[go: up one dir, main page]

JP2019051236A - Electrode sheet, manufacturing method for electrode sheet, biological signal acquisition device, and biological signal acquisition method - Google Patents

Electrode sheet, manufacturing method for electrode sheet, biological signal acquisition device, and biological signal acquisition method Download PDF

Info

Publication number
JP2019051236A
JP2019051236A JP2017179041A JP2017179041A JP2019051236A JP 2019051236 A JP2019051236 A JP 2019051236A JP 2017179041 A JP2017179041 A JP 2017179041A JP 2017179041 A JP2017179041 A JP 2017179041A JP 2019051236 A JP2019051236 A JP 2019051236A
Authority
JP
Japan
Prior art keywords
stretchable
electrode sheet
electrode
adhesive portion
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017179041A
Other languages
Japanese (ja)
Inventor
徹平 荒木
Teppei Araki
徹平 荒木
毅 関谷
Tsuyoshi Sekitani
毅 関谷
秀輔 吉本
Shusuke Yoshimoto
秀輔 吉本
隆文 植村
Takafumi Uemura
隆文 植村
岩瀬 雅之
Masayuki Iwase
雅之 岩瀬
暁生 吉田
Akio Yoshida
暁生 吉田
秀樹 佐竹
Hideki Satake
秀樹 佐竹
田中 秀典
Hidenori Tanaka
秀典 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mektron KK
Kaneka Corp
Osaka University NUC
Original Assignee
Nippon Mektron KK
Kaneka Corp
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mektron KK, Kaneka Corp, Osaka University NUC filed Critical Nippon Mektron KK
Priority to JP2017179041A priority Critical patent/JP2019051236A/en
Priority to PCT/JP2018/027324 priority patent/WO2019058739A1/en
Publication of JP2019051236A publication Critical patent/JP2019051236A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

【課題】製造後又は流通時の長期保管時や使用時の特性変化が少なく、簡易に生体信号を取得できる電極シート、当該電極シートの製造方法、前述の電極シートを備える生体信号取得装置、及び当該生体信号取得装置を用いる生体信号取得方法を提供すること。【解決手段】電極シート1は、シート状の伸縮性基材と、二本以上の伸縮性引出配線11と、二つ以上の伸縮性電極と、粘着部15とを備え、伸縮性基材の少なくとも一方の主面上に二つ以上の伸縮性電極が位置し、粘着部15が、二つ以上の伸縮性電極のそれぞれについて、伸縮性電極の伸縮性基材側の面と反対の面の少なくとも一部を接触して被覆し、二つ以上の伸縮性電極のそれぞれに、二本以上の伸縮性引出配線11のうちの一本以上が接続され、粘着部15が、伸縮性及び導電性を有する非ゲル材料からなる。【選択図】図1PROBLEM TO BE SOLVED: To provide an electrode sheet which can easily acquire a biological signal with little change in characteristics during long-term storage or use after production or distribution, a method for manufacturing the electrode sheet, a biological signal acquisition device provided with the above-mentioned electrode sheet, and To provide a biological signal acquisition method using the biological signal acquisition device. SOLUTION: An electrode sheet 1 includes a sheet-shaped elastic base material, two or more elastic drawer wirings 11, two or more elastic electrodes, and an adhesive portion 15, and is made of an elastic base material. Two or more elastic electrodes are located on at least one main surface, and the adhesive portion 15 is located on a surface opposite to the surface of the elastic electrode on the elastic substrate side for each of the two or more elastic electrodes. At least a part is contacted and covered, and one or more of two or more elastic lead wiring 11s are connected to each of the two or more elastic electrodes, and the adhesive portion 15 is elastic and conductive. Consists of a non-gel material having. [Selection diagram] Fig. 1

Description

本発明は、電極シート、電極シートの製造方法、生体信号取得装置、及び生体信号取得方法に関する。   The present invention relates to an electrode sheet, a method for manufacturing the electrode sheet, a biological signal acquisition device, and a biological signal acquisition method.

近年、社会全体におけるヘルスケア指向の高まりや、増大する医療費の削減、また、IOT(Internet of Things)社会へのビッグデータ活用を背景として、様々な環境下で、脳波等に代表される微弱な生体信号を取得しようとするニーズが社会的に高まっている。   In recent years, the weakness represented by brain waves, etc. in various environments against the backdrop of rising health care orientation in society as a whole, reduction of increasing medical costs, and the use of big data for IOT (Internet of Things) society There is a growing social need for acquiring vital biosignals.

生体信号として、例えば脳波を取得する場合、電極及び計測器が一体となった簡易型脳波計が知られている。この簡易型脳波計では、硬い電極を用いて長時間計測を行うことで脳波を取得する。そのため、患者への負担を無視することができなかった。
そこで、額に貼付可能で伸縮性をもつ樹脂シートを用いることで、患者への負担の軽減を図った脳波計が提案されている(例えば、特許文献1参照)。
For example, when acquiring an electroencephalogram as a biological signal, a simple electroencephalograph in which an electrode and a measuring instrument are integrated is known. In this simple electroencephalograph, an electroencephalogram is acquired by performing a long-time measurement using a hard electrode. Therefore, the burden on the patient could not be ignored.
Then, the electroencephalograph which aimed at the reduction of the burden on a patient is proposed by using the resin sheet which can be stuck on a forehead and has elasticity (for example, refer patent document 1).

特開2013−121489号公報JP 2013-121489 A

特許文献1に開示された脳波計によれば、樹脂シートに設けられる3つの電極を被検者の前額部に貼り付けることで、長時間計測における患者や被検者の負担を緩和することができる。また、各電極を粘着性導電ゲルで構成することで、被検者の前額部に貼り付けるだけで容易に脳波を取得することができる。   According to the electroencephalograph disclosed in Patent Document 1, it is possible to alleviate the burden on the patient and the subject in long-time measurement by pasting the three electrodes provided on the resin sheet on the forehead portion of the subject. Can do. Further, by configuring each electrode with an adhesive conductive gel, it is possible to easily acquire an electroencephalogram simply by pasting it on the forehead portion of the subject.

しかしながら、ゲルは、ゲル状態において、水分や有機溶剤を保持している。そのため、長期間放置された樹脂シートでは、粘着性導電ゲルの水分や有機溶剤が蒸発し、粘着性導電ゲルとしての機能が低下する。その結果、生体信号の検出精度に影響が生じるほどの特性変化が引き起こされてしまう可能性がある。   However, the gel retains moisture and an organic solvent in the gel state. Therefore, in the resin sheet left for a long time, the moisture and organic solvent of the adhesive conductive gel evaporate, and the function as the adhesive conductive gel is lowered. As a result, there is a possibility that a characteristic change that may affect the detection accuracy of the biological signal is caused.

また、各電極を金属電極として、医療用ハイドロゲルペーストを各電極に塗布することも考えられる。しかしながら、医療用ハイドロゲルペーストは粘度が低く、各電極に適切に塗布するには手間がかかる。また、使用後の医療用ハイドロゲルペーストが肌に残ることがある。   It is also conceivable to apply a medical hydrogel paste to each electrode using each electrode as a metal electrode. However, the hydrogel paste for medical use has a low viscosity, and it takes time to apply it appropriately to each electrode. Moreover, the medical hydrogel paste after use may remain on the skin.

本発明は、製造後又は流通時の長期保管時や使用時の特性変化が少なく、簡易に生体信号を取得できる電極シート、当該電極シートの製造方法、前述の電極シートを備える生体信号取得装置、及び当該生体信号取得装置を用いる生体信号取得方法を提供することを目的とする。   The present invention provides an electrode sheet that can easily acquire a biological signal after long-term storage during use or at the time of manufacture or at the time of use and can easily acquire a biological signal, a method for manufacturing the electrode sheet, a biological signal acquisition device including the electrode sheet, And it aims at providing the biosignal acquisition method using the said biosignal acquisition apparatus.

(1)本発明は、シート状の伸縮性基材と、二本以上の伸縮性引出配線と、二つ以上の伸縮性電極と、粘着部とを備え、前記伸縮性基材の少なくとも一方の主面上に二つ以上の前記伸縮性電極が位置し、前記粘着部が、二つ以上の前記伸縮性電極のそれぞれについて、前記伸縮性電極の前記伸縮性基材側の面と反対の面の少なくとも一部を接触して被覆し、二つ以上の前記伸縮性電極のそれぞれに、二本以上の伸縮性引出配線のうちの一本以上が接続され、前記粘着部が、伸縮性及び導電性を有する非ゲル材料からなる電極シートに関する。   (1) The present invention includes a sheet-like stretchable base material, two or more stretchable lead wires, two or more stretchable electrodes, and an adhesive portion, and at least one of the stretchable base materials Two or more stretchable electrodes are located on the main surface, and the adhesive portion is a surface opposite to the stretchable substrate side surface of the stretchable electrode for each of the two or more stretchable electrodes. One or more of two or more stretchable lead wires are connected to each of the two or more stretchable electrodes, and the adhesive portion is stretchable and conductive. The present invention relates to an electrode sheet made of a non-gel material having properties.

(2)また、前記非ゲル材料が、粘着性樹脂と導電材料とを含むことが好ましい。   (2) Moreover, it is preferable that the said non-gel material contains adhesive resin and a conductive material.

(3)また、前記導電材料が、導電性ポリマー、及び/又は導電性微粒子を含むことが好ましい。   (3) Moreover, it is preferable that the said electrically-conductive material contains a conductive polymer and / or conductive fine particle.

(4)また、前記導電材料が、前記導電性微粒子を含むことが好ましい。   (4) Moreover, it is preferable that the said electrically-conductive material contains the said electroconductive fine particles.

(5)また、前記粘着部の面内方向の体積抵抗率に対する、前記粘着部の厚さ方向の体積抵抗率の相対値が0.5以下であることが好ましい。   (5) Moreover, it is preferable that the relative value of the volume resistivity of the thickness direction of the said adhesion part with respect to the volume resistivity of the in-plane direction of the said adhesion part is 0.5 or less.

(6)また、前記粘着部が、さらに前記伸縮性基材の主面の少なくとも一部を被覆することが好ましい。   (6) Moreover, it is preferable that the said adhesion part coat | covers at least one part of the main surface of the said elastic base material further.

(7)また、電極シートは、絶縁材料からなり、前記伸縮性引出配線を被覆する伸縮性カバーをさらに備えることが好ましい。   (7) Moreover, it is preferable that an electrode sheet is further provided with the elastic cover which consists of an insulating material and coat | covers the said elastic | stretch extraction wiring.

(8)また、前記粘着部は、少なくとも前記伸縮性カバーの主面の少なくとも一部を被覆することが好ましい。   (8) Moreover, it is preferable that the said adhesion part coat | covers at least one part of the main surface of the said elastic cover at least.

(9)また、前記粘着部は、前記伸縮性電極を被覆する部分のそれぞれと、他を被覆する部分との間が離間することが好ましい。   (9) Moreover, it is preferable that the said adhesion part separates between each of the part which coat | covers the said elastic electrode, and the part which coat | covers others.

(10)また、前記粘着部は、前記伸縮性電極を被覆する部分と、他を被覆する部分とが一面状であることが好ましい。   (10) Moreover, as for the said adhesion part, it is preferable that the part which coat | covers the said elastic electrode and the part which coat | covers others are one surface shape.

(11)また、本発明は、上記(1)に記載の電極シートを製造する方法であって、前記伸縮性電極の、前記伸縮性基材の少なくとも一方の主面上への配置と、前記伸縮性引出配線の、前記伸縮性電極のそれぞれへの接続と、前記粘着部の形成と、を備える電極シートの製造方法に関する。   (11) Moreover, this invention is a method of manufacturing the electrode sheet according to (1) above, wherein the stretchable electrode is disposed on at least one main surface of the stretchable substrate, and The present invention relates to a method for manufacturing an electrode sheet comprising: connection of stretchable lead wires to each of the stretchable electrodes; and formation of the adhesive portion.

(12)また、前記粘着部を、印刷法、コート法、又は前記非ゲル材料からなる粘着層の転写により形成することが好ましい。   (12) Moreover, it is preferable to form the said adhesion part by the transfer of the printing method, the coating method, or the adhesion layer which consists of the said non-gel material.

(13)また、本発明は、上記(1)乃至(11)のいずれかに記載の前記電極シートを備える、生体信号取得装置に関する。   (13) Moreover, this invention relates to a biosignal acquisition apparatus provided with the said electrode sheet in any one of said (1) thru | or (11).

(14)また、生体信号取得装置は、前記電極シートから送信される生体信号のデータをインターネット又はローカルネットワークを介して取得して、生体の状態を解析する解析装置をさらに備えることが好ましい。   (14) Moreover, it is preferable that the biological signal acquisition device further includes an analysis device that acquires biological signal data transmitted from the electrode sheet via the Internet or a local network and analyzes a biological state.

(15)また、本発明は、上記(13)又は(14)に記載の前記生体信号取得装置を用いる、生体信号取得方法に関する。   (15) Moreover, this invention relates to the biosignal acquisition method using the said biosignal acquisition apparatus as described in said (13) or (14).

本発明によれば、製造後又は流通時の長期保管時や使用時の特性変化が少なく、簡易に生体信号を取得できる電極シート、当該電極シートの製造方法、前述の電極シートを備える生体信号取得装置、及び当該生体信号取得装置を用いる生体信号取得方法を提供することができる。   According to the present invention, there is little change in characteristics during long-term storage or use after production or distribution, and an electrode sheet that can easily obtain a biosignal, a method for producing the electrode sheet, and a biosignal acquisition provided with the electrode sheet described above. An apparatus and a biological signal acquisition method using the biological signal acquisition apparatus can be provided.

本発明の第1実施形態に係る電極シートを示す平面図である。It is a top view which shows the electrode sheet which concerns on 1st Embodiment of this invention. 図1のA−A線断面図である。It is the sectional view on the AA line of FIG. 第1実施形態の電極シートの粘着部を除去した平面図である。It is the top view which removed the adhesion part of the electrode sheet of 1st Embodiment. 第1実施形態の電極シートの使用例を示す平面図である。It is a top view which shows the usage example of the electrode sheet of 1st Embodiment. 本発明の第2実施形態に係る電極シートを示す平面図である。It is a top view which shows the electrode sheet which concerns on 2nd Embodiment of this invention. 図5のB−B線断面図である。FIG. 6 is a sectional view taken along line B-B in FIG. 5. 本発明の第3実施形態に係る電極シートを示す平面図である。It is a top view which shows the electrode sheet which concerns on 3rd Embodiment of this invention. 図7のC−C線断面図である。It is CC sectional view taken on the line of FIG. 伸縮性基材における、矩形部、突片部、紐状部の配置を示す平面図である。It is a top view which shows arrangement | positioning of a rectangular part, a protrusion piece part, and a string-like part in an elastic base material.

以下、本発明の各実施形態に係る電極シート、電極シートの製造方法、生体信号取得装置、及び生体信号取得方法について、図面を参照して説明する。
本発明の各実施形態に係る生体信号取得装置は、生体から生体信号を取得して、生体の状態を検査する装置である。生体信号取得装置は、電極シートと、解析装置と、を備える。
Hereinafter, an electrode sheet, an electrode sheet manufacturing method, a biological signal acquisition device, and a biological signal acquisition method according to each embodiment of the present invention will be described with reference to the drawings.
The biological signal acquisition apparatus according to each embodiment of the present invention is an apparatus that acquires a biological signal from a living body and inspects the state of the living body. The biological signal acquisition device includes an electrode sheet and an analysis device.

電極シートは、全体として伸縮性を有するため、測定対象物の表面形状に追従し、測定対象物の表面に良好に密着する。測定対象物は特に限定されず、有機物であっても無機物であってもよく、また、生体であっても非生体であってもよい。電極シートは、好ましくは、生体信号の取得に用いられる。また、電極シートは、特に好ましくは、人体の額に取り付けられて、脳波の取得に用いられる。この場合、電極シートは、額の曲面形状に追従して湾曲し、額に対して良好に密着して貼り付く、その結果、電極シートにより、脳波が効果的に取得される。   Since the electrode sheet as a whole has elasticity, it follows the surface shape of the measurement object and adheres well to the surface of the measurement object. The measurement object is not particularly limited, and may be an organic material or an inorganic material, and may be a living body or a non-living body. The electrode sheet is preferably used for acquiring a biological signal. The electrode sheet is particularly preferably attached to the forehead of the human body and used for acquiring brain waves. In this case, the electrode sheet bends following the curved shape of the forehead and adheres well to the forehead, and as a result, an electroencephalogram is effectively acquired by the electrode sheet.

解析装置は、無線又は有線で電極シートに接続される。解析装置は、例えば、クラウドサーバやローカルサーバ等であり、電極シートから送信される脳波等の生体信号のデータをインターネットやローカルネットワーク(端末間通信を含む)を介して取得して、生体の状態を解析する。解析装置は、過去に送信された複数の生体信号のデータを蓄積し、新たに取得した生体信号のデータについて、蓄積した複数の生体信号のデータに基づいて生体の状態を推測するAI(Artificial Intelligence)機能を有してもよい。   The analysis device is connected to the electrode sheet wirelessly or by wire. The analysis device is, for example, a cloud server or a local server, and acquires biological signal data such as an electroencephalogram transmitted from the electrode sheet via the Internet or a local network (including inter-terminal communication) to obtain a biological state. Is analyzed. The analysis apparatus accumulates data of a plurality of biological signals transmitted in the past, and AI (Artificial Intelligence) that estimates the state of the living body based on the data of the plurality of accumulated biological signals for newly acquired biological signal data ) May have a function.

[第1実施形態]
第1実施形態に係る電極シート1、電極シート1の製造方法、生体信号取得装置、及び生体信号取得方法について、図1〜図4を参照して説明する。
本実施形態に係る電極シート1は、図1〜図3に示すように、伸縮性基材10と、伸縮性引出配線11と、伸縮性電極12と、伸縮性カバー13と、フィルム基材14と、粘着部15と、を備える。
[First Embodiment]
The electrode sheet 1, the manufacturing method of the electrode sheet 1, the biological signal acquisition device, and the biological signal acquisition method according to the first embodiment will be described with reference to FIGS.
As shown in FIGS. 1 to 3, the electrode sheet 1 according to the present embodiment includes a stretchable base material 10, a stretchable lead wire 11, a stretchable electrode 12, a stretchable cover 13, and a film base material 14. And an adhesive portion 15.

伸縮性基材10は、例えば、ウレタン系エストラマーに代表されるエストラマー材料や、伸縮性を有する布帛によってシート状に形成される。エラストマー材料としては特に限定されず、ポリエステルエラストマー、スチレン系エラストマー、ポリオレフィン系エラストマー、ポリアミド系エラストマー、ウレタン系エラストマー等の種々の材料を採用することができる。このような伸縮性基材10は、外力によって面内方向に伸長する伸縮性を有する。伸縮性基材10は、矩形部101を必須に備え、突片部102と、紐状部103とを任意に備える。
矩形部101は、平面視矩形形状に形成される。
矩形部101、突片部102、及び紐状部103は、伸縮性基材10において、好ましくは図9に示されるように配置される。
The stretchable base material 10 is formed into a sheet shape from, for example, an elastomer material typified by a urethane elastomer or a stretchable fabric. It does not specifically limit as an elastomer material, Various materials, such as a polyester elastomer, a styrene-type elastomer, a polyolefin-type elastomer, a polyamide-type elastomer, a urethane-type elastomer, are employable. Such a stretchable base material 10 has stretchability that extends in an in-plane direction by an external force. The stretchable base material 10 includes a rectangular portion 101 as an essential component, and optionally includes a protruding piece portion 102 and a string-like portion 103.
The rectangular portion 101 is formed in a rectangular shape in plan view.
The rectangular portion 101, the projecting piece portion 102, and the string-like portion 103 are preferably arranged in the stretchable base material 10 as shown in FIG.

突片部102は、矩形部101と一体的に形成される。突片部102は、矩形部101の一辺から面外方向に突出する。突片部102は、無線により解析装置2に生体信号を送信する無線機器(図示せず)に接続可能になっている。   The protruding piece 102 is formed integrally with the rectangular portion 101. The protruding piece portion 102 protrudes from one side of the rectangular portion 101 in the out-of-plane direction. The projecting piece 102 can be connected to a wireless device (not shown) that transmits a biological signal to the analysis device 2 wirelessly.

紐状部103は、矩形部101と一体的に形成される。紐状部103の一端は、矩形部101の辺のうち、突片部102に接続される辺に隣接する辺に接続される。   The string portion 103 is formed integrally with the rectangular portion 101. One end of the string portion 103 is connected to a side adjacent to the side connected to the protruding piece portion 102 among the sides of the rectangular portion 101.

伸縮性引出配線の材料は、所望する伸縮性と導電性とを兼ね備える材料であれば特に限定されない。典型的には、伸縮性引出配線11は、樹脂材料(樹脂バインダ)に導電性粒子が分散して配合された導電材料で形成される。樹脂材料としては、伸縮性の点から、伸縮性基材10の材料として使用されるエラストマー材料が好ましい。伸縮性引出配線11は、伸縮性基材10の少なくとも一方の主面上に重ねて配置される。伸縮性引出配線11は、伸縮性基材10の上を横切るように直線状に形成される。具体的には、伸縮性引出配線11は、突片部102から矩形部101にかけて、主面内を横切るように形成される。本実施形態において、伸縮性引出配線11は、8つ設けられ、1つが紐状部103まで延伸される。また、伸縮性引出配線11は、その導電材料自体が極めて低いヤング率(例えば、100MPa以下、より好ましくは10MPa以下)を有しており、伸縮性基材10の面内方向への伸縮運動に追従する挙動を発現する。伸縮性引出配線11は、例えば、印刷法により形成され得る。   The material of the stretchable lead-out wiring is not particularly limited as long as the material has both desired stretchability and conductivity. Typically, the stretchable lead wire 11 is formed of a conductive material in which conductive particles are dispersed and blended in a resin material (resin binder). As the resin material, an elastomer material used as the material of the stretchable substrate 10 is preferable from the viewpoint of stretchability. The stretchable lead wire 11 is disposed so as to overlap on at least one main surface of the stretchable base material 10. The stretchable lead wire 11 is formed in a straight line so as to cross over the stretchable substrate 10. Specifically, the stretchable lead wire 11 is formed so as to cross the main surface from the protruding piece portion 102 to the rectangular portion 101. In the present embodiment, eight elastic lead wires 11 are provided, and one extends to the string portion 103. Further, the stretchable lead wire 11 has a very low Young's modulus (for example, 100 MPa or less, more preferably 10 MPa or less), and the conductive material itself is capable of stretching in the in-plane direction of the stretchable substrate 10. The following behavior is expressed. The stretchable lead wire 11 can be formed by, for example, a printing method.

伸縮性電極12は、例えば、熱可塑性樹脂(樹脂バインダ)に導電性粒子が分散された導電材料によって形成される。樹脂バインダとしては、伸縮性の点から、伸縮性基材10の材料として使用されるエラストマー材料が好ましい。伸縮性電極12の形状は特に限定されない。好ましくは、伸縮性電極12は、伸縮性基材10の上に平面視円形又は略円形に形成される。1つの伸縮性電極12を平面視した場合の面積は特に限定されないが、典型的には、0.1mm2以上100000mm2以下が好ましく、1mm2以上10000mm2以下がより好ましく、10mm2以上1000mm2以下が特に好ましい。 また、伸縮性電極12は、伸縮性基材10の少なくとも一方の主面の上に2つ以上位置される。本実施形態において、伸縮性電極12は、伸縮性引出配線11を挟んで矩形部101の同一平面上(一主面上)の一方側の端部に4つ位置され、他方側の端部に3つ位置される。また、伸縮性電極12は、伸縮性引出配線11の延伸方向に沿って、互いに重ならないように位置される。さらに、伸縮性電極12は、紐状部103の他端部に1つ位置される。伸縮性電極12のそれぞれには、2本以上の伸縮性引出配線11のうちの一本以上が接続される。本実施形態では、伸縮性電極12のそれぞれには、1つの伸縮性引出配線11が接続される。伸縮性電極12は、伸縮性引出配線11と同様に低いヤング率(例えば、100MPa以下、より好ましくは10MPa以下)を有し、伸縮性基材10の動きに対して高い追従性を示す。伸縮性電極12は、例えば、伸縮性引出配線11の形成とともに、印刷法により形成され得る。   The stretchable electrode 12 is formed of, for example, a conductive material in which conductive particles are dispersed in a thermoplastic resin (resin binder). As the resin binder, an elastomer material used as the material of the stretchable base material 10 is preferable from the viewpoint of stretchability. The shape of the stretchable electrode 12 is not particularly limited. Preferably, the stretchable electrode 12 is formed on the stretchable substrate 10 in a circular shape or a substantially circular shape in plan view. The area of one stretchable electrode 12 in plan view is not particularly limited, but is typically 0.1 mm 2 or more and 100000 mm 2 or less, more preferably 1 mm 2 or more and 10000 mm 2 or less, and particularly preferably 10 mm 2 or more and 1000 mm 2 or less. Two or more stretchable electrodes 12 are positioned on at least one main surface of the stretchable substrate 10. In the present embodiment, four stretchable electrodes 12 are positioned at one end of the rectangular portion 101 on the same plane (on one main surface) with the stretchable lead wire 11 interposed therebetween, and at the other end. Three are located. The stretchable electrodes 12 are positioned so as not to overlap each other along the extending direction of the stretchable lead wires 11. Further, one elastic electrode 12 is positioned at the other end of the string-like portion 103. One or more of the two or more stretchable lead wires 11 are connected to each of the stretchable electrodes 12. In the present embodiment, one stretchable lead wire 11 is connected to each stretchable electrode 12. The stretchable electrode 12 has a low Young's modulus (for example, 100 MPa or less, more preferably 10 MPa or less) similarly to the stretchable lead wire 11, and exhibits high followability to the movement of the stretchable substrate 10. The stretchable electrode 12 can be formed by, for example, a printing method together with the formation of the stretchable lead wire 11.

伸縮性カバー13は、例えば、エストラマー材料や、伸縮性を有する布帛によって形成される。エラストマー材料としては特に限定されず、ポリエステルエラストマー、スチレン系エラストマー、ポリオレフィン系エラストマー、ポリアミド系エラストマー、ウレタン系エラストマー等の種々の材料を採用することができる。印刷法により粘着部15を形成する際に、粘着部15形成用の組成物の伸縮性カバー13への染み込み等が生じにくいことから、伸縮性カバー13としてはエラストマー材料からなるシートが好ましい。   The stretchable cover 13 is made of, for example, an elastomer material or a stretchable fabric. It does not specifically limit as an elastomer material, Various materials, such as a polyester elastomer, a styrene-type elastomer, a polyolefin-type elastomer, a polyamide-type elastomer, a urethane-type elastomer, are employable. When the adhesive portion 15 is formed by the printing method, since the penetration of the composition for forming the adhesive portion 15 into the stretchable cover 13 is difficult to occur, a sheet made of an elastomer material is preferable as the stretchable cover 13.

伸縮性カバーの膜厚は特に限定されない。伸縮性カバー13の膜厚は、電極シート1の良好な取り扱い性と、電極シート1低い製造コストの両立との観点から、0.001mm以上10mm以下が好ましく、0.005mm以上1mm以下がより好ましく、0.01mm以上0.1mm以下がより好ましい。   The film thickness of the elastic cover is not particularly limited. The film thickness of the stretchable cover 13 is preferably 0.001 mm or more and 10 mm or less, and more preferably 0.005 mm or more and 1 mm or less, from the viewpoint of good handleability of the electrode sheet 1 and compatibility between the electrode sheet 1 and low manufacturing costs. More preferably, it is 0.01 mm or more and 0.1 mm or less.

伸縮性カバー13は、伸縮性引出配線11に重ね合わされる。本実施形態において、伸縮性カバー13は、伸縮性引出配線11の形成位置を超えて、伸縮性基材10の一主面上に重なるように形成される。具体的には、伸縮性カバー13は、矩形部101及び紐状部103の一主面に重なるように形成される。また、伸縮性カバー13は、後述するフィルム基材14の一部に重なるように配置される。伸縮性カバー13は、伸縮性電極12に重なる位置に、伸縮性電極12の径よりも径の小さい凹部131を有する。これにより、凹部131においては、伸縮性電極12の一主面が底面として露出する。   The stretchable cover 13 is superimposed on the stretchable lead wire 11. In the present embodiment, the stretchable cover 13 is formed so as to overlap the one main surface of the stretchable base material 10 beyond the position where the stretchable lead wiring 11 is formed. Specifically, the stretchable cover 13 is formed so as to overlap one main surface of the rectangular portion 101 and the string-like portion 103. Moreover, the elastic cover 13 is arrange | positioned so that it may overlap with a part of film base material 14 mentioned later. The stretchable cover 13 has a recess 131 having a diameter smaller than the diameter of the stretchable electrode 12 at a position overlapping the stretchable electrode 12. Thereby, in the recessed part 131, one main surface of the elastic electrode 12 is exposed as a bottom face.

フィルム基材14は、伸縮性カバー13とは異なる絶縁材料で形成される。フィルム基材14は、突片部102の主面の形状に合わせて形成され、伸縮性引出配線11と突片部102の一主面に重ね合わせられる。フィルム基材14は、好ましくは伸縮性基材10よりも面内剛性が高い材料で形成される。これにより、フィルム基材14は、伸縮性引出配線11が断線することを抑制する。また、フィルム基材14が適度なコシを備えるので、解析装置2と電極シート1とを接続する際のハンドリング性を向上することが可能である。   The film base 14 is formed of an insulating material different from the stretchable cover 13. The film base material 14 is formed in accordance with the shape of the main surface of the projecting piece portion 102, and is superposed on one main surface of the stretchable lead wire 11 and the projecting piece portion 102. The film substrate 14 is preferably formed of a material having higher in-plane rigidity than the stretchable substrate 10. Thereby, the film base material 14 suppresses that the elastic | stretch leader line 11 is disconnected. Moreover, since the film base material 14 is provided with an appropriate stiffness, it is possible to improve the handleability when connecting the analysis device 2 and the electrode sheet 1.

粘着部15は、伸縮性及び導電性を有する非ゲル材料で形成される。粘着部15は、例えば、粘着性と導電性とを兼ね備える樹脂を含む非ゲル材料や、粘着性樹脂及び導電材料を含む非ゲル材料で形成される。ここで導電材料は、そのもの自体が導電性を有する材料には限定されず、非ゲル材料に配合されることで非ゲル材料に導電性を付与し得る材料であってもよい。
粘着部15を構成する非ゲル材料は、導電材料として導電性ポリマー、及び/又は導電性微粒子を含む。粘着部15は、図3に示すように、2つ以上の伸縮性電極12のそれぞれについて、伸縮性電極12の伸縮性基材10側の面とは反対の面の少なくとも一部を接触して被覆するのが好ましい。本実施形態において、粘着部15は、図2に示すように、矩形部101の上に位置する7つの伸縮性電極12のそれぞれに重ねて位置されることで、露出する伸縮性電極12を被覆する。即ち、粘着部15は、7つの凹部131のそれぞれの内部に充填されることで、凹部131を閉塞して、伸縮性電極12を被覆する。なお、凹部131は、伸縮性カバー13の端面である内側面と、伸縮性電極12の表面である底面とによって規定される。粘着部15は、伸縮性基材10の厚さ方向D2である高さ方向において、伸縮性カバー13の一主面に対して突出する。また、本実施形態において、粘着部15は、凹部131の外周に沿って伸縮性カバー13の主面の一部を被覆する。
The adhesion part 15 is formed with the non-gel material which has a stretching property and electroconductivity. The adhesive portion 15 is formed of, for example, a non-gel material including a resin having both adhesiveness and conductivity, or a non-gel material including an adhesive resin and a conductive material. Here, the conductive material itself is not limited to a material having conductivity, and may be a material that can impart conductivity to the non-gel material by being blended with the non-gel material.
The non-gel material constituting the adhesive portion 15 includes a conductive polymer and / or conductive fine particles as a conductive material. As shown in FIG. 3, the adhesive portion 15 contacts at least a part of the surface of the stretchable electrode 12 opposite to the stretchable substrate 10 side of each of the two or more stretchable electrodes 12. It is preferable to coat. In this embodiment, as shown in FIG. 2, the adhesive portion 15 covers the exposed elastic electrode 12 by being positioned on each of the seven elastic electrodes 12 positioned on the rectangular portion 101. To do. That is, the adhesive portion 15 fills the inside of each of the seven recesses 131 to close the recess 131 and cover the stretchable electrode 12. The recess 131 is defined by an inner surface that is an end surface of the stretchable cover 13 and a bottom surface that is the surface of the stretchable electrode 12. The adhesive portion 15 protrudes from one main surface of the stretchable cover 13 in the height direction that is the thickness direction D2 of the stretchable base material 10. In the present embodiment, the adhesive portion 15 covers a part of the main surface of the stretchable cover 13 along the outer periphery of the recess 131.

以上の電極シート1は、以下のように用いられる。ここでは測定対象物が生体Lであり、生体Lの額Fから、生体信号として脳波を取得する場合について説明する。
まず、伸縮性基材10の矩形部101の一主面側は、生体Lの額Fに対向される。次いで、電極シート1は、粘着部15が、生体Lの額Fのうち、脳波を取得する位置に位置するように位置合わせされる。電極シート1は、前述の通り位置合わせされた状態で額Fに近づけられる。全ての粘着部15が額Fに接触することで、電極シート1は、額Fに貼り付けられる。伸縮性基材10、伸縮性引出配線11、及び伸縮性電極12が、額Fの湾曲に合せて伸縮することで、電極シート1は、図4に示すように、額Fに密着する。
The above electrode sheet 1 is used as follows. Here, a case where the measurement object is the living body L and a brain wave is acquired as a biological signal from the forehead F of the living body L will be described.
First, one main surface side of the rectangular portion 101 of the stretchable base material 10 is opposed to the forehead F of the living body L. Next, the electrode sheet 1 is aligned so that the adhesive portion 15 is located at the position where the brain waves are acquired in the forehead F of the living body L. The electrode sheet 1 is brought close to the forehead F while being aligned as described above. The electrode sheet 1 is affixed to the forehead F when all the adhesive portions 15 come into contact with the forehead F. The stretchable base material 10, the stretchable lead wire 11, and the stretchable electrode 12 expand and contract in accordance with the curvature of the forehead F, whereby the electrode sheet 1 is in close contact with the forehead F as shown in FIG.

紐状部103の上に配置される伸縮性電極12は、生体Lの耳朶Eに取り付けられる。これにより、紐状部103の上に配置される伸縮性電極12は、生体Lの基準電位を取得する。矩形部101の上に位置する7つの伸縮性電極12のそれぞれは、粘着部15を介して脳波を取得する。伸縮性引出配線11は、取得された脳波を解析装置2に向けて伝送する。   The stretchable electrode 12 disposed on the string-like portion 103 is attached to the earlobe E of the living body L. Thereby, the stretchable electrode 12 arranged on the string-like portion 103 acquires the reference potential of the living body L. Each of the seven stretchable electrodes 12 positioned on the rectangular part 101 acquires an electroencephalogram via the adhesive part 15. The stretchable lead wire 11 transmits the acquired electroencephalogram toward the analysis device 2.

次に、本実施形態に係る電極シート1の製造方法について説明する。
まず、伸縮性基材10の一方の主面上に伸縮性電極12が配置される。また、伸縮性引出配線11が伸縮性電極12に接続された状態で配置される。
Next, a method for manufacturing the electrode sheet 1 according to this embodiment will be described.
First, the stretchable electrode 12 is disposed on one main surface of the stretchable substrate 10. In addition, the stretchable lead wire 11 is arranged in a state of being connected to the stretchable electrode 12.

次いで、フィルム基材14が伸縮性引出配線11及び突片部102の一主面の一部に重ねて配置される。そして、伸縮性カバー13が、伸縮性引出配線11、矩形部101の一主面の一部、紐状部103の一主面の一部、及び伸縮性カバー13の一主面の一部に重ねて配置される。   Next, the film base material 14 is disposed so as to overlap a part of one main surface of the stretchable lead wire 11 and the protruding piece portion 102. The stretchable cover 13 is formed on the stretchable lead wire 11, a part of one principal surface of the rectangular portion 101, a part of one principal surface of the string-like portion 103, and a part of one principal surface of the stretchable cover 13. Arranged in layers.

次いで、粘着部15が矩形部101の上の凹部131の位置に形成される。粘着部15は、例えば、印刷法、コート法、又は非ゲル材料からなる粘着層の転写により形成される。   Next, the adhesive portion 15 is formed at the position of the recess 131 on the rectangular portion 101. The adhesive portion 15 is formed by, for example, a printing method, a coating method, or a transfer of an adhesive layer made of a non-gel material.

印刷法としては、スクリーン印刷法、インクジェット印刷法等の粘着部15形成用の液状の組成物をインクとして用いる方法が好ましい。安定した印刷が容易であることから、印刷法としてはスクリーン印刷法が好ましい。   As the printing method, a method using a liquid composition for forming the adhesive portion 15 as an ink, such as a screen printing method or an ink jet printing method, is preferable. A screen printing method is preferred as a printing method because stable printing is easy.

コート法としては、バーコート法、スリットコート法、ダイコート法、ブレードコート法、ロールコート法、ディップコート法等が挙げられる。粘着部15の形成に用いられる典型的な組成物の粘弾性を考慮したうえで適した方法であることから、コート法としてはバーコート法及びブレードコート法が好ましく、ブレードコート法がより好ましい。コート法においては、必要に応じて、粘着部15が形成される場所に開口を有し、粘着部15が形成されない場所を被覆するマスクを介して、粘着部15形成用の組成物の塗布が行なわれる。   Examples of the coating method include a bar coating method, a slit coating method, a die coating method, a blade coating method, a roll coating method, and a dip coating method. Since it is a method suitable in consideration of the viscoelasticity of a typical composition used for forming the adhesive portion 15, the bar coating method and the blade coating method are preferable, and the blade coating method is more preferable. In the coating method, if necessary, the composition for forming the adhesive portion 15 is applied through a mask having an opening where the adhesive portion 15 is formed and covering the place where the adhesive portion 15 is not formed. Done.

非ゲル材料からなる粘着層の転写による、粘着部15の形成は以下のようにして行われる。まず、離形フィルム上に、粘着部15の形状に対応する所定の形状の非ゲル材料からなる粘着層を形成した後に、伸縮性電極12上の位置を含む所定の位置に、当該粘着層を転写し、次いで、離形フィルムを粘着層から剥離させることで、粘着部15が形成される。
離形フィルム上に粘着層を形成する方法は特に限定されないが、前述の印刷法やコート法によって粘着層を形成するのが好ましい。なお、離形フィルム上で、粘着部15形成用の組成物からなる塗布膜を硬化させて粘着層を形成してもよい。
Formation of the adhesion part 15 by transfer of the adhesion layer which consists of non-gel materials is performed as follows. First, after forming an adhesive layer made of a non-gel material having a predetermined shape corresponding to the shape of the adhesive portion 15 on the release film, the adhesive layer is placed at a predetermined position including a position on the stretchable electrode 12. The adhesive part 15 is formed by transferring and then peeling the release film from the adhesive layer.
The method for forming the adhesive layer on the release film is not particularly limited, but it is preferable to form the adhesive layer by the aforementioned printing method or coating method. In addition, you may harden the coating film which consists of a composition for adhesion part 15 formation on a release film, and may form an adhesion layer.

より、具体的には、凹部131の位置に、上記の方法により、粘着部15形成用の組成物からなる塗膜や、粘着層が形成された後、必要に応じて当該塗膜や粘着層から溶剤を除去したり、当該塗膜や粘着層を硬化させたりすることにより、粘着性を有する粘着部15が形成される。   More specifically, after a coating film or a pressure-sensitive adhesive layer formed from the composition for forming the pressure-sensitive adhesive portion 15 is formed at the position of the recess 131 by the above method, the coating film or the pressure-sensitive adhesive layer is formed as necessary. The adhesive portion 15 having adhesiveness is formed by removing the solvent from the substrate or curing the coating film or the adhesive layer.

粘着部15を形成する際の加工の自由度が高く、所望する形状の粘着部15を寸法や位置精度よく点では、硬化性の液状の組成物を用いて塗膜を形成した後に、当該塗膜を硬化させる方法が好ましい。つまり、粘着部15は、液状の硬化性組成物の硬化物からなるのが好ましい。硬化方法は、組成物に含まれる成分に応じて適宜選択され、熱硬化であっても、光硬化であっても、水分硬化であってもよい。   The degree of freedom of processing when forming the adhesive portion 15 is high, and the adhesive portion 15 having a desired shape is good in terms of dimensions and position accuracy, after forming a coating film using a curable liquid composition, A method of curing the film is preferred. That is, it is preferable that the adhesion part 15 consists of hardened | cured material of a liquid curable composition. The curing method is appropriately selected according to the components contained in the composition, and may be thermosetting, photocuring, or moisture curing.

粘着部15の膜厚は特に限定されない。例えば、粘着部15の膜厚が、好ましくは50μm以下、より好ましくは40μm以下、特に好ましくは30μm以下であると、粘着部15の厚さ方向の抵抗値を低くでき、より高品質の生体信号を取得しやすい。また、粘着部15の膜厚が薄い程、シート状電極1を測定対象物から剥離させた際の、測定対象物の表面への粘着部15の剥離残が生じにくく好ましい。さらに、粘着部15の膜厚が薄いほど、少量の粘着部15形成用の組成物により粘着部15を形成できるため、低コストで電極シート1を製造できる点で好ましい。
粘着部15の膜厚の下限は特に限定されないが、膜厚が均一な粘着部15を安定して形成しやすいことから、例えば5μm以上が好ましく、10μm以上がより好ましい。
The film thickness of the adhesion part 15 is not specifically limited. For example, when the thickness of the adhesive portion 15 is preferably 50 μm or less, more preferably 40 μm or less, and particularly preferably 30 μm or less, the resistance value in the thickness direction of the adhesive portion 15 can be reduced, and a higher quality biological signal can be obtained. Easy to get. Further, the thinner the adhesive portion 15 is, the less likely that the adhesive portion 15 is not peeled off from the surface of the measurement object when the sheet-like electrode 1 is peeled from the measurement object. Furthermore, since the adhesion part 15 can be formed with a small amount of the composition for forming the adhesion part 15 as the film thickness of the adhesion part 15 is thin, it is preferable in that the electrode sheet 1 can be manufactured at low cost.
Although the minimum of the film thickness of the adhesion part 15 is not specifically limited, For example, since it is easy to form the adhesion part 15 with a uniform film thickness stably, 5 micrometers or more are preferable and 10 micrometers or more are more preferable.

以上の第1実施形態の電極シート1、電極シート1の製造方法、生体信号取得装置、生体信号取得方法によれば、以下の効果を奏する。   According to the electrode sheet 1, the manufacturing method of the electrode sheet 1, the biological signal acquisition device, and the biological signal acquisition method of the first embodiment described above, the following effects are obtained.

(I)電極シート1を、シート状の伸縮性基材10と、二本以上の伸縮性引出配線11と、二つ以上の伸縮性電極12と、粘着部15と、を含み構成した。そして、伸縮性基材10の少なくとも一方の主面上に二つ以上の伸縮性電極12を位置させ、粘着部15に、二つ以上の伸縮性電極12のそれぞれについて、伸縮性電極12の伸縮性基材10側の面と反対の面の少なくとも一部を接触して被覆させた。また、二つ以上の伸縮性電極12のそれぞれに、二本以上の伸縮性引出配線11のうちの一本以上を接続し、粘着部15を、伸縮性及び導電性を有する非ゲル材料から構成した。これにより、電極シート1の使用時又は長期保管時に、粘着部15の機能低下を抑制できる。また、電極シート1の脳波の取得に用いる場合、ヘッドギアタイプの電極に比べ、頭部へ容易に取り付けることができるので、簡易に生体信号を取得できる。 (I) The electrode sheet 1 includes a sheet-like stretchable substrate 10, two or more stretchable lead wires 11, two or more stretchable electrodes 12, and an adhesive portion 15. Then, two or more stretchable electrodes 12 are positioned on at least one main surface of the stretchable base material 10, and the stretchable electrodes 12 are stretched on the adhesive portion 15 for each of the two or more stretchable electrodes 12. At least a part of the surface opposite to the surface on the conductive substrate 10 side was contacted and coated. Further, one or more of the two or more stretchable lead wires 11 are connected to each of the two or more stretchable electrodes 12, and the adhesive portion 15 is made of a non-gel material having stretchability and conductivity. did. Thereby, the functional fall of the adhesion part 15 can be suppressed at the time of use of the electrode sheet 1 or long-term storage. Moreover, when using it for acquisition of the electroencephalogram of the electrode sheet 1, since it can be easily attached to the head as compared with the headgear type electrode, a biological signal can be easily acquired.

(II)非ゲル材料に、粘着性樹脂と導電材料とを含むようにした。これにより、粘着性樹脂、及び導電材料の種類及び使用量をそれぞれ独立に調整可能であり、非ゲル材料からなる粘着部15の粘着性及び導電性を、それぞれ独立に調整可能である。また、粘着性樹脂が導電性を有する必要がなく、導電材料が粘着性を有する必要がないため、粘着性樹脂及び導電材料のそれぞれについて、材料の選択肢が格別に広い。 (II) The non-gel material includes an adhesive resin and a conductive material. Thereby, the kind and the usage-amount of adhesive resin and a conductive material can be adjusted independently, respectively, and the adhesiveness and electroconductivity of the adhesion part 15 which consist of non-gel materials can be adjusted independently, respectively. In addition, since the adhesive resin does not need to have conductivity and the conductive material does not need to have adhesiveness, there are a wide range of material options for each of the adhesive resin and the conductive material.

(III)導電材料に、導電性ポリマー、及び/又は導電性微粒子を含むようにした。これにより、ムラの少ない均一な導電性を粘着部15に容易に付与することができる。 (III) The conductive material includes a conductive polymer and / or conductive fine particles. Thereby, uniform conductivity with little unevenness can be easily imparted to the adhesive portion 15.

(IV)電極シート1をさらに、絶縁材料からなり、伸縮性引出配線11を被覆する伸縮性カバー13を含むように構成した。これにより、伸縮性引出配線11が伸縮性カバー13を介して測定対象物(典型的には生体L)に接触するので、伸縮性引出配線11のそれぞれが他の伸縮性引出配線11と短絡することを抑制できる。従って、測定対象物から取得される信号の品質をより高品質にすることができる。 (IV) The electrode sheet 1 was further configured to include an elastic cover 13 made of an insulating material and covering the elastic lead wire 11. As a result, the stretchable lead wires 11 come into contact with the measurement object (typically the living body L) via the stretchable cover 13, so that each of the stretchable lead wires 11 is short-circuited with the other stretchable lead wires 11. This can be suppressed. Therefore, the quality of the signal acquired from the measurement object can be improved.

(V)粘着部15について、少なくとも伸縮性カバー13の主面の少なくとも一部を被覆するようにした。これにより、粘着部15の露出する面を広げることができ、測定対象物(典型的には生体L)への粘着部15の接触面積を広げることができる。従って、電極シート1の測定対象物からの剥離を抑制できる。 (V) About the adhesion part 15, at least one part of the main surface of the elastic cover 13 was coat | covered. Thereby, the exposed surface of the adhesion part 15 can be expanded, and the contact area of the adhesion part 15 to a measuring object (typically living body L) can be expanded. Therefore, peeling of the electrode sheet 1 from the measurement object can be suppressed.

[第2実施形態]
第2実施形態に係る電極シート1A、電極シート1Aの製造方法、生体信号取得装置、及び生体信号取得方法について図5及び6を参照して説明する。第2実施形態の説明にあたって、同一構成要件については同一符号を付し、その説明を省略もしくは簡略化する。
第2実施形態に係る電極シート1A及び生体信号取得装置は、図5及び図6に示すように、粘着部15Aが、伸縮性カバー13の主面の全体に重ねて配置されるとともに、伸縮性電極12を被覆する部分のそれぞれと、他を被覆する部分との間が離間する点で第1実施形態と異なる。
第2実施形態に係る電極シート1Aの製造方法及び生体信号取得方法については、粘着部15Aの形成領域のみが第1実施形態と異なるので説明を省略する。
[Second Embodiment]
An electrode sheet 1A according to a second embodiment, a method for manufacturing the electrode sheet 1A, a biological signal acquisition device, and a biological signal acquisition method will be described with reference to FIGS. In the description of the second embodiment, the same constituent elements are denoted by the same reference numerals, and the description thereof is omitted or simplified.
As shown in FIGS. 5 and 6, the electrode sheet 1 </ b> A and the biological signal acquisition device according to the second embodiment are arranged such that the adhesive portion 15 </ b> A is placed over the entire main surface of the stretchable cover 13 and stretchable. The difference from the first embodiment is that each of the portions covering the electrode 12 is separated from the portion covering the other.
About the manufacturing method and biological signal acquisition method of 1 A of electrode sheets which concern on 2nd Embodiment, since only the formation area of 15 A of adhesion parts differs from 1st Embodiment, description is abbreviate | omitted.

以上の第2実施形態に係る電極シート1A、電極シート1Aの製造方法、生体信号取得装置、及び生体信号取得方法によれば、以下の効果を奏する。   According to the electrode sheet 1A, the manufacturing method of the electrode sheet 1A, the biological signal acquisition device, and the biological signal acquisition method according to the second embodiment described above, the following effects are obtained.

(VI)粘着部15Aを、伸縮性電極12を被覆する部分のそれぞれと、他を被覆する部分との間が離間するように構成した。これにより、伸縮性電極12のそれぞれが他の伸縮性電極12と短絡することを抑制できるので、より高品質の生体信号を取得することができる。 (VI) The adhesive portion 15A was configured such that each of the portions covering the stretchable electrode 12 and the portions covering the other were separated. Thereby, each of the stretchable electrodes 12 can be prevented from being short-circuited with the other stretchable electrodes 12, so that a higher quality biological signal can be obtained.

[第3実施形態]
本発明の第3実施形態に係る電極シート1B、電極シート1Bの製造方法、生体信号取得装置、及び生体信号取得方法について、図7及び8を参照して説明する。第3実施形態の説明にあたって、同一構成要件については同一符号を付し、その説明を省略もしくは簡略化する。
第3実施形態に係る電極シート1B及び生体信号取得装置は、図7及び8に示すように、粘着部15Bが、伸縮性電極12被覆する部分と、他を被覆する部分とが一面状である点で第1実施形態及び第2実施形態と異なる。また、第3実施形態に係る電極シート1B及び生体信号取得装置においては、粘着部15Bを構成する非ゲル材料が導電材料として導電性微粒子を必ず含む点で第1実施形態及び第2実施形態と異なる。なお、アスペクト比(平均長軸長/平均短軸長)が50以下である粒子材料を導電性微粒子とする。
平均長軸長、平均短軸長は、導電性の粒子を顕微鏡観察して取得した画像を市販の画像解析ソフトにより処理し、10個以上の粒子のそれぞれについて長軸長と短軸長を求め、求められた値から数平均長として求めることができる。
ここで、電子顕微鏡画像中の粒子の外周上の任意の二点間の距離のうち最長の距離を長軸長とする。また、電子顕微鏡画像において、長軸長の方向に対して垂直な方向の粒子の幅のうち最長の幅を短軸長とする。
なお、フレーク様の板状の粒子については、主面の形状に基づいて平均長軸長と平均短軸長とを定める。つまり、板状の粒子については、その厚さを短軸長として使用しない。
また、導電性微粒子の粒子径は、一般的に微粒子と認識されている粒子径であれば特に限定されない。導電性微粒子の粒子径は、典型的には、体積平均粒子径として、500μm以下が好ましく、300μm以下がより好ましく、100μm以下が特に好ましい。
[Third Embodiment]
An electrode sheet 1B, an electrode sheet 1B manufacturing method, a biological signal acquisition device, and a biological signal acquisition method according to a third embodiment of the present invention will be described with reference to FIGS. In the description of the third embodiment, the same constituent elements are denoted by the same reference numerals, and the description thereof is omitted or simplified.
As shown in FIGS. 7 and 8, the electrode sheet 1 </ b> B and the biological signal acquisition device according to the third embodiment are such that the part where the adhesive part 15 </ b> B covers the stretchable electrode 12 and the part which covers the other are in one plane. This is different from the first and second embodiments. In addition, in the electrode sheet 1B and the biological signal acquisition device according to the third embodiment, the non-gel material constituting the adhesive portion 15B necessarily includes conductive fine particles as a conductive material, and the first embodiment and the second embodiment. Different. A particulate material having an aspect ratio (average major axis length / average minor axis length) of 50 or less is defined as conductive fine particles.
The average major axis length and average minor axis length are obtained by processing images obtained by observing conductive particles under a microscope using commercially available image analysis software, and obtaining the major axis length and minor axis length for each of ten or more particles. The number average length can be obtained from the obtained value.
Here, the longest distance among the distances between any two points on the outer periphery of the particle in the electron microscope image is defined as the long axis length. In the electron microscope image, the longest width of the particle widths in the direction perpendicular to the long axis length direction is defined as the short axis length.
For flake-like plate-like particles, the average major axis length and the average minor axis length are determined based on the shape of the main surface. In other words, the thickness of the plate-like particles is not used as the short axis length.
The particle diameter of the conductive fine particles is not particularly limited as long as it is generally recognized as a fine particle. Typically, the particle diameter of the conductive fine particles is preferably 500 μm or less, more preferably 300 μm or less, and particularly preferably 100 μm or less as a volume average particle diameter.

導電材料として導電性微粒子を含むので、粘着部15Bは、異方導電性を有する。このような異方導電性が発現する理由は定かではないが、導電性微粒子の粘着部15B内での凝集に起因すると考えられる。特に、粘着部15Bをスクリーン印刷により形成する場合、粘着部15Bの厚さ方向の剪断力が加えられつつ粘着部15Bが形成されるため、導電性微粒子の凝集物の粘着部15Bの厚さ方向の配向によって、粘着部15Bの厚さ方向に配向した導電パスが形成されやすい。   Since the conductive fine particles are included as the conductive material, the adhesive portion 15B has anisotropic conductivity. The reason why such anisotropic conductivity develops is not clear, but is thought to be due to aggregation of the conductive fine particles in the adhesive portion 15B. In particular, when the adhesive portion 15B is formed by screen printing, since the adhesive portion 15B is formed while a shearing force in the thickness direction of the adhesive portion 15B is applied, the thickness direction of the adhesive portion 15B of the aggregate of conductive fine particles is formed. With this orientation, a conductive path oriented in the thickness direction of the adhesive portion 15B is easily formed.

具体的には、粘着部15Bは、面内方向D1には高い抵抗値を有し、厚さ方向D2には低い抵抗値を有する。例えば、粘着部15Bは、面内方向D1の体積低効率に対する、厚さ方向D2の体積低効率の相対値が、好ましくは0.5以下、より好ましくは0.3以下、特に好ましくは0.1以下であるように形成される。
第3実施形態に係る電極シート1Bの製造方法及び生体信号取得方法については、粘着部15Bの形成領域のみが第1実施形態及び第2実施形態と異なるので説明を省略する。
Specifically, the adhesive portion 15B has a high resistance value in the in-plane direction D1, and a low resistance value in the thickness direction D2. For example, in the adhesive portion 15B, the relative value of the volume low efficiency in the thickness direction D2 with respect to the volume low efficiency in the in-plane direction D1 is preferably 0.5 or less, more preferably 0.3 or less, particularly preferably 0. It is formed to be 1 or less.
About the manufacturing method and biological signal acquisition method of the electrode sheet 1B which concern on 3rd Embodiment, since only the formation area of the adhesion part 15B differs from 1st Embodiment and 2nd Embodiment, description is abbreviate | omitted.

以上の第3実施形態に係る電極シート1B、電極シート1Bの製造方法、生体信号取得装置、及び生体信号取得方法によれば、以下の効果を奏する。   According to the electrode sheet 1B, the manufacturing method of the electrode sheet 1B, the biological signal acquisition device, and the biological signal acquisition method according to the third embodiment described above, the following effects are obtained.

(VII)導電材料が導電性微粒子を含むようにした。これにより、粘着部15Bに、厚さ方向には良好に通電させ、面内方向には通電させにくい異方導電性を付与することができる。従って、粘着部15を複数の伸縮性電極12に重ねて配置したとしても、伸縮性電極12が短絡することを抑制でき、粘着部15Bの露出する面積を広げることで、電極シート1Bの測定対象物(典型的には生体L)からの剥離を防止できる。 (VII) The conductive material contains conductive fine particles. As a result, anisotropic conductivity can be imparted to the adhesive portion 15B in such a manner that it can be energized well in the thickness direction and hardly energized in the in-plane direction. Therefore, even if the adhesive part 15 is arranged so as to overlap the plurality of elastic electrodes 12, the elastic electrode 12 can be prevented from being short-circuited, and the measurement area of the electrode sheet 1B can be increased by increasing the exposed area of the adhesive part 15B. Detachment from an object (typically the living body L) can be prevented.

(VIII)粘着部15Bを、伸縮性電極12を被覆する部分と、他を被覆する部分とが一面上であるようにした。これにより、測定対象物に接触する粘着部15Bの面積を広げることができ、電極シート1Bの貼付性を向上することができる。 (VIII) The adhesive portion 15B was such that the portion covering the stretchable electrode 12 and the portion covering the other were on one side. Thereby, the area of the adhesion part 15B which contacts a measuring object can be expanded, and the sticking property of the electrode sheet 1B can be improved.

[粘着部形成用の組成物]
粘着部15の材料としては、前述の通り、例えば、粘着性樹脂中に、導電材料が分散している材料であってもよく、導電性と粘着性とを兼ね備える樹脂であってもよい。
粘着性樹脂や導電材料の種類や使用量を適宜変更することによって、粘着性や、機械的特性、導電性等の種々の特性を調整しやすいことから、粘着部15の材料は、粘着性樹脂中に導電材料が分散している材料が好ましい。
[Composition for forming adhesive part]
As described above, the material of the adhesive portion 15 may be, for example, a material in which a conductive material is dispersed in an adhesive resin, or may be a resin having both conductivity and adhesiveness.
The material of the adhesive portion 15 is made of an adhesive resin because various properties such as adhesiveness, mechanical properties, and conductivity can be easily adjusted by appropriately changing the type and amount of the adhesive resin and the conductive material. A material in which a conductive material is dispersed is preferable.

粘着部15としては、具体的には、ポリオキシアルキレン系重合体(A)と、導電材料(B)とを含む組成物の硬化物からなるのが好ましい。
以下、粘着部15の形成に用いられる組成物に含まれる成分について、説明する。
Specifically, the adhesive portion 15 is preferably made of a cured product of a composition containing a polyoxyalkylene polymer (A) and a conductive material (B).
Hereinafter, the components contained in the composition used for forming the adhesive portion 15 will be described.

(ポリオキシアルキレン系重合体(A))
ポリオキシアルキレン系重合体(A)の主鎖骨格としては、例えば、ポリオキシエチレン、ポリオキシプロピレン、ポリオキシブチレン、ポリオキシテトラメチレン、ポリオキシエチレン−ポリオキシプロピレン共重合体、ポリオキシプロピレン−ポリオキシブチレン共重合体等を使用することができるが、ポリオキシプロピレン系重合体であることが好ましい。
(Polyoxyalkylene polymer (A))
Examples of the main chain skeleton of the polyoxyalkylene polymer (A) include polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxytetramethylene, polyoxyethylene-polyoxypropylene copolymer, polyoxypropylene- A polyoxybutylene copolymer or the like can be used, but a polyoxypropylene polymer is preferable.

ポリオキシアルキレン系重合体は、本質的に式(2):
−R−O− (2)
(式中、Rは炭素原子数1以上14以下の直鎖状もしくは分岐アルキレン基である。)
で表される繰り返し単位を有する重合体であるのが好ましい。
式(2)中に記載のRとしてのアルキレン基は、直鎖状であっても分岐鎖状であってもよい。Rとしてのアルキレン基の炭素原子数は、1以上14以下であり、2以上4以下が好ましい。
The polyoxyalkylene polymer essentially has the formula (2):
-R 2 -O- (2)
(In the formula, R 2 is a linear or branched alkylene group having 1 to 14 carbon atoms.)
It is preferable that it is a polymer which has a repeating unit represented by these.
The alkylene group as R 2 described in Formula (2) may be linear or branched. The number of carbon atoms of the alkylene group as R 2 is 1 or more and 14 or less, and preferably 2 or more and 4 or less.

式(2)で表される繰り返し単位としては、特に限定はなく、例えば、以下に示す繰り返し単位等が挙げられる。

Figure 2019051236
There is no limitation in particular as a repeating unit represented by Formula (2), For example, the repeating unit etc. which are shown below are mentioned.
Figure 2019051236

ポリオキシアルキレン系重合体(A)の主鎖骨格は、1種類だけの繰り返し単位からなってもよく、2種類以上の繰り返し単位からなってもよい。
上記式(2)で表される繰り返し単位からなる主鎖骨格を有するポリオキシアルキレン系重合体としては、非晶質であることや比較的低粘度であることから、プロピレンオキシド重合体を主成分とするポリオキシプロピレン系重合体が好ましく、特にオキシプロピレン単位(−CHCH(CH)C−O−)のみで主鎖が構成されるポリオキシプロピレン重合体が好ましい。
The main chain skeleton of the polyoxyalkylene polymer (A) may consist of only one type of repeating unit or may consist of two or more types of repeating units.
As the polyoxyalkylene polymer having a main chain skeleton composed of the repeating unit represented by the above formula (2), the propylene oxide polymer is a main component because it is amorphous or has a relatively low viscosity. The polyoxypropylene polymer is preferably a polyoxypropylene polymer in which the main chain is composed only of oxypropylene units (—CH 2 CH (CH 3 ) C—O—).

ポリオキシアルキレン系重合体(A)の合成法は、特に限定されない。
ポリオキシアルキレン系重合体(A)は、例えば、KOHのようなアルカリ触媒による重合法、特開昭61−215623号公報に示される有機アルミニウム化合物とポルフィリンとを反応させて得られる錯体のような遷移金属化合物−ポルフィリン錯体触媒による重合法、特公昭46−27250号、特公昭59−15336号、米国特許3278457号、米国特許3278458号、米国特許3278459号、米国特許3427256号、米国特許3427334号、米国特許3427335号等の各公報に示される複合金属シアン化物錯体触媒による重合法、特開平10−273512号公報に示されるポリホスファゼン塩からなる触媒を用いる重合法、特開平11−060722号公報に示されるホスファゼン化合物からなる触媒を用いる重合法等があげられる。
The method for synthesizing the polyoxyalkylene polymer (A) is not particularly limited.
The polyoxyalkylene polymer (A) is, for example, a polymerization method using an alkali catalyst such as KOH, or a complex obtained by reacting an organoaluminum compound and porphyrin as disclosed in JP-A-61-215623. Polymerization method using transition metal compound-porphyrin complex catalyst, Japanese Patent Publication No. 46-27250, Japanese Patent Publication No. 59-15336, US Pat. No. 3,278,457, US Pat. No. 3,278,458, US Pat. No. 3,278,459, US Pat. No. 3,427,256, US Pat. No. 3,427,334, In the polymerization method using a double metal cyanide complex catalyst shown in each publication such as US Pat. No. 3,427,335, the polymerization method using a catalyst comprising a polyphosphazene salt shown in JP-A-10-273512, and JP-A-11-060722 Touch composed of the indicated phosphazene compounds Polymerization method using thereof.

ポリオキシアルキレン系重合体(A)を構成する分子鎖は、直鎖状であっても、分岐を有していてもよい。
ポリオキシアルキレン系重合体(A)の数平均分子量は、本発明の目的を阻害しない範囲において特に限定されない。
ポリオキシアルキレン系重合体(A)の数平均分子量は、GPCにより測定されるポリスチレン換算の分子量として、3,000以上が好ましく、3,000以上100,000以下がより好ましく、3,000以上50,000以下が特に好ましく、3,000以上30,000以下が最も好ましい。
The molecular chain constituting the polyoxyalkylene polymer (A) may be linear or branched.
The number average molecular weight of the polyoxyalkylene polymer (A) is not particularly limited as long as the object of the present invention is not impaired.
The number average molecular weight of the polyoxyalkylene polymer (A) is preferably 3,000 or more, more preferably 3,000 to 100,000, more preferably 3,000 to 50, as the molecular weight in terms of polystyrene measured by GPC. Is particularly preferably 3,000 or less and most preferably 3,000 or more and 30,000 or less.

数平均分子量が過小であると、ポリオキシアルキレン系重合体(A)を含む組成物を用いて、伸縮性に優れる粘着部15を形成しにくい場合がある。
数平均分子量が過大であると、ポリオキシアルキレン系重合体(A)の粘度が高いことに起因して、粘着部15の形成方法に工夫を要する場合がある。
If the number average molecular weight is too small, it may be difficult to form the adhesive portion 15 having excellent stretchability using the composition containing the polyoxyalkylene polymer (A).
When the number average molecular weight is excessive, the polyoxyalkylene polymer (A) may have a high viscosity, and thus there may be a need to devise a method for forming the adhesive portion 15.

ポリオキシアルキレン系重合体(A)の分子量分布は特に限定されないが、狭いことが好ましく、2.00未満が好ましく、1.60以下がより好ましく、1.40以下が特に好ましい。
分子量分布が広すぎると、ポリオキシアルキレン系重合体(A)の、の粘度が高いことに起因して、粘着部15の形成方法に工夫を要する場合がある。
The molecular weight distribution of the polyoxyalkylene polymer (A) is not particularly limited, but is preferably narrow, preferably less than 2.00, more preferably 1.60 or less, and particularly preferably 1.40 or less.
If the molecular weight distribution is too wide, the polyoxyalkylene polymer (A) may have a high viscosity, and thus the device for forming the adhesive portion 15 may need to be devised.

ポリオキシアルキレン系重合体(A)は式(1):
−CH−C(R)=CH (1)
(式中、Rは水素原子、又は、炭素原子数1以上20以下の炭化水素基)で表される置換基(以下、アルケニル基と記載する場合もある)
で表される官能基を分子内に1個以上有するのが好ましい。
としては、式(1)で表される官能基の反応性の点から、水素原子、又はメチル基が好ましい。
The polyoxyalkylene polymer (A) has the formula (1):
—CH 2 —C (R 1 ) ═CH 2 (1)
(Wherein R 1 is a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms) (hereinafter sometimes referred to as an alkenyl group)
It is preferable to have at least one functional group represented by
R 1 is preferably a hydrogen atom or a methyl group from the viewpoint of the reactivity of the functional group represented by the formula (1).

ポリオキシアルキレン系重合体(A)が有する式(1)で表されるアルケニル基の数は、ポリオキシアルキレン系重合体(A)の1分子中に平均して、少なくとも1個が好ましく、1個以上5個以下がより好ましく、1個以上3個以下がさらに好ましく、1個以上2個以下が特に好ましい。   The number of alkenyl groups represented by the formula (1) of the polyoxyalkylene polymer (A) is preferably at least one on average in one molecule of the polyoxyalkylene polymer (A). One or more and five or less are more preferable, one or more and three or less are more preferable, and one or more and two or less are especially preferable.

ポリオキシアルキレン系重合体(A)1分子中の式(1)で表されるアルケニル基の数が過少であると、ポリオキシアルキレン系重合体(A)を含む組成物の硬化性がやや劣る場合がある。
また、1分子中に含まれる式(1)で表されるアルケニル基の数が多すぎると、ポリオキシアルキレン系重合体(A)を含む組成物を用いて形成される硬化物において、密な網目構造が形成され、粘着性の良好な硬化物を形成しにくい場合がある。
When the number of alkenyl groups represented by formula (1) in one molecule of polyoxyalkylene polymer (A) is too small, the curability of the composition containing polyoxyalkylene polymer (A) is slightly inferior. There is a case.
Further, if the number of alkenyl groups represented by formula (1) contained in one molecule is too large, in a cured product formed using a composition containing a polyoxyalkylene polymer (A), A network structure may be formed, and it may be difficult to form a cured product having good adhesion.

(導電材料(B))
粘着部15の形成に用いられる組成物は、ポリオキシアルキレン系重合体(A)とともに導電材料(B)を含有するのが好ましい。
導電性材料(B)は、一般的に導電性を有すると認識されている材料には限定されず、粘着部15に配合された場合に粘着部15に導電性を付与し得る材料であれば特に限定されない。導電材料(B)は、有機材料であっても、無機材料であってもよい。
(Conductive material (B))
The composition used for forming the adhesive portion 15 preferably contains the conductive material (B) together with the polyoxyalkylene polymer (A).
The conductive material (B) is not limited to a material generally recognized as having conductivity, and may be any material that can impart conductivity to the adhesive portion 15 when blended in the adhesive portion 15. There is no particular limitation. The conductive material (B) may be an organic material or an inorganic material.

導電材料(B)の形態は特に限定されない。前述の通り異方導電性の点からは、導電材料(B)は導電性微粒子であるのが好ましい。なお、前述の通り、アスペクト比(平均長軸長/平均短軸長)が50以下である粒子材料を導電性微粒子とする。導電性微粒子の粒子径は、典型的には、体積平均粒子径として、500μm以下が好ましく、300μm以下がより好ましく、100μm以下が特に好ましい。   The form of the conductive material (B) is not particularly limited. As described above, from the viewpoint of anisotropic conductivity, the conductive material (B) is preferably conductive fine particles. As described above, a particulate material having an aspect ratio (average major axis length / average minor axis length) of 50 or less is defined as conductive fine particles. Typically, the particle diameter of the conductive fine particles is preferably 500 μm or less, more preferably 300 μm or less, and particularly preferably 100 μm or less as a volume average particle diameter.

導電材料(B)の材料としては、一般的に、安価で入手が容易である点や、化学的、物理的安定性に優れること等からは金属等の無機材料が好ましい。
他方、粘着部15中での分散性、分散安定性等が良好である点や、シート状電極1を生物の皮膚に貼り付けて使用する場合に、金属アレルギーの問題等を考慮する必要がない点等では、非金属の無機材料が好ましい。
In general, the conductive material (B) is preferably an inorganic material such as a metal because it is inexpensive and easily available, and is excellent in chemical and physical stability.
On the other hand, when the dispersibility and dispersion stability in the adhesive part 15 are good, and when the sheet-like electrode 1 is used by being attached to a biological skin, there is no need to consider the problem of metal allergy. In terms of points, non-metallic inorganic materials are preferred.

無機材料としては、例えば、導電性の炭素材料を用いることができる。なお、炭素材料の中には、少量の有機基を含むものもあるが、主骨格に有機基を含まない炭素材料については、本明細書では無機材料として記載する。
かかる炭素材料としては、カーボンブラック、炭素繊維、グラファイトや、カーボンナノ材料が挙げられる。
As the inorganic material, for example, a conductive carbon material can be used. Note that some carbon materials contain a small amount of organic groups, but carbon materials that do not contain organic groups in the main skeleton are described as inorganic materials in this specification.
Examples of the carbon material include carbon black, carbon fiber, graphite, and carbon nanomaterial.

炭素材料の中では、少量の使用で粘着部15の体積抵抗率を所望する程度に下げやすいことから、ナノカーボン材料が好ましい。
ナノカーボン材料としては、カーボンナノチューブ、カーボンナノホーン、グラフェン、ナノグラファイト、フラーレン、及びカーボンナノコイルからなる群より選択される1種以上が好ましい。これらの中では、入手が容易であることや、体積抵抗率が低く導電性に優れる粘着部15を形成しやすいこと等からカーボンナノチューブが好ましい。
Among carbon materials, a nanocarbon material is preferable because it can be easily reduced to a desired level by reducing the volume resistivity of the adhesive portion 15 with a small amount of use.
The nanocarbon material is preferably at least one selected from the group consisting of carbon nanotubes, carbon nanohorns, graphene, nanographites, fullerenes, and carbon nanocoils. Among these, carbon nanotubes are preferable because they are easily available and easily form the adhesive portion 15 having a low volume resistivity and excellent conductivity.

また、無機材料としては、例えば、金属粉や、金属繊維を用いることができる。   Moreover, as an inorganic material, metal powder and a metal fiber can be used, for example.

金属粉としては、例えばアトマイズ法により製造される、平均粒子径100μm以下、好ましくは平均粒子径50μm以下の金属微粉末が好ましい。
金属繊維としては、銀ナノワイヤー等に代表される金属ナノ繊維材料が好ましい。
金属ナノワイヤーの繊維径は、例えば、200nm以下が好ましく、10nm以上100nm以下がより好ましい。金属ナノワイヤーの繊維長は、5μm以上100μm以下が好ましく、10μm以上50μm以下がより好ましい。
As the metal powder, for example, metal fine powder produced by an atomizing method and having an average particle diameter of 100 μm or less, preferably 50 μm or less is preferable.
As the metal fibers, metal nanofiber materials represented by silver nanowires and the like are preferable.
For example, the fiber diameter of the metal nanowire is preferably 200 nm or less, and more preferably 10 nm or more and 100 nm or less. The fiber length of the metal nanowire is preferably 5 μm or more and 100 μm or less, and more preferably 10 μm or more and 50 μm or less.

金属繊維の繊維長について、平均長軸長としては、1μm以上1000μm以下が好ましく、5μm以上500μm以下がより好ましい。
かかる平均長軸長を有する金属繊維は、その調製及び入手が容易であり、導電パスを良好に形成しやすく、少量の使用でも、粘着部15の体積抵抗率を所望する値まで下げやすい。
金属繊維の繊維長について、平均短軸長としては、1nm以上1000nm以下が好ましく、5nm以上500nm以下がさらに好ましい。
かかる平均短軸長を有する金属繊維は、粘着部15の形成に用いられる組成物中で良好に分散されやすく、また、導電パスを良好に形成しやすく、少量の使用でも、粘着部15の体積抵抗率を所望する値まで下げやすい。
Regarding the fiber length of the metal fiber, the average major axis length is preferably 1 μm or more and 1000 μm or less, and more preferably 5 μm or more and 500 μm or less.
The metal fiber having such an average major axis length is easy to prepare and obtain, easily forms a conductive path, and easily reduces the volume resistivity of the adhesive portion 15 to a desired value even with a small amount of use.
Regarding the fiber length of the metal fiber, the average minor axis length is preferably 1 nm or more and 1000 nm or less, and more preferably 5 nm or more and 500 nm or less.
The metal fiber having such an average minor axis length is easily dispersed well in the composition used for forming the adhesive portion 15, easily forms a conductive path, and the volume of the adhesive portion 15 even when used in a small amount. It is easy to lower the resistivity to a desired value.

金属繊維のアスペクト比(平均長軸長/平均短軸長)としては、100以上1000以下が、粘着部15中での導電パスの形成しやすさの点で好ましい。   The aspect ratio (average major axis length / average minor axis length) of the metal fiber is preferably 100 or more and 1000 or less from the viewpoint of easy formation of a conductive path in the adhesive portion 15.

金属粉や金属繊維の金属組成としては、特に限定されない。
金属粉や金属繊維の材料は、2種以上の金属元素を含んでいてもよく、金属とともに、金属酸化物、金属塩、及び炭素系導電性物質等を含んでいてもよい。
金属粉や金属繊維の材料として好ましい金属の例としては、金、白金、銀、パラジウム、ネオジウム、鉄、コバルト、銅、錫、亜鉛、及びニッケル、並びにこれらから選択される2種以上の金属の合金等が挙げられる。
なかでも、高い導電性を有し、加工が容易である点から銀が好ましい。金属ナノ繊維の材料については、湿式合成による大量生産が容易である点からも、銀が好ましい
また、金属粉や金属繊維を、それらの材料とは異なる材料を用いて、メッキや蒸着等の方法によって被覆してもよい。
The metal composition of the metal powder or metal fiber is not particularly limited.
The material of the metal powder or the metal fiber may contain two or more kinds of metal elements, and may contain a metal oxide, a metal salt, a carbon-based conductive substance, and the like together with the metal.
Examples of the metal preferable as the material of the metal powder and the metal fiber include gold, platinum, silver, palladium, neodymium, iron, cobalt, copper, tin, zinc, nickel, and two or more kinds of metals selected from these. An alloy etc. are mentioned.
Among these, silver is preferable because it has high conductivity and is easy to process. As for the material of the metal nanofiber, silver is preferable from the viewpoint that mass production by wet synthesis is easy. Also, a method such as plating or vapor deposition of metal powder or metal fiber using a material different from those materials. May be coated.

例えば、金属ナノワイヤーの製造方法について、銀ナノワイヤーの製造方法としては、例えば、(Sun, Y. et al. “Uniform Silver Nanowires Synthesis by Reducing AgNO with Ethylene Glycol in the Presence of Seeds and Poly(Vinyl Pyrrolidone)”,(2002) Chem. Mater. 14, 4736−4745)に記載の、エチレングリコール中で、ポリビニルピロリドンの存在下で硝酸銀を還元する方法等が挙げられる。
また、前述の平均長軸長、及び平均短軸長を有する銀ナノワイヤーの合成方法としては、例えば、Nano Research 2014,7,236〜245.やJ.Mater.Chem.A,2014,2,6326から6330に記載の方法等が挙げられる。
For example, as a method for producing a metal nanowire, a method for producing a silver nanowire is, for example, (Sun, Y. et al. “Uniform Silver Now Synthesis by Reducing AgNO 3 with Ethylene in the Pres-of-the-Price. Pyrrolidene) ", (2002) Chem. Mater. 14, 4736-4745), and a method for reducing silver nitrate in ethylene glycol in the presence of polyvinylpyrrolidone.
Moreover, as a synthesis | combining method of the silver nanowire which has the above-mentioned average major axis length and average minor axis length, for example, Nano Research 2014, 7, 236-245. And J.A. Mater. Chem. A, 2014, 2, 6326 to 6330, and the like.

有機材料としては、導電性ポリマーが挙げられる。導電性ポリマーとしては、特に限定されず、ポリアセチレン、ポリチオフェン、ポリ(3,4−エチレンジオキシチオフェン)(以下、PEDOTとも記載する)、ポリ(p−フェニレン)、ポリフルオレン、ポリ(p−フェニレンビニレン)、ポリエチレンビニレン、ポリピロール、及びポリアニリン等が挙げられる。
これらのなかでも、高い導電性や優れた安定性からPEDOTが好ましい。ただし、粘着部15の形成に用いられる組成物は、導電性ポリマーとして2種類以上のポリマーを含んでいてもよい。
Examples of the organic material include a conductive polymer. The conductive polymer is not particularly limited, and polyacetylene, polythiophene, poly (3,4-ethylenedioxythiophene) (hereinafter also referred to as PEDOT), poly (p-phenylene), polyfluorene, poly (p-phenylene). Vinylene), polyethylene vinylene, polypyrrole, and polyaniline.
Among these, PEDOT is preferable because of high conductivity and excellent stability. However, the composition used for formation of the adhesion part 15 may contain two or more types of polymers as a conductive polymer.

導電材料(B)が有機材料である場合、所望する導電性を示す粘着部15を形成しやすいことから、導電材料(B)が、導電性ポリマーとともに、ドーパントを含むのが好ましい。ドーパントは、導電材料(B)の導電性を増強する成分である。   When the conductive material (B) is an organic material, it is preferable that the conductive material (B) contains a dopant together with the conductive polymer because the adhesive portion 15 exhibiting desired conductivity is easily formed. The dopant is a component that enhances the conductivity of the conductive material (B).

ドーパントの種類としては、導電性ポリマーの導電性を増強することができる限り特に限定されない。例えば、PEDOTに対する、好ましいドーパントとしては、ポリスチレンスルホン酸(以下、PSSとも記載する)、ポリビニルスルホン酸、過塩素酸塩、及びスルホン酸等が挙げられる。
これらのドーパントのなかでは、入手が容易であり、所望する導電性を示す粘着部15を形成しやすい点からPSSが好ましい。
以下、導電材料(B)としての、PEDOTとPSSとの組み合せについて、PEDOT/PSSとも記載する。
The kind of dopant is not particularly limited as long as the conductivity of the conductive polymer can be enhanced. For example, preferred dopants for PEDOT include polystyrene sulfonic acid (hereinafter also referred to as PSS), polyvinyl sulfonic acid, perchlorate, and sulfonic acid.
Among these dopants, PSS is preferable because it is easily available and easily forms the adhesive portion 15 exhibiting desired conductivity.
Hereinafter, the combination of PEDOT and PSS as the conductive material (B) is also referred to as PEDOT / PSS.

PEDOT/PSSの製造方法としては、特に限定されず、化学重合法、電解重合法、気相重合法が挙げられる。   It does not specifically limit as a manufacturing method of PEDOT / PSS, A chemical polymerization method, an electrolytic polymerization method, and a gas phase polymerization method are mentioned.

導電材料(B)における、導電性ポリマーと、ドーパントとの質量比は、導電性ポリマー:ドーパントして、1:0.5〜1:5が好ましく、1:1〜1:3がより好ましい。   In the conductive material (B), the mass ratio of the conductive polymer to the dopant is preferably 1: 0.5 to 1: 5, more preferably 1: 1 to 1: 3 as a conductive polymer: dopant.

以上説明した導電材料(B)を、ポリオキシアルキレン系重合体(A)と混合する方法は、これらを含む組成物を用いて所望する導電性を示す粘着部15を形成できれば特に限定されない。   The method for mixing the conductive material (B) described above with the polyoxyalkylene polymer (A) is not particularly limited as long as the adhesive portion 15 exhibiting desired conductivity can be formed using a composition containing them.

例えば、導電材料(B)の分散液を、ポリオキシアルキレン系重合体(A)と混合した後に、分散液に由来する分散媒を組成物から留去する方法が挙げられる。
分散媒の種類は特に限定されず、水、アルコール、モノメチルホルムアミド、及びジメチルスルホキシド等が挙げられる。なかでも、ポリオキシアルキレン系重合体(A)との相溶性の点から、分散媒としてはアルコールが好ましく、2−プロパノールやエタノールがより好ましく、2−プロパノールとエタノールとの混合溶剤がさらに好ましい。
上記のアルコールは、PEDOTを導電材料(B)として用いる場合の分散媒として特に好ましい。
For example, after mixing the dispersion liquid of a conductive material (B) with a polyoxyalkylene type polymer (A), the method of distilling the dispersion medium derived from a dispersion liquid from a composition is mentioned.
The type of the dispersion medium is not particularly limited, and examples thereof include water, alcohol, monomethylformamide, and dimethyl sulfoxide. Among these, from the viewpoint of compatibility with the polyoxyalkylene polymer (A), the dispersion medium is preferably alcohol, more preferably 2-propanol or ethanol, and even more preferably a mixed solvent of 2-propanol and ethanol.
The above alcohol is particularly preferable as a dispersion medium when PEDOT is used as the conductive material (B).

組成物は、導電性微粒子として金属塩を含んでいてもよい。金属塩としては、金属カチオンと、アニオンとからなる塩化合物であれば特に限定されず、無機金属塩であっても、有機金属塩であってもよく、無機金属塩が好ましい。   The composition may contain a metal salt as conductive fine particles. The metal salt is not particularly limited as long as it is a salt compound composed of a metal cation and an anion, and may be an inorganic metal salt or an organic metal salt, and an inorganic metal salt is preferred.

金属塩を構成する、金属カチオンとしては、ナトリウムイオン、カリウムイオン、マグネシウムイオン、カルシウムイオン、バリウムイオン、マンガンイオン、鉄イオン、銅イオン、銀イオン、亜鉛イオン、アルミニウムイオン等が挙げられる。これらの金属イオンが、複数のイオン価をとり得る場合、金属イオンのイオン価は特に限定されない。   Examples of the metal cation constituting the metal salt include sodium ion, potassium ion, magnesium ion, calcium ion, barium ion, manganese ion, iron ion, copper ion, silver ion, zinc ion and aluminum ion. When these metal ions can have a plurality of ionic valences, the ionic valence of the metal ions is not particularly limited.

金属塩を構成する、アニオンの具体例としては、塩化物イオン、臭化物イオン、ヨウ化物イオン、フッ化物イオン、硫酸イオン、亜硫酸イオン、硫酸水素イオン、リン酸イオン、硝酸イオン、炭酸イオン、及び炭酸水素イオン等の無機アニオンや、酢酸イオン、ギ酸イオン、プロピオン酸イオン、酪酸イオン、吉草酸イオン、イソ吉草酸イオン、乳酸イオン、シュウ酸イオン、トリクロロ酢酸イオン、ジクロロ酢酸イオン、モノクロロ酢酸イオン、トリフルオロ酢酸イオン、ジフルオロ酢酸イオン、モノフルオロ酢酸イオン、安息香酸イオン、サリチル酸イオン、メタンスルホン酸イオン、エタンスルホン酸イオン、トリフルオロメタンスルホン酸イオン、ベンゼンスルホン酸イオン、及びトルエンスルホン酸イオン等の有機アニオンが挙げられる。   Specific examples of anions constituting the metal salt include chloride ions, bromide ions, iodide ions, fluoride ions, sulfate ions, sulfite ions, hydrogen sulfate ions, phosphate ions, nitrate ions, carbonate ions, and carbonate ions. Inorganic anions such as hydrogen ions, acetate ions, formate ions, propionate ions, butyrate ions, valerate ions, isovalerate ions, lactate ions, oxalate ions, trichloroacetate ions, dichloroacetate ions, monochloroacetate ions, Organic anions such as fluoroacetate ion, difluoroacetate ion, monofluoroacetate ion, benzoate ion, salicylate ion, methanesulfonate ion, ethanesulfonate ion, trifluoromethanesulfonate ion, benzenesulfonate ion, and toluenesulfonate ion Raised It is.

粘着部15を備えるシート状電極1を用いて、安定且つ良好に生体信号等の信号を取得しやすいことから、金属塩としては、金属塩化物、金属臭化物、金属ヨウ化物、金属フッ化物等の金属ハロゲン化合物が好ましく、金属塩化物、及び金属臭化物がより好ましく、金属塩化物が特に好ましい。
金属塩化物としては、塩化ナトリウム、塩化カリウム、塩化マグネシウム、塩化カルシウム、塩化鉄(III)、塩化鉄(II)、塩化銅(II)、塩化銅(I)、塩化銀(I)、及び塩化亜鉛等が挙げられ、塩化ナトリウム、塩化カリウム、及び塩化銀(I)が好ましく、塩化銀がより好ましい。
Since it is easy to acquire a signal such as a biological signal stably and satisfactorily using the sheet-like electrode 1 provided with the adhesive portion 15, examples of the metal salt include metal chloride, metal bromide, metal iodide, and metal fluoride. Metal halides are preferred, metal chlorides and metal bromides are more preferred, and metal chlorides are particularly preferred.
Metal chlorides include sodium chloride, potassium chloride, magnesium chloride, calcium chloride, iron (III) chloride, iron (II) chloride, copper (II) chloride, copper (I) chloride, silver (I) chloride, and chloride Zinc etc. are mentioned, Sodium chloride, potassium chloride, and silver chloride (I) are preferred, and silver chloride is more preferred.

ポリオキシアルキレン系重合体(A)の粘性が低い場合や、ポリオキシアルキレン系重合体(A)に少量の有機溶剤を加えて粘性を低下させた場合等には、ポリオキシアルキレン系重合体(A)と、固体状の導電材料(B)、又は導電材料(B)の分散液とを、フーバー式マーラーや、二本ロール、三本ロール等の混練装置により混合することにより、ポリオキシアルキレン系重合体(A)中に導電材料(B)を分散させることもできる。
導電材料(B)の分散処理後には、組成物から水や有機溶剤が留去されるのが好ましい。
When the viscosity of the polyoxyalkylene polymer (A) is low, or when the viscosity is lowered by adding a small amount of an organic solvent to the polyoxyalkylene polymer (A), the polyoxyalkylene polymer (A) A) and a solid conductive material (B) or a dispersion of the conductive material (B) are mixed by a kneader such as a Hoover-type Mahler, a two-roller, a three-roller, etc. The conductive material (B) can also be dispersed in the polymer (A).
It is preferable that water and an organic solvent are distilled off from the composition after the dispersion treatment of the conductive material (B).

粘着部15を形成するために用いられる組成物における、導電材料(B)の含有量は、所望する導電性を有し、且つ所望する粘着性を有する粘着部15を形成できる限り特に限定されない。
導電性材料(B)の使用量は、形成される粘着部15の導電性を勘案して適宜設定される。
組成物における、導電材料(B)の含有量は、典型的には、ポリオキシアルキレン系重合体(A)100質量部に対して、3質量部以上が好ましい。
組成物における、導電材料(B)の含有量は、ポリオキシアルキレン系重合体(A)100質量部に対して、5質量部以上であっても、8質量以上であっても、10質量部以上であってもよい。
また組成物における、導電材料(B)の含有量は、ポリオキシアルキレン系重合体(A)100質量部に対して、200質量部以下が好ましく、150質量部以下がより好ましく、100質量部以下がさらに好ましく、50質量部以下が特に好ましく、20質量部以下が最も好ましい。
The content of the conductive material (B) in the composition used for forming the adhesive part 15 is not particularly limited as long as the adhesive part 15 having the desired conductivity and the desired adhesiveness can be formed.
The usage-amount of electroconductive material (B) is suitably set in consideration of the electroconductivity of the adhesion part 15 formed.
The content of the conductive material (B) in the composition is typically preferably 3 parts by mass or more with respect to 100 parts by mass of the polyoxyalkylene polymer (A).
The content of the conductive material (B) in the composition may be 5 parts by mass or more, 8 parts by mass or more with respect to 100 parts by mass of the polyoxyalkylene polymer (A). It may be the above.
In addition, the content of the conductive material (B) in the composition is preferably 200 parts by mass or less, more preferably 150 parts by mass or less, and 100 parts by mass or less with respect to 100 parts by mass of the polyoxyalkylene polymer (A). Is more preferably 50 parts by mass or less, and most preferably 20 parts by mass or less.

導電材料(B)が金属粉又は金属繊維である場合、導電材料(B)の含有量は、ポリオキシアルキレン系重合体(A)100質量部に対して、3質量部以上200質量部以下が好ましく、3質量部以上150質量部以下がより好ましく、3質量部以上100質量部以下が特に好ましく、3質量部以上20質量部以下が最も好ましい。
かかる範囲の量の導電材料(B)を用いることにより、粘着部15の所望する体積抵抗率と、所望する粘着性とのバランスを取りやすい。
When the conductive material (B) is metal powder or metal fiber, the content of the conductive material (B) is 3 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the polyoxyalkylene polymer (A). It is preferably 3 parts by mass or more and 150 parts by mass or less, more preferably 3 parts by mass or more and 100 parts by mass or less, and most preferably 3 parts by mass or more and 20 parts by mass or less.
By using the amount of the conductive material (B) in such a range, it is easy to balance the desired volume resistivity of the adhesive portion 15 and the desired adhesiveness.

導電材料(B)が導電性ポリマー、又は導電性ポリマーとドーパントとの組み合せである場合、導電材料(B)の含有量は、ポリオキシアルキレン系重合体(A)100質量部に対して、3質量部以上100質量部以下が好ましく、3質量部以上50質量部以下がより好ましく、3質量部以上20質量部以下が特に好ましい。
かかる範囲の量の導電性ポリマー、又は導電性ポリマーとドーパントとの組み合せを用いることにより、粘着部15の所望する導電性と、所望する粘着性とのバランスを取りやすい。
When the conductive material (B) is a conductive polymer or a combination of a conductive polymer and a dopant, the content of the conductive material (B) is 3 with respect to 100 parts by mass of the polyoxyalkylene polymer (A). It is preferably no less than 100 parts by mass and no greater than 3 parts by mass and no greater than 50 parts by mass, and particularly preferably no less than 3 parts by mass and no greater than 20 parts by mass.
By using the amount of the conductive polymer in such a range, or a combination of the conductive polymer and the dopant, it is easy to balance the desired conductivity of the adhesive portion 15 and the desired adhesiveness.

導電材料(B)が金属塩である場合、導電材料(B)の含有量は、ポリオキシアルキレン系重合体(A)100質量部に対して0.01質量部以上10質量部以下が好ましく、0.1質量部以上8質量部以下がより好ましく、1質量部以上7質量部以下が特に好ましい。
導電材料(B)としての金属塩の使用量がかかる範囲内であると、組成物の粘度を扱いやすい適度な範囲内に制御しやすく、脆くない粘着部15を形成しやすい。
When the conductive material (B) is a metal salt, the content of the conductive material (B) is preferably 0.01 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the polyoxyalkylene polymer (A). The amount is more preferably 0.1 parts by mass or more and 8 parts by mass or less, and particularly preferably 1 part by mass or more and 7 parts by mass or less.
When the amount of the metal salt used as the conductive material (B) is within such a range, it is easy to control the viscosity of the composition within an appropriate range that is easy to handle, and it is easy to form the adhesive portion 15 that is not brittle.

(シリコーン化合物(C))
粘着部15の形成に用いられる組成物は、前述のポリオキシアルキレン系重合体(A)、及び導電材料(B)とともに、シリコーン化合物(C)を含むのが好ましい。
シリコーン化合物(C)としては、分子中に1以上10以下のヒドロシリル基を有する化合物が使用される。ヒドロシリル基とはSi−H結合を有する基を意味する。
シリコーン化合物(C)が有するヒドロシリル基は、ポリオキシアルキレン系重合体が有する式(1)で表されるアルケニル基と反応する。かかる反応によって、粘着部15として好適な性質を有する硬化物が形成される。
(Silicone compound (C))
It is preferable that the composition used for formation of the adhesion part 15 contains a silicone compound (C) with the above-mentioned polyoxyalkylene type polymer (A) and a conductive material (B).
As the silicone compound (C), a compound having 1 to 10 hydrosilyl groups in the molecule is used. The hydrosilyl group means a group having a Si—H bond.
The hydrosilyl group possessed by the silicone compound (C) reacts with the alkenyl group represented by the formula (1) possessed by the polyoxyalkylene polymer. By this reaction, a cured product having suitable properties as the adhesive portion 15 is formed.

本願明細書において、同一ケイ素原子(Si)に水素原子(H)が2個結合している場合は、ヒドロシリル基2個と計算する。ヒドロシリル基の個数は好ましくは2個以上8個以下である。
かかる範囲内の数のヒドロシリル基を有するシリコーン化合物(C)を用いることにより、良好な強度と、良好な伸縮性とを兼ね備える粘着部15を形成しやすい。
In the present specification, when two hydrogen atoms (H) are bonded to the same silicon atom (Si), it is calculated as two hydrosilyl groups. The number of hydrosilyl groups is preferably 2 or more and 8 or less.
By using the silicone compound (C) having a number of hydrosilyl groups within such a range, it is easy to form the adhesive portion 15 having both good strength and good stretchability.

シリコーン化合物(C)の、ヒドロシリル基以外の化学構造は特に限定はない。滴定によって得られるSiH基価から算出される化合物(C)の数平均分子量は、好ましくは400以上3,000以下であり、より好ましくは500以上2,000以下である。
かかる範囲内の数平均分子量のシリコーン化合物(C)を用いる場合、硬化時のシリコーン化合物(C)の揮発を抑制しつつ、短時間で、粘着部15としての好ましい特性を有する硬化物を得やすい。
The chemical structure of the silicone compound (C) other than the hydrosilyl group is not particularly limited. The number average molecular weight of the compound (C) calculated from the SiH group value obtained by titration is preferably 400 or more and 3,000 or less, more preferably 500 or more and 2,000 or less.
When the silicone compound (C) having a number average molecular weight within such a range is used, it is easy to obtain a cured product having preferable characteristics as the adhesive portion 15 in a short time while suppressing the volatilization of the silicone compound (C) during curing. .

シリコーン化合物(C)は単独で用いてもよいし、2種類以上併用してもよい。シリコーン化合物(C)は、ポリオキシアルキレン系重合体(A)と良好に相溶するものが好ましい。原材料の入手のし易さや、ポリオキシアルキレン系重合体(A)への相溶性の点から、好適なシリコーン化合物(C)として、有機基で変性されたオルガノハイドロジェンシロキサンが例示される。オルガノハイドロジェンシロキサンの典型例は、下記式:

Figure 2019051236
で表される化合物である。 A silicone compound (C) may be used independently and may be used together 2 or more types. The silicone compound (C) is preferably compatible with the polyoxyalkylene polymer (A). From the viewpoint of easy availability of raw materials and compatibility with the polyoxyalkylene polymer (A), examples of suitable silicone compounds (C) include organohydrogensiloxanes modified with organic groups. A typical example of an organohydrogensiloxane has the following formula:
Figure 2019051236
It is a compound represented by these.

上記式においてc+dの値は特に限定はないが、好ましくは2以上50以下である。Rは主鎖の炭素原子数が2以上20以下の炭化水素基である。
上記式で表されるシリコーン化合物(C)は、未変性のメチルハイドロジェンシリコーンを変性してRを導入することにより得ることができる。未変性のメチルハイドロジェンシリコーンとは、Rが全てHである化合物に相当し、株式会社シーエムシー発行(1990.1.31)の「シリコーンの市場展望−メーカー戦略と応用展開−」にも記載されているように、各種変性シリコーンの原料として用いられている。
の導入のための有機化合物としては、α−オレフィン、スチレン、α−メチルスチレン、アリルアルキルエーテル、アリルアルキルエステル、アリルフェニルエーテル、アリルフェニルエステル等があげられる。
変性のために加える上述の有機化合物の量によって、変性後の分子中のヒドロシリル基の数を調節することができる。
In the above formula, the value of c + d is not particularly limited, but is preferably 2 or more and 50 or less. R 3 is a hydrocarbon group having 2 to 20 carbon atoms in the main chain.
The silicone compound (C) represented by the above formula can be obtained by modifying an unmodified methyl hydrogen silicone and introducing R 3 . Unmodified methylhydrogen silicone corresponds to a compound in which R 3 is all H, and is also described in “Silicon Market Outlook-Manufacturer Strategy and Application Development-” issued by CMC Co., Ltd. (1990.1.31). As described, it is used as a raw material for various modified silicones.
Examples of the organic compound for introducing R 3 include α-olefin, styrene, α-methylstyrene, allyl alkyl ether, allyl alkyl ester, allyl phenyl ether, allyl phenyl ester, and the like.
The number of hydrosilyl groups in the molecule after modification can be adjusted by the amount of the organic compound added for modification.

粘着部15の形成に用いられる組成物における、ポリオキシアルキレン系重合体(A)とシリコーン化合物(C)の量の比は、ポリオキシアルキレン系重合体(A)に由来するアルケニル基の総量に対する、シリコーン化合物(C)に由来するヒドロシリル基の総量によって表現される。アルケニル基の総量1molあたりのヒドロシリル基の総量の大小によって、硬化後の架橋密度の高低が決まる。
望ましい機械的性質を備える粘着部15を形成しやすい点からは、ポリオキシアルキレン系重合体(A)が有するアルケニル基の総量1molあたりの、シリコーン化合物(C)が有するヒドロシリル基の総量は、好ましくは0.1mol以上2.0mol以下であり、より好ましくは0.4mol以上1.5mol以下である。
The ratio of the amount of the polyoxyalkylene polymer (A) to the silicone compound (C) in the composition used for forming the adhesive portion 15 is based on the total amount of alkenyl groups derived from the polyoxyalkylene polymer (A). , Expressed by the total amount of hydrosilyl groups derived from the silicone compound (C). The level of the crosslinking density after curing is determined by the size of the total amount of hydrosilyl groups per 1 mol of the total amount of alkenyl groups.
From the viewpoint of easily forming the adhesive part 15 having desirable mechanical properties, the total amount of hydrosilyl groups of the silicone compound (C) per 1 mol of the total amount of alkenyl groups of the polyoxyalkylene polymer (A) is preferably Is 0.1 mol or more and 2.0 mol or less, more preferably 0.4 mol or more and 1.5 mol or less.

(ヒドロシリル化触媒(D))
粘着部15の形成に用いられる組成物は、前述のポリオキシアルキレン系重合体(A)、及び導電材料(B)、及びシリコーン化合物(C)とともに、ヒドロシリル化触媒(D)を含むのが好ましい。
(Hydrosilylation catalyst (D))
The composition used for forming the adhesive portion 15 preferably contains a hydrosilylation catalyst (D) together with the aforementioned polyoxyalkylene polymer (A), conductive material (B), and silicone compound (C). .

ヒドロシリル化触媒(D)は、ポリオキシアルキレン系重合体(A)が有するアルケニル基と、シリコーン化合物(C)が有するヒドロシリル基との間でのヒドロシリル化反応を促進すれば特に限定されず、従来から使用されている種々のヒドロシリル化反応用の触媒から適宜選択できる。   The hydrosilylation catalyst (D) is not particularly limited as long as it promotes the hydrosilylation reaction between the alkenyl group of the polyoxyalkylene polymer (A) and the hydrosilyl group of the silicone compound (C). Can be appropriately selected from the various catalysts for hydrosilylation used.

ヒドロシリル化触媒(D)としては、具体的には、塩化白金酸、白金−ビニルシロキサン錯体(例えば、白金−1,3−ジビニル−1,1,3,3,−テトラメチルジシロキサン錯体や白金−1,3,5,7−テトラビニル−1,3,5,7−テトラメチルシクロテトラシロキサン錯体)、白金−オレフィン錯体(例えば、Pt(ViMeSiOSiMeVi)、Pt[(MeViSiO)(但し、l、m、nは正の整数を示し、Viはビニル基である。))等が例示される。 Specific examples of the hydrosilylation catalyst (D) include chloroplatinic acid, platinum-vinylsiloxane complexes (for example, platinum-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complexes and platinum). -1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane complex), platinum-olefin complexes (for example, Pt l (ViMe 2 SiOSiMe 2 Vi) m , Pt [(MeViSiO 4 ] n (wherein l, m, and n are positive integers, and Vi is a vinyl group)) and the like.

これらのうちでも、触媒の活性の点からは、強酸の共役塩基を配位子として含まない白金錯体触媒が好ましく、白金−ビニルシロキサン錯体がより好ましく、白金−1,3−ジビニル−1,1,3,3,−テトラメチルジシロキサン錯体、又は白金−1,3,5,7−テトラビニル−1,3,5,7−テトラメチルシクロテトラシロキサン錯体が特に好ましい。   Among these, from the viewpoint of the activity of the catalyst, a platinum complex catalyst not containing a strong acid conjugate base as a ligand is preferable, a platinum-vinylsiloxane complex is more preferable, and platinum-1,3-divinyl-1,1 is preferable. 3,3, -tetramethyldisiloxane complex or platinum-1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane complex is particularly preferred.

ヒドロシリル化触媒(D)の量は特に制限はないが、ポリオキシアルキレン系重合体(A)が有するアルケニル基の総量1molに対して、好ましくは10−8mol以上10−1mol以下であり、より好ましくは10−6mol以上10−2mol以下である。
上記範囲内であれば、適切な硬化速度、安定な硬化性、組成物の必要なポットライフの確保等が達成しやすくなる。
The amount of the hydrosilylation catalyst (D) is not particularly limited, but is preferably 10 −8 mol or more and 10 −1 mol or less with respect to 1 mol of the total amount of alkenyl groups of the polyoxyalkylene polymer (A), More preferably, it is 10 −6 mol or more and 10 −2 mol or less.
If it is in the said range, it will become easy to achieve appropriate hardening rate, stable sclerosis | hardenability, ensuring of the pot life required of a composition, etc.

(貯蔵安定剤)
粘着部15の形成に用いられる組成物に、シリコーン化合物(C)とヒドロシリル化触媒とを加える場合、貯蔵安定剤としては、脂肪族不飽和結合を含有する化合物、有機リン化合物、有機硫黄化合物、窒素含有化合物、錫系化合物、及び有機過酸化物等を組成物に加えるのが好ましい。
(Storage stabilizer)
When the silicone compound (C) and the hydrosilylation catalyst are added to the composition used for forming the adhesive portion 15, the storage stabilizer includes a compound containing an aliphatic unsaturated bond, an organic phosphorus compound, an organic sulfur compound, It is preferable to add a nitrogen-containing compound, a tin-based compound, an organic peroxide, and the like to the composition.

貯蔵安定剤は、シリコーン化合物(C)におけるヒドロシリル基(Si−H基)のSi−OH基への転化(長時間の放置や湿分の混入に起因する)を抑制し、塗工のポットライフを向上させることができる。貯蔵安定剤の配合量は、シリコーン化合物(C)に起因して硬化性組成物に含まれるヒドロシリル基の総量1molに対して、好ましくは10−6から10−1molである。 Storage stabilizer suppresses conversion of hydrosilyl group (Si-H group) to Si-OH group in silicone compound (C) (due to standing for a long time or mixing of moisture), and pot life of coating Can be improved. The amount of the storage stabilizer is preferably 10 −6 to 10 −1 mol with respect to 1 mol of the total amount of hydrosilyl groups contained in the curable composition due to the silicone compound (C).

(ポリエチレングリコール)
粘着部15の形成に用いられる組成物は、ポリエチレングリコールを含有するのも好ましい。例えば、ポリエチレングリコール
例えば、Y.−S. Hsiao et al., J. Mater. Chem. 2008, 18, 5948には、PEDOT/PSSのような導電性材料についての、ジメチルスルホキシドやエチレングリコール等の高沸点有機化合物の添加による導電性の向上が報告されている。
このことから分かるように、粘着部15の形成に用いられる組成物に高沸点であるポリエチレングリコール(PEG)を配合することにより、導電性に優れる粘着部15を形成しやすい。
(Polyethylene glycol)
It is also preferable that the composition used for forming the adhesive portion 15 contains polyethylene glycol. For example, polyethylene glycol. -S. Hsiao et al. , J. et al. Mater. Chem. In 2008, 18, 5948, it is reported that the conductivity of a conductive material such as PEDOT / PSS is improved by the addition of a high boiling point organic compound such as dimethyl sulfoxide or ethylene glycol.
As can be seen from this, the adhesive part 15 having excellent conductivity can be easily formed by blending polyethylene glycol (PEG) having a high boiling point with the composition used for forming the adhesive part 15.

PEGの分子量としては、1000以下が好ましい。PEGの分子量が過大であると、PEGがポリオキシアルキレン系重合体(A)に相溶しにくく、体積抵抗率低下に関する所望する効果を得にくい場合がある。   The molecular weight of PEG is preferably 1000 or less. If the molecular weight of PEG is excessive, PEG is difficult to be compatible with the polyoxyalkylene polymer (A), and it may be difficult to obtain a desired effect relating to volume resistivity reduction.

PEGの添加量としては、ポリオキシアルキレン系重合体(A)100質量部に対して、1質量部以上100質量部以下が好ましい。
かかる範囲の量のPEGを用いることにより、ポリオキシアルキレン系重合体(A)にPEGを相溶させることとで、粘着部15の導電性を高めつつ、所望する粘着性を有する粘着部15を形成しやすい。
The amount of PEG added is preferably 1 part by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the polyoxyalkylene polymer (A).
By using the amount of PEG in such a range, the polyoxyalkylene polymer (A) is compatible with PEG, thereby increasing the conductivity of the adhesive portion 15 and providing the adhesive portion 15 having the desired adhesiveness. Easy to form.

(その他の材料)
粘着部15の形成に用いられる組成物は、上記の成分の他に、本発明の目的を阻害しない範囲で、種々の成分を含んでいてもよい。
例えば、ヒドロシリル化反応による効果について前述したが、組成物が、シリコーン化合物(C)やヒドロシリル化触媒(D)を含まない場合、組成物に一般的な光重合開始剤を配合し、前述の式(1)で表されるアルケニル基同士を反応させて、光硬化によって粘着部15を形成してもよい。
(Other materials)
The composition used for forming the adhesive portion 15 may contain various components in addition to the above components as long as the object of the present invention is not impaired.
For example, the effect of the hydrosilylation reaction has been described above. When the composition does not contain the silicone compound (C) or the hydrosilylation catalyst (D), a general photopolymerization initiator is added to the composition, The alkenyl groups represented by (1) may be reacted with each other to form the adhesive portion 15 by photocuring.

さらに、粘着部15の形成に用いられる組成物には、以上説明した成分に加えて、界面活性剤、酸化防止剤、紫外線吸収剤、顔料、染料、可塑剤、及びチクソ性付与剤等の、従らより種々の樹脂組成物に配合されている添加剤を配合することができる。   Furthermore, in addition to the components described above, the composition used for forming the adhesive portion 15 includes a surfactant, an antioxidant, an ultraviolet absorber, a pigment, a dye, a plasticizer, and a thixotropic agent. Accordingly, additives that are blended in various resin compositions can be blended.

(粘着部の形成方法)
粘着部15の形成方法は特に限定されない。典型的には、上述の組成物を所望する膜厚に製膜した後、得られた膜を硬化させることにより粘着部15が形成される。
硬化方法は特に限定されず、組成物の成分に応じて適宜選択される。
例えば、組成物が、前述の式(1)で表されるポリオキシアルキレン系重合体(A)と、導電性材料(B)と、ヒドロシリル基を有するシリコーン化合物(C)と、ヒドロシリル化触媒(D)とを含む場合、硬化条件としては、40℃以上180℃以下での、1分以上180分以下の間の加熱が例示される。
硬化をより完全にしたい場合には、さらに、40℃以上80℃以下にて数日間放置しておいてもよい。
(Formation method of adhesive part)
The formation method of the adhesion part 15 is not specifically limited. Typically, the adhesive portion 15 is formed by forming the above-described composition into a desired film thickness and then curing the obtained film.
The curing method is not particularly limited, and is appropriately selected according to the components of the composition.
For example, the composition comprises a polyoxyalkylene polymer (A) represented by the above formula (1), a conductive material (B), a silicone compound (C) having a hydrosilyl group, a hydrosilylation catalyst ( D), the curing conditions include heating at 40 ° C. to 180 ° C. for 1 minute to 180 minutes.
When it is desired to complete the curing, it may be further allowed to stand at 40 ° C. or higher and 80 ° C. or lower for several days.

[実施例1〜3、及び比較例1]
次に、本発明の各実施形態に係る電極シート及び生体信号取得装置について、以下の実施例及び比較例により説明する。なお、本発明の範囲は、以下に示す実施例によりなんら限定されない。
[Examples 1-3 and Comparative Example 1]
Next, the electrode sheet and biological signal acquisition apparatus according to each embodiment of the present invention will be described with reference to the following examples and comparative examples. The scope of the present invention is not limited at all by the examples shown below.

実施例及び比較例では、粘着部の構成をそれぞれ変更して比較した。また、生体信号として脳波を取得した。   In Examples and Comparative Examples, the configurations of the adhesive portions were changed and compared. Moreover, the electroencephalogram was acquired as a biological signal.

〔合成例1〕
ポリプロピレングリコールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒を用いてプロピレンオキシドを重合し、数平均分子量約28,500(送液システムとして東ソー製HLC−8120GPCを用い、カラムは東ソー製TSK−GEL Hタイプを用い、溶媒はTHFを用いて測定したポリスチレン換算分子量)のポリプロピレンオキシドを得た。
このヒドロキシル基末端ポリプロピレンオキシドのヒドロキシル基に対して1.2倍当量のNaOMeのメタノール溶液を添加してメタノールを留去し、さらに塩化アリルを添加して末端の水酸基をアリル基に変換した。
得られた未精製のアリル末端ポリプロピレンオキシド100質量部に対し、n−ヘキサン300質量部と、水300質量部を混合撹拌した後、遠心分離により水を除去し、得られたヘキサン溶液にさらに水300質量部を混合撹拌し、再度遠心分離により水を除去した後、ヘキサンを減圧脱揮により除去した。
以上により、末端がアリル基である数平均分子量約28,500のポリオキシプロピレン系重合体(A1−1)を得た。
[Synthesis Example 1]
Polypropylene glycol is used as an initiator, propylene oxide is polymerized using a zinc hexacyanocobaltate glyme complex catalyst, and a number average molecular weight of about 28,500 (Tosoh's HLC-8120GPC is used as the liquid feeding system, and the column is Tosoh's TSK-GEL. The H type was used, and the solvent was a polypropylene oxide having a molecular weight in terms of polystyrene measured using THF.
A 1.2-fold equivalent of a methanol solution of NaOMe with respect to the hydroxyl group of the hydroxyl group-terminated polypropylene oxide was added to distill off the methanol, and allyl chloride was further added to convert the terminal hydroxyl group into an allyl group.
After mixing and stirring 300 parts by mass of n-hexane and 300 parts by mass of water with respect to 100 parts by mass of the obtained unpurified allyl-terminated polypropylene oxide, water was removed by centrifugation, and water was further added to the resulting hexane solution. 300 parts by mass were mixed and stirred, and after removing water again by centrifugation, hexane was removed by vacuum devolatilization.
As described above, a polyoxypropylene polymer (A1-1) having a number average molecular weight of about 28,500 having an allyl group at the end was obtained.

〔合成例2〕
ブタノールを開始剤とする以外は合成例1と同様の方法により、片方の末端がアリル基である数平均分子量7,000のポリオキシプロピレン系重合体(A1−2)を得た。
[Synthesis Example 2]
A polyoxypropylene polymer (A1-2) having a number average molecular weight of 7,000 having one end of an allyl group was obtained in the same manner as in Synthesis Example 1 except that butanol was used as an initiator.

〔合成例3〕
下記の化学式(3)で表されるメチルハイドロジェンシリコーン(式中、xは平均5である)に白金触媒存在下、全ヒドロシリル基量の0.6当量のα−メチルスチレンを添加し、1分子中に平均2個のヒドロシリル基を有するシリコーン化合物(C−1)を得た。このシリコーン化合物のヒドロシリル基含有量は2.5mmol/gであった。

Figure 2019051236
[Synthesis Example 3]
In the presence of a platinum catalyst, 0.6 equivalent of α-methylstyrene of the total hydrosilyl group amount is added to methyl hydrogen silicone represented by the following chemical formula (3) (wherein x is an average of 5), A silicone compound (C-1) having an average of two hydrosilyl groups in the molecule was obtained. The hydrosilyl group content of this silicone compound was 2.5 mmol / g.
Figure 2019051236

〔合成例4〕
銀(アルドリッチ社製、フレーク状、粒子径10μm)0.5gと、濃度274mol/Lの塩化鉄(III)の水溶液6g(和光純薬工業社製の40%塩化鉄(III)溶液を用いて調製)とを混合して、15分間撹拌した。撹拌後に生成した塩化銀(I)を、水とエタノールで洗浄した後、100℃で10分乾燥して、塩化銀(I)(E−1)0.67gを得た。
[Synthesis Example 4]
Using 0.5 g of silver (Aldrich, flaky, particle size 10 μm) and 6 g of an aqueous solution of iron (III) chloride with a concentration of 274 mol / L (40% iron (III) chloride solution manufactured by Wako Pure Chemical Industries, Ltd.) Prepared) and stirred for 15 minutes. The silver chloride (I) produced after stirring was washed with water and ethanol, and then dried at 100 ° C. for 10 minutes to obtain 0.67 g of silver chloride (I) (E-1).

〔実施例1〕
2−プロパノールとエタノールの割合が98/2(wt/wt)の溶液に、PEDOT/PSS(B−1)(Agfa製Orgacon)を、濃度1wt%になるように添加し、超音波を用いてPEDOT/PSS(B−1)を分散させた。
ポリオキシプロピレン系重合体(A1−1)83.8質量部とポリオキシプロピレン系重合体(A1−2)16.2質量部の合計100質量部に対し、PEDOT/PSS(B−1)が分散した溶液500質量部(PEDOT/PSS(B−1)を5質量部含有)添加し、撹拌した。
なお、PEDT/PSS(B−1)において、PEDOT:PSS(質量比)は1:2.5であった。
撹拌後、エバポレーターによって、80℃で2−プロパノールとエタノールとを除去し、ポリオキシプロピレン系重合体とPEDOT/PSS(B−1)との混合物を得た。
[Example 1]
PEDOT / PSS (B-1) (Orgacon manufactured by Agfa) was added to a solution having a ratio of 2-propanol and ethanol of 98/2 (wt / wt) to a concentration of 1 wt%, and ultrasonic waves were used. PEDOT / PSS (B-1) was dispersed.
For a total of 100 parts by mass of 83.8 parts by mass of the polyoxypropylene polymer (A1-1) and 16.2 parts by mass of the polyoxypropylene polymer (A1-2), PEDOT / PSS (B-1) is 500 parts by mass of the dispersed solution (containing 5 parts by mass of PEDOT / PSS (B-1)) was added and stirred.
In PEDT / PSS (B-1), PEDOT: PSS (mass ratio) was 1: 2.5.
After stirring, 2-propanol and ethanol were removed at 80 ° C. with an evaporator to obtain a mixture of a polyoxypropylene polymer and PEDOT / PSS (B-1).

得られた混合物に、泡消剤としてジメチルシリコーン(信越化学製KF−96−100cs)をポリオキシプロピレン系重合体(A1−1、及びA1−2)100質量部に対して2.0重量部、マレイン酸ジメチル1.0質量部を添加した。
ディスポカップに混合物を加えた後、白金触媒(D)として白金−1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体(3質量%白金イソプロパノール溶液)(D−1)をポリオキシプロピレン系重合体(A1−1、及びA1−2)100質量部に対して1000μL添加し、シリコーン化合物(C−1)を2.5質量部を添加した後、カップ内の混合物をスパチュラで5分間撹拌し、粘着部形成用の組成物を得た。
To the obtained mixture, dimethyl silicone (KF-96-100cs manufactured by Shin-Etsu Chemical Co., Ltd.) as a defoaming agent was added in an amount of 2.0 parts by weight based on 100 parts by weight of the polyoxypropylene polymer (A1-1 and A1-2). Then, 1.0 part by mass of dimethyl maleate was added.
After adding the mixture to the disposable cup, platinum-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex (3 mass% platinum isopropanol solution) (D-1) is used as the platinum catalyst (D). After adding 1000 microliters with respect to 100 mass parts of polyoxypropylene-type polymers (A1-1 and A1-2) and adding 2.5 mass parts of silicone compounds (C-1), the mixture in a cup is made a spatula. Was stirred for 5 minutes to obtain a composition for forming an adhesive part.

得られた組成物を用いて、スクリーン印刷法と、離形フィルム上の粘着層を転写する方法により粘着部を形成し、図1に示される構成のシート状電極を形成可能か否確認した。
なお、スクリーン印刷法により形成された塗布膜の硬化は120℃5分間の加熱に次いで40℃24時間加熱する条件で行った。また、離形フィルム上の粘着層は、離形フィルム上にスクリーン印刷法により組成物からなる塗布膜を形成した後、塗布膜を120℃5分間の加熱に次いで40℃24時間加熱して形成した。
上記の確認試験の結果、上記の組成物を用いて、スクリーン印刷法でも、離形フィルム上の粘着層を転写する方法でも、所望する形状及び膜厚(26μm)の粘着部を形成し、図1に示される構成のシート状電極を製造することができた。
Using the obtained composition, an adhesive part was formed by a screen printing method and a method of transferring an adhesive layer on a release film, and it was confirmed whether or not a sheet-like electrode having the configuration shown in FIG. 1 could be formed.
The coating film formed by the screen printing method was cured under the condition of heating at 120 ° C. for 5 minutes followed by heating at 40 ° C. for 24 hours. The pressure-sensitive adhesive layer on the release film is formed by forming a coating film made of the composition on the release film by screen printing, and then heating the coating film at 120 ° C. for 5 minutes, followed by heating at 40 ° C. for 24 hours. did.
As a result of the above confirmation test, an adhesive part having a desired shape and film thickness (26 μm) is formed using the above composition by either a screen printing method or a method of transferring an adhesive layer on a release film. The sheet-like electrode having the configuration shown in FIG.

また、スクリーン印刷法によって、膜厚26μmの粘着部を形成することにより、図1、図5、及び図7に示される構成のシート状電極を製造した。
なお、形成された粘着部について、厚さ方向の体積抵抗率(R、Ωcm)と、面内方向の体積抵抗率(R,Ωcm)とを測定した。測定結果を表1に記す。
得られたシート状電極を被験者の額に貼り付け、インピーダンス測定を行ったところ、図1及び図5に示される構成のシート状電極のインピーダンス測定結果は、脳波計測を良好に行うことができるレベルであった。他方で、図7に示される構成のシート状電極を用いる場合には、脳波を良好に計測しにくかった。
図7に示される構成のシート状電極では、シート状電極の略全面が粘着部により被覆されている。実施例1で得た組成物を用いて形成された粘着部の導電性の異方性はそれほど大きくないため、図7に示される構成のシート状電極では複数の電極間での短絡が生じ、脳波を良好に計測しにくかったと考えられる。
Moreover, the sheet-like electrode of the structure shown by FIG.1, FIG.5 and FIG.7 was manufactured by forming the adhesion part with a film thickness of 26 micrometers by the screen printing method.
Note that the formed adhesive section, the volume resistivity in the thickness direction (R A, [Omega] cm), a volume resistivity in-plane direction (R B, [Omega] cm) and was measured. The measurement results are shown in Table 1.
When the obtained sheet-like electrode was attached to the subject's forehead and impedance measurement was performed, the impedance measurement result of the sheet-like electrode having the configuration shown in FIGS. 1 and 5 is a level at which electroencephalogram measurement can be satisfactorily performed. Met. On the other hand, when the sheet-like electrode having the configuration shown in FIG. 7 is used, it is difficult to measure the electroencephalogram well.
In the sheet-like electrode having the configuration shown in FIG. 7, substantially the entire surface of the sheet-like electrode is covered with the adhesive portion. Since the conductivity anisotropy of the adhesive part formed using the composition obtained in Example 1 is not so large, a short circuit occurs between a plurality of electrodes in the sheet-like electrode having the configuration shown in FIG. It is thought that it was difficult to measure the electroencephalogram well.

さらに、インピーダンスの測定後に、シート状電極を被験者の額から剥離させ、剥離後の、肌への粘着部の付着の有無を目視により確認した。その結果、シート状電極の剥離後の、肌への粘着部の付着は確認されなかった。   Furthermore, after measuring the impedance, the sheet-like electrode was peeled off from the subject's forehead, and the presence or absence of the adhesive part adhering to the skin after peeling was confirmed visually. As a result, adhesion of the adhesive part to the skin after peeling of the sheet electrode was not confirmed.

〔実施例2〕
PEDOT/PSS(B−1)を含む2−プロパノール及びエタノール中の分散液に変えて、合成例4で得た塩化銀(I)(E−1)6.9質量部を組成物に加えることの他は、実施例1と同様にして粘着剤層形成用の組成物を得た。
[Example 2]
Change to a dispersion in 2-propanol and ethanol containing PEDOT / PSS (B-1), and add 6.9 parts by mass of silver chloride (I) (E-1) obtained in Synthesis Example 4 to the composition. Otherwise, a composition for forming an adhesive layer was obtained in the same manner as in Example 1.

得られた組成物を用いて、スクリーン印刷法と、離形フィルム上の粘着層を転写する方法により粘着部を形成し、図1に示される構成のシート状電極を形成可能か否確認した。
なお、スクリーン印刷法により形成された塗布膜の硬化は120℃5分間の加熱に次いで40℃24時間加熱する条件で行った。また、離形フィルム上の粘着層は、離形フィルム上にスクリーン印刷法により組成物からなる塗布膜を形成した後、塗布膜を120℃5分間の加熱に次いで40℃24時間加熱して形成した。
上記の確認試験の結果、上記の組成物を用いて、スクリーン印刷法でも、離形フィルム上の粘着層を転写する方法でも、所望する形状及び膜厚(25μm)の粘着部を形成し、図1に示される構成のシート状電極を製造することができた。
Using the obtained composition, an adhesive part was formed by a screen printing method and a method of transferring an adhesive layer on a release film, and it was confirmed whether or not a sheet-like electrode having the configuration shown in FIG. 1 could be formed.
The coating film formed by the screen printing method was cured under the condition of heating at 120 ° C. for 5 minutes followed by heating at 40 ° C. for 24 hours. The pressure-sensitive adhesive layer on the release film is formed by forming a coating film made of the composition on the release film by screen printing, and then heating the coating film at 120 ° C. for 5 minutes, followed by heating at 40 ° C. for 24 hours. did.
As a result of the above confirmation test, an adhesive part having a desired shape and film thickness (25 μm) was formed by using the above composition by either a screen printing method or a method of transferring an adhesive layer on a release film. The sheet-like electrode having the configuration shown in FIG.

また、スクリーン印刷法によって、膜厚25μmの粘着部を形成することにより、図1、図5、及び図7に示される構成のシート状電極を製造した。
なお、形成された粘着部について、厚さ方向の体積抵抗率(R、Ωcm)と、面内方向の体積抵抗率(R,Ωcm)とを測定した。測定結果を表1に記す。
得られたシート状電極を被験者の額に貼り付け、脳波計測を行ったところ、図1、図5及び図7のいずれに示される構成のシート状電極を用いる場合でも、脳波を良好に計測できた。
図7に示される構成のシート状電極では、シート状電極の略全面が粘着部により被覆されている。実施例2で得た組成物を用いて形成された粘着部は高い異方導電性を示すため、図7に示される構成のシート状電極を用いる場合でも、複数の電極間での短絡が生じず、脳波を良好に計測できたと考えられる。
Moreover, the sheet-like electrode of the structure shown by FIG.1, FIG.5 and FIG.7 was manufactured by forming the adhesion part with a film thickness of 25 micrometers by the screen printing method.
Note that the formed adhesive section, the volume resistivity in the thickness direction (R A, [Omega] cm), a volume resistivity in-plane direction (R B, [Omega] cm) and was measured. The measurement results are shown in Table 1.
When the obtained sheet-like electrode was attached to the subject's forehead and the electroencephalogram was measured, the electroencephalogram could be satisfactorily measured even when the sheet-like electrode having the configuration shown in any of FIGS. 1, 5, and 7 was used. It was.
In the sheet-like electrode having the configuration shown in FIG. 7, substantially the entire surface of the sheet-like electrode is covered with the adhesive portion. Since the adhesive part formed using the composition obtained in Example 2 exhibits high anisotropic conductivity, even when the sheet-like electrode having the configuration shown in FIG. 7 is used, a short circuit occurs between a plurality of electrodes. It is thought that the electroencephalogram could be measured well.

さらに、脳波の測定後に、シート状電極を被験者の額から剥離させ、剥離後の、肌への粘着部の付着の有無を目視により確認した。その結果、シート状電極の剥離後の、肌への粘着部の付着は確認されなかった。   Furthermore, after the electroencephalogram measurement, the sheet-like electrode was peeled off from the subject's forehead, and the presence or absence of the adhesive part on the skin after peeling was confirmed visually. As a result, adhesion of the adhesive part to the skin after peeling of the sheet electrode was not confirmed.

〔実施例3〕
合成例4で得た塩化銀(I)(E−1)6.9質量部を組成物に加えることとの他は、実施例1と同様にして粘着剤層形成用の組成物を得た。
Example 3
A composition for forming an adhesive layer was obtained in the same manner as in Example 1 except that 6.9 parts by mass of silver chloride (I) (E-1) obtained in Synthesis Example 4 was added to the composition. .

得られた組成物を用いて、スクリーン印刷法と、離形フィルム上の粘着層を転写する方法により粘着部を形成し、図1に示される構成のシート状電極を形成可能か否確認した。
なお、スクリーン印刷法により形成された塗布膜の硬化は120℃5分間の加熱に次いで40℃24時間加熱する条件で行った。また、離形フィルム上の粘着層は、離形フィルム上にスクリーン印刷法により組成物からなる塗布膜を形成した後、塗布膜を120℃5分間の加熱に次いで40℃24時間加熱して形成した。
上記の確認試験の結果、上記の組成物を用いて、スクリーン印刷法でも、離形フィルム上の粘着層を転写する方法でも、所望する形状及び膜厚(26μm)の粘着部を形成し、図1に示される構成のシート状電極を製造することができた。
Using the obtained composition, an adhesive part was formed by a screen printing method and a method of transferring an adhesive layer on a release film, and it was confirmed whether or not a sheet-like electrode having the configuration shown in FIG. 1 could be formed.
The coating film formed by the screen printing method was cured under the condition of heating at 120 ° C. for 5 minutes followed by heating at 40 ° C. for 24 hours. The pressure-sensitive adhesive layer on the release film is formed by forming a coating film made of the composition on the release film by screen printing, and then heating the coating film at 120 ° C. for 5 minutes, followed by heating at 40 ° C. for 24 hours. did.
As a result of the above confirmation test, an adhesive part having a desired shape and film thickness (26 μm) is formed using the above composition by either a screen printing method or a method of transferring an adhesive layer on a release film. The sheet-like electrode having the configuration shown in FIG.

