[go: up one dir, main page]

JP2019045091A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2019045091A
JP2019045091A JP2017169933A JP2017169933A JP2019045091A JP 2019045091 A JP2019045091 A JP 2019045091A JP 2017169933 A JP2017169933 A JP 2017169933A JP 2017169933 A JP2017169933 A JP 2017169933A JP 2019045091 A JP2019045091 A JP 2019045091A
Authority
JP
Japan
Prior art keywords
heat exchange
powder
tube
alloy
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017169933A
Other languages
Japanese (ja)
Other versions
JP2019045091A5 (en
Inventor
高橋 一幸
Kazuyuki Takahashi
一幸 高橋
拓史 大槻
Takushi Otsuki
拓史 大槻
真奈 小林
Mana Kobayashi
真奈 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr Thermal Systems Japan Ltd
Original Assignee
Keihin Thermal Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Thermal Technology Corp filed Critical Keihin Thermal Technology Corp
Priority to JP2017169933A priority Critical patent/JP2019045091A/en
Priority to US16/057,821 priority patent/US20190072344A1/en
Priority to DE102018214746.9A priority patent/DE102018214746A1/en
Priority to CN201811032232.XA priority patent/CN109425241A/en
Publication of JP2019045091A publication Critical patent/JP2019045091A/en
Publication of JP2019045091A5 publication Critical patent/JP2019045091A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05375Assemblies of conduits connected to common headers, e.g. core type radiators with particular pattern of flow, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0084Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/16Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes extruded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • F28F9/0251Massive connectors, e.g. blocks; Plate-like connectors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

To provide a heat exchanger which is excellent in the corrosion resistance of a heat exchange pipe.SOLUTION: A capacitor being a heat exchanger comprises a plurality of aluminum-extrusion shape material heat exchange pipes, and aluminum bare material fins which are arranged between the adjacent heat exchange pipes, and joined to the heat exchange pipes by brazing materials. A pipe wall 30 of the heat exchange pipe is composed of a main body part 31 composed of an Al alloy for forming an aluminum-extrusion shape material, and a coating layer 32 composed of an AI-Si-Zn alloy, and covering an outer face of the main body part 31. A diffusion layer 33 in which Zn and Si in the Al-Ai-Zn alloy for forming the coating layer 32 are diffused is formed at an outer surface layer part of the main body part 31 of the pipe wall 30. In a range between an outermost face of the pipe wall 30 of the heat exchange pipe, and the deepest part of the diffusion layer 33, there exist a low-potential portion in which natural potential in the range is the lowest, and a high-potential portion in which natural potential in the range becomes higher than the low-potential portion by 60 mV or higher so that the low-potential portion is located at the outermost face of the pipe wall 30.SELECTED DRAWING: Figure 2

Description

この発明は熱交換器に関し、さらに詳しくいえば、たとえば自動車などの車両に搭載されるカーエアコンのコンデンサとして用いられる熱交換器に関する。   The present invention relates to a heat exchanger, and more particularly to a heat exchanger used as a condenser of a car air conditioner mounted on a vehicle such as a car.

この明細書および特許請求の範囲において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。また、元素記号で表現された材料は純材料を意味し、「Al合金」という用語はアルミニウム合金を意味するものとする。   In this specification and claims, the term "aluminum" includes aluminum alloys in addition to pure aluminum. Moreover, the material represented by the elemental symbol means a pure material, and the term "Al alloy" means an aluminum alloy.

また、この明細書において、「自然電位」とは、5%NaCl、pH3(酸性)の水溶液中における標準電極としての飽和カロメル電極(S.C.E)に対する材料が持つ電極電位を意味するものである。   Further, in this specification, the "natural potential" means the electrode potential of the material for the saturated calomel electrode (SCE) as a standard electrode in an aqueous solution of 5% NaCl, pH 3 (acidic). It is.

カーエアコン用コンデンサに用いられる熱交換器として、長手方向を同方向に向けるとともに幅方向を通風方向に向けた状態で、厚み方向に間隔をおいて配置された複数のアルミニウム押出形材製扁平状熱交換管と、長手方向を熱交換管の並び方向に向けた状態で熱交換管の長手方向両端側に配置され、かつ熱交換管の両端部が接続されたヘッダタンクと、隣り合う熱交換管どうしの間および両端の熱交換管の外側に配置されて熱交換管にろう付されたアルミニウム製コルゲート状フィンと、両端のフィンの外側に配置されてフィンにろう付されたアルミニウム製サイドプレートとを備えており、ヘッダタンクが、両面にろう材層を有するアルミニウムブレージングシートを筒状に成形して両側縁部どうしの突き合わせ部をろう付することにより形成され、かつ両端が開口した筒状のアルミニウム製タンク本体と、タンク本体の両端にろう付されてその両端開口を閉鎖するアルミニウム製閉鎖部材とからなり、タンク本体に、長手方向を通風方向に向けた長穴からなる複数の管挿入穴が、タンク本体の長手方向に間隔をおいて形成され、熱交換管の端部が、管挿入穴内に挿入されてタンク本体にろう付されているものが広く知られている。   As heat exchangers used for condensers for car air conditioners, a plurality of flat aluminum extrusions are arranged at intervals in the thickness direction with the longitudinal direction oriented in the same direction and the width direction oriented in the ventilation direction A heat exchange pipe, a header tank disposed on both ends in the longitudinal direction of the heat exchange pipe with the longitudinal direction oriented in the direction in which the heat exchange pipes are aligned, and adjacent heat exchange with the header tank to which both ends of the heat exchange pipe are connected Aluminum corrugated fins arranged between the tubes and outside the heat exchange tubes at both ends and brazed to the heat exchange tubes, and aluminum side plates arranged outside the fins at both ends and brazed to the fins And the header tank is formed into a tubular shape by brazing an aluminum brazing sheet having a brazing material layer on both sides to braze a butt portion between both side edges. A cylindrical aluminum tank main body which is open at both ends and opened, and an aluminum closing member which is brazed to both ends of the tank main body to close the opening at both ends, And a plurality of tube insertion holes, each of which is an elongated hole, directed at a distance in the longitudinal direction of the tank body, and an end of the heat exchange tube is inserted into the tube insertion hole and brazed to the tank body Things are widely known.

上述した熱交換器の製造方法として、本出願人は、先に、Mn0.2〜0.3質量%、Cu0.05質量%以下、Fe0.2質量%以下を含み、残部Alおよび不可避不純物からなる合金により形成されており、かつ管壁の肉厚が200μm以下であるアルミニウム押出形材製熱交換管と、アルミニウム製芯材および芯材の両面を覆うアルミニウムろう材製皮材からなるブレージングシートにより形成されたフィンとを用意すること、フラックス粉末と、平均粒径3〜5μmでかつ最大粒径が10μm未満のZn粉末とをバインダーに分散混合させた分散液を、前記熱交換管の外面に塗布するとともに分散液中の液状成分を気化させることによって、熱交換管の外面に、Zn粉末付着量が1〜3g/m2、フラックス粉末付着量が15g/m2以下、Zn粉末付着量に対するフラックス粉末付着量の比率(フラックス粉末付着量/Zn粉末付着量)が1以上となるように、Zn粉末およびフラックス粉末を付着させること、ならびに熱交換管およびフィンを組み合わせて加熱し、熱交換管の外面に付着したフラックス粉末およびフィンの皮材を利用して熱交換管とフィンとをろう付するとともに、熱交換管の外面に付着したZn粉末を溶融させた後にZnを熱交換管の外面表層部に拡散させることにより、熱交換管の外面表層部にZn拡散層を形成することを含む方法を提案した提案した(特許文献1参照)。 As a method of manufacturing the heat exchanger described above, the applicant previously contained 0.2 to 0.3% by mass of Mn, 0.05% by mass or less of Cu, 0.2% by mass or less of Fe, and the balance Al and unavoidable impurities. And an aluminum extruded heat exchanger tube having a wall thickness of 200 μm or less, and a brazing sheet comprising an aluminum core material and an aluminum brazing material covering both surfaces of the aluminum core material. Preparing a fin formed by the following method, a dispersion obtained by dispersing and mixing a flux powder and a Zn powder having an average particle diameter of 3 to 5 μm and a maximum particle diameter of less than 10 μm in a binder, the outer surface of the heat exchange tube by vaporizing the liquid component in the dispersion as well as applied to the outer surface of the heat exchange tubes, Zn powder deposition amount 1 to 3 g / m 2, the flux powder coating weight of 15 g / m 2 Adhere Zn powder and flux powder such that the ratio of flux powder adhesion amount to Zn powder adhesion amount (flux powder adhesion amount / Zn powder adhesion amount) is 1 or more, and combine heat exchange tubes and fins Heat and braze the heat exchange tube and fins using flux powder and fin skins attached to the outer surface of the heat exchange tube and melt the Zn powder attached to the outer surface of the heat exchange tube A method was proposed that proposed forming a Zn diffusion layer in the outer surface layer portion of the heat exchange tube by diffusing Zn in the outer surface layer portion of the heat exchange tube (see Patent Document 1).

特許文献1記載の方法により製造された熱交換器の熱交換管とフィンとは、フィンを形成するブレージングシートの皮材から溶け出したろう材により接合されている。   The heat exchange pipe and the fins of the heat exchanger manufactured by the method described in Patent Document 1 are joined by the brazing material melted from the skin of the brazing sheet forming the fins.

特許文献1記載の方法により製造された熱交換器において、フィンの耐食性をさらに向上させるために、アルミニウムブレージングシート製フィンに代えて、アルミニウムベア材製フィンを用いることが考えられている。この場合、上述した製造方法において、熱交換管の外面に、Zn粉末に加えてSi粉末を付着させ、熱交換管となるアルミニウム押出形材を形成するAl合金中のAlと、接合前の熱交換管の表面に付着させられていたSi粉末のSiとよりなるろう材によって、熱交換管とフィンとを接合することが考えられる。   In the heat exchanger manufactured by the method described in Patent Document 1, in order to further improve the corrosion resistance of the fins, it is considered to use an aluminum bear fin instead of the aluminum brazing sheet fin. In this case, in the manufacturing method described above, Al is added to the Zn powder to adhere the Si powder to the outer surface of the heat exchange tube to form an aluminum extruded section to be the heat exchange tube, and Al before bonding It is conceivable to join the heat exchange tube and the fin by a brazing material composed of Si and Si powder that has been attached to the surface of the exchange tube.

しかしながら、このような方法で製造された熱交換器においては、熱交換管の耐食性が不十分になるおそれがある。   However, in the heat exchanger manufactured by such a method, the corrosion resistance of the heat exchange pipe may be insufficient.

特開2014−238209号公報JP, 2014-238209, A

この発明の目的は、上記課題を解決し、熱交換管の耐食性が優れた熱交換器を提供することにある。   An object of the present invention is to solve the above-mentioned problems and to provide a heat exchanger excellent in the corrosion resistance of the heat exchange pipe.

本発明は、上記目的を達成するために以下の態様からなる。   The present invention comprises the following aspects in order to achieve the above object.

1)複数のアルミニウム押出形材製熱交換管と、隣り合う熱交換管間に配置されて熱交換管にろう材により接合されたアルミニウムベア材製フィンとを備えており、
熱交換管の管壁が、前記アルミニウム押出形材を形成するAl合金からなる本体部と、Al−Si−Zn合金からなりかつ本体部の外面を覆う被覆層とよりなり、熱交換管の管壁の本体部の外側表層部に、被覆層を形成するAl−Si−Zn合金中のZnおよびSiが拡散した拡散層が形成され、熱交換管の管壁の最外面と拡散層の最深部との間の範囲内に、当該範囲内における自然電位が最も低い低電位部分と、当該低電位部分よりも自然電位が60mV以上高くなった高電位部分とが、低電位部分が管壁の最外面側に来るように存在している熱交換器。
1) A plurality of extruded aluminum material heat exchange tubes, and an aluminum bear material fin disposed between adjacent heat exchange tubes and joined to the heat exchange tubes with a brazing material,
A tube wall of a heat exchange tube comprising: a main body portion made of an Al alloy forming the aluminum extruded section; and a covering layer made of an Al-Si-Zn alloy and covering the outer surface of the main body portion A diffusion layer in which Zn and Si in the Al-Si-Zn alloy forming the covering layer are diffused is formed in the outer surface layer portion of the main body of the wall, and the outermost surface of the tube wall of the heat exchange tube and the deepest portion of the diffusion layer The low potential part where the natural potential is lowest in the range and the high potential part where the natural potential is higher by 60 mV or more than the low potential part within the range A heat exchanger that exists on the outer side.

2)熱交換管の管壁の最外面と拡散層の最深部との間の範囲内において、自然電位が、管壁最外面から本体部に向かうにつれて低くなって前記低電位部分に達するとともに、当該低電位部分から本体部に向かうにつれて高くなって前記高電位部分に達するようになっている上記1)記載の熱交換器。   2) In the range between the outermost surface of the tube wall of the heat exchange tube and the deepest portion of the diffusion layer, the natural potential decreases from the outermost surface of the tube wall toward the main portion to reach the low potential portion; The heat exchanger according to the above 1), wherein the high potential portion is reached as it goes from the low potential portion toward the main body.

3)熱交換管とフィンとを接合するろう材が、前記アルミニウム押出形材を形成するAl合金中のAlと、接合前の熱交換管の表面に付着させられていたSi粉末のSiとにより構成されている上記1)または2)記載の熱交換器。   3) The brazing material for joining the heat exchange tube and the fin is formed of Al in the Al alloy forming the aluminum extruded profile and Si of Si powder deposited on the surface of the heat exchange tube before joining. The heat exchanger according to the above 1) or 2), which is configured.

4)熱交換管の前記被覆層となっているAl−Si−Zn合金が、前記アルミニウム押出形材を形成するAl合金中のAlと、接合前の熱交換管の表面に付着させられていたSi粉末のSiと、接合前の熱交換管の表面に付着させられていたZn粉末のZnとにより構成されている上記1)〜3)のうちのいずれかに記載の熱交換器。   4) The Al-Si-Zn alloy which is the coating layer of the heat exchange tube is adhered to the surface of the heat exchange tube before bonding and Al in the Al alloy forming the aluminum extruded section The heat exchanger according to any one of the above 1) to 3), which is constituted by Si of Si powder and Zn of Zn powder deposited on the surface of the heat exchange tube before bonding.

上記1)〜4)の熱交換器によれば、フィンがアルミニウムベア材からなるので、アルミニウムブレージングシートからなるフィンを備えた熱交換器に比べてフィンの耐食性が向上する。   According to the heat exchangers of the above 1) to 4), since the fins are made of an aluminum bear material, the corrosion resistance of the fins is improved as compared with the heat exchanger provided with the fins formed of an aluminum brazing sheet.

また、熱交換管の管壁が、前記アルミニウム押出形材を形成するAl合金からなる本体部と、Al−Si−Zn合金からなりかつ本体部の外面を覆う被覆層とよりなり、熱交換管の本体部の外側表層部に、被覆層を形成するAl−Si−Zn合金中のZnおよびSiが拡散した拡散層が形成され、熱交換管の管壁の最外面と拡散層の最深部との間の範囲内に、当該範囲内における自然電位が最も低い低電位部分と、当該低電位部分よりも自然電位が60mV以上高くなった高電位部分とが、低電位部分が管壁の最外面側に来るように存在しているので、熱交換管の管壁の外面からの腐食が前記高電位部分で止まることになる。したがって、腐食深さを浅くすることができ、熱交換管の耐食性が向上する。その結果、熱交換管の管壁の薄肉化を図ることが可能となり、熱交換管の軽量化、ひいては当該熱交換管を用いた熱交換器の軽量化を図ることができる。   Further, the heat exchange pipe comprises a pipe wall of the heat exchange pipe, a main body made of an Al alloy forming the aluminum extruded section, and a covering layer made of an Al-Si-Zn alloy and covering the outer surface of the main body. A diffusion layer in which Zn and Si in the Al-Si-Zn alloy forming the covering layer are diffused is formed in the outer surface layer portion of the main body portion of the main body, and the outermost surface of the tube wall of the heat exchange tube and the deepest portion of the diffusion layer In the range between the low potential portion where the natural potential is the lowest in the range, and the high potential portion where the natural potential is higher by 60 mV or more than the low potential portion, the low potential portion is the outermost surface of the tube wall As it is present on the side, corrosion from the outer surface of the tube wall of the heat exchange tube will stop at the high potential portion. Therefore, the corrosion depth can be made shallow, and the corrosion resistance of the heat exchange tube is improved. As a result, it is possible to reduce the thickness of the tube wall of the heat exchange tube, and to reduce the weight of the heat exchange tube, and further to reduce the weight of the heat exchanger using the heat exchange tube.

この発明の熱交換器を適用したカーエアコン用コンデンサの全体構成を示す斜視図である。FIG. 1 is a perspective view showing an entire configuration of a condenser for a car air conditioner to which a heat exchanger of the present invention is applied. 図1のコンデンサの熱交換管の管壁の一部を拡大して断面図である。It is sectional drawing which expanded a part of pipe | tube wall of the heat exchange pipe | tube of the capacitor | condenser of FIG. 実験例においてフィンとろう付した1つの熱交換管における管壁最外面からの異なる深さ位置の自然電位を示すグラフである。It is a graph which shows the natural potential of a different depth position from the tube wall outermost surface in one heat exchange tube brazed with a fin in an experiment example.

以下、この発明の実施形態を、図面を参照して説明する。この実施形態は、この発明の熱交換器をカーエアコン用コンデンサに適用したものである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. This embodiment is an application of the heat exchanger of the present invention to a condenser for a car air conditioner.

図1はこの発明の熱交換器を適用したカーエアコン用コンデンサの全体構成を示し、図2はその要部の構成を示す。   FIG. 1 shows the overall configuration of a car air conditioner condenser to which the heat exchanger of the present invention is applied, and FIG. 2 shows the configuration of the main part thereof.

なお、以下の説明において、図1の上下、左右を上下、左右というものとする。   In the following description, upper and lower and right and left in FIG. 1 are referred to as upper and lower and left and right.

図1において、カーエアコン用のコンデンサ(1)は、長手方向を左右方向に向に向けるとともに幅方向を通風方向に向けた状態で、上下方向(熱交換管(2)の厚み方向)に間隔をおいて配置された複数のアルミニウム押出形材製扁平状熱交換管(2)と、隣り合う熱交換管(2)どうしの間、および上下両端の熱交換管(2)の外側に配置されて熱交換管(2)にろう付されたアルミニウムベア材製コルゲートフィン(3)と、長手方向を上下方向(熱交換管(2)の並び方向)に向けた状態で左右方向に間隔をおいて配置され、かつ熱交換管(2)の左右両端部が接続された1対のアルミニウム製ヘッダタンク(4)(5)と、上下両端のコルゲートフィン(3)の外側に配置されてコルゲートフィン(3)にろう付されたアルミニウムブレージングシート製サイドプレート(6)とを備えており、図1に矢印Wで示す方向に風が流れるようになっている。   In FIG. 1, the condenser (1) for a car air conditioner has an interval in the vertical direction (thickness direction of the heat exchange pipe (2)) with the longitudinal direction directed to the left and right and the width direction directed to the ventilation direction. Between the heat exchange tubes (2) adjacent to each other and between the heat exchange tubes (2) adjacent to each other, and the heat exchange tubes (2) at the upper and lower ends. Space between the aluminum bear material corrugated fins (3) brazed to the heat exchange pipe (2) and the longitudinal direction in the vertical direction (the direction in which the heat exchange pipes (2) are aligned) A pair of aluminum header tanks (4) and (5) to which the left and right ends of the heat exchange pipe (2) are connected and the corrugated fins (3) at the upper and lower ends are disposed (3) is equipped with an aluminum brazing sheet side plate (6) brazed to FIG. The wind flows in the direction indicated by the arrow W in FIG.

左側ヘッダタンク(4)は、高さ方向の中央部よりも上方において仕切板(7)により上下2つのヘッダ部(4a)(4b)に仕切られ、右側ヘッダタンク(5)は、高さ方向の中央部よりも下方において仕切板(7)により上下2つのヘッダ部(5a)(5b)に仕切られている。左側ヘッダタンク(4)の上ヘッダ部(4a)に冷媒入口(図示略)が形成され、冷媒入口に通じる流入路(8a)を有するアルミニウム製入口部材(8)が上ヘッダ部(4a)にろう付されている。また、右側ヘッダタンク(5)の下ヘッダ部(5b)に冷媒出口(図示略)が形成され、冷媒出口に通じる流出路(9a)を有するアルミニウム製出口部材(9)が下ヘッダ部(5b)にろう付されている。そして、入口部材(8)の流入路(8a)を通って左側ヘッダタンク(4)の上ヘッダ部(4a)内に流入した冷媒は、左側ヘッダタンク(4)の仕切板(7)よりも上方に位置する熱交換管(2)内を右方に流れて右側ヘッダタンク(5)の上ヘッダ部(5a)内の上部に流入し、上ヘッダ部(5a)内を下方に流れて左側ヘッダタンク(4)の仕切板(7)と右側ヘッダタンク(5)の仕切板(7)との間の高さ位置にある熱交換管(2)内を左方に流れて左側ヘッダタンク(4)の下ヘッダ部(4b)内の上部に流入し、下ヘッダ部(4b)内を下方に流れて右側ヘッダタンク(5)の仕切板(7)よりも下方に位置する熱交換管(2)内を右方に流れて右側ヘッダタンク(5)の下ヘッダ部(5b)内に流入し、出口部材(9)の流出路(9a)を通ってコンデンサ(1)の外部に流出する。   The left header tank (4) is divided into two upper and lower header parts (4a) (4b) by the partition plate (7) above the central part in the height direction, and the right header tank (5) is in the height direction The upper and lower two header portions (5a, 5b) are partitioned by a partition plate (7) below the central portion of the head. A refrigerant inlet (not shown) is formed in the upper header portion (4a) of the left header tank (4), and an aluminum inlet member (8) having an inflow path (8a) communicating with the refrigerant inlet is formed in the upper header portion (4a) It is brazed. In addition, a refrigerant outlet (not shown) is formed in the lower header portion (5b) of the right header tank (5), and an aluminum outlet member (9) having an outflow passage (9a) communicating with the refrigerant outlet is the lower header portion (5b) Brazed to). Then, the refrigerant that has flowed into the upper header portion (4a) of the left header tank (4) through the inflow path (8a) of the inlet member (8) is greater than the partition plate (7) of the left header tank (4). It flows to the right in the heat exchange pipe (2) located at the upper side, flows into the upper part in the upper header part (5a) of the right header tank (5), and flows downward in the upper header part (5a) The left header tank (4) flows in the heat exchange pipe (2) at the height position between the partition plate (7) of the header tank (4) and the partition plate (7) of the right header tank (5). 4) A heat exchange pipe (flowing into the upper part in the lower header part (4b), flowing downward in the lower header part (4b) and located below the partition plate (7) of the right header tank (5) 2) Flows to the right inside and flows into the lower header part (5b) of the right header tank (5), and flows out of the condenser (1) through the outlet (9a) of the outlet member (9) .

左右のヘッダタンク(4)(5)は、少なくとも外面にろう材層を有するアルミニウム製パイプ、たとえば両面にろう材層を有するアルミニウムブレージングシートからなる素板が筒状に成形されるとともに両側縁部が部分的に重ね合わされて相互にろう付された筒状体からなり、かつ前後方向に長い複数の管挿入穴を有するタンク本体(11)と、タンク本体(11)の両端にろう付されてその両端開口を閉鎖するアルミニウム製閉鎖部材(12)とからなる。なお、ヘッダタンク本体(11)の詳細な図示は省略する。また、ヘッダタンク本体(11)は、外周面にろう材が溶射されたアルミニウム押出管からなるものであってもよい。   The left and right header tanks (4) and (5) are formed of an aluminum pipe having a brazing material layer at least on the outer surface, for example, a base plate made of an aluminum brazing sheet having a brazing material layer on both sides And a tank body (11) comprising a plurality of tube bodies partially overlapped and brazed to each other and having a plurality of long tube insertion holes in the longitudinal direction, and brazed to both ends of the tank body (11) It consists of an aluminum closing member (12) closing its both end opening. The detailed illustration of the header tank body (11) is omitted. Further, the header tank body (11) may be made of an aluminum extruded tube having a brazing material sprayed on the outer peripheral surface.

熱交換管(2)は、たとえばCu0.4〜0.5質量%、Mn0.1〜0.3質量%を含み、残部Alおよび不可避不純物からなるAl合金で形成された押出形材からなることが好ましい。当該Al合金は、押出形材製熱交換管を形成するのに通常用いられているものである。   The heat exchange pipe (2) is made of an extruded section formed of an Al alloy containing, for example, 0.4 to 0.5 mass% of Cu, 0.1 to 0.3 mass% of Mn, and the balance Al and unavoidable impurities. Is preferred. The Al alloy is one commonly used to form extruded shape heat exchange tubes.

図2に示すように、熱交換管(2)の管壁(30)は、前記アルミニウム押出形材を形成するAl合金からなる本体部(31)と、Al−Si−Zn合金からなりかつ本体部(31)の外面を覆う被覆層(32)とよりなり、管壁(30)の本体部(31)の外側表層部に、被覆層(32)を形成するAl−Si−Zn合金中のZnおよびSiが拡散した拡散層(33)が形成されたものである。   As shown in FIG. 2, the tube wall (30) of the heat exchange tube (2) comprises a main body (31) made of an Al alloy forming the aluminum extruded section, an Al-Si-Zn alloy, and a main body A coating layer (32) covering the outer surface of the part (31), and forming a coating layer (32) on the outer surface layer portion of the main portion (31) of the tube wall (30) in Al-Si-Zn alloy A diffusion layer (33) in which Zn and Si are diffused is formed.

熱交換管(2)の管壁(30)の肉厚は200μm以下であることが好ましい。ここで、熱交換管(2)の管壁(30)の肉厚は、全体に同一ではなく、部分的に異なる場合があるが、管壁(30)の肉厚が200μm以下ということは、管壁(30)の最も厚肉部分の肉厚が200μm以下であることを意味する。   The wall thickness of the tube wall (30) of the heat exchange tube (2) is preferably 200 μm or less. Here, the wall thickness of the pipe wall (30) of the heat exchange pipe (2) is not entirely the same but may be partially different, but the wall thickness of the pipe wall (30) is 200 μm or less, It means that the thickness of the thickest portion of the tube wall (30) is 200 μm or less.

熱交換管(2)の管壁(30)の最外面と拡散層(33)の最深部との間の範囲内に、当該範囲内における自然電位が最も低い低電位部分(34)と、当該低電位部分よりも自然電位が60mV以上高くなった高電位部分とが、低電位部分が管壁の最外面側に来るように存在している。たとえば、管壁(30)の最外面と拡散層(33)の最深部との間の範囲内において、自然電位が、管壁(30)最外面から本体部(31)に向かうにつれて徐々に低くなって前記低電位部分に達するとともに、当該低電位部分から本体部(31)に向かうにつれて高くなって前記高電位部分に達するようになっている。   In a range between the outermost surface of the tube wall (30) of the heat exchange tube (2) and the deepest portion of the diffusion layer (33), a low potential portion (34) having the lowest natural potential in the range; The high potential portion where the natural potential is higher by 60 mV or more than the low potential portion exists such that the low potential portion is on the outermost surface of the tube wall. For example, in the range between the outermost surface of the tube wall (30) and the deepest portion of the diffusion layer (33), the natural potential gradually decreases from the outermost surface of the tube wall (30) toward the main body (31) And reaches the low potential portion, and increases from the low potential portion toward the main body (31) to reach the high potential portion.

アルミニウム押出形材製熱交換管(2)を形成する合金中のCuは、熱交換管(2)の本体部(31)の耐食性を向上させる効果を有するが、0.4質量%未満であるとこの効果が得られず、0.5質量%を超えると拡散層(33)の本体部(31)に対する犠牲腐食効果が低下する。すなわち、本体部(31)に対する犠牲腐食層とすることを目的として、自然電位を卑にする効果があるZnが拡散した拡散層(33)が形成されているが、Cu含有量が0.5質量%を超えるとZnの効果が不足し、拡散層(33)の自然電位を十分に卑にすることができなくなる。したがって、Cu含有量を0.4〜0.5質量%とすることが好ましい。また、アルミニウム押出形材製熱交換管を形成する合金中のMnは、熱交換管の強度を向上させる性質を有するが、Mn含有量が0.1質量%未満であるとこの効果が得られず、0.3質量%を超えると押出加工性が低下するから、Mn含有量を0.1〜0.3質量%とすることが好ましい。   Cu in the alloy forming the aluminum extruded heat exchanger tube (2) has the effect of improving the corrosion resistance of the main portion (31) of the heat exchanger tube (2), but is less than 0.4% by mass This effect can not be obtained, and when it exceeds 0.5% by mass, the sacrificial corrosion effect on the main portion (31) of the diffusion layer (33) is reduced. That is, for the purpose of forming a sacrificial corrosion layer for the main body (31), a diffusion layer (33) in which Zn is diffused, which has an effect of reducing the natural potential, is formed. When the content is more than% by mass, the effect of Zn is insufficient, and the natural potential of the diffusion layer (33) can not be sufficiently reduced. Therefore, it is preferable to make Cu content into 0.4-0.5 mass%. In addition, Mn in the alloy forming the aluminum extruded shape heat exchange tube has a property to improve the strength of the heat exchange tube, but this effect can be obtained when the Mn content is less than 0.1 mass%. However, since extrusion processability will fall when it exceeds 0.3 mass%, it is preferable to make Mn content into 0.1-0.3 mass%.

なお、アルミニウム押出形材製熱交換管(2)を形成する合金中には、不可避不純物として、Si0.2質量%以下、Fe0.2質量%以下、Mg0.05質量%以下、Cr0.05質量%以下、Zn0.05質量%以下、Ti0.05質量%以下が含まれていることがある。これらの不可避不純物の含有量は0の場合がある。Si、Feは含有量が多くなりすぎると、熱交換管(2)の耐食性が低下し、Znは含有量が多くなりすぎると、熱交換管(2)の自然電位が卑化することで周辺部品との電位バランスが変わってしまい、Ti含有量が多くなりすぎると、コストが高くなる。さらに、Si、Fe、Mg、Cr、Zn、Ti以外の不可避不純物が、個々の含有量が0.05質量%以下(0質量%を含む)で、かつ合計含有量が0.15質量%以下となるように含まれていることがある。   In addition, in the alloy which forms the aluminum extruded shape material heat exchange pipe (2), as an unavoidable impurity, Si 0.2 mass% or less, Fe 0.2 mass% or less, Mg 0.05 mass% or less, Cr 0.05 mass % Or less, Zn 0.05 mass% or less, Ti 0.05 mass% or less may be contained. The content of these unavoidable impurities may be zero. When the content of Si and Fe is too large, the corrosion resistance of the heat exchange pipe (2) is reduced, and when the content of Zn is too large, the natural potential of the heat exchange pipe (2) is degraded and the surrounding area If the potential balance with the parts is changed and the Ti content is too high, the cost becomes high. Furthermore, unavoidable impurities other than Si, Fe, Mg, Cr, Zn, and Ti have an individual content of 0.05% by mass or less (including 0% by mass) and a total content of 0.15% by mass or less It may be included to be

コルゲートフィン(3)は、たとえばMn1.0〜1.5質量%、Zn1.2〜1.8質量%を含み、残部Alおよび不可避不純物からなるAl合金で形成されていることが好ましい。コルゲートフィン(3)を形成するAl合金は、ベア材製フィンとして通常用いられる合金である。   The corrugated fin (3) is preferably made of, for example, an Al alloy containing 1.0 to 1.5% by mass of Mn, 1.2 to 1.8% by mass of Zn, and the balance Al and unavoidable impurities. The Al alloy that forms the corrugated fins (3) is an alloy that is usually used as a fin made of a bare material.

コルゲートフィン(3)を形成する合金中のMnは、コルゲートフィン(3)の強度を向上させる性質を有するが、Mn含有量が1.0質量%未満であるとこの効果が得られず、1.5質量%を超えると加工性が低下するから、Mn含有量を1.0〜1.5質量%とする。   Mn in the alloy forming the corrugated fin (3) has the property of improving the strength of the corrugated fin (3), but this effect can not be obtained when the Mn content is less than 1.0 mass%, 1 If the content is more than 5% by mass, the processability is reduced, so the Mn content is made 1.0 to 1.5% by mass.

また、コルゲートフィン(3)を形成する合金中のZnは、熱交換管(2)との電位バランスを適切に保つ性質を有するが、Zn含有量が1.2質量%未満であるとこの効果が得られず、1.8質量%を超えるとコルゲートフィン(3)が腐食が激しくなるので、Zn含有量を1.2〜1.8質量%とする。   In addition, Zn in the alloy forming the corrugated fin (3) has a property of maintaining the potential balance with the heat exchange tube (2) properly, but this effect is achieved when the Zn content is less than 1.2% by mass If the content exceeds 1.8% by mass, the corrugate fin (3) becomes strongly corroded, so the Zn content is set to 1.2 to 1.8% by mass.

コルゲートフィン(3)を形成するAl合金中には、不可避不純物として、Si0.6質量%以下、Fe0.5質量%以下、Cu0.05質量%以下、Cr0.12質量%以下が含まれていることがある。これらの不可避不純物の含有量は0の場合がある。Si、Fe、Cuは、含有量が多くなりすぎると、コルゲートフィン(3)の腐食速度が速くなる。さらに、Si、Fe、Cu、Cr以外の不可避不純物が、個々の含有量が0.05質量%以下(0質量%を含む)で、かつ合計含有量が0.15質量%以下となるように含まれていることがある。   In the Al alloy forming the corrugated fin (3), 0.6 mass% or less of Si, 0.5 mass% or less of Fe, 0.05 mass% or less of Cu, 0.12 mass% or less of Cr are contained as unavoidable impurities Sometimes. The content of these unavoidable impurities may be zero. If the contents of Si, Fe and Cu are too high, the corrosion rate of the corrugated fin (3) will be fast. Furthermore, the unavoidable impurities other than Si, Fe, Cu, and Cr are such that the individual content is 0.05 mass% or less (including 0 mass%) and the total content is 0.15 mass% or less May be included.

コンデンサ(1)は、以下に述べる方法で製造される。   The capacitor (1) is manufactured by the method described below.

まず、上述したAl合金で形成された押出形材からなる熱交換管(2)、上述したAl合金からなるコルゲートフィン(3)、サイドプレート(6)、仕切部材(7)、少なくとも外面にろう材層を有する1対の筒状アルミニウム製ヘッダタンク本体素材、閉鎖部材(12)、入口部材(8)、および出口部材(9)を用意する。ヘッダタンク本体素材には複数の管挿入穴が形成されている。   First, a heat exchange pipe (2) made of an extruded section formed of the above-mentioned Al alloy, a corrugated fin (3) made of the above-mentioned Al alloy, a side plate (6), a partition member (7) A pair of cylindrical aluminum header tank body material having a material layer, a closing member (12), an inlet member (8), and an outlet member (9) are prepared. A plurality of pipe insertion holes are formed in the header tank body material.

また、フラックス粉末と、平均粒径3〜5μmでかつ最大粒径が10μm未満のZn粉末と、平均粒径2〜6μmでかつ最大粒径が10μm未満のSi粉末とをバインダーに分散混合させた分散液を用意する。ここで、フラックス粉末は、たとえばKAlF4とKAlF5との混合物を主成分とするフッ化物系の非腐食性フラックスからなるものが用いられる。バインダーとしては、たとえばアクリル樹脂を3−メトキシ−3−メチル−1−ブタノールに溶解した溶液からなるものが用いられる。なお、分散液には、バインダーの粘度を調整する目的で、たとえば3−メトキシ−3−メチル−1−ブタノールからなる希釈剤が添加される。 Also, a binder was dispersed and mixed with a flux powder, a Zn powder having an average particle diameter of 3 to 5 μm and a maximum particle diameter of less than 10 μm, and an Si powder having an average particle diameter of 2 to 6 μm and a maximum particle diameter of less than 10 μm. Prepare a dispersion. Here, as the flux powder, for example, one composed of a fluoride-based non-corrosive flux mainly composed of a mixture of KAlF 4 and KAlF 5 is used. As the binder, for example, one comprising an acrylic resin dissolved in 3-methoxy-3-methyl-1-butanol is used. In addition, the diluent which consists of 3-methoxy- 3-methyl- 1-butanol, for example in order to adjust the viscosity of a binder to a dispersion liquid is added.

ついで、前記分散液を熱交換管(2)の外面に塗布するとともに分散液中の液状成分を気化させることによって、熱交換管(2)の外面に、Zn粉末付着量が4〜6g/m2、Si粉末付着量が3〜6g/m2、フラックス粉末付着量が6〜24g/m2となるように、Zn粉末、Si粉末およびフラックス粉末を付着させる。熱交換管(2)の外面にZn粉末、Si粉末およびフラックス粉末を付着させる方法としては、熱交換管(2)外面への分散液の塗布を噴霧法により行い、その後熱交換管(2)を加熱乾燥させることにより分散液中の液状成分を気化させて、熱交換管(2)の外面にZn粉末、Si粉末およびフラックス粉末を付着させる方法や、熱交換管(2)外面を予め加熱した状態で、熱交換管(2)外面への分散液の塗布をロールコート法により行い、その後熱交換管(2)を加熱乾燥させることにより分散液中の液状成分を気化させて、熱交換管(2)の外面にZn粉末、Si粉末およびフラックス粉末を付着させる方法がある。 Next, the dispersion is applied to the outer surface of the heat exchange tube (2) and the liquid component in the dispersion is vaporized to deposit an amount of Zn powder of 4 to 6 g / m on the outer surface of the heat exchange tube (2). 2. Zn powder, Si powder and flux powder are attached such that the amount of Si powder is 3 to 6 g / m 2 and the amount of flux powder is 6 to 24 g / m 2 . As a method of depositing Zn powder, Si powder and flux powder on the outer surface of the heat exchange pipe (2), the dispersion liquid is applied to the outer surface of the heat exchange pipe (2) by the spray method, and then the heat exchange pipe (2) By heating and drying the liquid component in the dispersion to deposit Zn powder, Si powder and flux powder on the outer surface of the heat exchange tube (2), and preheating the outer surface of the heat exchange tube (2) In the above state, the dispersion is applied to the outer surface of the heat exchange pipe (2) by a roll coating method, and then the heat exchange pipe (2) is heated and dried to vaporize the liquid components in the dispersion, thereby exchanging heat. There is a method of depositing Zn powder, Si powder and flux powder on the outer surface of the tube (2).

熱交換管(2)の外面にZn粉末、Si粉末およびフラックス粉末を付着させると、熱交換管(2)の外面に、Zn粉末およびSi粉末を含んだフラックス粉末層が形成される。フラックス粉末層中においては、Zn粉末およびSi粉末は均一に分散して保持されている。   When Zn powder, Si powder and flux powder are attached to the outer surface of the heat exchange tube (2), a flux powder layer containing Zn powder and Si powder is formed on the outer surface of the heat exchange tube (2). In the flux powder layer, Zn powder and Si powder are uniformly dispersed and held.

ついで、管挿入穴を有する1対のヘッダタンク本体素材を間隔をおいて配置するとともに、両ヘッダタンク本体素材の両端に閉鎖部材(12)を配置し、さらに両ヘッダタンク本体素材に仕切部材(7)を配置してヘッダタンク素材を用意する。また、熱交換管(2)とフィン(3)とを交互に配置し、熱交換管(2)の両端部をヘッダタンク素材の管挿入穴に挿入する。また、両端のフィン(3)の外側にサイドプレート(6)を配置し、さらに入口部材(8)および出口部材(9)を配置する。   Next, a pair of header tank body materials having a tube insertion hole is disposed at an interval, and closing members (12) are disposed at both ends of both header tank body materials, and further partition members (both header tank body materials) 7) Arrange the header tank material. Further, the heat exchange tubes (2) and the fins (3) are alternately arranged, and both ends of the heat exchange tube (2) are inserted into the tube insertion holes of the header tank material. Further, the side plate (6) is disposed outside the fins (3) at both ends, and the inlet member (8) and the outlet member (9) are disposed.

ついで、ヘッダタンク本体素材と閉鎖部材(12)と仕切部材(7)とからなるヘッダタンク素材、熱交換管(2)、フィン(3)、サイドプレート(6)、入口部材(8)および出口部材(9)を仮止めして仮止め体をつくる。   Next, a header tank material comprising a header tank body material, a closing member (12) and a partition member (7), a heat exchange pipe (2), fins (3), side plates (6), an inlet member (8) and an outlet Temporarily fix the member (9) to make a temporarily fixed body.

ついで、仮止め体をろう付炉内に入れるとともに、ろう付炉内において仮止め体を所定温度まで昇温して加熱する。なお、熱交換管(2)以外の部品には、必要に応じて筆塗りなどの公知の方法で、フラックスを塗布しておく。   Next, the temporary fixing body is placed in the brazing furnace, and the temporary fixing body is heated to a predetermined temperature and heated in the brazing furnace. In addition, the flux is applied to parts other than the heat exchange pipe (2) according to a known method such as brush coating, if necessary.

仮止め体の昇温時に、まずフラックス粉末層を形成するフラックス粉末が溶融し、熱交換管(2)外表面の酸化膜、コルゲートフィン(3)表面の酸化膜、Si粉末表面の酸化膜およびZn粉末表面の酸化膜が破壊される。ついで、SiおよびZnが熱交換管(2)の外側表層部に拡散して熱交換管(2)の外側表層部に融点の低いAl−Si−Zn合金からなるろう材が形成され、当該ろう材により熱交換管(2)とコルゲートフィン(3)とがろう付される。また、前記ろう材のうちのろう付に使われなかったものが被覆層(32)となるとともに、被覆層(32)となるAl−Si−Zn合金中のZnおよびSiが拡散して拡散層(33)が形成される。これと同時に、熱交換管(4)の外面の溶融フラックスが流れ広がると同時に溶融Znも流れ広がり、Znが熱交換管(4)の外面表層部に拡散してZn拡散層が形成される。こうして、コンデンサ(1)が製造される。   At the time of temperature rise of the temporary fixing body, the flux powder forming the flux powder layer is first melted, and the oxide film on the outer surface of the heat exchange tube (2), the oxide film on the corrugated fin (3) surface, the oxide film on the Si powder surface and The oxide film on the surface of the Zn powder is destroyed. Then, Si and Zn diffuse into the outer surface layer portion of the heat exchange pipe (2) to form a brazing material made of Al-Si-Zn alloy having a low melting point in the outer surface layer portion of the heat exchange pipe (2). The material brazes the heat exchange pipe (2) and the corrugated fins (3). Moreover, while the thing which was not used for brazing among the said brazing materials becomes a coating layer (32), Zn and Si in the Al-Si-Zn alloy which becomes a coating layer (32) are diffused, and a diffusion layer (33) is formed. At the same time, the molten flux of the outer surface of the heat exchange pipe (4) flows and spreads simultaneously, and the molten Zn also flows and spreads, and Zn diffuses to the outer surface layer portion of the heat exchange pipe (4) to form a Zn diffusion layer. Thus, the capacitor (1) is manufactured.

製造されたコンデンサ(1)の熱交換管(2)においては、管壁(30)は、上述したように、本体部(31)と、被覆層(32)と、本体部(31)の外側表層部に形成された拡散層(33)とを備えている。そして、熱交換管(2)の管壁(30)の最外面と拡散層(33)の最深部との間の範囲内に、当該範囲内における自然電位が最も低い低電位部分と、当該低電位部分よりも自然電位が60mV以上高くなった高電位部分とが、低電位部分が管壁の最外面側に来るように存在している。   In the heat exchange tube (2) of the manufactured capacitor (1), the tube wall (30) is, as described above, the body portion (31), the covering layer (32), and the outer side of the body portion (31) And a diffusion layer (33) formed in the surface layer. And, in the range between the outermost surface of the tube wall (30) of the heat exchange tube (2) and the deepest portion of the diffusion layer (33), the low potential portion having the lowest natural potential in the range and the low potential The high potential portion where the natural potential is higher by 60 mV or more than the potential portion exists so that the low potential portion is on the outermost surface side of the tube wall.

熱交換管(2)において、熱交換管(2)の管壁(30)の最外面と拡散層(33)の最深部との間の範囲内に、当該範囲内における自然電位が最も低い低電位部分と、当該低電位部分よりも自然電位が60mV以上高くなった高電位部分とが、低電位部分が管壁の最外面側に来るように存在していることを限定したのは、次に述べる実験結果に基づくものである。   In the heat exchange pipe (2), in the range between the outermost surface of the pipe wall (30) of the heat exchange pipe (2) and the deepest part of the diffusion layer (33) The fact that the potential part and the high potential part where the natural potential is higher by 60 mV or more than the low potential part is limited so that the low potential part is on the outermost surface of the tube wall is as follows: Based on the experimental results described in

Cu:0.42質量%、Mn:0.16質量%、Si:0.12質量%、Fe:0.11質量%、Ti:0.01質量%を含み、残部Alおよび不可避不純物からなるAl合金で形成された押出形材製熱交換管と、Si:0.77質量%、Fe:0.24質量%、Mn:1.68質量%、Zn:1.60質量%、Zr:0.11質量%を含み、残部Alおよび不可避不純物からなるAl合金で形成されたベア材製コルゲートフィンとを用意した。熱交換管を形成するAl合金には、Si、Fe、Ti以外に、個々の含有量が0.05質量%以下である不可避不純物が、合計で0.15質量%以下含まれている。また、熱交換管の管壁の肉厚は180μmであり、コルゲートフィンの肉厚は70μmである。   Cu: 0.42% by mass, Mn: 0.16% by mass, Si: 0.12% by mass, Fe: 0.11% by mass, Ti: 0.01% by mass, and the balance Al and the inevitable impurities An extruded heat exchanger tube made of an alloy, Si: 0.77% by mass, Fe: 0.24% by mass, Mn: 1.68% by mass, Zn: 1.60% by mass, Zr: 0.. A bare corrugated fin made of an Al alloy containing 11% by mass, the balance Al and unavoidable impurities was prepared. In addition to Si, Fe, and Ti, inevitable impurities having an individual content of 0.05% by mass or less are contained in total of 0.15% by mass or less in the Al alloy forming the heat exchange tube. Further, the wall thickness of the heat exchange pipe is 180 μm, and the wall thickness of the corrugate fin is 70 μm.

さらに、KAlF4とKAlF5との混合物(当該混合物中のKAlF5量が10〜40質量%)を、90質量%以上含むフッ化物系の非腐食性フラックス粉末と、平均粒径3〜5μmでかつ最大粒径が10μm未満のZn粉末(Zn粉末の全重量の5質量%が酸化亜鉛である。)と、平均粒径2〜6μmでかつ最大粒径が10μm未満のSi粉末と、アクリル樹脂を3−メトキシ−3−メチル−1−ブタノールに溶解した溶液からなるバインダーと、3−メトキシ−3−メチル−1−ブタノールからなる希釈剤とを用意し、Zn粉末、Si粉末および非腐食性フラックス粉末を、バインダーおよび希釈剤中に分散混合させて分散液を得た。当該分散液における全成分の重量比率は、Zn粉末:Si粉末:非腐食性フラックス粉末:バインダー:希釈剤が、14.1重量部:10.6重量部:21.1重量部:9.2重量部:45.0重量部である。 Further, a fluoride non-corrosive flux powder containing 90% by mass or more of a mixture of KAlF 4 and KAlF 5 (the amount of KAlF 5 in the mixture is 10 to 40 mass%), and an average particle diameter of 3 to 5 μm And Zn powder having a maximum particle size of less than 10 μm (5% by mass of the total weight of the Zn powder is zinc oxide), Si powder having an average particle size of 2 to 6 μm and a maximum particle size of less than 10 μm, and acrylic resin Prepare a binder consisting of a solution of 3-methoxy-3-methyl-1-butanol and a diluent consisting of 3-methoxy-3-methyl-1-butanol; Zn powder, Si powder and non-corrosiveness The flux powder was dispersed and mixed in a binder and a diluent to obtain a dispersion. The weight ratio of all the components in the dispersion is Zn powder: Si powder: non-corrosive flux powder: binder: diluent, 14.1 parts by weight: 10.6 parts by weight: 21.1 parts by weight: 9.2 Parts by weight: 45.0 parts by weight.

ついで、前記分散液を噴霧法により熱交換管の外面に塗布した後、乾燥機内で乾燥させて分散液中の液状成分を気化させることにより、熱交換管の外面に、Zn粉末付着量が4〜6g/m2、Si粉末付着量が3〜6g/m2、フラックス粉末付着量が24g/m2以下となるように、Zn粉末、Si粉末およびフラックス粉末を付着させた。 Then, the dispersion is applied to the outer surface of the heat exchange tube by a spraying method, and then dried in a dryer to evaporate the liquid components in the dispersion, whereby the amount of Zn powder deposited on the outer surface of the heat exchange tube is 4 to 6 g / m 2, Si powder coating weight of 3 to 6 g / m 2, so that the flux powder deposition amount becomes 24 g / m 2 or less, was deposited Zn powder, Si powder and the flux powder.

その後、複数の熱交換管と複数のコルゲートフィンとを交互に組み合わせて積層し、窒素ガス雰囲気とされた炉内において熱交換管およびコルゲートフィンを加熱し、熱交換管とコルゲートフィンとをろう付した。熱交換管およびコルゲートフィンの加熱時には、熱交換管の実体温度が580℃以上でかつ最高温度が600.7℃となるように6.3分間加熱保持した。   Thereafter, a plurality of heat exchange tubes and a plurality of corrugated fins are alternately combined and stacked, the heat exchange tubes and the corrugated fins are heated in a furnace having a nitrogen gas atmosphere, and the heat exchange tubes and the corrugated fins are brazed did. During heating of the heat exchange tubes and the corrugated fins, the heat exchange tubes were heated and held for 6.3 minutes so that the substantial temperature of the heat exchange tubes was 580 ° C. or more and the maximum temperature was 600.7 ° C.

熱交換管とフィンとのろう付体から1つの熱交換管を切り取り、管壁(30)最外面からの異なる深さ位置の自然電位を測定したところ、図3に示す通りとなった。なお、管壁(30)の肉厚は180μmであった。図3において、管壁(30)の最外面と拡散層(33)の最深部との間の範囲内における自然電位が最も低い低電位部分は、直線Aで示す位置、すなわち最外面から7μmの深さ位置にあった。また、拡散層(33)の最深部の深さ位置は、管壁(30)の最外面から100μmの深さ位置にあった。図3に示す結果から、管壁(30)の最外面と拡散層(33)の最深部との間の範囲内に、最も自然電位が低い低電位部分と、低電位部分よりも60mV以上高くなった自然電位を有する高電位部分とが、低電位部分が管壁(30)の最外面側に来るように存在していることが判明した。   One heat exchange pipe was cut out from the heat exchange pipe and the brazed body of the fins, and the natural potentials at different depth positions from the outermost surface of the pipe wall (30) were measured. The results are as shown in FIG. The thickness of the tube wall (30) was 180 μm. In FIG. 3, the low potential portion having the lowest natural potential in the range between the outermost surface of the tube wall (30) and the deepest portion of the diffusion layer (33) is the position shown by the straight line A, ie 7 μm from the outermost surface. It was in the depth position. Also, the depth position of the deepest part of the diffusion layer (33) was 100 μm from the outermost surface of the tube wall (30). From the results shown in FIG. 3, it is found that the low potential portion having the lowest natural potential and the low potential portion are at least 60 mV higher in the range between the outermost surface of the tube wall (30) and the deepest portion of the diffusion layer (33). It has been found that a high potential portion having a natural potential is present such that the low potential portion is on the outermost surface side of the tube wall (30).

さらに、熱交換管とフィンとのろう付についてCCT試験を240日間行っ後、1つの熱交換管を切り出し、熱交換管の管壁(30)の最外面からの腐食深さを測定したところ、最大腐食深さは53.0μmであり、拡散層(33)に存在する前記高電位部分において腐食が止められていることが分かった。また、CCT試験後の熱交換管の管壁(30)の残肉は100μm以上であり、十分な耐食性を有していることが分かった。   Furthermore, after conducting a CCT test for 240 days about brazing of a heat exchange pipe and a fin, one heat exchange pipe was cut out, and the corrosion depth from the outermost surface of the pipe wall (30) of the heat exchange pipe was measured, The maximum corrosion depth was 53.0 μm, and it was found that the corrosion was stopped at the high potential portion present in the diffusion layer (33). In addition, it was found that the residual thickness of the tube wall (30) of the heat exchange tube after the CCT test is 100 μm or more, and it has sufficient corrosion resistance.

上述した実験結果から、熱交換管(2)の管壁(30)の最外面と拡散層(33)の最深部との間の範囲内に、当該範囲内における自然電位が最も低い低電位部分と、当該低電位部分よりも自然電位が60mV以上高くなった高電位部分とが、低電位部分が管壁の最外面側に来るように存在していることを限定した。   From the above-described experimental results, the low potential portion having the lowest natural potential in the range within the range between the outermost surface of the tube wall (30) of the heat exchange tube (2) and the deepest portion of the diffusion layer (33) And the high potential portion where the natural potential is higher by 60 mV or more than the low potential portion is limited so that the low potential portion is located on the outermost surface side of the tube wall.

この発明による熱交換管は、カーエアコン用コンデンサに好適に用いられる。   The heat exchange pipe according to the present invention is suitably used as a condenser for a car air conditioner.

(1):コンデンサ(熱交換器)
(2):扁平状熱交換管
(3):コルゲートフィン
(30):管壁
(31):芯材層
(32):被覆層
(33):拡散層
(1): Condenser (heat exchanger)
(2): Flat heat exchange pipe
(3): Corrugated fin
(30): Tube wall
(31): Core layer
(32): Coating layer
(33): Diffusion layer

Claims (4)

複数のアルミニウム押出形材製熱交換管と、隣り合う熱交換管間に配置されて熱交換管にろう材により接合されたアルミニウムベア材製フィンとを備えており、
熱交換管の管壁が、前記アルミニウム押出形材を形成するAl合金からなる本体部と、Al−Si−Zn合金からなりかつ本体部の外面を覆う被覆層とよりなり、熱交換管の管壁の本体部の外側表層部に、被覆層を形成するAl−Si−Zn合金中のZnおよびSiが拡散した拡散層が形成され、熱交換管の管壁の最外面と拡散層の最深部との間の範囲内に、当該範囲内における自然電位が最も低い低電位部分と、当該低電位部分よりも自然電位が60mV以上高くなった高電位部分とが、低電位部分が管壁の最外面側に来るように存在している熱交換器。
A plurality of aluminum extruded heat exchange tubes, and an aluminum bear fin disposed between adjacent heat exchange tubes and joined to the heat exchange tubes by a brazing material;
A tube wall of a heat exchange tube comprising: a main body portion made of an Al alloy forming the aluminum extruded section; and a covering layer made of an Al-Si-Zn alloy and covering the outer surface of the main body portion A diffusion layer in which Zn and Si in the Al-Si-Zn alloy forming the covering layer are diffused is formed in the outer surface layer portion of the main body of the wall, and the outermost surface of the tube wall of the heat exchange tube and the deepest portion of the diffusion layer The low potential part where the natural potential is lowest in the range and the high potential part where the natural potential is higher by 60 mV or more than the low potential part within the range A heat exchanger that exists on the outer side.
熱交換管の管壁の最外面と拡散層の最深部との間の範囲内において、自然電位が、管壁最外面から本体部に向かうにつれて低くなって前記低電位部分に達するとともに、当該低電位部分から本体部に向かうにつれて高くなって前記高電位部分に達するようになっている請求項1記載の熱交換器。 In the range between the outermost surface of the tube wall of the heat exchange tube and the deepest portion of the diffusion layer, the natural potential decreases from the outermost surface of the tube wall toward the main body to reach the low potential portion, The heat exchanger according to claim 1, wherein the high potential portion is reached as it goes from the potential portion toward the body portion. 熱交換管とフィンとを接合するろう材が、前記アルミニウム押出形材を形成するAl合金中のAlと、接合前の熱交換管の表面に付着させられていたSi粉末のSiとにより構成されている請求項1または2記載の熱交換器。 The brazing material for joining the heat exchange tube and the fin is composed of Al in the Al alloy forming the aluminum extruded profile and Si of Si powder deposited on the surface of the heat exchange tube before joining. The heat exchanger according to claim 1 or 2. 熱交換管の前記被覆層となっているAl−Si−Zn合金が、前記アルミニウム押出形材を形成するAl合金中のAlと、接合前の熱交換管の表面に付着させられていたSi粉末のSiと、接合前の熱交換管の表面に付着させられていたZn粉末のZnとにより構成されている請求項1〜3のうちのいずれかに記載の熱交換器。
The Al--Si--Zn alloy which is the covering layer of the heat exchange tube is the Al powder in the Al alloy forming the aluminum extruded profile and the Si powder deposited on the surface of the heat exchange tube before bonding The heat exchanger according to any one of claims 1 to 3, wherein the heat exchanger is constituted of Si and Zn of Zn powder deposited on the surface of the heat exchange tube before bonding.
JP2017169933A 2017-09-05 2017-09-05 Heat exchanger Pending JP2019045091A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017169933A JP2019045091A (en) 2017-09-05 2017-09-05 Heat exchanger
US16/057,821 US20190072344A1 (en) 2017-09-05 2018-08-08 Heat exchanger
DE102018214746.9A DE102018214746A1 (en) 2017-09-05 2018-08-30 heat exchangers
CN201811032232.XA CN109425241A (en) 2017-09-05 2018-09-05 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017169933A JP2019045091A (en) 2017-09-05 2017-09-05 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2019045091A true JP2019045091A (en) 2019-03-22
JP2019045091A5 JP2019045091A5 (en) 2020-09-10

Family

ID=65364248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017169933A Pending JP2019045091A (en) 2017-09-05 2017-09-05 Heat exchanger

Country Status (4)

Country Link
US (1) US20190072344A1 (en)
JP (1) JP2019045091A (en)
CN (1) CN109425241A (en)
DE (1) DE102018214746A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004330233A (en) * 2003-05-06 2004-11-25 Mitsubishi Alum Co Ltd Tube for heat exchanger
JP2009068083A (en) * 2007-09-14 2009-04-02 Mitsubishi Alum Co Ltd Heat exchanger member made of aluminum having excellent corrosion resistance, and method for manufacturing heat exchanger made of aluminum having excellent corrosion resistance
JP2009179830A (en) * 2008-01-29 2009-08-13 Mitsubishi Alum Co Ltd Brazing sheet for heat exchanger, and heat exchanger
JP2011137203A (en) * 2009-12-28 2011-07-14 Mitsubishi Alum Co Ltd Aluminum alloy tube superior in corrosion resistance for heat exchanger, and heat exchanger using the same
US20140033534A1 (en) * 2011-04-25 2014-02-06 Douglas C. Wintersteen Method of making a heat exchanger with an enhance material system
JP2014238209A (en) * 2013-06-07 2014-12-18 株式会社ケーヒン・サーマル・テクノロジー Anticorrosion treating method of outer surface of heat exchange pipe made of aluminum extrusion material and manufacturing method of heat exchanger
JP2016223725A (en) * 2015-06-02 2016-12-28 株式会社ケーヒン・サーマル・テクノロジー Heat exchanger and its process of manufacture

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3197251B2 (en) * 1998-09-22 2001-08-13 カルソニックカンセイ株式会社 Sacrificial corrosion-resistant aluminum alloys for heat exchangers and high corrosion-resistant aluminum alloy composites for heat exchangers
US8640766B2 (en) * 2003-05-06 2014-02-04 Mitsubishi Aluminum Co., Ltd. Heat exchanger tube
CN101120117A (en) * 2005-02-16 2008-02-06 昭和电工株式会社 Heat exchanger member and production method thereof
US20100147500A1 (en) * 2005-08-31 2010-06-17 Showa Denko K.K. Clad plate and process for production thereof
JP2015140457A (en) * 2014-01-29 2015-08-03 株式会社ケーヒン・サーマル・テクノロジー heat exchanger
JP6590536B2 (en) * 2015-06-05 2019-10-16 株式会社ケーヒン・サーマル・テクノロジー Clad material and pipe manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004330233A (en) * 2003-05-06 2004-11-25 Mitsubishi Alum Co Ltd Tube for heat exchanger
JP2009068083A (en) * 2007-09-14 2009-04-02 Mitsubishi Alum Co Ltd Heat exchanger member made of aluminum having excellent corrosion resistance, and method for manufacturing heat exchanger made of aluminum having excellent corrosion resistance
JP2009179830A (en) * 2008-01-29 2009-08-13 Mitsubishi Alum Co Ltd Brazing sheet for heat exchanger, and heat exchanger
JP2011137203A (en) * 2009-12-28 2011-07-14 Mitsubishi Alum Co Ltd Aluminum alloy tube superior in corrosion resistance for heat exchanger, and heat exchanger using the same
US20140033534A1 (en) * 2011-04-25 2014-02-06 Douglas C. Wintersteen Method of making a heat exchanger with an enhance material system
JP2014238209A (en) * 2013-06-07 2014-12-18 株式会社ケーヒン・サーマル・テクノロジー Anticorrosion treating method of outer surface of heat exchange pipe made of aluminum extrusion material and manufacturing method of heat exchanger
JP2016223725A (en) * 2015-06-02 2016-12-28 株式会社ケーヒン・サーマル・テクノロジー Heat exchanger and its process of manufacture

Also Published As

Publication number Publication date
DE102018214746A1 (en) 2019-03-07
US20190072344A1 (en) 2019-03-07
CN109425241A (en) 2019-03-05

Similar Documents

Publication Publication Date Title
JP6106530B2 (en) Method for preventing corrosion of heat exchange pipe outer surface made of extruded aluminum and method for producing heat exchanger
JP5710946B2 (en) Flat tubes and heat exchangers for heat exchangers
JP5334086B2 (en) Aluminum heat exchanger having excellent corrosion resistance and method for producing the same
JP4980390B2 (en) Tube for heat exchanger
JP6530178B2 (en) Heat exchanger and method of manufacturing heat exchanger
WO2014065355A1 (en) Aluminum alloy brazing sheet for fin, heat exchanger, and method for producing heat exchanger
CN110234950A (en) Soldering blend compositions coating
JP6529749B2 (en) Heat exchanger and method of manufacturing heat exchanger
JP2002011569A (en) Heat exchanger and its manufacture
US9581398B2 (en) Heat exchanger
JP2019070499A (en) Method of manufacturing heat exchanger
JP2019190725A (en) Precoated fin material for brazed heat exchanger, and heat exchanger
JP2019190720A (en) Aluminum fin for heat exchanger excellent in hydrophilic property, heat exchanger, and manufacturing method thereof
WO2019102915A1 (en) Aluminum fin having excellent hydrophilicity after brazing, and heat exchanger and method for producing same
JP6576055B2 (en) Pre-coated fin and heat exchanger using the same
JP2019045091A (en) Heat exchanger
JP6952568B2 (en) Aluminum fins with hot water wash hydrophilic coating film and hot water wash hydrophilic coating film and aluminum fin manufacturing method and heat exchanger
JP5963112B2 (en) Aluminum heat exchanger for room air conditioner
JP7209487B2 (en) ALUMINUM FIN AND HEAT EXCHANGER EXCELLENT IN HYDROPHILIC AFTER BRAZING PROCESS AND METHOD FOR MANUFACTURING THE SAME
JP7096638B2 (en) Pre-coated fins and heat exchangers using them
JP2019060522A (en) Manufacturing method for heat exchanger
JP6983699B2 (en) Brazing mixed composition paint
JP2019045091A5 (en)
JPH093580A (en) Aluminum alloy heat exchanger with excellent corrosion resistance
JP2018105572A (en) Heat exchanger and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200728

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211116