[go: up one dir, main page]

JP2019060667A - Three-dimensional capacitive touch sensor - Google Patents

Three-dimensional capacitive touch sensor Download PDF

Info

Publication number
JP2019060667A
JP2019060667A JP2017184289A JP2017184289A JP2019060667A JP 2019060667 A JP2019060667 A JP 2019060667A JP 2017184289 A JP2017184289 A JP 2017184289A JP 2017184289 A JP2017184289 A JP 2017184289A JP 2019060667 A JP2019060667 A JP 2019060667A
Authority
JP
Japan
Prior art keywords
electrode
displacement
fixed
movable plate
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017184289A
Other languages
Japanese (ja)
Inventor
孝士 三原
Takashi Mihara
孝士 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2017184289A priority Critical patent/JP2019060667A/en
Publication of JP2019060667A publication Critical patent/JP2019060667A/en
Pending legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

To detect three-dimensional force sense or three-dimensional pressure or displacement by using capacity detection means because there has been need by now to wire electrodes from both an electrode of a movable part connected with a sensor probe and an electrode of a fixed substrate, which results in many limitations and high performance cannot be achieved.SOLUTION: In the present invention, a sensor detects three-dimensional force sense or three-dimensional pressure or displacement by using capacity detection means. A floating electrode not requiring taking out an electrode is used for a movable plate connected with a sensor probe. Series capacity of capacities between a plurality of electrodes disposed on a fixed substrate and the floating electrode is read out by a measuring circuit connected with a fixed electrode. A sensing system achieves design with high degree of freedom and measurement with high accuracy by the floating electrode not having an electrical connection mechanism.SELECTED DRAWING: Figure 1

Description

本発明は、三次元的な圧力、変位、位置を検出する小型・低価格でありながら精度の高い容量式タッチセンサを実現できることで、様々な計測ソリューションを具現化することを目的にしている。 The present invention aims to realize various measurement solutions by realizing a small-sized, low-cost, high-precision capacitive touch sensor that detects three-dimensional pressure, displacement, and position.

本技術分野において従来は、ロボットや工作機械に使用される高精度であるが高価な力覚センサと、コンピュータの入力装置として使用される安価で精度を要求しない三次元タッチセンサがあった。 Heretofore, there have been high-precision but expensive force sensors used in robots and machine tools, and inexpensive three-dimensional touch sensors used as input devices for computers that do not require precision.

また構成としては、高度な機械加工を要求するセンサと、MEMS技術を使ったセンサ、更に最近ではフィルムを使ったセンサがあるが、フィルムを使った容量式センサは初期の開発費用が安価であり、薄くて様々な用途に対応できることから有望な技術領域および応用領域である。 In addition, there are sensors that require high-level machining, sensors using MEMS technology, and more recently, sensors using film, but film-based capacitive sensors have low initial development costs. It is a promising technology area and application area because it is thin and can be used for various applications.

またフィルムや薄い基板を用いたセンサは、電子回路を搭載したプリント基板や、自在に曲がるフィルム基板上に搭載できるため、様々な用途に安価に適用でき、更にこれらの容量式の三次元的な圧力、変位、位置センサは、流量や風速、風向、粒子、環境と言った他の物理量を計測するためのプラットフォームにもなるため、産業的に極めて重要である。 In addition, a sensor using a film or thin substrate can be mounted on a printed circuit board on which an electronic circuit is mounted, or a film substrate that bends freely, so that it can be applied inexpensively to various applications, and these capacitive three-dimensional sensors Pressure, displacement, and position sensors are extremely important industrially as they also serve as a platform for measuring other physical quantities such as flow rate, wind speed, wind direction, particles, and environment.

先行特許文献1に示された静電容量形3軸加速度センサは、固定板と、重錘を固着させた可撓板とが向き合ってケース体に固定され、前記固定板、可撓板の向き合う面に、固定電極と変位電極とが設けられ前記固定板剛性が高く撓みを生じにくい材料からなり外部から加速度が与えられると、可撓板が撓み固定電極と変位電極間距離が変化して両電極間の静電容量値も変化しこの静電容量値の変化をX軸方向、Y軸方向、Z軸方向に検出して加速度を検出できる。 In the electrostatic capacitance type three-axis acceleration sensor disclosed in the prior art document 1, the fixed plate and the flexible plate to which the weight is fixed are opposed to each other and fixed to the case body, and the fixed plate and the flexible plate are opposed to each other. When the fixed electrode and the displacement electrode are provided on the surface and the fixed plate rigidity is high and it is made of a material which is hardly bent and acceleration is applied from the outside, the flexible plate changes the distance between the fixed electrode and the displacement electrode. The capacitance value between the electrodes also changes, and the change in the capacitance value can be detected in the X axis direction, the Y axis direction, and the Z axis direction to detect the acceleration.

先行特許文献2に示された静電容量形3軸加速度センサは、複数の電極パターンを有するプリント基板上に、金属板からなる中間変位板を配置し、その上にシリコンゴムからなる起歪体を配置し、力覚印加によって弾性変形部が弾性変形して押し潰され、電極と中間変位板とによって構成される容量素子の静電容量値が中間変位板の押し下げられ方に応じて変化し、この変化を検出することにより、加えられた力の三次元の各軸方向成分を検出することができる。 In the electrostatic capacitance type three-axis acceleration sensor disclosed in the prior art document 2, an intermediate displacement plate made of a metal plate is disposed on a printed circuit board having a plurality of electrode patterns, and a strain generating body made of silicon rubber is formed thereon. And the elastic deformation portion is elastically deformed and squeezed by application of force sense, and the capacitance value of the capacitive element formed by the electrode and the intermediate displacement plate changes according to how the intermediate displacement plate is pushed down. By detecting this change, it is possible to detect three-dimensional axial components of the applied force.

更に容量式の三次元的な圧力、変位、位置センサの先行技術として、特許文献3に示す公開公報「静電容量式触覚センサ」では、弾性高分子の基板と、側壁で支持されたエアギャップと、エアギャップに挟まれた2枚の電極があり、その上部電極の配線のために、斜め蒸着法を使って側壁の壁面を使って電極を取り出す方法が開示されているが、その上部電極の配線のために使う斜め蒸着法という特殊な装置を用いる必要があり、また構成が複雑になってコストアップの要因になる。 Furthermore, as a prior art of a capacitive type three-dimensional pressure, displacement, and position sensor, in the publication "Capacitive touch sensor" disclosed in Patent Document 3, an elastic polymer substrate and an air gap supported by a side wall There is also disclosed a method in which there are two electrodes sandwiched in the air gap, and for the wiring of the upper electrode, an oblique evaporation method is used to take out the electrode using the wall of the side wall. It is necessary to use a special apparatus called oblique deposition method which is used for wiring, and the structure becomes complicated, which causes an increase in cost.

別の静電容量式の先行技術として、特許文献4に示す公開公報では、弾性体でありかつ導電性のある導電性エラストマーを対抗可動電極として用い、この可動電極の取り出し電極と、複数の固定電極の容量を検出することで、縦方向の圧力や、横方向のせん断成分を検出する構成が示されている。 As another capacitive type prior art, in the publication disclosed in Patent Document 4, a conductive elastomer having elasticity and conductivity is used as a counter movable electrode, and the movable electrode is taken out, and a plurality of fixed electrodes are used. By detecting the capacitance of the electrode, a configuration is shown in which the pressure in the longitudinal direction and the shear component in the lateral direction are detected.

