Ceramic substrate joined to metallic plate |
JPH06172051A (en) * | 1992-09-01 | 1994-06-21 | Ibiden Co Ltd | Ceramic substrate bound to metal plate and its production |
JPH09157055A (en) * | 1995-12-06 | 1997-06-17 | Dowa Mining Co Ltd | Metal-ceramic composite substrate having spot or line joint and its production |
JP2006279035A (en) * | 2005-03-04 | 2006-10-12 | Dowa Mining Co Ltd | Ceramic circuit board and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP6970576B2 (en) | 2021-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6970738B2 (en) | Ceramic copper circuit board and semiconductor devices using it | |
JP6904088B2 (en) | Copper / ceramic joints and insulated circuit boards | |
US10784182B2 (en) | Bonded substrate and method for manufacturing bonded substrate | |
JP5991102B2 (en) | Power module substrate with heat sink, power module with heat sink, and method for manufacturing power module substrate with heat sink | |
KR102272865B1 (en) | Joined body, substrate for power module provided with heat sink, heat sink, method for manufacturing joined body, method for manufacturing substrate for power module provided with heat sink, and method for manufacturing heat sink | |
US9655237B2 (en) | Silicon nitride substrate and method for producing silicon nitride substrate | |
JP5991103B2 (en) | Power module substrate with heat sink, power module with heat sink, and method for manufacturing power module substrate with heat sink | |
JP5598592B2 (en) | Power module | |
JP5359644B2 (en) | Power module substrate, power module, and method of manufacturing power module substrate | |
JP2016208010A (en) | Bonded body, power module substrate with heat sink, heat sink, manufacturing method of bonded body, manufacturing method of power module substrate with heat sink, manufacturing method of heat sink | |
KR102004573B1 (en) | Substrate for power module and manufacturing method therefor | |
TWI661516B (en) | Bonded body, power module substrate with heat sink, heat sink, method of producing bonded body, method of producing power module substrate with heat sink and method of producing heat sink | |
JP2017035805A (en) | Metal-ceramic bonding substrate and method for producing the same | |
WO2020138283A1 (en) | Ceramic-copper composite, ceramic circuit board, power module, and method for manufacturing ceramic-copper composite | |
JP2017075382A (en) | Oxygen free copper plate, manufacturing method of oxygen free copper plate and ceramic wiring board | |
JP2019064865A (en) | Method for producing metal-ceramic bonded substrate | |
JP6327058B2 (en) | Power module substrate with heat sink, method of manufacturing joined body, method of manufacturing power module substrate, and method of manufacturing power module substrate with heat sink | |
JP2007329160A (en) | Unit for mounting power element, manufacturing method thereof, and power module | |
WO2023286856A1 (en) | Copper/ceramic bonded body and insulated circuit board | |
JP7694291B2 (en) | Copper/ceramic bonded body and insulated circuit board | |
JP2010227963A (en) | Joining method using metal nanoparticles | |
JP2020128583A (en) | Sputtering target-backing plate assembly | |
JP6287681B2 (en) | Manufacturing method of joined body, manufacturing method of power module substrate, and manufacturing method of power module substrate with heat sink | |
JP7666202B2 (en) | Copper/ceramic bonded body and insulated circuit board | |
JP7663041B2 (en) | Copper/ceramic bonded body and insulated circuit board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200709 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210414 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210427 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210611 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211019 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211029 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6970576 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |