JP2019042830A - Composite sintered cutting tool - Google Patents
Composite sintered cutting tool Download PDFInfo
- Publication number
- JP2019042830A JP2019042830A JP2017166224A JP2017166224A JP2019042830A JP 2019042830 A JP2019042830 A JP 2019042830A JP 2017166224 A JP2017166224 A JP 2017166224A JP 2017166224 A JP2017166224 A JP 2017166224A JP 2019042830 A JP2019042830 A JP 2019042830A
- Authority
- JP
- Japan
- Prior art keywords
- cemented carbide
- layer
- ticn
- composite sintered
- sintered body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005520 cutting process Methods 0.000 title claims abstract description 141
- 239000002131 composite material Substances 0.000 title claims abstract description 122
- 239000011195 cermet Substances 0.000 claims abstract description 129
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 28
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 22
- 239000002245 particle Substances 0.000 claims abstract description 12
- 230000002093 peripheral effect Effects 0.000 claims abstract description 6
- 239000010410 layer Substances 0.000 claims description 230
- 229910052751 metal Inorganic materials 0.000 claims description 32
- 239000002184 metal Substances 0.000 claims description 32
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 20
- 239000011247 coating layer Substances 0.000 claims description 17
- 239000011230 binding agent Substances 0.000 claims description 10
- 229910052750 molybdenum Inorganic materials 0.000 claims description 8
- 229910045601 alloy Inorganic materials 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 5
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 abstract description 14
- 239000010937 tungsten Substances 0.000 abstract description 14
- 238000004227 thermal cracking Methods 0.000 abstract description 8
- 238000010586 diagram Methods 0.000 abstract description 3
- 239000007787 solid Substances 0.000 abstract 1
- 239000012071 phase Substances 0.000 description 38
- 239000000203 mixture Substances 0.000 description 32
- 238000005245 sintering Methods 0.000 description 26
- 239000000843 powder Substances 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 15
- 239000002994 raw material Substances 0.000 description 14
- 230000002159 abnormal effect Effects 0.000 description 11
- 238000001816 cooling Methods 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 229910052719 titanium Inorganic materials 0.000 description 9
- 150000004767 nitrides Chemical class 0.000 description 8
- 230000007774 longterm Effects 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910000851 Alloy steel Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000005240 physical vapour deposition Methods 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- 238000005336 cracking Methods 0.000 description 2
- 238000007733 ion plating Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910000967 As alloy Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- -1 iron group metals Chemical class 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000001238 wet grinding Methods 0.000 description 1
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Powder Metallurgy (AREA)
Abstract
【課題】タングステン使用量を削減し、かつ、耐剥離性、耐熱亀裂性にすぐれたTiCN基サーメットとWC基超硬合金からなる複合焼結体切削工具を提供する。【解決手段】TiCN基サーメットとWC基超硬合金との複合焼結体切削工具であって、切れ刃を含む外周部の少なくとも一部の面はWC基超硬合金層(好ましくは、複合焼結体切削工具の厚さの0.03〜0.3倍の厚さ)で構成し、WC基超硬合金層とTiCN基サーメットの界面からWC基超硬合金層側に、平均層厚が5〜200μmの界面層が形成され、該界面層は、5〜50面積%を占めるWC粒子と、50〜95面積%を占める混合相で構成され、該混合相中に存在するWとMoの合計含有量は、混合相中に存在するCoとNiの合計含有量の0.8〜1.2倍(但し、原子比)であり、前記TiCN基サーメットは、1層または2層以上のTiCN基サーメット層から構成されている複合焼結体切削工具。【選択図】 図1A composite sintered cutting tool made of a TiCN-based cermet and a WC-based cemented carbide, which reduces the amount of tungsten used and has excellent resistance to peeling and thermal cracking. A composite sintered body cutting tool of a TiCN-based cermet and a WC-based cemented carbide, wherein at least a part of the outer peripheral surface including the cutting edge is a WC-based cemented carbide layer (preferably, a composite sintered body). 0.03 to 0.3 times the thickness of the solid cutting tool), and the average layer thickness is from the interface between the WC-based cemented carbide layer and the TiCN-based cermet to the WC-based cemented carbide layer side An interfacial layer of 5 to 200 μm is formed, and the interfacial layer is composed of WC particles occupying 5 to 50 area % and a mixed phase occupying 50 to 95 area %. The total content is 0.8 to 1.2 times the total content of Co and Ni present in the mixed phase (atomic ratio), and the TiCN-based cermet contains one or more layers of TiCN A composite sintered cutting tool comprising a base cermet layer. [Selection diagram] Fig. 1
Description
本発明は、TiCN基サーメットとWC基超硬合金の複合焼結体からなる切削工具に関し、特に、希少金属であるタングステンの使用量の削減を図るとともに、タングステン使用量を削減して複合焼結体におけるWC基超硬合金層の層厚を薄くした場合であっても、切れ刃に熱的・機械的高負荷が作用する湿式断続切削加工において、WC基超硬合金層の剥離発生、熱亀裂発生を抑制することが可能であり、長期の使用にわたってすぐれた切削性能を発揮する複合焼結体切削工具に関するものである。 The present invention relates to a cutting tool composed of a composite sintered body of a TiCN-based cermet and a WC-based cemented carbide, and in particular, it is intended to reduce the amount of tungsten used as a rare metal while reducing the amount of tungsten used to perform composite sintering. Generation of peeling of WC base cemented carbide layer and heat in wet interrupted cutting where thermal and mechanical high load act on the cutting edge even when the layer thickness of WC base cemented carbide layer in the body is reduced The present invention relates to a composite sintered body cutting tool capable of suppressing the occurrence of a crack and exhibiting excellent cutting performance over long-term use.
鋼や鋳鉄の切削加工用工具としては、WC基超硬合金が広く利用されているが、希少金属であるタングステンの使用量を削減し所望の切削性能を得るために、従来から各種の提案がなされている。 WC-based cemented carbide is widely used as a cutting tool for steel and cast iron, but various proposals have been made to reduce the amount of tungsten, which is a rare metal, and obtain desired cutting performance. It is done.
例えば、特許文献1には、超硬合金層と、WC及びWを合計で15〜65質量%以下含み、結合相中の鉄族金属の80質量%以上がCoであるサーメット層とを積層した基材からなる切削工具において、基材は、積層方向における最大厚さをh1、切刃部分の超硬合金層の積層方向における最大厚さをh2としたとき、h2/h1を0.002〜0.02とすることによって、耐衝撃性と仕上げ面光沢を改善した複合焼結体切削工具が提案されている。 For example, in Patent Document 1, a cemented carbide layer and a cermet layer containing WC and W in total of 15 to 65 mass% or less in total and 80 mass% or more of iron group metals in the binder phase are Co are laminated. In the cutting tool made of a base material, the base material has a maximum thickness h1 in the stacking direction and a maximum thickness h2 in the stacking direction of the cemented carbide layer of the cutting edge portion, h2 / h1 is 0.002 to 2. By setting it as 0.02, the composite sintered compact cutting tool which improved impact resistance and surface glossiness is proposed.
また、例えば、特許文献2には、TiCN基サーメットとWC基超硬合金との複合焼結体からなる複合焼結体切削工具において、切削工具の切れ刃を含むすくい面は、鉄族金属成分を4〜17質量%、残部はWCを主たる硬質相成分とするWC基超硬合金で構成し、WC基超硬合金の厚さは、複合焼結体の厚さの0.05〜0.3倍とし、切削工具の母体であるTiCN基サーメットは、該サーメットの構成成分の含有割合を金属成分の含有割合で表現した場合、鉄族金属成分を4〜25質量%、Wを15質量%未満、Moを2〜15質量%、Nbを2〜10質量%、Crを0.2〜2質量%を含有し、かつ、鉄族金属成分であるCoとNiについて、CoとNiの合計含有量に対するCo含有割合は0.5〜0.8(但し、質量比)を満足するようにした複合焼結体切削工具が提案されている。
そして、この切削工具によれば、希少金属であるタングステンの使用量の低減を図り得るとともに、切れ刃に断続的・衝撃的な高負荷が作用する断続切削に用いた場合に、クラックの伝播・進展抑制作用を向上させ、チッピング、欠損、剥離等の異常損傷発生を抑制し得るとされている。
Further, for example, in Patent Document 2, in the case of a composite sintered body cutting tool comprising a composite sintered body of a TiCN-based cermet and a WC-based cemented carbide, the rake surface including the cutting edge of the cutting tool comprises an iron group metal component Of 4 to 17% by mass, the balance being WC base cemented carbide containing WC as the main hard phase component, and the thickness of the WC base cemented carbide is 0.05 to 0. 5 of the thickness of the composite sintered body. The TiCN-based cermet, which is three times as large as the mother body of the cutting tool, has 4 to 25 mass% of the iron group metal component and 15 mass% of W when the content ratio of constituent components of the cermet is expressed by the content ratio of the metal component Less than, 2 to 15 mass% of Mo, 2 to 10 mass% of Nb, 0.2 to 2 mass% of Cr, and total content of Co and Ni for Co and Ni which are iron group metal components The content ratio of Co to the amount satisfies 0.5 to 0.8 (mass ratio). Composite sintered body cutting tool in so that there has been proposed.
And, according to this cutting tool, while being able to aim at reduction of the amount of use of tungsten which is a rare metal, when it uses for intermittent cutting which an intermittent high impact acts on a cutting edge, propagation of a crack ・It is said that it can improve the progress suppressing action and suppress the occurrence of abnormal damage such as chipping, chipping and peeling.
上記特許文献1に示す複合焼結体切削工具においては、サーメット中に、15質量%以上のW,WCが必要とされるため、タングステン使用量の削減は不十分であり、また、このような切削工具を湿式断続切削加工に用いた場合には、強度、靭性が不十分であるばかりか耐剥離性、耐熱亀裂性も十分でないため、チッピング、欠損等の異常損傷を破損し易いという問題があった。 In the composite sintered body cutting tool shown in the above-mentioned Patent Document 1, since W and WC of 15% by mass or more are required in the cermet, the reduction of the amount of tungsten used is insufficient and such a reduction When the cutting tool is used for wet intermittent cutting, not only strength and toughness are insufficient but also peeling resistance and heat cracking resistance are not sufficient, so there is a problem that abnormal damage such as chipping and breakage is easily broken. there were.
また、上記特許文献2に示すWC基超硬合金とTiCN基サーメットからなる複合焼結体切削工具においては、ある程度までタングステン使用量の削減を図ることができるが、WC基超硬合金層の層厚を薄くした場合には、WC基超硬合金層とTiCN基サーメットとの界面には、熱膨張係数の差に基づく応力集中が生じ、界面剥離が発生しやすくなるため、フライス切削等に用いた場合には、界面剥離の発生等を原因としたチッピング、欠損、剥離等の異常損傷が発生する恐れがある。
したがって、切れ刃により一段と熱的、機械的な高負荷が作用する切削加工における信頼性は満足できるものであるとはいえなかった。
In addition, in the composite sintered body cutting tool composed of WC-based cemented carbide and TiCN-based cermet shown in Patent Document 2 described above, the amount of tungsten used can be reduced to a certain extent, but the layer of WC-based cemented carbide layer When the thickness is reduced, stress concentration is generated at the interface between the WC-based cemented carbide layer and the TiCN-based cermet based on the difference in the thermal expansion coefficient, and interface peeling is likely to occur. In such a case, abnormal damage such as chipping, chipping or peeling due to the occurrence of interfacial peeling or the like may occur.