別の静電容量式の先行技術として、特許文献5に示す公開公報では、弾性体でありかつ導電性のある導電性エラストマーを対抗可動電極として用い、この可動電極の取り出し電極と、複数の固定電極の容量を検出することで、縦方向の圧力や、横方向のせん断成分を検出する構成が示されている。 As another capacitance type prior art, in the publication disclosed in Patent Document 5, a conductive elastomer which is elastic and conductive is used as a counter movable electrode, and the movable electrode is taken out, and a plurality of fixed electrodes are used. By detecting the capacitance of the electrode, a configuration is shown in which the pressure in the longitudinal direction and the shear component in the lateral direction are detected.

特許文献5に示す公開公報では、弾性体でありかつ導電性のある導電性エラストマーを対抗可動電極として用いるため、この特殊な材料の形状や、ヤング率、ポアソン比、更に導電等によって、計測する圧力とひずみの関係が変るので多数の形状の導電性エラストマーを準備する必要があった。 In the publication disclosed in Patent Document 5, in order to use a conductive elastomer which is elastic and conductive as the opposing movable electrode, it is measured by the shape of this special material, Young's modulus, Poisson's ratio, further conductivity, etc. Because the relationship between pressure and strain has changed, it has been necessary to prepare many shapes of conductive elastomer.

特許文献6に示す公開公報では、樹脂フィルム基板の表面側に導電性材料からなる可動電極を備え、可動電極は押圧により変位する変位部と樹脂フィルム基板の表面に接着固定する固定部とを有し、その固定部は引き出し電極に電気接続してあり、変移部は突出部の先端が初期状態において樹脂フィルム基板の表面に接触又は接着し、その静電容量検出電極は変移部と対向して配置されているとともに樹脂フィルム基板に設けた引き出し電極に電気接続されていることを特徴とする。 In the publication disclosed in Patent Document 6, a movable electrode made of a conductive material is provided on the surface side of a resin film substrate, and the movable electrode has a displacement portion that is displaced by pressing and a fixing portion that is adhesively fixed to the surface of the resin film substrate. The fixed portion is electrically connected to the extraction electrode, and the tip of the protrusion contacts or adheres to the surface of the resin film substrate in the initial state in the transition portion, and the capacitance detection electrode faces the transition portion. It is characterized in that it is disposed and electrically connected to a lead-out electrode provided on the resin film substrate.

特開平4-148833号公報 「力覚センサ」Patent Document 1: JP-A-4-148833 "Force sensor" 特開2001-165790号公報 「力検出センサ」JP, 2001-165790, A "force detection sensor" 特開平5- 288619 「静電容量式触覚センサ」Patent Document 1: Japanese Patent Application Laid-Open No. 5-288619 "Capacitive touch sensor" 特開2001-91382 「静電容量式センサ」Patent Document 1: JP-A-2001-91382 "Capacitance sensor" 特開2010-8343 「力覚センサおよびその組み立て方法」JP, 2010-8343, "force sensor and its assembling method" 特開2011-159599 「入力装置」JP, 2011-159599, "Input device"

従来の容量式の三次元的な圧力、変位、位置センサは先行特許文献に示すように、力覚センサや触覚センサと言われているセンサであって、一対の電極容量を計測する方式であって、その片方が固定され、他方が変位や歪みによって電極の位置が変動し、その一対の電極の容量を計測する方式であった。 A conventional capacitive three-dimensional pressure, displacement, position sensor is a sensor called a force sensor or a tactile sensor as described in the prior patent document, and is a method of measuring a pair of electrode capacitances. One of them is fixed, and the other is the position of the electrode changes due to displacement or strain, and the capacitance of the pair of electrodes is measured.

特に可動式の電極は、導電性があって可塑性、或いは弾性である必要があるので、先行特許文献4から6では、その電極材料として導電性エラストマーが使われている。 In particular, since movable electrodes need to be electrically conductive and be plastic or elastic, in Patent Documents 4 to 6, a conductive elastomer is used as the electrode material.

これらの力覚センサ、或いは触覚センサはセンサの水平方向に対して、垂直な変位(或いは圧力)や、水平方向の2次元的な変位(或いは圧力)を複数の電極の組み合わせによって、分離して計測ができるが、その構造に起因する縦方向と横方向(せん断方向)のカップリング成分が存在することによって、それらを明確に分離することが出来ない場合が多かった。 These force sensors or tactile sensors separate vertical displacement (or pressure) or horizontal two-dimensional displacement (or pressure) with respect to the horizontal direction of the sensor by combining a plurality of electrodes. Although measurement can be performed, in many cases, it was not possible to clearly separate them due to the presence of longitudinal and transverse (shearing direction) coupling components resulting from the structure.

また、先行特許文献4から6においては、導電性エラストマーが使われるために、この材料の機械的および電気的な特性と形状を最適にする必要があって、開発の初期投資が大きかった。 Also, in the prior art documents 4 to 6, in order to use the conductive elastomer, it is necessary to optimize the mechanical and electrical properties and shape of this material, and the initial investment for development has been large.

これらの先行特許文献に共有させる課題は可動電極の加工や組み立てに課題、すなわち機械的に外部の三次元的な変位や圧力を伝達し、かつ電気的に基板回路に接続すると言う2つの機能を実現することが必要であった。 The problem to be shared by these prior patent documents is the problem in processing and assembling the movable electrode, that is, two functions of mechanically transmitting external three-dimensional displacement and pressure and electrically connecting to the substrate circuit. It was necessary to realize it.

これらの機械的な伝達と、電気的な伝達は相反するこことが多く、機械的に祖結合、すなわち力定数が小さい場合は電気的にも導電性が低い、逆に機械的に蜜結合、すなわち力定数が大きい場合は電気的にも導電性が高かった。 These mechanical and electrical transmissions are often contradictory, and mechanical bonding is inherent, that is, electrical conductivity is also low if the force constant is small, and vice versa mechanically That is, when the force constant is large, the conductivity is also high electrically.

実用的で柔軟な仕様、応用に展開するには、この相反関係にある機械的結合条件と電気的結合条件を独立に設定することが重要であるため、本発明では、三次元的な変位を反映する可動電極を浮遊電極にして電気的に絶縁することで、様々な課題が解決でき、浮遊電極であっても、正確な変位検出が出来るような構成を考案した。 In order to expand to practical and flexible specifications and applications, it is important to set the mechanical coupling condition and the electrical coupling condition, which are in a reciprocal relationship, independently, so in the present invention, three-dimensional displacement is By electrically insulating the movable electrode to be reflected as a floating electrode, various problems can be solved, and a configuration is devised in which accurate displacement detection can be performed even with the floating electrode.

図1に示す基本構成のように、本構成は当該の固定基板2に共通電極Ec、第一の電極E1、第二の電極E2、第三の電極E3が配置され、その面から空気層或いは誘電体層6を挟んで平行な可動板3に浮遊電極Efを持ち、この浮遊電極は電気的に電線等で接続されていない構成となっている。 As in the basic configuration shown in FIG. 1, in this configuration, the common electrode Ec, the first electrode E1, the second electrode E2, and the third electrode E3 are disposed on the fixed substrate 2 concerned, and an air layer or A floating electrode Ef is provided on the parallel movable plate 3 with the dielectric layer 6 interposed therebetween, and the floating electrode is not electrically connected by a wire or the like.

このセンサ構成において、複数の固定電極は回路基板2に固定されており、可動部3は計測を行うべき被計測物であるセンサプローブ5に物理的に接続されていて、そのプローブの変位、或いは圧力を変位として検出するものである。 In this sensor configuration, the plurality of fixed electrodes are fixed to the circuit board 2, and the movable portion 3 is physically connected to the sensor probe 5, which is an object to be measured, and displacement of the probe or The pressure is detected as displacement.

図2に示す本センサ構成の電気的な等価回路は、共通電極Ecと浮遊電極Efの間の容量をCfc、第一の電極E1と浮遊電極Efの間の容量Cf1、第二の電極E2と浮遊電極Efの間の容量Cf2、第三の電極E3と浮遊電極Efの間の容量Cf3が存在している。 The electrical equivalent circuit of this sensor configuration shown in FIG. 2 has a capacitance Cfc between the common electrode Ec and the floating electrode Ef, a capacitance Cf1 between the first electrode E1 and the floating electrode Ef, and a second electrode E2 There is a capacitance Cf2 between the floating electrodes Ef and a capacitance Cf3 between the third electrode E3 and the floating electrodes Ef.

ここで、実際の計測は共通電極Ec と第一の電極E1の間の容量C1、共通電極Ec と第二の電極E2の間の容量C2、共通電極Ec と第三の電極E3の間の容量C3を計測することでセンサプローブ5の変位を計測するが、CfcとCf1、CfcとCf2、CfcとCf3が全て直列になっているため、例えばC1は数1によって計算される。 Here, the actual measurement is performed using the capacitance C1 between the common electrode Ec and the first electrode E1, the capacitance C2 between the common electrode Ec and the second electrode E2, and the capacitance between the common electrode Ec and the third electrode E3. Although the displacement of the sensor probe 5 is measured by measuring C3, Cfc and Cf1, Cfc and Cf2, and Cfc and Cf3 are all in series, for example, C1 is calculated by Equation 1.

ここで、図1に示すように、共通電極の面積をSc、第一の電極の面積をS1、第二の電極の面積は幅Wと、長さD+dの積、第三の電極の幅Wと、長さD−dの積、また空気或いは誘電体の隙間の距離はTに対して垂直方向にt変位したT+tとすると、真空の誘電率ε0と誘電体の誘電率εrを使って、例えばC1は数2によって表され、C2は数3によって表される。 Here, as shown in FIG. 1, the area of the common electrode is Sc, the area of the first electrode is S1, the area of the second electrode is the product of the width W and the length D + d, and the third electrode Assuming that the product of the width W and the length D-d and the distance of the air or dielectric gap is T + t displaced in the direction perpendicular to T, the dielectric constant ε0 of the vacuum and the dielectric constant εr of the dielectric For example, C1 is represented by Equation 2 and C2 is represented by Equation 3.

ここで、これらの数式を使って実際に計測される容量を計算すると極めて複雑になるが、共通電極の面積が他の面積よりも大きい場合と、dがDに比較して小さい場合、tがTに比較して小さい場合は近似式として、C1は数4に、C2は数5に近似される。 Here, calculation of the actually measured capacitance using these equations is extremely complicated, but when the area of the common electrode is larger than other areas and when d is smaller than D, t is As small as compared with T, C1 is approximated to equation 4 and C2 is approximated to equation 5 as an approximation equation.

この結果、C1の計測によって可動部3の上下方向の変位率であるt/Tが推定出来、C2とC3の計測によって可動部3の水平方向の変位率であるd/Dの推定が出来る。 As a result, it is possible to estimate t / T, which is the displacement rate of the movable portion 3 in the vertical direction, by measuring C1, and to estimate d / D, which is the displacement rate of the movable portion 3 in the horizontal direction, by measuring C2 and C3.

この発明の最大の特徴は、浮遊電極Cfは電位を与えるための電極配線を一切必要としないことであり、これによって機械的・物理的な制限を受けること無しにプローブの変位や力覚を極めて正確に可動電極に伝達し、その変位を計測することが出来る点にある。 The greatest feature of the present invention is that the floating electrode Cf does not require any electrode wiring for applying a potential, thereby extremely displacing the probe and sensing the force without being subject to mechanical and physical limitations. The point is that it can be accurately transmitted to the movable electrode and its displacement can be measured.

この発明の実施例(実施例1)の構成図、センサモジュールの基本構成を示す。The block diagram of the Example (Example 1) of this invention, and the basic composition of a sensor module are shown. 実施例1のセンサモジュールの電気的等価回路を示す。The electrical equivalent circuit of the sensor module of Example 1 is shown. 実施例1の構成の計測電子回路を示す。2 shows a measurement electronic circuit of the configuration of Example 1; 実施例1の構成の駆動電子回路を示す。2 shows drive electronics of the configuration of Example 1; 実施例2の構成図、センサモジュールの断面を示す。The block diagram of Example 2, the cross section of a sensor module is shown. 実施例3の構成図、センサモジュールの断面を示す。The block diagram of Example 3, and the cross section of a sensor module are shown. 実施例4の構成図、センサモジュールの断面を示す。The block diagram of Example 4, and the cross section of a sensor module are shown. 実施例5の構成図、センサモジュールの断面を示す。The block diagram of Example 5, and the cross section of a sensor module are shown. 実施例6の構成図、センサモジュールの断面を示す。The block diagram of Example 6, and the cross section of a sensor module are shown. 実施例七の構成の計測電子回路を示す。17 shows a measurement electronic circuit of the configuration of Example 7;

図1が本発明の基本的な構成図であり、センサモジュール1は、複数の電極を持つ固定基板2と、変位や力覚を捉えるセンサプローブ5と浮遊電極Efを持つ可動板3、可動板3を平衡状態で所定の位置に戻すためのバネの役割をする弾性体4、複数の電極を持つ固定基板2と浮遊電極Efの間は、厚さTを持つ空気層或いは誘電体層6で構成されている。 FIG. 1 is a basic configuration diagram of the present invention, and a sensor module 1 includes a fixed substrate 2 having a plurality of electrodes, a movable plate 3 having a sensor probe 5 for capturing displacement and force and a floating electrode Ef, and a movable plate. An elastic layer 4 acting as a spring for returning the 3 to a predetermined position in an equilibrium state, an air layer or dielectric layer 6 having a thickness T between the fixed substrate 2 having a plurality of electrodes and the floating electrode Ef It is configured.

固定基板2には共通電極Ecが配置され、この共通電極Ecと浮遊電極Efに挟まれた空気層或いは誘電体層6で構成される共通電極―浮遊電極間容量Cfcが形成され、固定基板2には固定基板2の垂直の方向の変位の変化量tを検出するための第一電極E1が配置される。 A common electrode Ec is disposed on the fixed substrate 2, and a common electrode-floating electrode capacitance Cfc formed of an air layer or dielectric layer 6 sandwiched between the common electrode Ec and the floating electrode Ef is formed. A first electrode E1 for detecting the amount of change t of the displacement of the fixed substrate 2 in the vertical direction is disposed on the first electrode E1.

この第一電極E1と浮遊電極Efに挟まれた空気層或いは誘電体層6で構成される第一電極―浮遊電極間容量Cf1が形成され、同じく固定基板2には固定基板2との平行方向の変位の変化量dを検出するための第二電極E2が配置され、この第二電極E2と浮遊電極Efに挟まれた空気層或いは誘電体層6で構成される第二電極―浮遊電極間容量Cf2が形成され、同じく固定基板2には固定基板2との平行方向の変位の逆の変化量-dを検出するための第三電極E3が配置され、この第三電極E3と浮遊電極Efに挟まれた空気層或いは誘電体層6で構成される第三電極―浮遊電極間容量Cf3が形成される。 A first electrode-floating electrode capacitance Cf1 formed of an air layer or dielectric layer 6 sandwiched between the first electrode E1 and the floating electrode Ef is formed, and the fixed substrate 2 also has a parallel direction with the fixed substrate 2 Between the second electrode and the floating electrode, which is formed of an air layer or dielectric layer 6 sandwiched between the second electrode E2 and the floating electrode Ef. A capacitance Cf2 is formed, and a third electrode E3 for detecting the reverse change -d of the displacement in the parallel direction to the fixed substrate 2 is disposed on the fixed substrate 2 as well, and the third electrode E3 and the floating electrode Ef are disposed. A third electrode-floating electrode capacitance Cf3 composed of an air layer or dielectric layer 6 sandwiched between the two is formed.