また、スクリーン印刷法によって、膜厚26μmの粘着部を形成することにより、図1、図5、及び図7に示される構成のシート状電極を製造した。
なお、形成された粘着部について、厚さ方向の体積抵抗率(R、Ωcm)と、面内方向の体積抵抗率(R,Ωcm)とを測定した。測定結果を表1に記す。
得られたシート状電極を被験者の額に貼り付け、脳波計測を行ったところ、図1、図5及び図7のいずれに示される構成のシート状電極を用いる場合でも、脳波を良好に計測できた。
図7に示される構成のシート状電極では、シート状電極の略全面が粘着部により被覆されている。実施例2で得た組成物を用いて形成された粘着部は高い異方導電性を示すため、図7に示される構成のシート状電極を用いる場合でも、複数の電極間での短絡が生じず、脳波を良好に計測できたと考えられる。
Moreover, the sheet-like electrode of the structure shown by FIG.1, FIG.5 and FIG.7 was manufactured by forming the adhesion part with a film thickness of 26 micrometers by the screen printing method.
Note that the formed adhesive section, the volume resistivity in the thickness direction (R A, [Omega] cm), a volume resistivity in-plane direction (R B, [Omega] cm) and was measured. The measurement results are shown in Table 1.
When the obtained sheet-like electrode was attached to the subject's forehead and the electroencephalogram was measured, the electroencephalogram could be satisfactorily measured even when the sheet-like electrode having the configuration shown in any of FIGS. 1, 5, and 7 was used. It was.
In the sheet-like electrode having the configuration shown in FIG. 7, substantially the entire surface of the sheet-like electrode is covered with the adhesive portion. Since the adhesive part formed using the composition obtained in Example 2 exhibits high anisotropic conductivity, even when the sheet-like electrode having the configuration shown in FIG. 7 is used, a short circuit occurs between a plurality of electrodes. It is thought that the electroencephalogram could be measured well.

さらに、脳波の測定後に、シート状電極を被験者の額から剥離させ、剥離後の、肌への粘着部の付着の有無を目視により確認した。その結果、シート状電極の剥離後の、肌への粘着部の付着は確認されなかった。   Furthermore, after the electroencephalogram measurement, the sheet-like electrode was peeled off from the subject's forehead, and the presence or absence of the adhesive part on the skin after peeling was confirmed visually. As a result, adhesion of the adhesive part to the skin after peeling of the sheet electrode was not confirmed.

〔比較例1〕
比較例1では、粘着部の材料として市販の医療用ハイドロゲルペーストを用いた。かかるハイドロゲルペーストには、スクリーン印刷法や、離形フィルム上の粘着層を転写する方法を粘着部の形成方法として適用できなかった。
[Comparative Example 1]
In Comparative Example 1, a commercially available medical hydrogel paste was used as the material for the adhesive part. For such a hydrogel paste, a screen printing method or a method of transferring an adhesive layer on a release film cannot be applied as a method for forming an adhesive part.

また、指によりハイドロゲルペーストをなでつけることによって、膜厚20μmの粘着部を形成し、図1に示される構成のシート状電極を製造した。
なお、形成された粘着部について、厚さ方向の体積抵抗率(R、Ωcm)と、面内方向の体積抵抗率(R,Ωcm)とを測定した。測定結果を表1に記す。
得られたシート状電極を被験者の額に貼り付け、脳波計測を行ったところ、図1に示される構成のシート状電極を用いることにより、脳波を良好に計測できた。
Moreover, the adhesive part with a film thickness of 20 micrometers was formed by stroking hydrogel paste with a finger | toe, and the sheet-like electrode of the structure shown by FIG. 1 was manufactured.
Note that the formed adhesive section, the volume resistivity in the thickness direction (R A, [Omega] cm), a volume resistivity in-plane direction (R B, [Omega] cm) and was measured. The measurement results are shown in Table 1.
When the obtained sheet-like electrode was attached to the subject's forehead and electroencephalogram measurement was performed, the electroencephalogram could be satisfactorily measured by using the sheet-like electrode having the configuration shown in FIG.

さらに、脳波の測定後に、シート状電極を被験者の額から剥離させ、剥離後の、肌への粘着部の付着の有無を目視により確認した。その結果、シート状電極の剥離後の、肌への粘着部の付着が確認された。   Furthermore, after the electroencephalogram measurement, the sheet-like electrode was peeled off from the subject's forehead, and the presence or absence of the adhesive part on the skin after peeling was confirmed visually. As a result, adhesion of the adhesive part to the skin after peeling of the sheet-like electrode was confirmed.

Figure 2019051236
Figure 2019051236

以上、本発明の電極シート、電極シートの製造方法、生体信号取得装置、及び生体信号取得方法の好ましい各実施形態につき説明したが、本発明は、上述の実施形態に制限されるものではなく、適宜変更が可能である。   As described above, the preferred embodiments of the electrode sheet, the electrode sheet manufacturing method, the biological signal acquisition device, and the biological signal acquisition method of the present invention have been described, but the present invention is not limited to the above-described embodiments. Changes can be made as appropriate.

また、上記実施形態において、実施形態1及び2では、導電材料は、導電性ポリマー及び導電性微粒子の少なくとも一方であることが好ましい。また、実施形態3では、導電材料は少なくとも導電性微粒子を含むことが好ましい。また、上記実施形態3にかかる電極シート及び生体信号取得装置においては、粘着部15Bの面内方向D1の抵抗値が高いことから、伸縮性カバー13を設けなくてもよい。即ち、粘着部15を、伸縮性電極12、伸縮性引出配線11、及び伸縮性基材10の一主面上に配置するようにしてもよい。   In the above embodiment, in Embodiments 1 and 2, the conductive material is preferably at least one of a conductive polymer and conductive fine particles. In Embodiment 3, the conductive material preferably includes at least conductive fine particles. Further, in the electrode sheet and the biological signal acquisition device according to Embodiment 3, the stretchable cover 13 may not be provided because the resistance value in the in-plane direction D1 of the adhesive portion 15B is high. That is, the adhesive portion 15 may be disposed on one main surface of the stretchable electrode 12, the stretchable lead wire 11, and the stretchable base material 10.

また、上記実施形態において、伸縮性電極12及び伸縮性引出配線11は、伸縮性基材10の両主面上に形成されてもよい。また、伸縮性電極12及び伸縮性引出配線11は、伸縮性基材10の異なる主面上に形成されてもよい。この場合、伸縮性電極12及び伸縮性基材10の一主面上に粘着部15を配置するようにしてもよい。   In the above-described embodiment, the stretchable electrode 12 and the stretchable lead wire 11 may be formed on both main surfaces of the stretchable substrate 10. In addition, the stretchable electrode 12 and the stretchable lead wire 11 may be formed on different main surfaces of the stretchable substrate 10. In this case, you may make it arrange | position the adhesion part 15 on one main surface of the elastic electrode 12 and the elastic base material 10. FIG.

また、上記実施形態では、生体信号として脳波を一例に説明したが、電極シート1,1A,1Bは、脈拍等の他の生体信号を取得してもよい。   Moreover, in the said embodiment, although the electroencephalogram was demonstrated to an example as a biological signal, the electrode sheets 1, 1A, and 1B may acquire other biological signals, such as a pulse.

また、上記実施形態では、粘着部15,15A,15Bを印刷法で形成する例を示したが、これに制限されない。例えば、粘着部15,15A,15Bは、コート法、又は非ゲル材料からなる粘着層の転写により形成されてもよい。   Moreover, in the said embodiment, although the example which forms the adhesion parts 15, 15A, and 15B by the printing method was shown, it is not restrict | limited to this. For example, the adhesive portions 15, 15A, 15B may be formed by a coating method or transfer of an adhesive layer made of a non-gel material.

また、上記実施形態では、伸縮性電極12のそれぞれを粘着部15,15A,15Bで被覆しているが、これに制限されない。電極シート1,1A,1Bを測定対象物に貼付可能である限り、粘着部15,15A,15Bは、少なくとも一つの伸縮性電極12を被覆するようにしてもよい。例えば、粘着部15,15A,15Bは、一つ、好ましくは二つ以上の伸縮性電極12を被覆するようにしてもよい。   Moreover, in the said embodiment, although each of the elastic electrode 12 is coat | covered with adhesion part 15,15A, 15B, it is not restrict | limited to this. As long as the electrode sheets 1, 1 </ b> A, 1 </ b> B can be attached to the measurement object, the adhesive portions 15, 15 </ b> A, 15 </ b> B may cover at least one stretchable electrode 12. For example, the adhesive portions 15, 15 </ b> A, 15 </ b> B may cover one, preferably two or more stretchable electrodes 12.

また、上記実施形態において、電極シート1は、面内方向D1で2つ以上の部分に分離(切り離し)可能に構成されてもよい。このとき、電極シート1は、分離されたそれぞれの部分が少なくとも一つの伸縮性電極12と、この伸縮性電極12に接続される伸縮性引出配線11とを有するのが好ましい。このように、電極シート1を分離可能な構成とすることで、生体信号の取得位置に応じて伸縮性電極12の貼付位置を柔軟に変更することが可能になるので、電極シート1の汎用性を向上することができる。   Moreover, in the said embodiment, the electrode sheet 1 may be comprised so that isolation | separation (separation) can be carried out into two or more parts by the in-plane direction D1. At this time, it is preferable that the electrode sheet 1 has at least one stretchable electrode 12 and each stretched lead wire 11 connected to the stretchable electrode 12 in each separated portion. In this way, by making the electrode sheet 1 separable, the attachment position of the stretchable electrode 12 can be flexibly changed in accordance with the acquisition position of the biological signal. Can be improved.

1,1A,1B 電極シート
10 伸縮性基材
11 伸縮性引出配線
12 伸縮性電極
13 伸縮性カバー
15,15A,15B 粘着部
1, 1A, 1B Electrode sheet 10 Stretchable substrate 11 Stretchable lead wire 12 Stretchable electrode 13 Stretchable cover 15, 15A, 15B Adhesive part

Claims (15)

シート状の伸縮性基材と、二本以上の伸縮性引出配線と、二つ以上の伸縮性電極と、粘着部とを備え、
前記伸縮性基材の少なくとも一方の主面上に二つ以上の前記伸縮性電極が位置し、
前記粘着部が、少なくとも一つの前記伸縮性電極について、前記伸縮性電極の前記伸縮性基材側の面と反対の面の少なくとも一部を接触して被覆し、
二つ以上の前記伸縮性電極のそれぞれに、二本以上の伸縮性引出配線のうちの一本以上が接続され、
前記粘着部が、伸縮性及び導電性を有する非ゲル材料からなる電極シート。
A sheet-like stretchable base material, two or more stretchable lead wires, two or more stretchable electrodes, and an adhesive portion,
Two or more stretchable electrodes are located on at least one main surface of the stretchable substrate,
The adhesive portion covers and covers at least a part of the surface of the stretchable electrode opposite to the stretchable substrate side of at least one stretchable electrode;
One or more of two or more elastic lead wires are connected to each of the two or more elastic electrodes,
An electrode sheet in which the adhesive portion is made of a non-gel material having stretchability and conductivity.
前記非ゲル材料が、粘着性樹脂と導電材料とを含む請求項1に記載の電極シート。   The electrode sheet according to claim 1, wherein the non-gel material includes an adhesive resin and a conductive material. 前記導電材料が、導電性ポリマー、及び/又は導電性微粒子を含む請求項2に記載の電極シート。   The electrode sheet according to claim 2, wherein the conductive material includes a conductive polymer and / or conductive fine particles. 前記導電材料が、前記導電性微粒子を含む請求項3に記載の電極シート。   The electrode sheet according to claim 3, wherein the conductive material contains the conductive fine particles. 前記粘着部の面内方向の体積抵抗率に対する、前記粘着部の厚さ方向の体積抵抗率の相対値が0.5以下である請求項4に記載の電極シート。   The electrode sheet according to claim 4, wherein a relative value of the volume resistivity in the thickness direction of the adhesive portion with respect to the volume resistivity in the in-plane direction of the adhesive portion is 0.5 or less. 前記粘着部が、さらに前記伸縮性基材の主面の少なくとも一部を被覆する請求項4又は5に記載の電極シート。   The electrode sheet according to claim 4 or 5, wherein the adhesive portion further covers at least a part of a main surface of the stretchable base material. 絶縁材料からなり、前記伸縮性引出配線を被覆する伸縮性カバーをさらに備える請求項1乃至6のいずれか一項に記載の電極シート。   The electrode sheet according to claim 1, further comprising a stretchable cover made of an insulating material and covering the stretchable lead wiring. 前記粘着部は、少なくとも前記伸縮性カバーの主面の少なくとも一部を被覆する請求項7に記載の電極シート。   The electrode sheet according to claim 7, wherein the adhesive portion covers at least a part of a main surface of the stretchable cover. 前記粘着部は、前記伸縮性電極を被覆する部分のそれぞれと、他を被覆する部分との間が離間する請求項1乃至8のいずれか一項に記載の電極シート。   The electrode sheet according to any one of claims 1 to 8, wherein the adhesive portion is separated from each of the portions covering the stretchable electrode and the portion covering the other. 前記粘着部は、前記伸縮性電極を被覆する部分と、他を被覆する部分とが一面状である請求項4乃至6のいずれか一項に記載の電極シート。   The electrode sheet according to any one of claims 4 to 6, wherein the adhesive portion has a single surface portion covering the stretchable electrode and a portion covering the other. 請求項1に記載の電極シートを製造する方法であって、
前記伸縮性電極の、前記伸縮性基材の少なくとも一方の主面上への配置と、
前記伸縮性引出配線の、前記伸縮性電極のそれぞれへの接続と、
前記粘着部の形成と、
を備える電極シートの製造方法。
A method for producing the electrode sheet according to claim 1,
Arrangement of the stretchable electrode on at least one main surface of the stretchable substrate;
Connection of the stretchable lead wires to each of the stretchable electrodes;
Forming the adhesive portion;
An electrode sheet manufacturing method comprising:
前記粘着部を、印刷法、コート法、又は非ゲル材料からなる粘着層の転写により形成する請求項11に記載の電極シートの製造方法。   The method for producing an electrode sheet according to claim 11, wherein the adhesive portion is formed by a printing method, a coating method, or transfer of an adhesive layer made of a non-gel material. 請求項1乃至11のいずれか一項に記載の前記電極シートを備える、生体信号取得装置。   A biological signal acquisition apparatus comprising the electrode sheet according to any one of claims 1 to 11. 前記電極シートから送信される生体信号のデータをインターネット又はローカルネットワークを介して取得して、生体の状態を解析する解析装置をさらに備える請求項13に記載の生体信号取得装置。   The biological signal acquisition device according to claim 13, further comprising an analysis device that acquires biological signal data transmitted from the electrode sheet via the Internet or a local network and analyzes the state of the biological body. 請求項13又は14に記載の前記生体信号取得装置を用いる、生体信号取得方法。   The biosignal acquisition method using the said biosignal acquisition apparatus of Claim 13 or 14.
JP2017179041A 2017-09-19 2017-09-19 Electrode sheet, manufacturing method for electrode sheet, biological signal acquisition device, and biological signal acquisition method Pending JP2019051236A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017179041A JP2019051236A (en) 2017-09-19 2017-09-19 Electrode sheet, manufacturing method for electrode sheet, biological signal acquisition device, and biological signal acquisition method
PCT/JP2018/027324 WO2019058739A1 (en) 2017-09-19 2018-07-20 Electrode sheet, electrode sheet manufacturing method, biological signal acquiring device, and biological signal acquiring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017179041A JP2019051236A (en) 2017-09-19 2017-09-19 Electrode sheet, manufacturing method for electrode sheet, biological signal acquisition device, and biological signal acquisition method

Publications (1)

Publication Number Publication Date
JP2019051236A true JP2019051236A (en) 2019-04-04

Family

ID=65809814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017179041A Pending JP2019051236A (en) 2017-09-19 2017-09-19 Electrode sheet, manufacturing method for electrode sheet, biological signal acquisition device, and biological signal acquisition method

Country Status (2)

Country Link
JP (1) JP2019051236A (en)
WO (1) WO2019058739A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022100193A (en) * 2020-12-23 2022-07-05 住友ベークライト株式会社 Wearable biological electrode, biological sensor, and biological signal measurement system
WO2023054267A1 (en) * 2021-09-29 2023-04-06 日東電工株式会社 Electrode pad and biometric sensor
JP7596528B2 (en) 2021-05-24 2024-12-09 パナソニックホールディングス株式会社 Composition and method for producing electronic device using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2610390B (en) * 2021-09-01 2024-12-18 Probiometrics Ltd System for capacitively capturing electrical biosignals from a biosignal source and associated method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0947437A (en) * 1995-08-10 1997-02-18 Nitto Denko Corp Electrode for organism
JP4221951B2 (en) * 2002-05-24 2009-02-12 東洋インキ製造株式会社 Ion conductive adhesive and method for producing the same
JP2004344523A (en) * 2003-05-23 2004-12-09 Sekisui Chem Co Ltd Electrode plate and electrode plate for medical appliance
JP2012045373A (en) * 2010-07-26 2012-03-08 Sharp Corp Biometric apparatus, biometric method, control program for biometric apparatus, and recording medium recording the control program
EP3245948B1 (en) * 2015-01-14 2021-03-24 Toyobo Co., Ltd. Stretchable electrode sheet and biological information measurement interface

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022100193A (en) * 2020-12-23 2022-07-05 住友ベークライト株式会社 Wearable biological electrode, biological sensor, and biological signal measurement system
JP7596528B2 (en) 2021-05-24 2024-12-09 パナソニックホールディングス株式会社 Composition and method for producing electronic device using same
WO2023054267A1 (en) * 2021-09-29 2023-04-06 日東電工株式会社 Electrode pad and biometric sensor

Also Published As

Publication number Publication date
WO2019058739A1 (en) 2019-03-28

Similar Documents

Publication Publication Date Title
JP2019051236A (en) Electrode sheet, manufacturing method for electrode sheet, biological signal acquisition device, and biological signal acquisition method
JP2019093118A (en) Bioelectrode composition, bioelectrode, and manufacturing method of bioelectrode
KR102197506B1 (en) Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
TWI772591B (en) Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
TWI777150B (en) Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
CN114431866B (en) Bioelectrode composition, bioelectrode, method for producing bioelectrode and reaction complex
KR102697732B1 (en) Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
JP2018533160A (en) Silver-silver chloride composition and electrical device containing the same
TW202132414A (en) Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
KR102182003B1 (en) Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
JPWO2019139164A1 (en) Bioelectrode
WO2019139165A1 (en) Bioelectrode
Xiao et al. High-adhesive flexible electrodes and their manufacture: A review
KR102668007B1 (en) Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
JP7410065B2 (en) Bioelectrode, bioelectrode manufacturing method, and biosignal measurement method
CN115885012A (en) Biosignal sensing electrode
WO2018101438A1 (en) Electrode structure, biosignal measurement device, and composition for adhesive agent formation use
TWI820672B (en) Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
KR102483706B1 (en) Conductive hydrogel and manufacturing method for the same
JP7406516B2 (en) Bioelectrode composition, bioelectrode, and bioelectrode manufacturing method
CN114181530A (en) Bio-electrode composition, bio-electrode, bio-electrode manufacturing method, and silicon material particle
JP7507737B2 (en) Bioelectrode composition, bioelectrode, method for producing a bioelectrode, and reaction complex
JP6670013B2 (en) Biological electrode and method for producing the same
WO2025096280A1 (en) Adhesive electrode patch and devices containing the electrode patch
Pan et al. Electrodeposited Conductive Polymer Coatings and Methods of Use