Therefore, it can not be said that the reliability in the cutting process in which a high thermal and mechanical high load acts by the cutting edge is satisfactory.
そこで、本発明では、TiCN基サーメットとWC基超硬合金の複合焼結体切削工具において、希少金属であるタングステンの使用量の低減を図るとともに、WC基超硬合金層を薄層化した場合であっても、WC基超硬合金層の剥離発生を抑制することができ、しかも、切れ刃に熱的、機械的な高負荷が作用する湿式断続切削に用いた場合でも、剥離、熱亀裂の発生を抑制し、チッピング、欠損、剥離等の耐異常損傷性にすぐれた複合焼結体切削工具を提供することを目的とする。 Therefore, in the present invention, in the case of using a sintered compact of a TiCN based cermet and a WC based cemented carbide composite, while reducing the use amount of tungsten, which is a rare metal, and thinning the WC based cemented carbide layer. Even if the WC base cemented carbide layer can be suppressed from peeling, and even when used in wet interrupted cutting where a high thermal and mechanical load acts on the cutting edge, peeling and thermal cracking It is an object of the present invention to provide a composite sintered body cutting tool excellent in resistance to abnormal damage such as chipping, chipping and peeling, by suppressing the occurrence of
本発明者等は、上記の観点から、TiCN基サーメットとWC基超硬合金の複合焼結体からなる複合焼結体切削工具において、タングステン使用量の低減を図るとともに、WC基超硬合金層とTiCN基サーメットとの界面における剥離発生を抑制し得る切削工具について鋭意検討したところ、次のような知見を得た。 The inventors of the present invention have attempted to reduce the amount of tungsten used in a composite sintered body cutting tool made of a composite sintered body of a TiCN based cermet and a WC based cemented carbide from the above viewpoint, and to use a WC based cemented carbide layer. The following findings were obtained as a result of intensive investigation on a cutting tool capable of suppressing the occurrence of peeling at the interface between the above and TiCN-based cermet.
本発明者らは、WC基超硬合金とTiCN基サーメットとを焼結することにより複合焼結体を作製する際に、焼結工程の冷却時に、複合焼結体を特定の温度範囲で特定の時間保持する熱処理工程を付加することにより、WC基超硬合金層とTiCN基サーメットとの界面のWC基超硬合金層側に、特定の界面層を形成した場合、この界面層の存在によって、WC基超硬合金層とTiCN基サーメットの界面の接合強度が高められるため、WC基超硬合金層の層厚を薄くしても、WC基超硬合金層とTiCN基サーメットの界面における剥離発生を抑制し得ることを、まず、見出したのである。 The present inventors specified a composite sintered body in a specific temperature range at the time of cooling of a sintering process when producing a composite sintered body by sintering a WC base cemented carbide and a TiCN base cermet. If a specific interface layer is formed on the WC-based cemented carbide layer side of the interface between the WC-based cemented carbide layer and the TiCN-based cermet by adding a heat treatment step of holding for a certain time, the presence of this interface layer And the peeling strength at the interface between the WC-based cemented carbide layer and the TiCN-based cermet even if the layer thickness of the WC-based cemented carbide layer is decreased because the bonding strength between the WC-based cemented carbide layer and the TiCN-based cermet is enhanced. First of all, I found that I could suppress the occurrence.
また、WC基超硬合金とTiCN基サーメットとを焼結した際には、WC基超硬合金層とTiCN基サーメットとの接する界面には、WC基超硬合金とTiCN基サーメットの焼結時の熱膨張率差で応力集中が生じ、これがWC基超硬合金層の剥離発生の原因の一つであったが、本発明者らは、TiCN基サーメットとして、成分組成の調整により熱膨張率を異ならしめた2層以上からなるTiCN基サーメットを用い、かつ、WC基超硬合金層に隣接するTiCN基サーメットとして、WC基超硬合金の熱膨張率に近いTiCN基サーメットを配置することにより、前記WC基超硬合金層に形成した接合強度の高い前記界面層を介して、前記薄層化したWC基超硬合金層に、より大きな圧縮応力を付加することが可能となるため、WC基超硬合金層の剥離抑制効果に加え、熱的な高負荷に起因する熱亀裂の発生をも抑制し得ることを見出したのである。 In addition, when sintering WC base cemented carbide and TiCN base cermet, at the interface of contact between WC base cemented carbide layer and TiCN base cermet, when sintering WC base cemented carbide and TiCN base cermet The stress concentration occurs due to the difference in thermal expansion coefficient, which is one of the causes of peeling of the WC-based cemented carbide layer. The present inventors, as a TiCN-based cermet, adjust the thermal expansion coefficient by adjusting the component composition. By using a TiCN-based cermet composed of two or more layers different from each other and arranging the TiCN-based cermet close to the thermal expansion coefficient of the WC-based cemented carbide as the TiCN-based cermet adjacent to the WC-based cemented carbide layer Since it is possible to apply a larger compressive stress to the thinned WC base cemented carbide layer through the interface layer having high bonding strength formed on the WC base cemented carbide layer, Beyond basic In addition to the peeling inhibition effect of the alloy layer it is was found that it is possible to also suppress the generation of heat cracking caused by thermal high load.
つまり、前記複合焼結体からなる切削工具においては、接合強度の高い界面層の存在によって、希少金属であるタングステンの使用量を低減し、WC基超硬合金層の層厚を薄くすることができるとともに、WC基超硬合金層を薄層化した場合であっても、WC基超硬合金層とTiCN基サーメットの界面における剥離発生を防止し得ること、さらに、WC基超硬合金層に隣接するTiCN基サーメットの成分組成を調整することによって、WC基超硬合金層により一段と大きな圧縮応力を付与することが可能となるため、切れ刃に断続的・衝撃的な機械的高負荷および加熱冷却の熱サイクルによる熱的高負荷が作用する合金鋼等の湿式断続切削においても、剥離発生、熱亀裂発生等に起因する異常損傷を招くことなく、長期の使用に亘って、すぐれた切削性能を発揮することを見出したのである。 That is, in the cutting tool made of the composite sintered body, the use amount of tungsten which is a rare metal is reduced by the presence of the interface layer having high bonding strength, and the layer thickness of the WC base cemented carbide layer is reduced. In addition to being able to prevent the occurrence of peeling at the interface between the WC-based cemented carbide layer and the TiCN-based cermet even when the WC-based cemented carbide layer is thinned, By adjusting the component composition of the adjacent TiCN-based cermet, the WC-based cemented carbide layer can provide a larger compressive stress, so intermittent high-impact mechanical high load and heating on the cutting edge Even in wet interrupted cutting of alloy steel or the like where high thermal load acts by the thermal cycle of cooling, long-term use can be achieved without causing abnormal damage caused by peeling, thermal cracking, etc. It was found to exert a cutting performance of gray.
本発明は、上記知見に基づいてなされたものであって、
「(1)TiCN基サーメットとWC基超硬合金との複合焼結体からなる複合焼結体切削工具において、
(a)前記複合焼結体切削工具の切れ刃を含む外周部の少なくとも一部の面は、WC基超硬合金層で構成され、
(b)前記WC基超硬合金層とTiCN基サーメットの界面から前記WC基超硬合金層側には、平均層厚が5〜200μmの界面層が形成され、
(c)前記界面層は、5〜50面積%を占めるWC粒子と、50〜95面積%を占める混合相で構成され、
(d)前記混合相中に存在するWとMoの合計含有量は、前記混合相中に存在するCoとNiの合計含有量の0.8〜1.2倍(但し、原子比)であることを特徴とする複合焼結体切削工具。
(2) 前記複合焼結体切削工具の切れ刃を含むすくい面の少なくとも一部は、結合相成分としての鉄族金属成分を4〜17質量%および硬質相成分としてのWCを少なくとも含有するWC基超硬合金層で構成されていることを特徴とする(1)に記載の複合焼結体切削工具。
(3)前記WC基超硬合金層の厚さは、前記複合焼結体切削工具の厚さの0.03〜0.3倍であることを特徴とする(1)または(2)に記載の複合焼結体切削工具。
(4)前記TiCN基サーメットは、2層以上のTiCN基サーメット層から構成され、前記WC基超硬合金層の界面層に隣接するTiCN基サーメット層は、該サーメットの構成成分の含有割合を金属成分の含有割合で表現した場合、少なくとも鉄族金属成分を4〜25質量%、Wを15質量%未満、Moを2〜15質量%、Nbを2〜10質量%、Crを0.2〜2質量%を含有し、かつ、鉄族金属成分であるCoとNiについて、CoとNiの合計含有量に対するCo含有量は0.5〜0.8倍(但し、原子比)であることを特徴とする(1)乃至(3)のいずれかに記載の複合焼結体切削工具。
(5)前記複合焼結体切削工具の少なくとも切れ刃を含むWC基超硬合金層の表面に、硬質被覆層が形成されていることを特徴とする前記(1)乃至(4)のいずれかに記載の複合焼結体切削工具。」
を特徴とするものである。
The present invention has been made based on the above findings, and
“(1) In a composite sintered body cutting tool comprising a composite sintered body of a TiCN based cermet and a WC based cemented carbide,
(A) At least a part of the surface of the outer peripheral portion including the cutting edge of the composite sintered body cutting tool is composed of a WC-based cemented carbide layer,
(B) An interface layer having an average layer thickness of 5 to 200 μm is formed on the WC-based cemented carbide layer side from the interface between the WC-based cemented carbide layer and the TiCN-based cermet,
(C) The interface layer is composed of WC particles occupying 5 to 50 area% and a mixed phase occupying 50 to 95 area%,
(D) The total content of W and Mo present in the mixed phase is 0.8 to 1.2 times (in atomic ratio) the total content of Co and Ni present in the mixed phase Composite sintered body cutting tool characterized in that.
(2) WC containing at least 4 to 17% by mass of an iron group metal component as a binder phase component and at least WC as a hard phase component at least a part of the rake face including the cutting edge of the composite sintered body cutting tool The composite sintered body cutting tool according to (1), which is composed of a base cemented carbide layer.
(3) The thickness of the WC-based cemented carbide layer is 0.03 to 0.3 times the thickness of the composite sintered body cutting tool according to (1) or (2). Composite sintered cutting tools.
(4) The TiCN-based cermet is composed of two or more layers of TiCN-based cermet layers, and the TiCN-based cermet layer adjacent to the interface layer of the WC-based cemented carbide layer contains the content ratio of the component of the cermet When expressed by the content ratio of the components, at least 4 to 25 mass% of the iron group metal component, less than 15 mass% of W, 2 to 15 mass% of Mo, 2 to 10 mass% of Nb, and 0.2 to Cr That the Co content is 0.5 to 0.8 times (with an atomic ratio) relative to the total content of Co and Ni, which contains 2% by mass, and Co and Ni which are iron group metal components The composite sintered body cutting tool according to any one of (1) to (3), characterized in that
(5) A hard coating layer is formed on the surface of the WC-based cemented carbide layer including at least the cutting edge of the composite sintered body cutting tool according to any one of the above (1) to (4) The composite sintered body cutting tool according to claim 1. "
It is characterized by
以下、本発明について、図面とともに詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.
図1は、本発明の複合焼結体切削工具の概略縦断面模式図を示し、(a)は、本発明の複合焼結体切削工具の一つの例を示し、また、(b)は、TiCN基サーメットが複数層(2層)で構成されている本発明の複合焼結体切削工具の他の例を示す。
図2は、WC基超硬合金層の表面に、硬質被覆層が設けられた本発明の複合焼結体切削工具の概略縦断面模式図を示し、(a)は、図1(a)に示す複合焼結体切削工具において、そのWC基超硬合金層の表面に硬質被覆層が設けられた複合焼結体切削工具を示し、(b)は、図1(b)に示す複合焼結体切削工具において、そのWC基超硬合金層の表面に硬質被覆層が設けられた複合焼結体切削工具を示す。
図3(a)は、本発明の複合焼結体切削工具の縦断面SEM像の一例を示し、(b)はその部分拡大図を示す。
FIG. 1 shows a schematic longitudinal sectional view of a composite sintered body cutting tool according to the present invention, wherein (a) shows an example of the composite sintered body cutting tool according to the present invention, and (b) shows The other example of the composite sintered compact cutting tool of this invention in which the TiCN base cermet is comprised by multiple layers (two layers) is shown.
FIG. 2 shows a schematic vertical cross-sectional schematic view of a composite sintered body cutting tool according to the present invention in which a hard coating layer is provided on the surface of a WC-based cemented carbide layer, and FIG. In the composite sintered body cutting tool shown, a composite sintered body cutting tool in which a hard coating layer is provided on the surface of the WC base cemented carbide layer is shown, and (b) shows the composite sintering shown in FIG. 1 (b) The body sintered cutting tool WHEREIN: The composite sintered compact cutting tool by which the hard coating layer was provided in the surface of the WC base cemented carbide layer is shown.
Fig.3 (a) shows an example of the longitudinal cross-section SEM image of the compound sintered compact cutting tool of this invention, (b) shows the elements on larger scale.
本発明の複合焼結体切削工具は、図1、図2に示すように、切削工具全体をWC基超硬合金で構成するのではなく、TiCN基サーメットを母体とし、切れ刃を含む外周部の少なくとも一部の面、例えば、すくい面に、WC基超硬合金層を設けた構造となっている。
また、図2(a)、(b)として示すように、本発明では、例えば、切削工具のすくい面に設けられたWC基超硬合金層の表面に、物理蒸着、化学蒸着等によって、硬質被覆層を蒸着形成することによって、表面に硬質被覆層が設けられた複合焼結体切削工具とすることもできる。
In the composite sintered body cutting tool of the present invention, as shown in FIG. 1 and FIG. 2, the entire cutting tool is not made of WC base cemented carbide, but TiCN base cermet as a base and outer periphery including cutting edge The WC-based cemented carbide layer is provided on at least a part of the surface, for example, the rake surface.
Also, as shown in FIGS. 2 (a) and 2 (b), in the present invention, for example, the surface of the WC-based cemented carbide layer provided on the rake face of the cutting tool is hard by physical vapor deposition, chemical vapor deposition or the like. By forming a coating layer by vapor deposition, a composite sintered body cutting tool provided with a hard coating layer on the surface can also be obtained.
本発明の複合焼結体切削工具は、大略、以下の製造方法によって作製することができる。
まず、所定組成のTiCN基サーメット粉末と、同じく所定組成のWC基超硬合金粉末を用意し、これらの粉末をプレスすることで、TiCN基サーメットとWC基超硬合金が積層された複合成形体を作製し、ついで、この複合成形体を、例えば、0.1kPaの窒素雰囲気中にて、1400℃〜1440℃の焼結温度で1hr〜1.5hr焼結する。
ついで、焼結後の冷却過程において、1330℃〜1370℃の温度範囲で0.8hr〜1.5hr保持する熱処理を施した後、室温まで冷却することによって複合焼結体を作製する。
このような焼結を行うことによって、WC基超硬合金層とTiCN基サーメットとの界面であって、かつ、該界面からWC基超硬合金層側にし、後記する界面層が形成される。
ついで、得られた複合焼結体を所定の形状に加工することにより本発明の複合焼結体切削工具を作製することができる。
また、前記複合成形体の作製に際し、TiCN基サーメットを2層以上のTiCN基サーメット層で構成し、かつ、WC基超硬合金層に隣接するTiCN基サーメットとして、成分組成を調整することにより熱膨張率をWC基超硬合金のそれに近づけたTiCN基サーメットを配置して焼結することにより、前記WC基超硬合金層側に形成した接合強度の高い前記界面層を介して、前記WC基超硬合金層に、大きな圧縮応力を付加した本発明の複合焼結体切削工具を作製することができる。
さらに、前記で作製した本発明の複合焼結体切削工具のWC基超硬合金層の表面に、物理蒸着法、化学蒸着法等により、Ti化合物層、TiとAlの複合窒化物層、Al2O3層等の硬質被覆層を単層でまたは複数層の積層皮膜として蒸着形成することによって、WC基超硬合金層の表面に、硬質被覆層を形成した本発明の複合焼結体切削工具を製造することができる。
The composite sintered body cutting tool of the present invention can be manufactured by the following manufacturing method.
First, a TiCN-based cermet powder having a predetermined composition and a WC-based cemented carbide powder having a predetermined composition are prepared, and these powders are pressed to form a composite molded body in which the TiCN-based cermet and the WC-based cemented carbide are laminated. Is then sintered at a sintering temperature of 1400 ° C. to 1440 ° C. for 1 hour to 1.5 hours, for example, in a nitrogen atmosphere of 0.1 kPa.
Next, in a cooling process after sintering, a heat treatment is performed to maintain the temperature range of 1330 ° C. to 1370 ° C. for 0.8 hr to 1.5 hr, and then the composite sintered body is manufactured by cooling to room temperature.
By performing such sintering, an interface layer, which will be described later, is formed at the interface between the WC base cemented carbide layer and the TiCN base cermet and from the interface to the WC base cemented carbide layer side.
Subsequently, the composite sintered body cutting tool of the present invention can be manufactured by processing the obtained composite sintered body into a predetermined shape.
Further, in the preparation of the composite molded body, heat is adjusted by adjusting the component composition as a TiCN-based cermet composed of two or more TiCN-based cermet layers and as a TiCN-based cermet adjacent to the WC-based cemented carbide layer. By placing and sintering a TiCN-based cermet whose expansion coefficient is close to that of WC-based cemented carbide, the WC-based cemented carbide layer is formed on the WC-based cemented carbide layer side via the interface layer with high bonding strength. The composite sintered body cutting tool of the present invention in which a large compressive stress is applied to the cemented carbide layer can be manufactured.
Furthermore, on the surface of the WC-based cemented carbide layer of the composite sintered body cutting tool of the present invention prepared above, a Ti compound layer, a composite nitride layer of Ti and Al, Al by physical vapor deposition, chemical vapor deposition, etc. The composite sintered body according to the present invention has a hard coating layer formed on the surface of a WC-based cemented carbide layer by vapor deposition of a hard coating layer such as a 2 O 3 layer as a single layer or a multi-layered film. Tools can be manufactured.
WC基超硬合金層とTiCN基サーメットの界面に形成される界面層:
本発明の複合焼結体切削工具の作製にあたり、前述のとおり、複合成形体をその焼結工程において、1400℃〜1440℃の焼結温度で1hr〜1.5hr焼結した後、その冷却過程において、1330℃〜1370℃の温度範囲で0.8hr〜1.5hr保持する熱処理を施すことによって、本発明の特徴の一つである界面層が、WC基超硬合金とTiCN基サーメットの界面からWC基超硬合金層側に5〜200μmの平均層厚で形成される。
そして、この界面層を形成することによって、WC基超硬合金層とTiCN基サーメットの接合強度を高めることができるため、希少金属であるタングステンの使用量を低減し、WC基超硬合金層の層厚を薄くした場合であっても、切れ刃に断続的・衝撃的な機械的高負荷および熱的な高負荷が作用する合金鋼等の湿式断続切削加工において、WC基超硬合金層とTiCN基サーメットの界面における剥離発生が抑制される。
Interfacial layer formed at the interface of WC-based cemented carbide layer and TiCN-based cermet:
In the production of the composite sintered body cutting tool of the present invention, as described above, the composite compact is sintered in the sintering step at a sintering temperature of 1400 ° C. to 1440 ° C. for 1 hour to 1.5 hours and then cooled The interface layer, which is one of the features of the present invention, is heat treated at a temperature range of 1330.degree. C. to 1370.degree. C. for 0.8 to 1.5 hours to form an interface between WC base cemented carbide and TiCN base cermet. The WC-based cemented carbide layer side is formed with an average layer thickness of 5 to 200 μm.
Then, by forming this interface layer, the bonding strength between the WC-based cemented carbide layer and the TiCN-based cermet can be increased, so that the amount of tungsten, which is a rare metal, is reduced, and the WC-based cemented carbide layer is formed. Even when the layer thickness is reduced, WC-based cemented carbide layers are used in wet interrupted cutting such as alloy steel where intermittent high-impact mechanical high load and high thermal load act on the cutting edge. The occurrence of peeling at the interface of the TiCN-based cermet is suppressed.
また、前記複合焼結体切削工具の作製にあたり、TiCN基サーメットを2層以上のTiCN基サーメット層で構成し、かつ、WC基超硬合金層に隣接するTiCN基サーメットとして、WC基超硬合金の熱膨張率に近いTiCN基サーメットを配置して焼結した本発明の複合焼結体切削工具においては、界面層の形成によって大きな接合強度が確保されるため、WC基超硬合金層の層厚を薄くした場合であっても、WC基超硬合金層に大きな圧縮応力を付与することが可能となる。
その結果、切れ刃に断続的・衝撃的な機械的高負荷および熱的な高負荷が作用する合金鋼等の湿式断続切削加工に供した場合でも、界面層の有する大きな接合強度によってWC基超硬合金層とTiCN基サーメットの界面における剥離発生が抑制されるとともに、WC基超硬合金層が有する大きな圧縮応力によって、加熱冷却の熱サイクルに起因する熱亀裂の発生も防止されるため、剥離発生、熱亀裂発生を原因とする異常損傷の発生を招くこともなく、長期の使用に亘って、すぐれた切削性能が発揮される。
In addition, in producing the composite sintered body cutting tool, the TiCN-based cermet is composed of two or more TiCN-based cermet layers, and as the TiCN-based cermet adjacent to the WC-based cemented carbide layer, WC-based cemented carbide In the composite sintered body cutting tool of the present invention in which a TiCN-based cermet having a thermal expansion coefficient close to that of the present invention is placed and sintered, the formation of the interface layer ensures a high bonding strength, so the layer of WC-based cemented carbide layer Even when the thickness is reduced, it is possible to apply a large compressive stress to the WC-based cemented carbide layer.
As a result, even when subjected to wet intermittent cutting of alloy steel or the like where intermittent high-impact mechanical high load and thermal high load act on the cutting edge, the WC-based The occurrence of peeling at the interface between the hard metal layer and the TiCN-based cermet is suppressed, and the large compressive stress of the WC-based cemented carbide layer also prevents the generation of thermal cracks due to the thermal cycle of heating and cooling. Excellent cutting performance is exhibited over long-term use without causing any abnormal damage caused by the generation or thermal cracking.
前記複合焼結体切削工具において形成される界面層は、その縦断面を観察した場合に、5〜50面積%を占めるWC粒子と、50〜95面積%を占める混合相から構成されるが、WC粒子の面積率が5面積%未満の場合あるいは混合相の面積率が95面積%を超える場合には、WC基超硬合金層とTiCN基サーメットに比し界面層の硬度が著しく低くなり、その結果、切削中に界面層が変形、破断する可能性が高くなり、一方、WC粒子の面積率が50面積%を超える場合あるいは混合相の面積率が50面積%未満の場合には、界面層の熱膨張係数がWC基超硬合金に近くなることから、TiCN基サーメットとの界面において応力集中が発生し、破断を生じやすくなることから、界面層を構成するというWC粒子の面積率は5〜50面積%また混合相の面積率は50〜95面積%とする。 The interface layer formed in the composite sintered body cutting tool is composed of WC particles occupying 5 to 50 area% and a mixed phase occupying 50 to 95 area% when the longitudinal cross section is observed. When the area ratio of WC particles is less than 5 area% or when the area ratio of mixed phase exceeds 95 area%, the hardness of the interface layer becomes significantly lower than that of the WC base cemented carbide layer and the TiCN base cermet, As a result, the interface layer is highly likely to be deformed or broken during cutting, while the interface ratio of the WC particles exceeds 50 area%, or the interface ratio of the mixed phase is less than 50 area%. Since the thermal expansion coefficient of the layer is close to that of WC base cemented carbide, stress concentration occurs at the interface with the TiCN base cermet, and breakage easily occurs, so the area ratio of WC particles constituting the interface layer is 5 to 50 area The area ratio of a mixed phase is 50 to 95 area%.
また、前記混合相は、該相を構成する成分元素として、少なくとも、WとMoとCoとNiを含有するが、混合相中に存在するWとMoの合計量は、前記混合相中に存在するCoとNiの合計量の0.8〜1.2倍、即ち、原子比で、0.8≦(W+Mo)/(Co+Ni)≦1.2とする。
これは、(W+Mo)/(Co+Ni)の値が0.8未満では、界面層中に異相としてグラファイト相が出現し、界面層が大きく脆化するためであり、一方、(W+Mo)/(Co+Ni)の値が1.2を超えると、TiCN基サーメットから界面層に結合相成分が移動しやすくなり、その結果TiCN基サーメット中に空隙を生じ、破壊を生じやすくなるという理由による。
Further, the mixed phase contains at least W, Mo, Co and Ni as component elements constituting the phase, but the total amount of W and Mo present in the mixed phase is present in the mixed phase The total amount of Co and Ni is 0.8 to 1.2 times, that is, 0.8 ≦ (W + Mo) / (Co + Ni) ≦ 1.2 in atomic ratio.
This is because if the value of (W + Mo) / (Co + Ni) is less than 0.8, a graphite phase appears as a heterophase in the interface layer and the interface layer becomes largely embrittled, while (W + Mo) / (Co + Ni) When the value of the value of 1.2 exceeds 1.2, the binder phase component is easily moved from the TiCN-based cermet to the interface layer, and as a result, a void is generated in the TiCN-based cermet and the fracture tends to occur.
さらに、WC基超硬合金とTiCN基サーメットの界面からWC基超硬合金層側に形成される前記界面層は、その平均層厚が5μm未満では、WC基超硬合金とTiCN基サーメットの間に生じる応力を緩和する効果を十分に発揮できず、一方、その平均層厚が200μmを超えると、界面層の脆性が顕在化し、クラックの基点となる可能性が増大するため、界面層の平均層厚は5〜200μmとする。
なお、前記界面層の前記成分組成、平均層厚は、主として、WC基超硬合金の成分組成及びこれに隣接するTiCN基サーメットの成分組成に応じた焼結時の冷却過程における保持温度と保持時間によって決まる。
Furthermore, the interface layer formed on the WC-based cemented carbide layer side from the interface between the WC-based cemented carbide and the TiCN-based cermet has an average layer thickness of less than 5 μm between the WC-based cemented carbide and the TiCN-based cermet In the meanwhile, when the average layer thickness exceeds 200 μm, the brittleness of the interface layer becomes apparent, and the possibility of becoming the base point of the crack increases. The layer thickness is 5 to 200 μm.
The component composition and the average layer thickness of the interface layer are mainly the holding temperature and the holding temperature in the cooling process during sintering according to the component composition of the WC-based cemented carbide and the component composition of the TiCN-based cermet adjacent thereto. It depends on the time.
切れ刃を含む外周部の少なくとも一部の面を構成するWC基超硬合金層:
本発明の複合焼結体切削工具は、TiCN基サーメットを母体とし、切れ刃を含む外周部の少なくとも一部の面、例えば、すくい面、に形成されるWC基超硬合金層は、結合相成分としての鉄族金属成分(例えば、Co、Ni、Fe)と硬質相成分としてのWCを少なくとも含有する。
結合相成分は、硬質相成分と強固に結合し、工具基体の強度および靭性を向上させる作用があるが、結合相成分である鉄族金属成分の含有量(即ち、Co、Ni、Feの含有量合計)が4質量%未満では前記作用に所望の効果が得られず、一方、その含有量が17質量%を越えると、耐摩耗性が低下するようになることから、結合相成分である鉄族金属成分の含有量(即ち、Co、Ni、Feの含有量合計)は、4〜17質量%とすることが望ましい。
なお、Ti、Zr、Nb、TaおよびCrの各成分は、炭化物、窒化物、炭窒化物等を形成して、WC基超硬合金の硬さを高め、耐摩耗性を向上させる作用があることから、これらの硬質相成分を微量添加含有させることが好ましい。しかし、これら硬質相成分の含有量合計が10質量%(但し、金属成分として換算)を越えると靭性が低下するようになることから、Ti、Zr、Nb、TaおよびCrの各成分の許容含有量合計は10質量%以下である。
WC-based cemented carbide layer constituting at least a part of the outer peripheral portion including the cutting edge:
The composite sintered body cutting tool according to the present invention has a TiCN-based cermet as a matrix, and a WC-based cemented carbide layer formed on at least a part of an outer surface including a cutting edge, for example, a rake face It contains at least an iron group metal component (eg, Co, Ni, Fe) as a component and WC as a hard phase component.
The binder phase component strongly bonds to the hard phase component and has the effect of improving the strength and toughness of the tool substrate, but the content of the iron group metal component which is the binder phase component (that is, the content of Co, Ni, Fe) If the total amount is less than 4% by mass, the desired effect can not be obtained. On the other hand, if the content exceeds 17% by mass, the wear resistance is reduced, so that it is a binder phase component. The content of the iron group metal component (that is, the total content of Co, Ni, and Fe) is desirably 4 to 17% by mass.
In addition, each component of Ti, Zr, Nb, Ta and Cr forms carbides, nitrides, carbonitrides and the like to increase the hardness of WC base cemented carbide and to improve the wear resistance. Therefore, it is preferable to add a small amount of these hard phase components. However, if the total content of these hard phase components exceeds 10% by mass (provided that it is converted as a metal component), the toughness will be lowered, so the allowable inclusion of each component of Ti, Zr, Nb, Ta and Cr The total amount is 10% by weight or less.
また、切れ刃を含む外周部の少なくとも一部の面、例えば、すくい面、を構成するWC基超硬合金層の厚さは、複合焼結体の厚さの0.03〜0.3倍とすることが望ましい。
これは、WC基超硬合金層の厚さが、複合焼結体の厚さの0.03倍未満である場合には、切削加工時、摩耗が進行した際にTiCN基サーメットまで摩耗が進み、界面層に大きな負荷がかかることにより破断を生じやすくなり、一方、WC基超硬合金層の厚さが、複合焼結体の厚さの0.3倍を超える場合には、WC基超硬合金層に付加される圧縮応力が小さくなるため、耐熱亀裂性が低下するばかりか、耐チッピング性、耐欠損性も低下し、さらに、W使用量の削減を図ることもできず、本発明の目的にそぐわなくなるという理由による。
したがって、本発明では、WC基超硬合金層の厚さは、複合焼結体の厚さの0.03〜0.3倍とすることが望ましい。
In addition, the thickness of the WC-based cemented carbide layer constituting at least a part of the outer peripheral portion including the cutting edge, for example, the rake face, is 0.03 to 0.3 times the thickness of the composite sintered body It is desirable to
This is because when the thickness of the WC-based cemented carbide layer is less than 0.03 times the thickness of the composite sintered body, the wear progresses to TiCN-based cermet when the wear progresses during cutting. When the thickness of the WC-based cemented carbide layer exceeds 0.3 times the thickness of the composite sintered body, the WC-based cemented carbide layer is easily broken. Since the compressive stress applied to the hard metal layer is reduced, not only the thermal crack resistance is lowered, but also the chipping resistance and the fracture resistance are lowered, and furthermore, the amount of W used can not be reduced either. The reason is that it does not fit the purpose of
Therefore, in the present invention, the thickness of the WC base cemented carbide layer is preferably 0.03 to 0.3 times the thickness of the composite sintered body.
WC基超硬合金層に隣接するTiCN基サーメットの成分組成:
本発明で用いられるWC基超硬合金層に隣接するTiCN基サーメットは、TiCNを主たる硬質相成分とし、鉄族金属(例えば、Co、Ni、Fe)を主たる結合相成分とするサーメットである。
その他の含有成分を金属成分元素換算した場合に、Wを15質量%未満、Moを2〜15質量%、Nbを2〜10質量%、Crを0.2〜2質量%を含有し、かつ、鉄族金属成分のうちのCoとNiについては、CoとNiの合計含有量に対するCo含有量の比は0.5〜0.8(但し、原子比)とすることが望ましい。
Composition of TiCN-based cermet adjacent to WC-based cemented carbide layer:
The TiCN-based cermet adjacent to the WC-based cemented carbide layer used in the present invention is a cermet containing TiCN as the main hard phase component and iron group metal (eg, Co, Ni, Fe) as the main binder phase component.
When the other contained components are converted to metal component elements, W contains less than 15% by mass, Mo 2 to 15% by mass, Nb 2 to 10% by mass, and Cr 0.2 to 2% by mass, and For Co and Ni among the iron group metal components, the ratio of the Co content to the total content of Co and Ni is preferably 0.5 to 0.8 (where the atomic ratio).
WC基超硬合金層に隣接するTiCN基サーメットについて、前記の成分組成が望ましいとする理由は、次のとおりである。
W:
WはTiCN基サーメット中での含有量が増えるほど、TiCN基サーメットの特性がWC基超硬合金に近づくので、複合体としての焼結は容易となるが、この発明で目的としているように含有量の削減が求められる成分元素であることから、本発明では、W含有量を15質量%未満とする。
The reason why the above-mentioned component composition is desirable for the TiCN-based cermet adjacent to the WC-based cemented carbide layer is as follows.
W:
As the content of W increases as the content in TiCN-based cermet increases, the characteristics of TiCN-based cermet approach WC-based cemented carbide, so sintering as a composite becomes easy, but as contained in the present invention, In the present invention, the W content is less than 15% by mass because it is a component element for which a reduction in amount is required.
Mo:
Moは、TiCN基サーメットにおいて、硬質相と結合相との濡れ性を高め、焼結性を向上させる作用を有する成分元素であるが、その含有量が2質量%未満では、濡れ性の向上効果が十分ではなく、一方、含有量が15質量%を超えると、硬質相にMoが溶け込み、強度、靭性を低下させるようになるため、Moの含有量は2〜15質量%とする。
Mo:
Mo is a component element having the function of enhancing the wettability between the hard phase and the binder phase and improving the sinterability in the TiCN-based cermet, but if the content is less than 2% by mass, the wettability improving effect On the other hand, when the content exceeds 15% by mass, Mo dissolves in the hard phase to lower the strength and the toughness, so the content of Mo is set to 2 to 15% by mass.
Nb:
Nbは、TiCN基サーメットの高温耐酸化性を向上させる効果があるが、その含有量が2質量%未満の場合、あるいは、10質量%を超える場合には、高温耐酸化性向上効果が低下するため、Nbの含有量は2〜10質量%とする。
Nb:
Nb has the effect of improving the high temperature oxidation resistance of TiCN-based cermets, but when the content is less than 2 mass% or exceeds 10 mass%, the high temperature oxidation resistance improvement effect is reduced Therefore, the content of Nb is set to 2 to 10% by mass.
Cr:
Crは、TiCN基サーメットの焼結温度をWC基超硬合金のそれに近づける効果を有するが、その含有量が0.2質量%未満では、その効果が十分ではなく、一方、その含有量が2質量%を超えると、Cr3C2の遊離相が析出し焼結体の靭性を低下させるようになるため、Crの含有量は0.2〜2質量%とする。
Cr:
Cr has the effect of bringing the sintering temperature of the TiCN-based cermet closer to that of the WC-based cemented carbide, but if the content is less than 0.2% by mass, the effect is not sufficient, while the content is 2 When the content is more than% by mass, a Cr 3 C 2 free phase precipitates to reduce the toughness of the sintered body, so the content of Cr is set to 0.2 to 2% by mass.
Co:
Coは、鉄族金属成分であって、TiCN基サーメットにおける結合相成分であるが、同じく鉄族金属成分であるNiとの関連において、CoとNiの合計含有量に対するCoの含有割合(Co/(Co+Ni))を0.5〜0.8(但し、原子比)の範囲内とすることが望ましい。
CoとNiの合計含有量に対するCoの含有割合(Co/(Co+Ni))が0.5未満であると、TiCN基サーメットとWC基超硬合金の複合成形体を焼結する際に、TiCN基サーメット中のNi成分がWC基超硬合金に拡散し、WC基超硬合金の高温硬さを低下させることになり、一方、CoとNiの合計含有量に対するCoの含有割合(Co/(Co+Ni))が0.8を超えると、TiCN基サーメットの靭性が低下し、複合焼結体の破損を招く恐れがある。
したがって、TiCN基サーメットに含有される成分であるCoとNiについては、CoとNiの合計含有量に対するCoの含有割合(Co/(Co+Ni))を0.5〜0.8(但し、原子比)の範囲内とする。
Co:
Co is an iron group metal component and is a binder phase component in a TiCN-based cermet, but in relation to Ni which is also an iron group metal component, the content ratio of Co to the total content of Co and Ni (Co / It is desirable that (Co + Ni)) be in the range of 0.5 to 0.8 (in atomic ratio).
When sintering the composite of TiCN-based cermet and WC-based cemented carbide as the content ratio of Co (Co / (Co + Ni)) to the total content of Co and Ni is less than 0.5, TiCN-based The Ni component in the cermet diffuses into the WC base cemented carbide and lowers the high temperature hardness of the WC base cemented carbide, while the content ratio of Co to the total content of Co and Ni (Co / (Co + Ni) When it exceeds 0.8, the toughness of the TiCN-based cermet may be lowered, which may cause breakage of the composite sintered body.
Therefore, with regard to Co and Ni which are components contained in the TiCN-based cermet, the content ratio of Co (Co / (Co + Ni)) to the total content of Co and Ni is 0.5 to 0.8 (however, the atomic ratio) Within the range of).
WC基超硬合金層に隣接するTiCN基サーメットの好ましい成分組成については前記のとおりであるが、TiCN基サーメットは、その全体を前記成分組成のものとして構成する必要はない。
即ち、図1(b),図2(b)に示すように、TiCN基サーメットを複数のTiCN基サーメット層(2層あるいは3層以上)の積層体として構成することができる。
図1(b),図2(b)には、TiCN基サーメットを、「TiCN基サーメット層1」と「TiCN基サーメット層2」による2層の積層体として構成した例を示したが、TiCN基サーメットは、3層以上のTiCN基サーメット層の積層体として構成することができる。
ここで、WC基超硬合金層に接するTiCN基サーメット層(即ち、図1(b),図2(b)に示す「TiCN基サーメット層1」)については、その成分組成を前記の如く定めることが望ましいが、WC基超硬合金層に直接接していないTiCN基サーメット層(即ち、図1(b),図2(b)に示す「TiCN基サーメット層2」)については、通常用いられるTiCN基サーメットの成分組成であっても構わない。
TiCN基サーメットに通常含有される成分、例えば、ZrC、TaC等、については、通常含有される範囲内の量であれば、本発明のTiCN基サーメット(層)において、これらを含有させることができる。
また、W含有量については、好ましくは8質量%以下、さらに好ましくは4質量%以下、とするが、これによって、複合焼結体切削工具の切削性能を劣化させることなく、TiCN基サーメット(層)中に含有されるW含有量をより一層低減することができるので、Wの使用量削減効果が大となる。
The preferred component composition of the TiCN-based cermet adjacent to the WC-based cemented carbide layer is as described above, but the TiCN-based cermet does not have to be constituted as a whole of the above component composition.
That is, as shown in FIGS. 1 (b) and 2 (b), the TiCN-based cermet can be formed as a laminate of a plurality of TiCN-based cermet layers (two or more layers).
1 (b) and 2 (b) show an example in which the TiCN-based cermet is formed as a laminate of two layers of "TiCN-based cermet layer 1" and "TiCN-based cermet layer 2". The base cermet can be configured as a laminate of three or more TiCN-based cermet layers.
Here, with regard to the TiCN-based cermet layer in contact with the WC-based cemented carbide layer (that is, "TiCN-based cermet layer 1" shown in FIG. 1 (b) and FIG. 2 (b)), its component composition is determined as described above Although it is desirable, a TiCN-based cermet layer not directly in contact with the WC-based cemented carbide layer (ie, “TiCN-based cermet layer 2” shown in FIG. 1 (b) and FIG. 2 (b)) is usually used. The component composition of the TiCN-based cermet may be used.
With regard to the components usually contained in the TiCN-based cermet, such as ZrC, TaC, etc., these can be contained in the TiCN-based cermet (layer) of the present invention as long as the amount is within the normally contained range. .
In addition, the W content is preferably 8% by mass or less, more preferably 4% by mass or less, whereby the TiCN-based cermet (layer) is not deteriorated without deteriorating the cutting performance of the composite sintered body cutting tool. Since the W content contained in) can be further reduced, the effect of reducing the amount of W used is increased.
硬質被覆層:
本発明の複合焼結体切削工具は、複合焼結体の切れ刃を含む外周部の少なくとも一部の面、例えば、すくい面、を前記したWC基超硬合金層で構成することによって、そのまま切削工具として用いることができるが、WC基超硬合金層の表面に、物理蒸着法、化学蒸着法等によって、例えば、TiとAlの複合窒化物層等の硬質被覆層を被覆形成することによって、切削工具としての性能をより高めることができる。
なお、硬質被覆層としては、TiとAlの複合窒化物層ばかりでなく、Tiの窒化物層、炭化物層、炭窒化物層、AlとCrの複合窒化物層、Al2O3層など、既に知られている各種の硬質被覆層を、それぞれ単層として、あるいは、複数の層の積層として被覆形成することができる。
Hard coating layer:
The composite sintered body cutting tool of the present invention is as it is, by forming at least a part of the outer peripheral part including the cutting edge of the composite sintered body, for example, the rake face, by the WC base cemented carbide layer described above. Although it can be used as a cutting tool, it is possible to cover the surface of a WC-based cemented carbide layer by physical vapor deposition, chemical vapor deposition or the like, for example, by coating a hard coating layer such as a composite nitride layer of Ti and Al. The performance as a cutting tool can be further enhanced.
As the hard covering layer, not only a composite nitride layer of Ti and Al, but also a nitride layer of Ti, a carbide layer, a carbonitride layer, a composite nitride layer of Al and Cr, an Al 2 O 3 layer, etc. The various hard coating layers already known can be coated as a single layer or as a stack of several layers, respectively.
本発明の複合焼結体切削工具は、TiCN基サーメットとWC基超硬合金との複合焼結体からなり、WC基超硬合金層とTiCN基サーメットとの界面であって、かつ、該界面からWC基超硬合金層側に所定の層厚かつ成分組成の界面層が形成されていることから、WC基超硬合金層とTiCN基サーメットの接合強度を高めることができるので、希少金属であるタングステンの使用量を低減し、WC基超硬合金層の層厚を薄くした場合であっても、切れ刃に断続的・衝撃的な機械的高負荷および熱的な高負荷が作用する合金鋼等の湿式断続切削加工において、WC基超硬合金層とTiCN基サーメットの界面における剥離発生が抑制される。 The composite sintered body cutting tool according to the present invention comprises a composite sintered body of a TiCN-based cermet and a WC-based cemented carbide, is an interface between the WC-based cemented carbide layer and the TiCN-based cermet, and the interface Since an interface layer having a predetermined layer thickness and component composition is formed on the WC-based cemented carbide layer side, the bonding strength between the WC-based cemented carbide layer and the TiCN-based cermet can be enhanced. An alloy that exerts intermittent high-impact mechanical high load and high thermal load on the cutting edge even if the amount of tungsten used is reduced and the layer thickness of the WC base cemented carbide layer is reduced In wet interrupted cutting of steel or the like, occurrence of peeling at the interface between the WC-based cemented carbide layer and the TiCN-based cermet is suppressed.
さらに、TiCN基サーメットを2層以上の複数の層で構成し、WC基超硬合金層に隣接するTiCN基サーメット層を特定の成分組成に調整した層で構成した場合には、接合強度の高い界面層の存在による界面での剥離発生防止に加え、WC基超硬合金層に大きな圧縮応力を付与することが可能であるため、切れ刃に断続的・衝撃的な機械的高負荷および熱的な高負荷が作用する合金鋼等の湿式断続切削においても、熱亀裂の発生が防止され、剥離発生、熱亀裂発生等に起因する異常損傷を招くことなく、長期の使用に亘って、すぐれた切削性能が発揮される。 Furthermore, when the TiCN-based cermet is composed of two or more layers and the TiCN-based cermet layer adjacent to the WC-based cemented carbide layer is composed of a layer adjusted to a specific component composition, the bonding strength is high. In addition to the prevention of delamination at the interface due to the presence of the interface layer, it is possible to apply a large compressive stress to the WC-based cemented carbide layer, so intermittent high-impact mechanical high load and thermal on the cutting edge In wet interrupted cutting of alloy steels and the like where various high loads act, the occurrence of thermal cracking is prevented, and excellent over long-term use without causing abnormal damage caused by the occurrence of peeling, thermal cracking, etc. Cutting performance is exhibited.
以下、本発明を実施例に基づいて、具体的に説明する。 Hereinafter, the present invention will be specifically described based on examples.
まず、表1に示す配合組成の平均粒径0.5〜3μmのWC基超硬合金原料粉末を用意する。
また、表2に示す配合組成の平均粒径0.5〜3μmのTiCN基サーメット原料粉末を用意する。
上記WC基超硬合金原料粉末およびTiCN基サーメット原料粉末を、表3に示す組合せでISOインサート形状CCGT120408の素材用金型で積層プレスし、本発明複合成形体1〜12を作製した。
なお、作製した本発明複合成形体1〜12は、WC基超硬合金原料粉末と一種類のTiCN基サーメット原料粉末からなる本発明複合成形体1〜6と、WC基超硬合金原料粉末とTiCN基サーメット層1形成用原料粉末とTiCN基サーメット層2形成用原料粉末の二種類のTiCN基サーメット原料粉末を用いた本発明複合成形体7〜12である。
本発明複合成形体では、すくい面側表面部にWC基超硬合金層が存在する形態で配置しているが、逃げ面側表面部にWC基超硬合金層が存在するよう配置することも全く問題がない。
First, a WC-based cemented carbide raw material powder having an average particle diameter of 0.5 to 3 μm of the composition shown in Table 1 is prepared.
Further, TiCN-based cermet raw material powder having an average particle diameter of 0.5 to 3 μm of the composition shown in Table 2 is prepared.
The WC-based cemented carbide raw material powder and the TiCN-based cermet raw material powder were laminated and pressed with a die for material of ISO insert shape CCGT120408 in a combination shown in Table 3, to produce inventive composite molded bodies 1 to 12.
The composite molded bodies according to the present invention 1 to 12 produced according to the present invention are WC base cemented carbide raw material powders and one kind of TiCN based cermet raw material powders according to the present invention, and WC base cemented carbide raw material powders It is this invention compound molded object 7-12 using two types of TiCN-based cermet raw material powder of the raw material powder for TiCN-based cermet layer 1 formation, and the raw material powder for TiCN-based cermet layer 2 formation.
In the composite molded product of the present invention, the WC-based cemented carbide layer is disposed on the rake face side surface, but may be disposed such that the WC-based cemented carbide layer is present on the flank face surface. There is no problem at all.
ついで、この本発明複合成形体1〜12を焼結して本発明複合焼結体1〜12を作製した。
焼結条件は、いずれの場合も、次のとおりである。
複合成形体を焼結温度にまで昇温するに際し、室温から1280℃までは5℃/minの昇温速度で昇温し、液相が出現する1280℃から1380℃までの温度域は、いずれも30℃/min以上の昇温速度で高速昇温し、1380℃から1420℃までは5℃/minの昇温速度で昇温し、0.1kPaの窒素雰囲気中にて、1420℃の焼結温度に1時間保持して焼結した後、その冷却過程において、1330℃〜1370℃の温度範囲で0.8hr〜1.5hr保持する熱処理を施し、その後、室温にまで冷却した。
熱処理条件を表3に示す。
この焼結によって、WC基超硬合金とTiCN基サーメットからなり、WC基超硬合金層とTiCN基サーメットとの界面であって、かつ、該界面からWC基超硬合金層側に界面層が形成されている本発明複合焼結体を作製した。
ついで、上記で得られた本発明複合焼結体1〜12について、WC基超硬合金層をすくい面として、刃先をR=0.04のホーニング加工し、CCGT120408形状の複合焼結体切削工具1〜12(以下、本発明工具1〜12という)を作製した。
Subsequently, the composite molded bodies 1 to 12 of the present invention were sintered to produce inventive sintered bodies 1 to 12 of the present invention.
The sintering conditions are as follows in each case.
When raising the temperature of the composite molded body to the sintering temperature, the temperature is raised from room temperature to 1280 ° C. at a temperature rising rate of 5 ° C./min, and the temperature range from 1280 ° C. to 1380 ° C. in which the liquid phase appears is any time Also, the temperature is elevated at a high rate of 30 ° C./min or more, the temperature is increased at a rate of 5 ° C./min from 1380 ° C. to 1420 ° C., 1420 ° C. in a 0.1 kPa nitrogen atmosphere. After sintering by holding at sintering temperature for 1 hour, in the cooling process, a heat treatment was performed to maintain the temperature range of 1330 ° C. to 1370 ° C. for 0.8 hr to 1.5 hr, and then cooled to room temperature.
The heat treatment conditions are shown in Table 3.
As a result of this sintering, it consists of WC base cemented carbide and TiCN base cermet, and is an interface between the WC base cemented carbide layer and the TiCN base cermet and from the interface to the WC base cemented carbide layer side. The formed composite sintered body of the present invention was produced.
Next, with respect to the present invention composite sintered bodies 1 to 12 obtained above, the WC base cemented carbide layer is used as a rake face, the cutting edge is honed with R = 0.04, and a composite sintered body cutting tool having a CCGT 120408 shape 1 to 12 (hereinafter referred to as inventive tools 1 to 12) were produced.
図3(a)は、本発明工具のWC基超硬合金層とTiCN基サーメットとの界面近傍のSEM像の一例を示すが、その部分拡大図である図3(b)からも明らかなように、本発明工具においては、WC基超硬合金層とTiCN基サーメットとの界面であって、かつ、該界面からWC基超硬合金層側に界面層(図では、平均層厚が60μm)が形成されていることがわかる。 FIG. 3 (a) shows an example of an SEM image in the vicinity of the interface between the WC base cemented carbide layer of the present invention tool and the TiCN based cermet, as is also apparent from FIG. 3 (b) which is a partially enlarged view thereof. In the tool according to the present invention, the interface layer is an interface between the WC base cemented carbide layer and the TiCN base cermet, and from the interface to the WC base cemented carbide layer side (in the figure, the average layer thickness is 60 μm) Is formed.
上記本発明工具1〜12のWC基超硬合金層とTiCN基サーメットの界面に垂直な縦断面について、電子線マイクロアナライザーを用いて、WC基超硬合金層側からTiCN基サーメットにかけて、界面垂直方向に線分析を行い、W,Mo、Co、Niを含有し、WとMo合計含有量がCoとNiの合計含有量の0.8〜1.2倍(但し、原子比)である混合相が存在する箇所を界面層とし、WC基超硬合金層と界面層の界面ならびにTiCN基サーメットと界面層の界面を同定した。続けて、WC基超硬合金層の成分組成、混合相中の成分組成・成分比およびTiCN基サーメットの組成分析を行い、10点測定の平均値を求めることにより、それぞれの成分含有量を求め、また、混合相中におけるW、Mo、Co、Niの組成比、TiCN基サーメットにおけるCo、Niの組成比を算出した。また、界面垂直方向にWC基超硬合金層と界面層の界面ならびに界面層とTiCN基サーメットの界面、これら2つの界面間の距離を測定し、同測定を界面平行方向50μmおきに10箇所実施し、それらの平均を取ることにより、界面層の厚さとした。
さらに、界面層の幅200μmの範囲を画像処理し、組成分析結果と照らし合わせ、WC粒子を同定すると共に、WC粒子の面積%、混合相の面積%を測定した。
表5、表6に、これらの値を示す。
The vertical section perpendicular to the interface between the WC-based cemented carbide layer and the TiCN-based cermet of the tools 1 to 12 according to the present invention uses the electron beam microanalyzer from the WC-based cemented carbide layer side to the TiCN-based cermet across the interface. Linear analysis in the direction, and containing W, Mo, Co, Ni, and a total content of W and Mo is 0.8 to 1.2 times (but an atomic ratio) of the total content of Co and Ni The location where the phase was present was defined as the interface layer, and the interface between the WC-based cemented carbide layer and the interface layer and the interface between the TiCN-based cermet and the interface layer were identified. Subsequently, the component composition of the WC base cemented carbide layer, the component composition / component ratio in the mixed phase, and the composition analysis of the TiCN base cermet are determined, and the average value of 10 points measurement is determined to determine the content of each component. Also, the composition ratio of W, Mo, Co, and Ni in the mixed phase, and the composition ratio of Co and Ni in the TiCN-based cermet were calculated. Also, measure the distance between the interface between WC base cemented carbide layer and interface layer, the interface between interface layer and TiCN base cermet, and the interface between these layers in the direction perpendicular to the interface, and conduct 10 measurements at 50 μm intervals parallel to the interface. The interface layer thickness was obtained by taking the average of them.
Furthermore, the width of the interface layer of 200 μm was image-processed, the result of composition analysis was compared with it, WC particles were identified, and the area% of WC particles and the area% of mixed phase were measured.
Tables 5 and 6 show these values.
また、本発明工具1〜12の全厚(なお、JIS規格により、CCGT120408形状のインサートの全厚は、4.76mmと定められている。)に対するそれぞれのWC基超硬合金層の厚さの比を求めるために、WC基超硬合金層の厚さを走査型電子顕微鏡および電子線マイクロアナライザーを用いて観察し、前記WC基超硬合金層と界面層の界面からWC基超硬合金層表面までの距離を異なる5点で測定し、これを平均してWC基超硬合金層の厚さとし、これを4.76mmで除すことにより、(WC基超硬合金層の厚さ)/(複合焼結体の厚さ)の値を算出した。
表5、表6に、これらの値を示す。
In addition, the thickness of each WC-based cemented carbide layer with respect to the total thickness of the tool 1 to 12 of the present invention (note that the total thickness of the insert of CCGT 120408 shape is defined as 4.76 mm according to JIS standard) In order to obtain the ratio, the thickness of the WC-based cemented carbide layer is observed using a scanning electron microscope and an electron beam microanalyzer, and the WC-based cemented carbide layer from the interface between the WC-based cemented carbide layer and the interface layer The distance to the surface is measured at five different points, and this is averaged to obtain the thickness of the WC-based cemented carbide layer, which is divided by 4.76 mm to obtain (the thickness of the WC-based cemented carbide layer) / The value of (the thickness of the composite sintered body) was calculated.