ここで、例えば図1に示すように中心部に位置するセンサプローブ5を中心とした浮遊電極Ef、共通電極E1は円板上であることが望ましいし、第二電極E2や第三電極E3はセンサプローブ5を中心とした円板状であって、その変位の方向の特性に従って一部に電極の分離パターン13を設ける必要がある。 Here, for example, as shown in FIG. 1, it is desirable that the floating electrode Ef centered on the sensor probe 5 located at the center, the common electrode E1 be on a disc, and the second electrode E2 and the third electrode E3 be The separation pattern 13 of the electrode needs to be provided in part according to the characteristics of the direction of the displacement, which is in the shape of a disk centered on the sensor probe 5.

この第一の実施例の等価回路は図2に示すように、極めてシンプルであって、外部の電子回路によって、信号を取り出せる共通電極Ec、固定基板2の垂直の方向の変位の変化量tを検出するための第一電極E1、固定基板2との平行方向の変位の変化量dを検出するための第二電極E2、固定基板2との平行方向の変位の逆の変化量-dを検出するための第三電極E3が構成され、またこれらの電極間の容量はこの共通電極Ecと浮遊電極Efに挟まれた空気層或いは誘電体層6で構成される共通電極―浮遊電極間容量Cfc、第一電極E1と浮遊電極Efに挟まれた空気層或いは誘電体層6で構成される第一電極―浮遊電極間容量Cf1、第二電極E2と浮遊電極Efに挟まれた空気層或いは誘電体層6で構成される第二電極―浮遊電極間容量Cf2、更に第三電極E3と浮遊電極Efに挟まれた空気層或いは誘電体層6で構成される第三電極―浮遊電極間容量Cf3が示されている。 The equivalent circuit of this first embodiment is extremely simple as shown in FIG. 2, and the change amount t of the displacement in the vertical direction of the common electrode Ec and the fixed substrate 2 from which signals can be taken out by an external electronic circuit is obtained. The first electrode E1 for detection, the second electrode E2 for detecting the change amount d of the displacement in the parallel direction with the fixed substrate 2, the reverse change amount -d of the displacement in the parallel direction with the fixed substrate 2 The capacitance between the common electrode and the floating electrode is constituted by an air layer or dielectric layer 6 sandwiched between the common electrode Ec and the floating electrode Ef. A first electrode-floating electrode capacitance Cf1 formed of an air layer or dielectric layer 6 sandwiched between the first electrode E1 and the floating electrode Ef, an air layer or dielectric sandwiched between the second electrode E2 and the floating electrode Ef The second electrode-floating electrode capacitance Cf2 composed of the body layer 6, and further, the third electrode E3 and the floating electrode Ef A third electrode-floating electrode capacitance Cf3 composed of the sandwiched air layer or dielectric layer 6 is shown.

この図2で示された等価回路を持つセンサモジュール1の計測検出回路は図3に示すように、各電極の端子に接続する回路としては、共通電極Ecと第一電極E1から、ここでは第五電極E5までを示し、この間の端子間の容量の変化を検出することでY方向(第二電極と第三電極を結ぶ方向)、X方向(第四電極と第五電極を結ぶ方向)、Z方向(固定基板2に垂直な方向)の変位の変化を検出することが可能である。 The measurement detection circuit of the sensor module 1 having the equivalent circuit shown in FIG. 2 is, as shown in FIG. 3, a circuit connected to the terminal of each electrode from the common electrode Ec and the first electrode E1, here Up to five electrodes E5 are shown, and a change in capacitance between terminals is detected to detect a change in the Y-direction (direction connecting the second and third electrodes), X direction (direction connecting the fourth and fifth electrodes), It is possible to detect a change in displacement in the Z direction (the direction perpendicular to the fixed substrate 2).

容量検出の方法は、ハートレー発振器のように当該容量と、コイルの既知インダクタンスによって起こる共振回路の共振周波数を計測する方法、電荷アンプと言う電荷量を電圧に変換する回路を使う方法等があるが、ここでは極めて高精度に微少容量を検出可能な交流電圧を用いたインピーダンス計測回路を用いた。 Methods of capacitance detection include a method of measuring the resonance frequency of the resonance circuit generated by the capacitance and the known inductance of the coil as in the Hartley oscillator, and a method of using a circuit called charge amplifier to convert an amount of charge into voltage. Here, an impedance measurement circuit using an AC voltage capable of detecting a minute capacity with extremely high accuracy is used.

図3の共通電極Ecにはある特定の周波数を持った交流電圧を印加するが、この端子間容量が小さい場合は、周波数や印加振幅を大きくする。 An alternating voltage having a specific frequency is applied to the common electrode Ec in FIG. 3, but if the capacitance between the terminals is small, the frequency or the applied amplitude is increased.

他の電極である第一電極E1から第五電極E5は、必要な負荷抵抗を接続し、この付加抵抗の端子間信号を検出するが、負荷抵抗は抵抗であっても、容量であっても良いし、抵抗と容量の混在した特定のインピーダンスを持ったものであっても良い。 The first electrode E1 to the fifth electrode E5, which are other electrodes, connect necessary load resistances and detect a signal between terminals of this additional resistance, but the load resistance may be either a resistance or a capacitance It may be good, or it may have a specific impedance mixed of resistance and capacitance.

図3の例では、Y方向の変位を検出するために第二電極と第三電極の負荷抵抗に生成した信号の差を検出し、X方向の変位を検出するために第四電極と第五電極の負荷抵抗に生成した信号の差を検出し、Z方向は第1電極の負荷抵抗に生成した信号を、それぞれ差動アンプQ2からQ3、バッファアンプQ1で検出する方法を図示した。 In the example of FIG. 3, in order to detect the displacement in the Y direction, the difference between the signals generated in the load resistances of the second and third electrodes is detected, and in order to detect the displacement in the X direction, the fourth and fifth electrodes are detected. The method of detecting the difference between the signals generated in the load resistances of the electrodes and detecting the signals generated in the load resistances of the first electrode in the Z direction by the differential amplifiers Q2 to Q3 and the buffer amplifier Q1 is illustrated.

共通電極Ecに掛ける交流電圧を発生する回路の例は、ウイーンブリッジ回路を使ったものが一般的であるいが、図4に示すようにマイコンやタイマーによって生成された矩形波P1を、Q5を用いたバンドパスフィルターを使ってサイン波を生成し、Q6の電流駆動回路を用いてある特定周波数の交流電圧を作成する方法を示す。 An example of a circuit that generates an AC voltage to be applied to the common electrode Ec generally uses a Wien bridge circuit, but as shown in FIG. 4, a square wave P1 generated by a microcomputer or timer and Q5 are used. A method of generating a sine wave using the used band pass filter and creating an AC voltage of a specific frequency using the current drive circuit of Q6 is shown.

ここで、矩形波P1はQ4の前段回路R2、C1によって積分され、Q5を用いた帰還形バンドパスフィルターでサイン波に形成され、R7、R8の抵抗でオフセット電圧V1が重畳された後に、Q6の電流駆動回路でR12のエミッタ抵抗で決る電流がR10に流れることでR10の両端に交流電圧が発生し、この端子電圧を共通電極Ecに掛ける。
Here, the rectangular wave P1 is integrated by the pre-stage circuits R2 and C1 of Q4, formed into a sine wave by the feedback band pass filter using Q5, and after the offset voltage V1 is superimposed by the resistors R7 and R8, Q6 When a current determined by the emitter resistance of R12 flows to R10 in the current drive circuit, an alternating voltage is generated at both ends of R10, and this terminal voltage is applied to the common electrode Ec.

図1が本発明の実施例(実施例1)の構成図であり、センサモジュール1は、複数の電極を持つ固定基板2と、変位や力覚を捉えるセンサプローブ5と浮遊電極Efを持つ可動板3、可動板3を平衡時に所定の位置に戻すためのバネの役割をする弾性体4、複数の電極を持つ固定基板2と浮遊電極Efの間は、厚さTを持つ空気層或いは誘電体層6で構成されている。 FIG. 1 is a block diagram of an embodiment (first embodiment) of the present invention, and a sensor module 1 is a fixed substrate 2 having a plurality of electrodes, and a movable sensor having a sensor probe 5 for detecting displacement and force and a floating electrode Ef. A plate 3, an elastic body 4 serving as a spring for returning the movable plate 3 to a predetermined position during equilibrium, an air layer or a dielectric having a thickness T between the fixed substrate 2 having a plurality of electrodes and the floating electrode Ef The body layer 6 is configured.

固定基板2には共通電極Ecが配置され、この共通電極Ecと浮遊電極Efに挟まれた空気層或いは誘電体層6で構成される共通電極―浮遊電極間容量Cfcが形成され、固定基板2には固定基板2の垂直の方向の変位の変化量tを検出するための第一電極E1が配置され、この第一電極E1と浮遊電極Efに挟まれた空気層或いは誘電体層6で構成される第一電極―浮遊電極間容量Cf1が形成され、同じく固定基板2には固定基板2との平行方向の変位の変化量dを検出するための第二電極E2が配置され、この第二電極E2と浮遊電極Efに挟まれた空気層或いは誘電体層6で構成される第二電極―浮遊電極間容量Cf2が形成され、同じく固定基板2には固定基板2との平行方向の変位の逆の変化量-dを検出するための第三電極E3が配置され、この第三電極E3と浮遊電極Efに挟まれた空気層或いは誘電体層6で構成される第三電極―浮遊電極間容量Cf3が形成される。 A common electrode Ec is disposed on the fixed substrate 2, and a common electrode-floating electrode capacitance Cfc formed of an air layer or dielectric layer 6 sandwiched between the common electrode Ec and the floating electrode Ef is formed. A first electrode E1 for detecting the amount of change t in the vertical direction of the fixed substrate 2 is disposed on the first electrode E1, and the first electrode E1 and an air layer or dielectric layer 6 sandwiched between the floating electrodes Ef are provided. The first electrode-floating electrode capacitance Cf1 is formed, and the second electrode E2 for detecting the amount of change d of the displacement in the parallel direction to the fixed substrate 2 is disposed on the fixed substrate 2 as well. A second electrode-floating electrode capacitance Cf2 formed of an air layer or dielectric layer 6 sandwiched between the electrode E2 and the floating electrode Ef is formed, and the fixed substrate 2 is similarly displaced in a direction parallel to the fixed substrate 2 A third electrode E3 for detecting the reverse change amount -d is disposed, and the third electrode E3 and the floating electrode Ef are provided. A third electrode-floating electrode capacitance Cf3 composed of the sandwiched air layer or dielectric layer 6 is formed.

図1には、上段に第一の構成図の断面が、中段に浮遊電極Efの平面図、下段には変位を検出るために電極、即ち第一電極E1が最内部に円板形に、共通電極Ecがその外側に円板形に、第二から第五の電極が、更にその外側に円板を電極の分離パターン13を設けた4分割した形状になっている。 In FIG. 1, the cross section of the first configuration diagram in the upper stage, the plan view of the floating electrode Ef in the middle stage, and the electrode in the lower stage, that is, the first electrode E1 has a disc shape in the innermost to detect displacement. The common electrode Ec has a disk shape on the outer side, the second to fifth electrodes have a shape obtained by dividing the circular plate on the outer side of the common electrode Ec into four.

第1の実施例では、図2に示す、センサモジュールの等価回路や、図3に示した計測の方法や、図4に示した共通電極Ecへの印加電圧の生成方法は、発明を実施するための形態
に示した記述と同じである。
In the first embodiment, the invention is applied to the equivalent circuit of the sensor module shown in FIG. 2, the method of measurement shown in FIG. 3, and the method of generating the applied voltage to the common electrode Ec shown in FIG. It is the same as the description shown in the form.

図3に示して計測された信号から、数4や数5の方法によって、第一電極から計測された容量によって、数4に基づいてZ方向の変位の変化を計測し、第二電極と第三電極から計測された容量の差によって、数5に基づいてY方向の変位の変化を計測し、同様な手法で第四電極と第五電極から計測された容量の差によって、X方向の変位の変化を計測する。 From the measured signal shown in FIG. 3, the change in displacement in the Z direction is measured based on Eq. 4 by the capacitance measured from the first electrode according to Eq. 4 and Eq. 5, and the second electrode and the second The change in displacement in the Y direction is measured based on equation 5 by the difference in capacitance measured from the three electrodes, and the displacement in the X direction from the difference in capacitance measured from the fourth electrode and the fifth electrode in the same manner. Measure the change of

図5に示す第2の実施例では、センサモジュール1は、複数の電極を持つ固定基板2と、変位や力覚を捉えるセンサプローブ5と浮遊電極Efを持つ可動板3、可動板3を固定基板と水平の方向、或いはX方向とY方向の初期の位置に戻すためのバネの役割をする弾性体4、可動板3を固定基板2の垂直方向、或いはZ方向の初期の位置に戻し、更に複数の電極を持つ固定基板2と浮遊電極Efの間の容量を形成するは、厚さTの弾性体で構成された誘電層7で構成されている。 In the second embodiment shown in FIG. 5, the sensor module 1 fixes the fixed substrate 2 having a plurality of electrodes, and the movable plate 3 and the movable plate 3 having the sensor probe 5 for capturing displacement and force and the floating electrode Ef. The elastic body 4 acting as a spring for returning to the initial position in the X direction and the Y direction, the movable plate 3 is returned to the initial position in the vertical direction or the Z direction of the fixed substrate 2 Furthermore, the capacitance between the fixed substrate 2 having a plurality of electrodes and the floating electrode Ef is formed by the dielectric layer 7 made of an elastic material of thickness T.

図1に示した第一の実施例では、プローブに掛かる変位や、力覚が無いときに可動板を初期位置に戻すバネの役割をするのは固定支持体9とセンサプローブ5の間に構成された弾性体4であったが、このプローブ5に掛かる力覚が中心からずれた場合は、可動板3が左右非対称な変位を受ける。 In the first embodiment shown in FIG. 1, the function of the spring acting as a spring for returning the movable plate to the initial position when there is no displacement or probe on the probe is constituted between the fixed support 9 and the sensor probe 5 If the force sense applied to the probe 5 deviates from the center, the movable plate 3 receives asymmetric displacement.

このため、図5示す第二の実施例では、可動板3を固定基板と水平の方向、或いはX方向とY方向の初期の位置に戻すためのバネの役割をする弾性体4とは別に、可動板3を固定基板2の垂直方向、或いはZ方向の初期の位置に戻すためのバネを、複数の電極を持つ固定基板2と浮遊電極Efの間の容量を形成する誘電体を兼用させた、厚さTの弾性体で構成された誘電層7に役割を荷なす。 For this reason, in the second embodiment shown in FIG. 5, separately from the elastic body 4 serving as a spring for returning the movable plate 3 to the initial position in the horizontal direction or the X direction and the Y direction with the fixed substrate, The spring for returning the movable plate 3 to the initial position in the vertical direction or Z direction of the fixed substrate 2 is also used as a dielectric that forms a capacitance between the fixed substrate 2 having a plurality of electrodes and the floating electrode Ef. Play a role in the dielectric layer 7 composed of an elastic body of thickness T.

この弾性体で構成された誘電層7は板状であるので、このプローブ5に掛かる力覚が中心からずれた場合であっても、可動板3がX方向、Y方向に対して均一で対称な変位を受け計測の精度があがる。 Since the dielectric layer 7 made of this elastic body is plate-like, the movable plate 3 is uniform and symmetrical in the X and Y directions even when the force sense applied to the probe 5 deviates from the center. And the accuracy of measurement increases.

図6に示した第三の実施例では、第一の実施例におけるは固定支持体9を固定基板2にナット等を用いて固定し、この固定支持体9とセンサプローブ5の間にX,YとZ方向のどの方向に対しても変位や力覚が無いときに初期値に戻せる弾性体4を配置した例である。 In the third embodiment shown in FIG. 6, in the first embodiment, the fixed support 9 is fixed to the fixed substrate 2 by means of a nut or the like, and between the fixed support 9 and the sensor probe 5, X, This is an example in which the elastic body 4 is disposed which can return to the initial value when there is no displacement or force sense in any of the Y and Z directions.

この第三の実施例では、可動板3はセンサプローブ5と接着させず、センサプローブ5の左右、或いはXY方向の変位に自由に倣うように、可動板3とセンサプローブ5は滑りの良い構成にする。 In the third embodiment, the movable plate 3 and the sensor probe 5 are configured so as to be slippery so that the movable plate 3 does not adhere to the sensor probe 5 and can freely follow the displacement of the sensor probe 5 in the left and right or XY directions. Make it

この実施例ではZ方向の変位を計測出来ないが、可動板3とセンサプローブ5の間の摩擦等で可動板3がZ方向に変形した場合にZ方向の変位を計測する第一電極E1を構成することで、Z方向の補正が可能になる。 In this embodiment, although the displacement in the Z direction can not be measured, the first electrode E1 that measures the displacement in the Z direction when the movable plate 3 is deformed in the Z direction due to the friction between the movable plate 3 and the sensor probe 5 is used. By configuring, correction in the Z direction becomes possible.

図7に示した第四の実施例では、第一の実施例におけるは固定支持体9を固定基板2にナット等を用いて固定し、この固定支持体9とセンサプローブ5の間にX,YとZ方向のどの方向に対しても変位や力覚が無いときに初期値に戻せるバネ10を配置した例である。 In the fourth embodiment shown in FIG. 7, in the first embodiment, the fixed support 9 is fixed to the fixed substrate 2 using a nut or the like, and X, In this example, a spring 10 is disposed which can return to the initial value when there is no displacement or force sense in any of the Y and Z directions.

このバネ10は、ピアノ線のような剛性の高い線材をスパイラル状に巻いても良いし、或いはぜんまいバネのように水平方向(XY方向に)中心線にそってその半径が徐々に拡大するように巻いても良い。 The spring 10 may be formed by spirally winding a high rigidity wire such as a piano wire, or the radius may be gradually expanded along the center line in the horizontal direction (in the X and Y directions) like a spring spring. May be rolled around.

このバネは、固定支持体9とセンサプローブ5に、その両端が固定されており、この例ではセンサプローブ5と、可動板3は接着剤8で固定され、更に左右、或いはXY方向の可動板3のバランスを保つために、可動板3を固定基板2の垂直方向、或いはZ方向の初期の位置に戻すためのバネを、複数の電極を持つ固定基板2と浮遊電極Efの間の容量を形成する誘電体を兼用させた、厚さTの弾性体で構成された誘電層7を追加した構成である。 The spring is fixed at its both ends to the fixed support 9 and the sensor probe 5. In this example, the sensor probe 5 and the movable plate 3 are fixed by the adhesive 8, and the movable plate in the left or right or XY direction is further fixed. In order to maintain the balance of 3, the spring for returning the movable plate 3 to the initial position in the vertical direction or Z direction of the fixed substrate 2 is used to set the capacitance between the fixed substrate 2 having a plurality of electrodes and the floating electrode Ef. In this configuration, a dielectric layer 7 made of an elastic material of thickness T, which also serves as a dielectric to be formed, is added.

図8に示した第五の実施例では、第四の実施例における可動板3を固定基板2の垂直方向、或いはZ方向の変位の計測に使う第一電極E1を省略した構成であって、可動板3を固定基板2の水平方向、或いはX,Y方向の変位や力覚を検出することに特化した例を示す。 In the fifth embodiment shown in FIG. 8, the first electrode E1 used for measuring the displacement of the fixed substrate 2 in the vertical direction or Z direction in the fourth embodiment is omitted. An example is described in which the movable plate 3 is specialized for detecting displacement and force sense in the horizontal direction or in the X and Y directions of the fixed substrate 2.

図9に示した第六の実施例は、センサモジュール1のセンサプローブを除き浮遊電極を供える可動板の上面と、複数の固定電極を備えた固定基板2の下部に、外部からの雑音や電界、電磁波、他の金属や人体のアンテナ効果による不安定性を抑制するための上部の接地電極12と下部の接地電極11を備え、この接地電極を回路システムの固定電位に接続することで、安定でノイズに強い構成にした。 In the sixth embodiment shown in FIG. 9, external noise or electric field is applied to the upper surface of the movable plate provided with the floating electrode except for the sensor probe of the sensor module 1 and the lower portion of the fixed substrate 2 provided with a plurality of fixed electrodes. And ground electrode 12 at the top and ground electrode 11 at the bottom to suppress instability due to the antenna effect of electromagnetic waves, other metals and human body, and by connecting this ground electrode to the fixed potential of the circuit system, it is stable It was made strong against noise.

図10に示した第七の実施例は、信号処理回路の例であり、図3の第一の実施例でセンサ容量CfcやCf1等に意図しない寄生容量や寄生抵抗が存在した場合は、端子の負荷抵抗の端子信号に位相情報が乗ってしまい正しい振幅情報が得られない場合がある。 The seventh embodiment shown in FIG. 10 is an example of a signal processing circuit, and in the first embodiment of FIG. 3, when there is an unintended parasitic capacitance or parasitic resistance in the sensor capacitance Cfc or Cf1, etc. There is a case where the phase information is put on the terminal signal of the load resistor and the correct amplitude information can not be obtained.

このため図10に示すように、各端子の負荷抵抗の信号を一旦、非反転アンプQ7,Q8,Q10にて増幅したあと、全波整流して平均二乗平方根値を取り出すrms変換回路B1,B2,B3を使って振幅情報に比例する値を求め、これをQ9で構成する差動アンプで比較する方が、正しい計測が出来る。 For this reason, as shown in FIG. 10, rms conversion circuits B1 and B2 which take out the mean square root value by performing full-wave rectification after amplifying the signal of the load resistance of each terminal once by non-inverting amplifiers Q7, Q8 and Q10. , B3 to obtain a value proportional to the amplitude information, and comparing this with a differential amplifier configured with Q9 makes a correct measurement.

具体的に第1の実施例を用いて実施する場合の定量的な見積もりを行うと、センサプローブの大きさは、加工のし易さと実際に産業用途に適用を考えると1mmから10mmの間であって、センサシステム自体の大きさとしては、可動板、或いは浮遊電極の直径は5mmから50mm程度、隙間間隔は1マイクロメータから1mmが適切である。 Specifically, when performing quantitative estimation in the case of implementation using the first embodiment, the size of the sensor probe is between 1 mm and 10 mm, considering ease of processing and practical application to an industrial application. As the size of the sensor system itself, the diameter of the movable plate or the floating electrode is about 5 mm to 50 mm, and the gap distance is suitably 1 micrometer to 1 mm.

ここで可動板、或いは浮遊電極の直径は20mmとした場合の典型的な値としては、共通電極Ecの外形(直径)は15mm、内径を10mmとするなら、その面積が98.1mm平方となり、比誘電率1の空気の場合で10マイクロメータの隙間間隔、或いは比誘電率4のポリマーであれば、40マイクロメートルとすると、その浮遊電極との容量は中空円形で計算すると86.8pFとなる。 Here, as a typical value when the diameter of the movable plate or the floating electrode is 20 mm, if the outer diameter (diameter) of the common electrode Ec is 15 mm and the inner diameter is 10 mm, the area becomes 98.1 mm square and the ratio In the case of air having a dielectric constant of 1 and a gap distance of 10 micrometers, or for a polymer having a dielectric constant of 4, for example, 40 micrometers, the capacity with the floating electrode is 86.8 pF when calculated as a hollow circle.

その内側に配置される第一の電極の大きさは外径(直径)が8.3mm、内径が5mmとすると、同じ条件では30.5pF、更に、第二と第三の電極は、外径(直径)で20mm、内径16.6mmとして、これを4分割されたとして、1個の電極と浮遊電極との容量は浮遊電極とのオーバラップを最大とすると、20.4pF、またオーバラップを50%とすると10.2pFとなる。 Assuming that the size of the first electrode disposed on the inner side is 8.3 mm in outer diameter (diameter) and 5 mm in inner diameter, 30.5 pF under the same conditions, and further, the second and third electrodes have outer diameters (diameter ) Is divided into four, and the capacity of one electrode and the floating electrode is 20.4 pF, and the overlap is 50%, when the overlap with the floating electrode is maximized. It will be 10.2 pF.

この値を用いると、数1に従って、共通電極Ecで構成させる容量との直列接続となるので、第一電極の計測容量は、22.5pFとなり、第二と第三の電極では平均9.03pF,および最大で16.5pFとなる。 When this value is used, the measurement capacitance of the first electrode is 22.5 pF because it is connected in series with the capacitance configured with the common electrode Ec according to Equation 1, and the average of 9.03 pF for the second and third electrodes is The maximum is 16.5 pF.

この容量を交流電圧で駆動する場合のインピーダンスは、10kHzの周波数では、第一電極の計測インピーダンスは、71kΩとなり、第二と第三の電極では平均96kΩおよび最大で176kΩとなる。 At a frequency of 10 kHz, the measured impedance of the first electrode is 71 kΩ, and the second and third electrodes have an average of 96 kΩ and a maximum of 176 kΩ at the frequency of 10 kHz.

これらから、負荷抵抗は1kΩから100kΩ程度が望ましく、また駆動周波数は10kHzから1MHz程度をセンサモジュールの大きさや、可動板の大きさ、浮遊電極との隙間間隔や材料の比誘電率の設定を考慮下上で、この範囲で決めることが望ましい。


From these, the load resistance is desirably about 1 kΩ to 100 kΩ, and the drive frequency is about 10 kHz to 1 MHz in consideration of the size of the sensor module, the size of the movable plate, the gap distance with the floating electrode, and the setting of the relative permittivity of the material. It is desirable to determine this range below.



1 センサモジュール
2 固定基板
3 可動板
4 弾性体
5 センサプローブ
6 誘電体層
Ec 共通電極
E1 第一電極
E2 第二電極
E3 第三電極
E4 第四電極
E5 第五電極
Ef 浮遊電極
Cfc 共通電極―浮遊電極間容量
Cf1 共通電極―第一電極間容量
Cf2 共通電極―第二電極間容量
Cf3 共通電極―第三電極間容量
Cf4 共通電極―第四電極間容量
Cf5 共通電極―第五電極間容量
7 弾性体で構成された誘電層
8 接着層
9 固定支持体
10 バネ
11 下部GND層
12 上部GND層
13 電極の分離パターン
14 中心位置決め部




1 sensor module 2 fixed substrate 3 movable plate 4 elastic body 5 sensor probe 6 dielectric layer
Ec common electrode
E1 first electrode
E2 second electrode
E3 third electrode
E4 fourth electrode
E5 fifth electrode
Ef floating electrode
Cfc common electrode-floating electrode capacitance
Cf1 Common electrode-first interelectrode capacitance
Cf2 Common electrode-second electrode capacitance
Cf3 Common electrode-third electrode capacitance
Cf4 Capacity between common electrode and fourth electrode
Cf5 Common electrode-fifth electrode capacitance 7 Dielectric layer 8 composed of elastic body 8 Adhesive layer 9 Fixing support 10 Spring 11 Lower GND layer 12 Upper GND layer 13 Electrode separation pattern 14 Central positioning portion



Claims (7)

三次元方向のうち2方向以上の力覚、或いは圧力による変位を検出するセンサプローブと、そのセンサプローブに力覚や圧力が無い場合に初期位置を確定するバネの役割を行う弾性体が固定支持体とセンサプローブの間に挿入され、このセンサプローブがその変位を伝達する浮遊電極を備えた可動板に接続され、この可動板と平行に配置された複数の固定電極を備えた固定基板を備え、この固定基板には共通電極と、少なくても三次元方向の変位のうちの2つ以上の方向の変位を検出する固定電極が配置され、浮遊電極を備えた可動板と固定電極を備えた固定基板の間に空気層、或いは誘電体層を備えていることを特徴とする、力覚、圧力、変位のセンサモジュール。     A sensor probe for detecting displacement due to force sense or pressure in two or more directions among three dimensions, and an elastic body serving as a spring for determining an initial position when there is no force sense or pressure in the sensor probe. It has a fixed substrate with a plurality of fixed electrodes which are inserted between the body and the sensor probe and which are connected to a movable plate provided with a floating electrode for transmitting its displacement, and which are arranged parallel to the movable plate The fixed substrate is provided with a common electrode, and a fixed electrode for detecting displacement in at least two directions of displacement in at least three-dimensional directions, and is provided with a movable plate provided with a floating electrode and a fixed electrode. A force / pressure / displacement sensor module comprising an air layer or a dielectric layer between fixed substrates. 固定基板に配置された固定電極と、可動板に形成された浮遊電極がセンサプローブの中心位置から径方向に配置された円板上であって、固定電極は共通電極と固定基板に垂直な方向の変位を検出する電極と、固定基板に平行な方向を検出する1対の電極の4個の電極、或いは固定基板に平行で相互に直角の2方向を検出する2対の電極の計6個の電極、を装備し、浮遊電極を備えた可動板と固定電極を備えた固定基板の間に空気層、或いは誘電体層を備えていることを特徴とする、力覚、圧力、変位のセンサモジュール。     The fixed electrode disposed on the fixed substrate and the floating electrode formed on the movable plate are on a disc radially disposed from the center position of the sensor probe, and the fixed electrode is in a direction perpendicular to the common electrode and the fixed substrate Total of six electrodes: one for detecting the displacement of the sensor, four electrodes for one pair of electrodes for detecting the direction parallel to the fixed substrate, or two pairs of electrodes for detecting two directions parallel to the fixed substrate and perpendicular to each other A sensor of force sense, pressure and displacement, characterized by comprising an air layer or a dielectric layer between a movable plate provided with a floating electrode and a fixed substrate provided with a fixed electrode; module. センサプローブのと、固定支持体とは固定支持体から可動板に対して径方向の変位の平衡状態の位置を決める弾性体が具備され、可動板の垂直方向のへの平衡状態の位置を決定する弾性体は可動板と固定基板の間に挿入された弾性的な誘電体によって代替され、可動板に足して垂直方向の変位のバランスを改善させた、請求項1、2の構成を持つ力覚、圧力、変位のセンサモジュール。    The sensor probe and the fixed support are provided with an elastic body for determining the position of the equilibrium of radial displacement from the fixed support to the movable plate, and the position of the equilibrium to the vertical direction of the movable plate is determined The force having the structure according to claim 1 or 2, wherein the elastic body is replaced by an elastic dielectric inserted between the movable plate and the fixed substrate to improve the balance of vertical displacement in addition to the movable plate. Sensor module for perception, pressure and displacement. センサプローブの中心点を決める固定支持体が、固定基板にナットや接着剤等を用いて位置決め、或いは固定され、センサプローブと固定支持体の間に弾性体が挿入されてセンサプローブへの変位や力覚が無いときに平衡状態が決定され、固定基板には共通電極と、可動板が固定基板と平行方向に移動した場合にその容量変化を検出する少なくても一対の固定電極を持ち、センサプローブは浮遊電極を備えた可動板と機械的に分離されることで、可動板の径方向のみの変位の検出を可能にした力覚、圧力、変位のセンサモジュール。   The fixed support that determines the center point of the sensor probe is positioned or fixed to the fixed substrate using a nut, an adhesive, or the like, an elastic body is inserted between the sensor probe and the fixed support, and the displacement to the sensor probe The equilibrium state is determined when there is no force sense, and the fixed substrate has a common electrode, and at least a pair of fixed electrodes that detect changes in capacitance when the movable plate moves in a direction parallel to the fixed substrate. The probe is a mechanical sensor for force, pressure, and displacement that enables detection of displacement only in the radial direction of the movable plate by mechanically separating it from the movable plate with the floating electrode. センサモジュールのセンサプローブを除き浮遊電極を供える可動板の上面と、複数の固定電極を備えた固定基板の下部に、外部からの雑音や電界、電磁波、他の金属や人体のアンテナ効果による不安定性を抑制するための接地電極をそなえ、この接地電極を回路システムの固定電位に接続した、請求項1から4の力覚、圧力、変位のセンサモジュール。 Instability due to external noise, electric field, electromagnetic waves, other metals or human body antenna effect on the upper surface of the movable plate which provides floating electrodes except for the sensor probe of the sensor module and the lower part of the fixed substrate provided with a plurality of fixed electrodes. 5. The sensor module of force sense, pressure and displacement according to claim 1, further comprising: a ground electrode for suppressing the pressure sensor, said ground electrode being connected to a fixed potential of the circuit system. 可動部に備えた浮遊電極と、固定基板に配置された共通電極には適切な周波数を持った交流電圧を発生する信号発生回路が接続され、複数の検出電極は個々の負荷抵抗に接続され、各検出電極には増幅機能を持った高い入力インピーダンスを持つ増幅回路に接続され、その出力は全波整流を行って平均二乗平方根の値に比例するrms変換回路に接続され、必要に応じて差動アンプ等を使って、三次元的な変位を検出することを特徴とした、請求項1から5の力覚、圧力、変位のセンサシステム。 A signal generation circuit that generates an AC voltage having an appropriate frequency is connected to the floating electrode provided on the movable portion and the common electrode disposed on the fixed substrate, and the plurality of detection electrodes are connected to the individual load resistors, Each detection electrode is connected to an amplifier circuit with high input impedance with amplification function, and its output is connected to an rms converter circuit that performs full-wave rectification and is proportional to the value of the mean square root, and the difference as necessary The force sense, pressure, and displacement sensor system according to any one of claims 1 to 5, wherein a three-dimensional displacement is detected using a motion amplifier or the like. センサプローブの直径が1mmから10mmの範囲であって、可動板、或いは浮遊電極の直径が5mmから50mmの範囲であって、可動板、或いは浮遊電極と固定電極の隙間間隔が1マイクロメータから1mmの範囲である請求項1から5の力覚、圧力、変位のセンサモジュール。

The diameter of the sensor probe is in the range of 1 mm to 10 mm, the diameter of the movable plate or floating electrode is in the range of 5 mm to 50 mm, and the gap between the movable plate or floating electrode and the fixed electrode is 1 micrometer to 1 mm The sensor module for force sense, pressure and displacement according to any one of claims 1 to 5, which is in the range of

JP2017184289A 2017-09-26 2017-09-26 Three-dimensional capacitive touch sensor Pending JP2019060667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017184289A JP2019060667A (en) 2017-09-26 2017-09-26 Three-dimensional capacitive touch sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017184289A JP2019060667A (en) 2017-09-26 2017-09-26 Three-dimensional capacitive touch sensor

Publications (1)

Publication Number Publication Date
JP2019060667A true JP2019060667A (en) 2019-04-18

Family

ID=66177286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017184289A Pending JP2019060667A (en) 2017-09-26 2017-09-26 Three-dimensional capacitive touch sensor

Country Status (1)

Country Link
JP (1) JP2019060667A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022527217A (en) * 2019-04-12 2022-05-31 ケーエルエー コーポレイション Inspection system with grounded sample proximity capacitance sensor
CN115473100A (en) * 2022-09-13 2022-12-13 深圳爱仕特科技有限公司 Control method of fixed jig
CN115776951A (en) * 2020-02-21 2023-03-10 日东股份有限公司 Tires and tire sensors
JP7643886B2 (en) 2021-02-22 2025-03-11 アズビル株式会社 Capacitive Sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022527217A (en) * 2019-04-12 2022-05-31 ケーエルエー コーポレイション Inspection system with grounded sample proximity capacitance sensor
JP7353385B2 (en) 2019-04-12 2023-09-29 ケーエルエー コーポレイション Inspection system with grounded sample proximity capacitive sensor
CN115776951A (en) * 2020-02-21 2023-03-10 日东股份有限公司 Tires and tire sensors
JP2023515140A (en) * 2020-02-21 2023-04-12 ニットウ,インク. Tires and tire sensors
JP7643886B2 (en) 2021-02-22 2025-03-11 アズビル株式会社 Capacitive Sensor
CN115473100A (en) * 2022-09-13 2022-12-13 深圳爱仕特科技有限公司 Control method of fixed jig

Similar Documents

Publication Publication Date Title
US9347838B2 (en) Capacitive shear force sensor and method for fabricating thereof
JP2019060667A (en) Three-dimensional capacitive touch sensor
KR100421304B1 (en) Capacitive strain sensor and method for using the same
CN204495495U (en) A kind of three-dimensional force capacitance type touch sensor unit
CN102128953B (en) Capacitive micro-accelerometer with symmetrical tilted folded beam structure
JP5284911B2 (en) Capacitance type physical quantity sensor and angular velocity sensor
RU2469336C2 (en) Capacitive sensor having periodic and absolute electrode unit
KR100353133B1 (en) Electrostatic capacitance sensor, electrostatic capacitance sensor component, object mounting body and object mounting apparatus
CN101881785A (en) Four-fold beam variable-area differential capacitance structure micro-acceleration sensor and preparation method
CN102620864B (en) Capactive micro-machined ultrasonic transducer (CMUT)-based super-low range pressure sensor and preparation method thereof
JP2841240B2 (en) Force / acceleration / magnetism detection device
CN110462359A (en) For measuring the device of pressure
JP2011185858A (en) Tactile sensor
CN102901520B (en) Method for improving temperature stability of capacitor type micromechanical sensor and micromechanical sensor
JP5845447B2 (en) Acceleration sensor
CN116659711B (en) MEMS pressure sensors and electronic equipment
US6633172B1 (en) Capacitive measuring sensor and method for operating same
Kisic et al. Performance analysis of a flexible polyimide based device for displacement sensing
CN207280646U (en) A kind of differential capacitance sensor suitable for moment inspecting
CN115575661A (en) Two-dimensional capacitive differential MEMS wind speed and direction sensor
JP2014115099A (en) Pressure sensor
Ferrari et al. Printed thick-film capacitive sensors
RU2661456C1 (en) Method and device of tensoelectric transformation
CN113242965B (en) Pressure sensor and electronic terminal
US10775247B1 (en) Capacitive shift-force sensor