Tables 5 and 6 show these values.
ついで、本発明工具4〜6,10〜12については、WC基超硬合金層の表面に、アークイオンプレーティングにより、TiとAlの複合窒化物(なお、TiとAlの含有量は、それぞれ50原子%)からなる硬質被覆層を蒸着形成した。
表5、表6に、本発明工具4〜6,10〜12について、蒸着形成した硬質被覆層の層厚を示す。
なお、本発明工具1〜12を図1、図2と対応させると、本発明工具1〜3は、図1(a)に示される構造、本発明工具4〜6は、図2(a)に示す構造、本発明工具7〜9は、図1(b)に示される構造、また、本発明工具10〜12は、図2(b)に示す構造を有するものであるといえる。
Next, for the tools according to the present invention 4 to 6 and 10 to 12, composite nitrides of Ti and Al (note that the contents of Ti and Al are respectively determined by arc ion plating on the surface of the WC base cemented carbide layer) A hard covering layer consisting of 50 at% was vapor deposited.
Tables 5 and 6 show the layer thicknesses of vapor deposited hard coating layers for the inventive tools 4 to 6 and 10 to 12.
Incidentally, when the inventive tools 1 to 12 correspond to FIGS. 1 and 2, the inventive tools 1 to 3 have the structures shown in FIG. 1A, and the inventive tools 4 to 6 have FIG. 2A. It can be said that the structure of the present invention tool 7 to 9 has the structure shown in FIG. 1 (b), and the present invention tools 10 to 12 have the structure shown in FIG. 2 (b).
比較のため、表1に示す配合組成のWC基超硬合金原料粉末および表2に示す配合組成のTiCN基サーメット原料粉末を、表3に示す組合せで積層プレスし、比較例複合成形体1〜12を作製した。
なお、比較例複合成形体1〜12は、全てWC基超硬合金原料粉末と一種類のTiCN基サーメット原料粉末を用いて作製した。
ついで、この比較例複合成形体を、次の条件で焼結して比較例複合焼結体1〜12を作製した。
比較例複合成形体1〜12を焼結温度にまで昇温するに際し、室温から1280℃までは5℃/minの昇温速度で昇温し、液相が出現する1280℃から1380℃までの温度域は、いずれも30℃/min以上の昇温速度で高速昇温し、1380℃から1420℃までは5℃/minの昇温速度で昇温し、0.1kPaの窒素雰囲気中にて、1420℃の焼結温度に1時間保持して焼結した後、一部焼結体は1300℃〜1400℃の温度範囲で一定時間保持した後、室温にまで冷却して、比較例複合焼結体1〜12を作製した。但し、前記比較例複合焼結体冷却中の熱処理には本発明複合焼結体の保持条件である1330℃〜1370℃の温度範囲、0.8hr〜1.5hr保持の熱処理は含まれていない。
つまり、比較例複合焼結体1〜12は、焼結時の冷却過程で、1330℃〜1370℃の温度範囲で0.8hr〜1.5hr保持の熱処理が施されていない点で、本発明の複合焼結体切削工具1〜12とはその製造条件が異なっている。
ついで、得られた比較例複合焼結体1〜12について、WC基超硬合金層をすくい面として、刃先をR=0.04のホーニング加工し、CCGT120408形状の複合焼結体切削工具1〜12(以下、比較例工具1〜12という)を作製した。
For comparison, the WC-based cemented carbide raw material powder having the composition shown in Table 1 and the TiCN-based cermet raw material powder having the composition shown in Table 2 are laminated and pressed in the combinations shown in Table 3, and Comparative Example composite molded body 1 to 1 12 was produced.
Comparative example composite compacts 1 to 12 were all manufactured using WC-based cemented carbide raw material powder and one kind of TiCN-based cermet raw material powder.
Next, this comparative example composite molded body was sintered under the following conditions to prepare comparative example composite sintered bodies 1 to 12.
Comparative Example When raising the temperature of the composite compacts 1 to 12 to the sintering temperature, the temperature is raised from room temperature to 1280 ° C. at a rate of 5 ° C./min, and the liquid phase appears from 1280 ° C. to 1380 ° C. In the temperature range, the temperature is raised at a high rate of 30 ° C./min or more, and the temperature is increased at a rate of 5 ° C./min from 1380 ° C. to 1420 ° C. After sintering by holding at a sintering temperature of 1420 ° C. for one hour, a part of the sintered body is held for a certain time in a temperature range of 1300 ° C. to 1400 ° C., and then cooled to room temperature, and the comparative example composite sintered The bodies 1 to 12 were prepared. However, the heat treatment during cooling of the composite sintered body of the comparative example does not include the heat treatment at a temperature range of 1330 ° C. to 1370 ° C., which is the holding condition of the composite sintered body of the present invention, and 0.8 hr to 1.5 hr. .
That is, the comparative example composite sintered bodies 1 to 12 of the present invention are characterized in that the heat treatment for holding for 0.8 hr to 1.5 hr is not performed in the temperature range of 1330 ° C. to 1370 ° C. in the cooling process during sintering. The manufacturing conditions are different from the composite sintered body cutting tools 1 to 12 in the above.
Next, with respect to the obtained comparative example composite sintered bodies 1 to 12, the WC base cemented carbide layer is used as a rake face, and the cutting edge is honed with R = 0.04 to obtain a composite sintered body cutting tool 1 having a CCGT 120408 shape. 12 (hereinafter referred to as comparative example tools 1 to 12) were produced.
次いで、本発明工具1〜12の場合と同様にして、比較例工具1〜12について、電子線マイクロアナライザーを用いて、WC基超硬合金層の成分組成、混合相中の成分組成・成分比およびTiCN基サーメットの組成分析を行い、10点測定の平均値を求めることにより、それぞれの成分含有量を求め、また、混合相中におけるW、Mo、Co、Niの組成比、TiCN基サーメットにおけるCo、Niの組成比を算出した。
さらに、界面層のWC粒子の面積%、混合相の面積%を測定した。
さらに、比較例工具1〜12について、WC基超硬合金層の厚さを光学顕微鏡で観察し、異なる5点で厚み測定し、これを平均してWC基超硬合金層の厚さとし、これを4.76mmで除すことにより、(WC基超硬合金層の厚さ)/(複合焼結体の厚さ)の値を算出した。
表7に、これらの値を示す。
Subsequently, in the same manner as in the case of the inventive tools 1 to 12, with respect to the comparative example tools 1 to 12, using the electron beam microanalyzer, the component composition of the WC base cemented carbide layer, the component composition / component ratio in the mixed phase The composition analysis of TiCN and TiCN based cermets is performed, and the content of each component is determined by obtaining the average value of 10 points measurement, and the composition ratio of W, Mo, Co, Ni in the mixed phase, TiCN based cermet The composition ratio of Co and Ni was calculated.
Furthermore, the area% of WC particles in the interface layer and the area% of the mixed phase were measured.
Furthermore, the thickness of the WC-based cemented carbide layer was observed with an optical microscope, the thickness was measured at five different points, and the thickness was averaged to obtain the thickness of the WC-based cemented carbide layer. The value of (the thickness of the WC-based cemented carbide layer) / (the thickness of the composite sintered body) was calculated by dividing the value by 4.76 mm.
Table 7 shows these values.
また、比較例工具4〜6,10〜12については、WC基超硬合金層の表面に、アークイオンプレーティングにより、TiとAlの複合窒化物(なお、TiとAlの含有量は、それぞれ50原子%)からなる硬質被覆層を蒸着形成した。
表7に、蒸着形成した硬質被覆層の層厚を示す。
In addition, for comparative tools 4 to 6 and 10 to 12, composite nitrides of Ti and Al (note that the contents of Ti and Al are respectively determined by arc ion plating on the surface of the WC base cemented carbide layer) A hard covering layer consisting of 50 at% was vapor deposited.
Table 7 shows the thickness of the vapor deposited hard coating layer.
つぎに、上記本発明工具1〜12および比較例工具1〜12について、
被削材:JIS・SCM440のブロック、
切削速度:315 m/min.、
切り込み:1.0 mm、
送り:0.12 mm/rev.、
切削時間:14 分
の条件で、合金鋼の湿式フライス切削加工試験を行い、逃げ面摩耗量、寿命に至るまでの切削時間を測定し、また、切れ刃の損耗状態を観察した。
さらに、本発明工具1〜12および比較例工具1〜12について、表5〜表7に示される(WC基超硬合金層の厚さ)/(複合焼結体の厚さ)の値から、各工具においてサーメットと積層せず、全体をWC基超硬合金とした場合からの使用W量削減率(質量%)を算出した。
表8に、これらの結果を示す。
Next, with respect to the present invention tools 1 to 12 and the comparative example tools 1 to 12,
Work material: JIS · SCM440 block,
Cutting speed: 315 m / min. ,
Notch: 1.0 mm,
Feeding: 0.12 mm / rev. ,
Cutting time: A wet milling cutting test of an alloy steel was conducted under a condition of 14 minutes to measure the flank wear amount, the cutting time to the end of the life, and observe the wear of the cutting edge.
Furthermore, the values of (thickness of WC-based cemented carbide layer) / (thickness of composite sintered body) shown in Tables 5 to 7 for the inventive tools 1 to 12 and the comparative example tools 1 to 12 are as follows: In each tool, it was not laminated with the cermet, and the used W amount reduction rate (mass%) from the case where the whole was WC base cemented carbide was calculated.
Table 8 shows these results.
表5、表8に示される結果から、本発明の複合焼結体切削工具1〜6は、WC基超硬合金層とTiCN基サーメットとの界面であって、かつ、該界面からWC基超硬合金層側に所定の層厚かつ成分組成の界面層が形成され、WC基超硬合金層とTiCN基サーメットの接合強度が高められているため、WC基超硬合金層とTiCN基サーメットの界面における剥離発生が抑制され、異常損傷が発生しないことがわかる。
さらに、表6、表8に示される結果から、本発明の複合焼結体切削工具7〜12は、接合強度の高い界面層の存在によって、界面での剥離発生防止が図られることに加え、TiCN基サーメットを2層以上の複数の層で構成し、WC基超硬合金層に大きな圧縮応力を付与することが可能となったため、剥離の発生、熱亀裂の発生が防止されることがわかる。
したがって、本発明の複合焼結体切削工具1〜12は、希少金属であるタングステンの使用量を低減し、WC基超硬合金層の層厚を薄くした場合であっても、切れ刃に機械的高負荷および熱的な高負荷が作用する合金鋼等の湿式断続切削において、剥離発生、熱亀裂発生等に起因する異常損傷を招くこともなく、長期の使用に亘って、すぐれた切削性能が発揮される
From the results shown in Tables 5 and 8, the composite sintered body cutting tools 1 to 6 according to the present invention are the interface between the WC-based cemented carbide layer and the TiCN-based cermet, and Since an interface layer having a predetermined layer thickness and component composition is formed on the hard metal layer side and the bonding strength between the WC base cemented carbide layer and the TiCN base cermet is enhanced, the WC base cemented carbide layer and the TiCN base cermet It can be seen that the occurrence of peeling at the interface is suppressed and no abnormal damage occurs.
Furthermore, from the results shown in Tables 6 and 8, the composite sintered body cutting tools 7 to 12 according to the present invention can prevent peeling at the interface due to the presence of the interface layer with high bonding strength, It is found that the TiCN-based cermet is composed of a plurality of layers of two or more layers, and it becomes possible to apply a large compressive stress to the WC-based cemented carbide layer, thereby preventing the occurrence of peeling and the occurrence of thermal cracks. .
Therefore, the composite sintered body cutting tools 1 to 12 according to the present invention can reduce the amount of tungsten, which is a rare metal, and machine the cutting edge even if the layer thickness of the WC-based cemented carbide layer is reduced. Cutting performance during long-term use without causing abnormal damage caused by peeling or thermal cracking in wet interrupted cutting of alloy steels etc. where structurally high load and thermal high load act. Is demonstrated
これに対して、表7、表8の結果によれば、比較例の複合焼結体切削工具1〜12は、WC基超硬合金層とTiCN基サーメットとの界面であって、かつ、該界面からWC基超硬合金層側に、本発明で規定する界面層が形成されていないため、剥離発生、熱亀裂発生等に起因する異常損傷の発生によって、いずれも短時間で使用寿命に至ることは明らかである。 On the other hand, according to the results in Tables 7 and 8, the composite sintered body cutting tools 1 to 12 of the comparative example are the interface between the WC-based cemented carbide layer and the TiCN-based cermet, and Since the interface layer specified in the present invention is not formed from the interface to the WC-based cemented carbide layer side, any abnormal damage resulting from the occurrence of peeling, thermal cracking, etc. will all extend the service life in a short time It is clear.
複合焼結体からなる本発明の切削工具は、希少金属であるタングステン使用量の低減を図り得るとともに、切れ刃に断続的・衝撃的な機械的高負荷、また、加熱冷却のサイクルによる熱的高負荷が作用する湿式断続切削に用いた場合でも、耐剥離性、耐熱亀裂性に優れ、チッピング、欠損、剥離等の異常損傷を発生することなく、長期の使用にわたってすぐれた切削性能を発揮することができ、切削加工の省エネ化、低コスト化に十分満足に対応できるものである。
The cutting tool of the present invention made of a composite sintered body can reduce the use amount of tungsten, which is a rare metal, and also can generate thermal load by intermittent high-impact mechanical high load on the cutting edge and heating and cooling cycles. Even when used in wet interrupted cutting where high load acts, it has excellent peel resistance and heat crack resistance, and exhibits excellent cutting performance over long-term use without generating abnormal damage such as chipping, chipping or peeling. Energy saving and cost reduction of the cutting process.
Claims (5)
(a)前記複合焼結体切削工具の切れ刃を含む外周部の少なくとも一部の面は、WC基超硬合金層で構成され、
(b)前記WC基超硬合金層とTiCN基サーメットの界面から前記WC基超硬合金層側には、平均層厚が5〜200μmの界面層が形成され、
(c)前記界面層は、5〜50面積%を占めるWC粒子と、50〜95面積%を占める混合相で構成され、
(d)前記混合相中に存在するWとMoの合計含有量は、前記混合相中に存在するCoとNiの合計含有量の0.8〜1.2倍(但し、原子比)であることを特徴とする複合焼結体切削工具。 In a composite sintered body cutting tool comprising a composite sintered body of a TiCN based cermet and a WC based cemented carbide,
(A) At least a part of the surface of the outer peripheral portion including the cutting edge of the composite sintered body cutting tool is composed of a WC-based cemented carbide layer,
(B) An interface layer having an average layer thickness of 5 to 200 μm is formed on the WC-based cemented carbide layer side from the interface between the WC-based cemented carbide layer and the TiCN-based cermet,
(C) The interface layer is composed of WC particles occupying 5 to 50 area% and a mixed phase occupying 50 to 95 area%,
(D) The total content of W and Mo present in the mixed phase is 0.8 to 1.2 times (in atomic ratio) the total content of Co and Ni present in the mixed phase Composite sintered body cutting tool characterized in that.
The composite according to any one of claims 1 to 4, wherein a hard coating layer is formed on the surface of the WC-based cemented carbide layer including at least the cutting edge of the composite sintered body cutting tool. Sintered cutting tools.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017166224A JP6853451B2 (en) | 2017-08-30 | 2017-08-30 | Composite sintered body cutting tool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017166224A JP6853451B2 (en) | 2017-08-30 | 2017-08-30 | Composite sintered body cutting tool |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019042830A true JP2019042830A (en) | 2019-03-22 |
JP6853451B2 JP6853451B2 (en) | 2021-03-31 |
Family
ID=65815172
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017166224A Active JP6853451B2 (en) | 2017-08-30 | 2017-08-30 | Composite sintered body cutting tool |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6853451B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111647787A (en) * | 2020-06-16 | 2020-09-11 | 四川神工钨钢刀具有限公司 | TiCN-based particle metal ceramic cutter and preparation method thereof |
CN111961939A (en) * | 2020-08-17 | 2020-11-20 | 苏州用朴精密科技有限公司 | Preparation method of hard alloy material |
JP7038444B1 (en) | 2021-03-19 | 2022-03-18 | 冨士ダイス株式会社 | Cemented carbide composite member and its manufacturing method, vacuum suction device and its manufacturing method |
WO2023166900A1 (en) * | 2022-03-03 | 2023-09-07 | 京セラ株式会社 | Cemented carbide, and coated tool and cutting tool using same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008147008A1 (en) * | 2007-05-29 | 2008-12-04 | Korloy Inc. | An insert for cutting tool |
WO2009034716A1 (en) * | 2007-09-14 | 2009-03-19 | Sumitomo Electric Industries, Ltd. | Composite material and coated cutting tool |
JP5185032B2 (en) * | 2007-09-14 | 2013-04-17 | 住友電気工業株式会社 | Cutting tools |
JP2014172157A (en) * | 2013-03-12 | 2014-09-22 | Mitsubishi Materials Corp | Surface-coated cutting tool |
JP2016068156A (en) * | 2014-09-26 | 2016-05-09 | 三菱マテリアル株式会社 | Composite sintered body cutting tool |
JP2016221673A (en) * | 2015-05-28 | 2016-12-28 | 三菱マテリアル株式会社 | Composite sintered body cutting tool |
-
2017
- 2017-08-30 JP JP2017166224A patent/JP6853451B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008147008A1 (en) * | 2007-05-29 | 2008-12-04 | Korloy Inc. | An insert for cutting tool |
WO2009034716A1 (en) * | 2007-09-14 | 2009-03-19 | Sumitomo Electric Industries, Ltd. | Composite material and coated cutting tool |
US20100255264A1 (en) * | 2007-09-14 | 2010-10-07 | Tomoyuki Ishida | Composite material and coated cutting tool |
JP5185032B2 (en) * | 2007-09-14 | 2013-04-17 | 住友電気工業株式会社 | Cutting tools |
JP2014172157A (en) * | 2013-03-12 | 2014-09-22 | Mitsubishi Materials Corp | Surface-coated cutting tool |
JP2016068156A (en) * | 2014-09-26 | 2016-05-09 | 三菱マテリアル株式会社 | Composite sintered body cutting tool |
US20180229306A1 (en) * | 2014-09-26 | 2018-08-16 | Mitsubishi Materials Corporation | Composite sintered body cutting tool |
JP2016221673A (en) * | 2015-05-28 | 2016-12-28 | 三菱マテリアル株式会社 | Composite sintered body cutting tool |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111647787A (en) * | 2020-06-16 | 2020-09-11 | 四川神工钨钢刀具有限公司 | TiCN-based particle metal ceramic cutter and preparation method thereof |
CN111647787B (en) * | 2020-06-16 | 2021-05-25 | 四川神工钨钢刀具有限公司 | TiCN-based particle metal ceramic cutter and preparation method thereof |
CN111961939A (en) * | 2020-08-17 | 2020-11-20 | 苏州用朴精密科技有限公司 | Preparation method of hard alloy material |
JP7038444B1 (en) | 2021-03-19 | 2022-03-18 | 冨士ダイス株式会社 | Cemented carbide composite member and its manufacturing method, vacuum suction device and its manufacturing method |
JP2022145220A (en) * | 2021-03-19 | 2022-10-03 | 冨士ダイス株式会社 | Hard metal composite member and method for manufacturing the same, vacuum adsorber and method for manufacturing the same |
WO2023166900A1 (en) * | 2022-03-03 | 2023-09-07 | 京セラ株式会社 | Cemented carbide, and coated tool and cutting tool using same |
Also Published As
Publication number | Publication date |
---|---|
JP6853451B2 (en) | 2021-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5999362B2 (en) | Surface coated cutting tool | |
JP6614491B2 (en) | Composite sintered body cutting tool and surface-coated composite sintered body cutting tool | |
CN107405695A (en) | Hard coating layer plays the excellent resistance to surface-coated cutting tool for collapsing knife | |
JP2019042830A (en) | Composite sintered cutting tool | |
JP5185032B2 (en) | Cutting tools | |
JP2018034216A (en) | Surface coated cutting tool with excellent chipping and peeling resistance with excellent hard coating layer | |
JP4474646B2 (en) | A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting | |
JP5850404B2 (en) | WC-based cemented carbide cutting tool insert | |
JP6614446B2 (en) | Surface coated cutting tool with excellent chipping and peeling resistance with excellent hard coating layer | |
JP5029825B2 (en) | Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high speed heavy cutting | |
US10773307B2 (en) | Composite sintered body cutting tool | |
JP2018024038A (en) | Surface coated cutting tool excellent in deposition chipping resistance and peeling resistance | |
JP6745059B2 (en) | Composite sintered body cutting tool | |
JP2008296292A (en) | Surface-coated cutting tool having hard coating layer exhibiting superior chipping resistance | |
JP2010274330A (en) | Surface coated cutting tool | |
JP2006159397A (en) | Surface coated cermet cutting tool with excellent chipping resistance with a hard coating layer in high-speed intermittent cutting | |
JP5023895B2 (en) | Surface coated cutting tool | |
JP2009056561A (en) | Surface coated cutting tool | |
JP6614447B2 (en) | Surface coated cutting tool with excellent chipping and peeling resistance with excellent hard coating layer | |
JP5267767B2 (en) | Surface coated cutting tool | |
JP2019155570A (en) | Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance | |
JP2019084671A (en) | Surface cutting tool that exhibits excellent chipping resistance and wear resistance with hard coating layer | |
JP4210930B2 (en) | Surface-coated throw-away tip that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting | |
WO2016104620A1 (en) | Compound sintered compact cutting tool and compound sintered compact cutting tool with coated surface | |
JP2019155569A (en) | Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200325 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201225 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210114 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210127 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6853451 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |