[go: up one dir, main page]

JP2019036607A - Multi-layer wiring board containing glass substrate with circuit and manufacturing method thereof - Google Patents

Multi-layer wiring board containing glass substrate with circuit and manufacturing method thereof Download PDF

Info

Publication number
JP2019036607A
JP2019036607A JP2017156044A JP2017156044A JP2019036607A JP 2019036607 A JP2019036607 A JP 2019036607A JP 2017156044 A JP2017156044 A JP 2017156044A JP 2017156044 A JP2017156044 A JP 2017156044A JP 2019036607 A JP2019036607 A JP 2019036607A
Authority
JP
Japan
Prior art keywords
glass substrate
hole
circuit
insulating layer
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017156044A
Other languages
Japanese (ja)
Inventor
泉 和田
Izumi WADA
泉 和田
元英 吉永
Motohide Yoshinaga
元英 吉永
充広 渡辺
Mitsuhiro Watanabe
充広 渡辺
本間 英夫
Hideo Honma
英夫 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lead Electronics Co Ltd
Kanto Gakuin University Surface Engineering Research Institute
Original Assignee
Lead Electronics Co Ltd
Kanto Gakuin University Surface Engineering Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lead Electronics Co Ltd, Kanto Gakuin University Surface Engineering Research Institute filed Critical Lead Electronics Co Ltd
Priority to JP2017156044A priority Critical patent/JP2019036607A/en
Publication of JP2019036607A publication Critical patent/JP2019036607A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Surface Treatment Of Glass (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

【課題】従来の積層板製造装置を用いて得ることのできる高品質の多層ガラス基板、及び、その製造方法の提供を目的とする。【解決手段】この目的を達成するため、埋設スルーホール付き絶縁層の両面に回路付きガラス基板を備える回路付きガラス基板含有多層配線板であって、当該埋設スルーホール付き絶縁層は、当該埋設スルーホール付き絶縁層を介して配した2枚の回路付きガラス基板の回路同士を電気的に接続するための導電材を充填した埋設スルーホールを備え、当該回路付きガラス基板は、ガラス基板の表面に所定の回路を備え、且つ、当該埋設スルーホール付き絶縁層に設けた埋設スルーホールと連結するためのスルーホールを備えることを特徴とする回路付きガラス基板含有多層配線板等を採用する。【選択図】図1An object of the present invention is to provide a high-quality multilayer glass substrate that can be obtained using a conventional laminated plate manufacturing apparatus, and a method for manufacturing the same. To achieve this object, there is provided a glass substrate-containing multilayer wiring board with a circuit comprising a glass substrate with a circuit on both sides of an insulating layer with a buried through-hole, wherein the insulating layer with a buried through-hole comprises the buried through-hole. Provided with a buried through hole filled with a conductive material for electrically connecting the circuits of two glass substrates with a circuit arranged via an insulating layer with holes, the glass substrate with a circuit is provided on the surface of the glass substrate A glass substrate-containing multilayer wiring board with a circuit, which is provided with a predetermined circuit and has a through hole for connecting to a buried through hole provided in the insulating layer with the buried through hole, is employed. [Selection] Figure 1

Description

本件出願は、回路付きガラス基板含有多層配線板及びその製造方法に関する。   The present application relates to a multilayer substrate having a glass substrate with a circuit and a method for producing the same.

近年、絶縁層にガラス板を用いた配線板が、種々の分野で用いられている。そして、その層構成に関しても、種々のものが存在している。   In recent years, wiring boards using glass plates for insulating layers have been used in various fields. Various types of layer configurations exist.

例えば、最も単純化した層構成を備えるものとして、特許文献1には、反射ミラー素子を構成する為の多層ガラス基板を切断する際にその表面を汚染する粘着テープ及び、消耗品であるカッターを使用せず、もって低価格な反射ミラー素子を提供することを目的として、ガラス基板の少なくとも一方の主面に一層以上の薄膜を設けた多層ガラス基板に亀裂を形成する方法が開示されており、この中で説明に用いたガラス基板は、ガラス板の両面に薄膜を設けたものが開示されている。ところが、ガラス基板を備える配線板に関しても近年では多層化が望まれてきている。   For example, as having the most simplified layer structure, Patent Document 1 discloses an adhesive tape that contaminates the surface of a multilayer glass substrate for constituting a reflective mirror element and a cutter that is a consumable item. A method of forming a crack in a multilayer glass substrate in which one or more thin films are provided on at least one main surface of the glass substrate is disclosed for the purpose of providing a low-cost reflection mirror element without using it. Among these, the glass substrate used for explanation is disclosed in which a thin film is provided on both surfaces of a glass plate. However, in recent years, multilayering has been desired for a wiring board including a glass substrate.

ガラス基板の多層化という観点においては、特許文献2にあるようなガラス基板のみで多層化を試みるものも存在する。この特許文献2には、スルーホールが形成されたガラス基板のスルーホールに絶縁物や導電物を充填することなく、気密性を確保した多層ガラス基板の製造方法を提供することを目的として、「第一主面と第二主面とを接続するためのスルーホールが形成され、前記スルーホールの内壁面と、前記第一主面のスルーホール開口部周囲を含む近傍の面と前記第二主面のスルーホール開口部周囲を含む近傍の面に導電膜が形成されたガラス基板の複数枚を重ねて、加熱加圧して接着する。」ことを特徴とする多層ガラス基板の製造方法が開示されている。   From the viewpoint of multilayering a glass substrate, there are some which attempt to multilayer by using only a glass substrate as described in Patent Document 2. In Patent Document 2, for the purpose of providing a method for producing a multilayer glass substrate that ensures airtightness without filling an insulating material or a conductive material in a through hole of a glass substrate in which a through hole is formed, A through hole for connecting the first main surface and the second main surface is formed, an inner wall surface of the through hole, a surface in the vicinity including the periphery of the through hole opening of the first main surface, and the second main surface A method for manufacturing a multilayer glass substrate is disclosed, in which a plurality of glass substrates on which conductive films are formed are stacked on the surface of the surface including the periphery of the opening of the through-hole, and bonded by heating and pressing. ” ing.

そして、ガラス基材と樹脂基材とを同時に使用したものとしては、特許文献3に開示の発明がある。特許文献3には、ガラス接着性が良好であり、耐熱性及び耐薬品性に優れる積層体、これを用いた積層板等の提供を目的として、「1層以上の樹脂層及び1層以上のガラス基板層を有する積層体であって、該樹脂層を構成する樹脂組成物が、末端に反応性置換基を有するポリブタジエン樹脂及び水添ポリブタジエン樹脂から選ばれる少なくとも1種の樹脂(a)と、1分子中に少なくとも2個のシアネート基を有する化合物(b)と、1分子中に少なくとも2個のエポキシ基を有する化合物(c)とを、反応させることにより得られる熱硬化性樹脂を含有する積層体」等の樹脂層を構成する樹脂組成に特徴を持たせたものが開示されている。   Patent Document 3 discloses an invention that uses a glass substrate and a resin substrate at the same time. In Patent Document 3, for the purpose of providing a laminate having good glass adhesion and excellent heat resistance and chemical resistance, and a laminate using the laminate, “one or more resin layers and one or more layers” are disclosed. A laminate having a glass substrate layer, wherein the resin composition constituting the resin layer is at least one resin (a) selected from a polybutadiene resin having a reactive substituent at the terminal and a hydrogenated polybutadiene resin; A thermosetting resin obtained by reacting a compound (b) having at least two cyanate groups in one molecule with a compound (c) having at least two epoxy groups in one molecule is contained. What gave the characteristic to the resin composition which comprises resin layers, such as a laminated body, is disclosed.

特開2001−064029号公報JP 2001-0664029 A 特開2005−259801号公報JP 2005-259801 A 特開2015−229286号公報JP2015-229286A

しかしながら、上述の特許文献2のようにガラス基板のみで多層化を図ろうとすると、ガラス同士の拡散接合が要求されるため、加工条件に制約を受け、通常の積層板製造プロセスを採用することができない。そのため、新たなる設備投資が必要となり、且つ、加工コストが上昇する傾向がある。   However, as described in Patent Document 2 described above, when trying to increase the number of layers by using only a glass substrate, diffusion bonding between glasses is required, so that the processing conditions are restricted and a normal laminate manufacturing process may be employed. Can not. Therefore, new capital investment is required and the processing cost tends to increase.

また、上述の特許文献3に開示の発明の場合、ガラス基板と樹脂層との密着性を確保するために、樹脂層を構成する樹脂組成が限定されることになり、多層ガラス基板の樹脂層として種々の樹脂の使用が困難となる。   In the case of the invention disclosed in Patent Document 3, the resin composition constituting the resin layer is limited in order to ensure adhesion between the glass substrate and the resin layer, and the resin layer of the multilayer glass substrate. As a result, it becomes difficult to use various resins.

以上に述べたことから理解できるように、多層ガラス基板を製造するにあたり、従来の積層板製造装置の使用が可能であることが求められる。更に、従来からある樹脂を含む絶縁層構成材を使用することの可能な多層ガラス基板が望まれてきた。   As can be understood from the above description, when a multilayer glass substrate is manufactured, it is required that a conventional laminated plate manufacturing apparatus can be used. Furthermore, there has been a demand for a multilayer glass substrate that can use an insulating layer constituent material containing a conventional resin.

そこで、以上に述べた課題を解決するため、鋭意研究の結果、以下に示す層構成の回路付きガラス基板含有多層配線板を採用するに到った。   Therefore, in order to solve the above-described problems, as a result of intensive studies, a glass substrate-containing multilayer wiring board with a circuit having the following layer structure has been adopted.

<回路付きガラス基板含有多層配線板>
本件出願に係る回路付きガラス基板含有多層配線板は、埋設スルーホール付き絶縁層の両面に回路付きガラス基板を備える回路付きガラス基板含有多層配線板であって、当該埋設スルーホール付き絶縁層は、当該埋設スルーホール付き絶縁層を介して配した2枚の回路付きガラス基板の回路同士を電気的に接続するための導電材を充填した埋設スルーホールを備え、当該回路付きガラス基板は、ガラス基板の表面に所定の回路を備え、且つ、当該絶縁層に設けた埋設スルーホールと連結するためのスルーホールを備えることを特徴とする。
<Multi-layer wiring board with glass substrate with circuit>
The glass substrate-containing multilayer wiring board with a circuit according to the present application is a glass substrate-containing multilayer wiring board with a circuit provided with a glass substrate with a circuit on both sides of an insulating layer with a buried through hole, and the insulating layer with a buried through hole is A glass substrate with a circuit is provided with a buried through hole filled with a conductive material for electrically connecting the circuits of two glass substrates with a circuit arranged via the insulating layer with the buried through hole. A predetermined circuit is provided on the surface, and a through hole for connecting to a buried through hole provided in the insulating layer is provided.

本件出願に係る回路付きガラス基板含有多層配線板において、前記回路付きガラス基板は、ガラス基板の両面に所定の回路を備えるものとすることが好ましい。   In the multilayer substrate having a glass substrate with a circuit according to the present application, the glass substrate with a circuit preferably includes a predetermined circuit on both surfaces of the glass substrate.

本件出願に係る回路付きガラス基板含有多層配線板において、前記埋設スルーホール付き絶縁層は、その構成樹脂として、1×10Ω以上の絶縁抵抗を有する素材であれば、熱硬化性樹脂、熱可塑性樹脂のいずれでも使用可能である。 In the multilayer wiring board with a glass substrate with a circuit according to the present application, the insulating layer with an embedded through hole is a material having an insulation resistance of 1 × 10 6 Ω or more as its constituent resin, Any plastic resin can be used.

本件出願に係る回路付きガラス基板含有多層配線板において、前記埋設スルーホール付き絶縁層の埋設スルーホールに配する導電材は、1×10Ω以下の絶縁抵抗を示す銅ペースト・銀ペースト等の導電性ペースト、導電性フィラーを含有する導電性樹脂、半田材等のいずれかを用いたものであることが好ましい。 In the multilayer wiring board with a glass substrate with a circuit according to the present application, the conductive material disposed in the buried through hole of the insulating layer with the buried through hole is a copper paste, a silver paste or the like exhibiting an insulation resistance of 1 × 10 2 Ω or less. A conductive paste, a conductive resin containing a conductive filler, a solder material, or the like is preferably used.

<回路付きガラス基板含有多層配線板の製造方法>
上述の回路付きガラス基板含有多層配線板の製造方法は、以下の工程を備えることを特徴とする。
<Manufacturing method of glass substrate-containing multilayer wiring board with circuit>
The above-described method for producing a glass substrate-containing multilayer wiring board with a circuit includes the following steps.

埋設スルーホール付き絶縁層の製造工程: 絶縁層構成材にガラス製絶縁層の回路同士を電気的に接続するための所定のスルーホール形成用孔を設ける孔明加工を施し、当該スルーホール形成用孔の孔内に導電材を充填して埋設スルーホールを形成し、埋設スルーホール付き絶縁層を得る。
回路付きガラス基板の製造工程: 板状のガラス基板を準備し、当該ガラス基板にスルーホール形成用孔を設ける孔明加工を施し、その後、当該ガラス基板の両面及び当該スルーホール形成用孔の内周壁に導電金属層を設けスルーホール孔を備える導電金属層付きガラス基板とする。そして、当該導電金属層付きガラス基板の表面にある導電金属層をエッチング加工して回路形成することで回路付きガラス基板を得る。
積層工程: 埋設スルーホール付き絶縁層の埋設スルーホールと、当該回路付きガラス基板のスルーホール孔とが対向するように、当該埋設スルーホール付き絶縁層の片面側及び他面側に回路付きガラス基板を配して、積層加工することで、埋設スルーホール付き絶縁層の両面に回路付きガラス基板を備える回路付きガラス基板含有多層配線板を得る。
Manufacturing process of insulating layer with embedded through hole: The through hole forming hole is formed by providing a predetermined through hole forming hole for electrically connecting the glass insulating layer circuits to the insulating layer constituting material. The hole is filled with a conductive material to form a buried through hole, and an insulating layer with a buried through hole is obtained.
Manufacturing process of glass substrate with circuit: A plate-like glass substrate is prepared, and a perforating process for providing a through hole forming hole on the glass substrate is performed, and then both surfaces of the glass substrate and an inner peripheral wall of the through hole forming hole. A conductive metal layer is provided on the glass substrate, and a glass substrate with a conductive metal layer having a through-hole hole is formed. And the glass substrate with a circuit is obtained by carrying out the etching process of the conductive metal layer in the surface of the said glass substrate with a conductive metal layer, and forming a circuit.
Lamination process: A glass substrate with a circuit on one side and the other side of the insulating layer with an embedded through hole so that the embedded through hole of the insulating layer with the embedded through hole faces the through hole of the glass substrate with the circuit. Are arranged and processed to obtain a glass substrate-containing multilayer wiring board with a circuit comprising a glass substrate with a circuit on both surfaces of an insulating layer with an embedded through hole.

本件出願に係る回路付きガラス基板含有多層配線板の製造方法において、当該ガラス基板にスルーホール形成用孔を設ける孔明加工は、超短パルスレーザーを用いて行うことが好ましい。   In the method for producing a glass substrate-containing multilayer wiring board with a circuit according to the present application, it is preferable that the drilling process for providing a through-hole forming hole in the glass substrate is performed using an ultrashort pulse laser.

<回路付きガラス基板含有多層配線板を用いた具体的製品>
本件出願に係る回路付きガラス基板含有多層配線板は、タッチパネル用回路を備えることで、タッチパネル用の回路付きガラス基板含有多層配線板として好適なものとなる。
<Specific products using glass circuit board-containing multilayer wiring boards with circuit>
The glass substrate-containing multilayer wiring board with a circuit according to the present application is suitable as a glass substrate-containing multilayer wiring board with a circuit for a touch panel by including a circuit for a touch panel.

本件出願に係る回路付きガラス基板含有多層配線板は、「回路付きガラス基板/埋設スルーホール付き絶縁層/回路付きガラス基板」の単純化した基本層構成を備え、中間の埋設スルーホール付き絶縁層にガラス基板以外の絶縁層構成材を用いることで、既存の積層方法及び積層条件を採用して製造することのできるものである。従って、既存の積層板製造設備の使用が可能であり、製造コストの上昇を招かない。しかも、本件出願に係る回路付きガラス基板含有多層配線板は、「回路付きガラス基板/埋設スルーホール付き絶縁層/回路付きガラス基板」の基本層構成を採用することで、絶縁層を介して対向配置した「回路付きガラス基板」同士の電気的接続を確実に行うことが可能で、多層配線板として信頼性の高いものとなる。   The multilayer wiring board with a glass substrate with a circuit according to the present application has a simplified basic layer configuration of “glass substrate with circuit / insulating layer with embedded through-hole / glass substrate with circuit”, and an insulating layer with an embedded through-hole in the middle By using an insulating layer constituent material other than a glass substrate, it is possible to manufacture by employing an existing lamination method and lamination conditions. Therefore, it is possible to use an existing laminated board manufacturing facility, and the manufacturing cost is not increased. In addition, the glass substrate-containing multilayer wiring board with circuit according to the present application adopts the basic layer configuration of “glass substrate with circuit / insulating layer with embedded through hole / glass substrate with circuit”, and is opposed to the insulating layer through the insulating layer. The arranged “glass substrates with circuit” can be reliably connected to each other, and the multilayer wiring board is highly reliable.

本件出願に係る回路付きガラス基板含有多層配線板の模式断面図である。It is a schematic cross section of the glass substrate-containing multilayer wiring board with circuit according to the present application. 本件出願に係る回路付きガラス基板含有多層配線板の製造に用いる埋設スルーホール付き絶縁層の製造過程を説明するための模式図である。It is a schematic diagram for demonstrating the manufacture process of the insulating layer with a buried through-hole used for manufacture of the glass substrate containing multilayer wiring board with a circuit which concerns on this application. 本件出願に係る回路付きガラス基板含有多層配線板の製造に用いる回路付きガラス基板の製造過程を説明するための模式図である。It is a schematic diagram for demonstrating the manufacturing process of the glass substrate with a circuit used for manufacture of the glass substrate with a circuit board containing circuit which concerns on this application. 本件出願に係る回路付きガラス基板含有多層配線板を製造するときの、埋設スルーホール付き絶縁層と回路付きガラス基板との積層イメージを示した模式図である。It is the schematic diagram which showed the lamination | stacking image of the insulating layer with a buried through hole, and the glass substrate with a circuit when manufacturing the glass substrate containing circuit-equipped multilayer wiring board which concerns on this application. 本件出願に係る回路付きガラス基板含有多層配線板の高多層化のための積層イメージを示した模式図である。It is the schematic diagram which showed the lamination | stacking image for the high multilayering of the glass substrate containing multilayer board with a circuit which concerns on this application.

以下、本件出願に係る回路付きガラス基板含有多層配線板に関して詳細に述べるが、製造方法を詳説することにより、製造方法を通じて、「回路付きガラス基板含有多層配線板」に関しても詳説する。   Hereinafter, the glass substrate-containing multilayer wiring board with circuit according to the present application will be described in detail, but by explaining the manufacturing method in detail, the “glass substrate-containing multilayer wiring board with circuit” will also be described in detail through the manufacturing method.

図1に本件出願に係る回路付きガラス基板含有多層配線板に含まれるものを例示的に示している。図1(a)には、2枚の回路付きガラス基板の間に、埋設スルーホール付き絶縁層に配したものであり、回路付きガラス基板のスルーホールと、埋設スルーホール付き絶縁層の埋設スルーホールを一致させて積層したものであり、多層化した状態でのスルーホールめっきが不要となるメリットがある。図1(b)に示す層構成は、2枚の回路付きガラス基板の間に、埋設スルーホール付き絶縁層に配し、回路付きガラス基板のスルーホールと、埋設スルーホール付き絶縁層の埋設スルーホールを一致させて積層し、その後、スルーホール孔を導電性ペースト、樹脂ペースト等で充填し、導電材による埋設部8を形成した後、スルーホールを塞ぐためのめっきを行い、回路形成して得られるものである。この層構成の場合、ブラインドビアホールの形成もでき、接続信頼性も向上できる。図1(c)に示す層構成は、2枚の回路付きガラス基板の間に、埋設スルーホール付き絶縁層に配して積層する際に、回路付きガラス基板のスルーホール孔内に、埋設スルーホール付き絶縁層の樹脂を侵入させ樹脂埋設して得られるものである。なお、係る場合には、回路付きガラス基板のスルーホールと、埋設スルーホール付き絶縁層の埋設スルーホールとを一致させて積層する必要が無いため、基板設計の自由度が上昇し、図1(b)の層構成と同様に、ブラインドビアホールの形成もでき、接続信頼性も向上できる。以下の説明においては、図1(a)に示す回路付きガラス基板含有多層配線板1の場合の製造工程を用いて説明する。   FIG. 1 exemplarily shows a circuit board-containing multilayer wiring board with a circuit according to the present application. In FIG. 1 (a), an insulating layer with a buried through hole is arranged between two glass substrates with a circuit, and a through hole of a glass substrate with a circuit and a buried through of an insulating layer with a buried through hole. The holes are laminated with the holes aligned, and there is an advantage that through-hole plating in a multilayered state is unnecessary. The layer structure shown in FIG. 1B is arranged between two glass substrates with a circuit in an insulating layer with a buried through hole, and the through hole of the glass substrate with a circuit and the buried through of the insulating layer with a buried through hole Laminate the holes so that they match, and then fill the through-holes with conductive paste, resin paste, etc., form the buried portion 8 with a conductive material, perform plating to close the through-holes, and form a circuit. It is obtained. In the case of this layer structure, blind via holes can be formed, and connection reliability can be improved. The layer structure shown in FIG. 1 (c) is a structure in which a through-hole is embedded in a through-hole hole of a glass substrate with a circuit between the two glass substrates with a circuit and disposed in an insulating layer with an embedded through-hole. It is obtained by infiltrating the resin of the insulating layer with holes and embedding the resin. In such a case, since it is not necessary to stack the through holes of the glass substrate with circuit and the embedded through holes of the insulating layer with the embedded through holes, the degree of freedom in designing the substrate is increased, and FIG. As in the layer configuration of b), blind via holes can be formed and connection reliability can be improved. In the following description, it demonstrates using the manufacturing process in the case of the glass substrate containing multilayer wiring board 1 with a circuit shown to Fig.1 (a).

A.回路付きガラス基板含有多層配線板及びその製造方法の形態
<埋設スルーホール付き絶縁層の製造>
当該絶縁層2には、後述するガラス基板5との十分な密着性が確保でき、1×10Ω以上の絶縁抵抗を有する素材であれば、熱硬化性樹脂、熱可塑性樹脂のいずれでも使用可能である。これらの一例を挙げると、エポキシ樹脂、ポリイミド樹脂、、フッ素樹脂、アラミド樹脂、ポリエチレンテレフタレート樹脂、ポリフェニレンエーテル樹脂、ビスマレイドトリアジン樹脂、シアネートエステル樹脂、液晶ポリマー、シクロオレフィンポリマー樹脂等であり、これらの樹脂成分にガラスクロス、ガラス不織布等の骨格材を含有するガラス−エポキシ樹脂基材、ガラス−ポリイミド樹脂基材等を用いることが好ましい。
A. Form of glass substrate-containing multilayer wiring board with circuit and method for manufacturing the same
As long as the insulating layer 2 can secure sufficient adhesion to the glass substrate 5 to be described later and has an insulation resistance of 1 × 10 6 Ω or more, either a thermosetting resin or a thermoplastic resin can be used. Is possible. Examples of these are epoxy resins, polyimide resins, fluororesins, aramid resins, polyethylene terephthalate resins, polyphenylene ether resins, bismaleidotriazine resins, cyanate ester resins, liquid crystal polymers, cycloolefin polymer resins, etc. It is preferable to use a glass-epoxy resin substrate, a glass-polyimide resin substrate, or the like containing a skeleton material such as glass cloth or glass nonwoven fabric as the resin component.

そして、上述の絶縁層2に孔明加工を施し、図2(B)の状態とする。このときの孔明加工は、形成する孔径に応じて、ドリル加工、レーザー加工、打ち抜き加工等の方法を任意に選択することが可能である。また、この絶縁層2の構成材に設けるスルーホール形成用孔3の孔径(直径:R)は、後述するガラス基板5に設けるスルーホール孔4の孔径(直径:r)を基準とすると、以下の関係式(1)を満足することが好ましい。   And the above-mentioned insulating layer 2 is perforated, and it is set as the state of FIG. 2 (B). The drilling process at this time can arbitrarily select methods, such as a drill process, a laser process, and a punching process, according to the hole diameter to form. Moreover, the hole diameter (diameter: R) of the through-hole forming hole 3 provided in the constituent material of the insulating layer 2 is as follows based on the hole diameter (diameter: r) of the through-hole hole 4 provided in the glass substrate 5 described later. It is preferable that the relational expression (1) is satisfied.

1.1r≦R≦3.0r ・・・・(1)
但し、R: 絶縁層構成材に設けた孔の孔径
r: ガラス基板に設けるスルーホール孔の孔径
1.1r ≦ R ≦ 3.0r (1)
However, R: Hole diameter of the hole provided in the insulating layer constituent material
r: Hole diameter of the through hole provided in the glass substrate

ここで、Rが1.1r未満の場合、後述する積層工程で張り合わせると、埋設スルーホール付き絶縁層と回路付きガラス基板とを積層する際の加熱状態における膨張率の差により、「埋設スルーホール付き絶縁層の備える埋設スルーホール」と「回路付きガラス基板に設けたスルーホール孔」とを対向当接させる位置合わせが困難となり、埋設スルーホール付き絶縁層を介して設けた回路付きガラス基板の回路同士を電気的に接続することが困難となるため好ましくない。一方、Rが3.0rを超えると、「埋設スルーホール付き絶縁層の備える埋設スルーホール」と「回路付きガラス基板に設けたスルーホール孔」との位置合わせは容易となり、特段の問題は無いが、ファインピッチ回路を要求される中において、3.0r<Rとする市場要求も存在しない。   Here, when R is less than 1.1r, when laminated together in the laminating process described later, the difference of expansion coefficient in the heating state when laminating the insulating layer with the buried through hole and the glass substrate with the circuit, It becomes difficult to align the "buried through hole provided in the insulating layer with hole" and "the through hole hole provided in the glass substrate with circuit" to face each other, and the glass substrate with circuit provided through the insulating layer with the buried through hole. Since it becomes difficult to electrically connect these circuits, it is not preferable. On the other hand, when R exceeds 3.0r, it becomes easy to align the “buried through hole provided in the insulating layer with the buried through hole” and the “through hole hole provided in the glass substrate with circuit”, and there is no particular problem. However, while a fine pitch circuit is required, there is no market requirement for 3.0r <R.

以上のようにして孔明加工が終了し、図2(C)に示すように、絶縁層2のスルーホール形成用孔3の内部に、1×10Ω以下の絶縁抵抗を示す導電材を充填し、埋設スルーホール4’を形成し、埋設スルーホール付き絶縁層10とする。導電材には、、銅ペースト・銀ペースト等の導電性ペースト、導電性フィラーを含有する導電性樹脂、半田材等を用いることができる。 The drilling process is completed as described above, and as shown in FIG. 2C, the inside of the through hole forming hole 3 of the insulating layer 2 is filled with a conductive material having an insulation resistance of 1 × 10 2 Ω or less. Then, a buried through hole 4 ′ is formed to form an insulating layer 10 with a buried through hole. As the conductive material, a conductive paste such as a copper paste or a silver paste, a conductive resin containing a conductive filler, a solder material, or the like can be used.

その他、はんだボールを用いることも好ましい。開口した樹脂層の孔に、はんだボールを配して、積層することで樹脂層に埋設スルーホールを形成することが可能となる。このときのはんだホールを構成する半田材の融点が、樹脂層を構成する樹脂の硬化温度と同程度であることが好ましく、積層板の一般的な積層温度を想定すると、融点が180℃以下の低温はんだを用いたはんだボールを採用することが好ましい。   In addition, it is also preferable to use a solder ball. By placing solder balls in the opened holes of the resin layer and laminating them, it becomes possible to form embedded through holes in the resin layer. The melting point of the solder material constituting the solder hole at this time is preferably about the same as the curing temperature of the resin constituting the resin layer, and assuming a general lamination temperature of the laminate, the melting point is 180 ° C. or less. It is preferable to employ solder balls using low-temperature solder.

これらの導電材は、絶縁層2の孔内に充填した後に加熱硬化させて用いるのが一般的である。従って、硬化させるための加熱が必要になるが、加熱レベルによっては絶縁層2の構成樹脂が硬化し、半硬化状態を保てなくなる。このような場合には、この段階では乾燥レベルの加熱を行い、後の積層工程の加熱により硬化させてもよい。そして、この絶縁層2の孔内へ導電材を充填する際には、後に説明する積層に用いる回路付きガラス基板11の表面に設ける回路7の厚さを考慮し、図2(C)に示すように、半硬化状態にある絶縁層2の表面から、埋設スルーホール4’となる充填した導電材が1μm〜1.5μm突出する状態とすることが好ましい。このようにすることで、積層したときの「回路付きガラス基板のスルーホール」と「埋設スルーホール付き絶縁層の埋設スルーホール」との確実な電機的接続を確保することができる。以上のようにして、当該スルーホール形成用孔3の内部に導電材を充填して埋設スルーホール4’を形成し、埋設スルーホール付絶縁層10を調製する。   These conductive materials are generally used after being filled in the holes of the insulating layer 2 and then heat-cured. Accordingly, although heating for curing is required, the constituent resin of the insulating layer 2 is cured depending on the heating level, and the semi-cured state cannot be maintained. In such a case, at this stage, heating at a dry level may be performed and cured by heating in a later lamination process. When the conductive material is filled into the holes of the insulating layer 2, the thickness of the circuit 7 provided on the surface of the glass substrate 11 with circuit used for stacking, which will be described later, is taken into consideration, as shown in FIG. Thus, it is preferable that the filled conductive material that becomes the buried through hole 4 ′ protrude from the surface of the insulating layer 2 in a semi-cured state by 1 μm to 1.5 μm. By doing in this way, the reliable electrical connection of "the through-hole of the glass substrate with a circuit" when laminated | stacked and "the embedded through-hole of the insulating layer with an embedded through-hole" is securable. As described above, the embedded through hole 4 'is formed by filling the through hole forming hole 3 with the conductive material, and the insulating layer 10 with the embedded through hole is prepared.

<回路付きガラス基板の製造>
ここでは、図3(A)に示すような板状のガラス基板5を準備する。このガラス基板5に用いるガラス材質は、電気的絶縁性を発揮する限り、いかなるガラス材でも使用できる。市場における調達コスト、入手容易性を考慮すると、硼珪酸ガラス、ソーダ石灰ガラス等を用いることが好ましい。そして、このガラス基板の厚さ・サイズ等に関しての特段の限定はなく、市場の要求に応じて適宜選択可能である。以下、図3を参照しつつ、製造過程に準じて説明する。
<Manufacture of glass substrate with circuit>
Here, a plate-like glass substrate 5 as shown in FIG. As the glass material used for the glass substrate 5, any glass material can be used as long as it exhibits electrical insulation. In view of procurement cost and availability in the market, it is preferable to use borosilicate glass, soda lime glass, or the like. And there is no special limitation regarding thickness, size, etc. of this glass substrate, and it can select suitably according to the request | requirement of a market. Hereinafter, it demonstrates according to a manufacture process, referring FIG.

ガラス基板の孔明加工: 当該ガラス基板5には、図3(B)に示すように、所望のスルーホール形成用孔3を形成する孔明加工を行う。このガラス基板5に孔明加工を行うにあたり、サンドブラスト法、エッチング法、レーザー加工法のいずれかを採用することが可能である。サンドブラスト法には、ドライブラスト法とウエットブラスト法とがあるが、前者は加工速度に優れ、後者は孔の壁面及び開口端部が美麗に仕上がる傾向にあり、いずれを使用するかは要求品質により選択使用すれば良い。エッチング法は、ガラス基板5の孔の形成部位以外をマスキングして、ガラスの溶解可能なフッ酸系溶液を、孔の形成部位に接触させることで孔形成を行う。そして、レーザー加工法は、ガラス基板5の孔の形成部位にレーザーを照射して、短時間で孔明け加工を行う。このレーザー法においては、連続波レーザーではなく、発光時間(間隔)の短い超短パルスレーザーを用いることが好ましい。超短パルスレーザーを用いることで、ガラス基板5の開孔周囲のガラス材質の変化を最小限に止め、且つ、良好な開口形状を得ることが可能となるからである。このときのレーザー種の選択・レーザー照射条件等は、選択したガラス基板5の材質・厚さ・加工精度等を考慮して、適宜定められるものである。 Drilling of Glass Substrate: As shown in FIG. 3B, the glass substrate 5 is drilled to form a desired through-hole forming hole 3. In drilling the glass substrate 5, any one of a sandblasting method, an etching method, and a laser processing method can be employed. There are two types of sandblasting methods, the drive blast method and the wet blast method. The former is excellent in processing speed, and the latter tends to have a beautifully finished hole wall and open end, and which one is used depends on the required quality. Select and use. In the etching method, holes are formed by masking the portion other than the hole formation portion of the glass substrate 5 and bringing a glass-dissolvable hydrofluoric acid solution into contact with the hole formation portion. In the laser processing method, a hole is formed on the glass substrate 5 by irradiating the laser with a laser to perform a hole forming process in a short time. In this laser method, it is preferable to use an ultrashort pulse laser having a short emission time (interval) instead of a continuous wave laser. This is because by using the ultrashort pulse laser, it is possible to minimize the change in the glass material around the opening of the glass substrate 5 and obtain a favorable opening shape. At this time, selection of the laser type, laser irradiation conditions, and the like are appropriately determined in consideration of the material, thickness, processing accuracy, and the like of the selected glass substrate 5.

以上のような方法で、ガラス基板5の一面側から他面側に向かって形成したスルーホール形成用孔3は、一面側の開口径に比べ、他面側の開口径が小さくなり、スルーホール形成用孔3の内周壁面が傾斜した円錐状テーパ面となる傾向がある。この傾向は、ガラス基板5が厚いほど、顕著な傾向として現れる。そこで、回路付きガラス基板11を製造するためのガラス基板5としては、厚さ0.1〜2.0mm、より好ましくは0.1〜1.0mmのガラス板を用いることが好ましい。ガラス基板5の厚さが0.1mm未満の場合には、強度が弱くなり、ハンドリングも困難となるため好ましくない。一方、ガラス基板5の厚さが2.0mmを超えると、当該円錐状テーパ面が形成されやすくなり、電子部品の端子を当該スルーホール孔4に収容しようとしたときの障害となる場合があるため好ましくない。   The through hole forming hole 3 formed from one surface side to the other surface side of the glass substrate 5 by the method as described above has a smaller opening diameter on the other surface side than the opening diameter on the one surface side. There is a tendency that the inner peripheral wall surface of the forming hole 3 becomes an inclined conical tapered surface. This tendency appears as a remarkable tendency, so that the glass substrate 5 is thicker. Therefore, it is preferable to use a glass plate having a thickness of 0.1 to 2.0 mm, more preferably 0.1 to 1.0 mm, as the glass substrate 5 for manufacturing the glass substrate with circuit 11. When the thickness of the glass substrate 5 is less than 0.1 mm, the strength becomes weak and handling becomes difficult, which is not preferable. On the other hand, if the thickness of the glass substrate 5 exceeds 2.0 mm, the conical tapered surface is likely to be formed, which may be an obstacle when trying to accommodate the terminal of the electronic component in the through-hole hole 4. Therefore, it is not preferable.

導電金属層の形成: 当該ガラス基板5にスルーホール形成用孔3を形成した後は、当該ガラス基板5の表面及び当該スルーホール形成用孔3の内周壁に導電金属層6を設ける。このときの導電金属層6は、錫・パラジウムによる触媒法、ドライプロセスによるシード層形成法等の種々の方法を用いることが可能である。より具体的にいえば、「ガラス基板を塩化錫水溶液に浸漬し、感受性化した後、塩化パラジウム水溶液に浸漬し、触媒付与し、硫酸や塩酸などの水溶液または還元剤水溶液で活性化し、無電解めっきを行う方法」、「ガラス基板の表面を錫とパラジウムとの混合触媒を使用して活性化した後、無電解めっきを行う方法」、「蒸着やスパッタによるガラス基板の表面への金属膜成膜法」等である。以下においては、導電金属層6の形成に関して、具体的な一例を示す。 Formation of Conductive Metal Layer: After the through hole forming hole 3 is formed in the glass substrate 5, the conductive metal layer 6 is provided on the surface of the glass substrate 5 and the inner peripheral wall of the through hole forming hole 3. The conductive metal layer 6 at this time can use various methods such as a catalyst method using tin / palladium and a seed layer forming method using a dry process. More specifically, “After immersing a glass substrate in an aqueous tin chloride solution and sensitizing it, immersing it in an aqueous palladium chloride solution, applying a catalyst, and activating it with an aqueous solution such as sulfuric acid or hydrochloric acid or an aqueous reducing agent solution, electroless “Method of plating”, “Method of electroless plating after activation of glass substrate surface using mixed catalyst of tin and palladium”, “Metal film formation on glass substrate surface by vapor deposition or sputtering” Membrane method "and the like. Below, a specific example is shown regarding formation of the conductive metal layer 6.

ガラス基板5の表面及びスルーホール形成用孔3の内周壁に、多孔質セラミックス皮膜又は多孔質ガラス皮膜を設けて改質層付ガラス基板(図示は省略)とする。この改質層は、凹凸形状を備えることが好ましい。当該改質層の表面に導電金属層6をめっき法で形成したときに、多孔質セラミックス皮膜又は多孔質ガラス皮膜の内部に導電性金属成分が侵入析出してアンカー効果を示すからである。また、ガラス基板5に孔明加工を行って形成した孔の内壁面には、孔明加工の際にも平均粗さRaが1nm以上、より好ましくは10nm以上の凹凸が形成されるため、導電金属層6の密着性が向上する。   A porous ceramic film or a porous glass film is provided on the surface of the glass substrate 5 and the inner peripheral wall of the through hole forming hole 3 to form a glass substrate with a modified layer (not shown). This modified layer preferably has an uneven shape. This is because when the conductive metal layer 6 is formed on the surface of the modified layer by the plating method, the conductive metal component enters and precipitates inside the porous ceramic film or the porous glass film, thereby exhibiting an anchor effect. Further, the inner wall surface of the hole formed by drilling the glass substrate 5 is formed with irregularities having an average roughness Ra of 1 nm or more, more preferably 10 nm or more even during drilling. 6 adhesion is improved.

この多孔質セラミックス皮膜又は多孔質ガラス皮膜の厚さは、20nm〜100nmであることが好ましい。当該皮膜の厚さが20nm未満の場合には、ガラス基材5の表面及びスルーホール形成用孔3の内周壁を均一に被覆することが困難となり、後に形成する導電金属層6のガラス基板5への密着性が場所によりばらつくため好ましくない。一方、当該皮膜の厚さが100nmを超える場合には、皮膜に求められる凹凸形状が減少し、当該皮膜の表面に設ける導電金属層6と、ガラス基板5及びスルーホール形成用孔3の内周壁との密着性が低下する傾向が顕著になるからである。   The thickness of the porous ceramic film or the porous glass film is preferably 20 nm to 100 nm. When the thickness of the film is less than 20 nm, it is difficult to uniformly cover the surface of the glass substrate 5 and the inner peripheral wall of the through-hole forming hole 3, and the glass substrate 5 of the conductive metal layer 6 to be formed later. This is not preferable because the adhesion to the surface varies depending on the place. On the other hand, when the thickness of the coating exceeds 100 nm, the uneven shape required for the coating decreases, and the conductive metal layer 6 provided on the surface of the coating, the inner peripheral wall of the glass substrate 5 and the through-hole forming hole 3 This is because the tendency for the adhesiveness to decrease is remarkable.

以上に述べた多孔質セラミックス皮膜又は多孔質ガラス皮膜は、ガラス基材5の表面及びスルーホール形成用孔3の内周壁に、ゾルーゲル法を用いて形成することが好ましい。多孔質セラミックス皮膜又は多孔質ガラス皮膜に、良好な凹凸形状が形成でき、回路基板としての絶縁性を確保することが容易だからである。多孔質セラミックス皮膜又は多孔質ガラス皮膜の材質に関しては、特段の限定はない。例えば、多孔質セラミックス皮膜又は多孔質ガラス皮膜を形成するときのゾル−ゲル溶液の原料として、金属アルコキシドである硅酸エチル(Si(CO))やアルミニウムアルコキシド(Al(OC)、メトキシボロン(B(OCH)、ナトリウムアルコキシド(NaOCH)等の1種又は2種以上を混合して用いることができ、これらのゾル−ゲル溶液には、ほう酸、炭酸ナトリウム等のガラス軟化点を低下させることのできる無機化合物を添加することも好ましい。更に、ゾル−ゲル溶液にムライト、窒化アルミ等の無機粒子を分散混合させ多孔質化を促進して、良好な凹凸形状の形成を促進しても良い。 The porous ceramic film or the porous glass film described above is preferably formed on the surface of the glass substrate 5 and the inner peripheral wall of the through-hole forming hole 3 using a sol-gel method. This is because a favorable uneven shape can be formed on the porous ceramic film or the porous glass film, and it is easy to ensure insulation as a circuit board. There is no particular limitation on the material of the porous ceramic film or the porous glass film. For example, ethyl oxalate (Si (C 2 H 5 O) 4 ) or aluminum alkoxide (Al (OC 3 ), which is a metal alkoxide, is used as a raw material for a sol-gel solution when forming a porous ceramic film or a porous glass film. H 7 ) 3 ), methoxyboron (B (OCH 3 ) 3 ), sodium alkoxide (NaOCH 3 ), etc. can be used alone or in combination, and these sol-gel solutions contain boric acid. It is also preferable to add an inorganic compound such as sodium carbonate that can lower the glass softening point. Furthermore, inorganic particles such as mullite and aluminum nitride may be dispersed and mixed in the sol-gel solution to promote porosity, thereby promoting the formation of a favorable uneven shape.

これらのゾル−ゲル溶液は、スピンコート法、スプレー法、浸漬法等により、ガラス基材5の表面に均一に塗布する。そして、スルーホール形成用孔3の内周壁に対しては、スルーホール形成用孔3の中にゾル−ゲル溶液を通過させることで塗布する。従って、スルーホール形成用孔3を設けた後のガラス基板5をゾル−ゲル溶液に浸漬する浸漬法か、スプレー法を用いることが、スルーホール形成用孔3の内周壁に対する良好な塗布状態を得るという観点からは好ましい。その後、塗布したゾル−ゲル溶液を乾燥させ、焼成することで、ガラス基板5の表面及びスルーホール形成用孔3の内周壁に多孔質セラミックス皮膜又は多孔質ガラス皮膜を形成し、改質層付ガラス基板とする。   These sol-gel solutions are uniformly applied to the surface of the glass substrate 5 by spin coating, spraying, dipping, or the like. Then, the inner peripheral wall of the through hole forming hole 3 is applied by passing a sol-gel solution through the through hole forming hole 3. Therefore, it is possible to use a dipping method or a spray method in which the glass substrate 5 after the through-hole forming hole 3 is provided is immersed in a sol-gel solution, so that a good coating state on the inner peripheral wall of the through-hole forming hole 3 is obtained. From the viewpoint of obtaining. Thereafter, the applied sol-gel solution is dried and baked to form a porous ceramic film or a porous glass film on the surface of the glass substrate 5 and the inner peripheral wall of the through-hole forming hole 3, and with a modified layer A glass substrate is used.

以上に述べた改質層付ガラス基板の具体的製造方法を、以下に例示しておく。ガラス基板5として原子間力顕微鏡により測定した平均表面粗さ(Ra)が2.6nmのホウケイ酸ガラス(Tempax floot,幅50mm×長さ50mm×厚さ0.7mm)を用いた。そして、チタンテトライソプロポキシド0.141 mol、酢酸銅0.107 mol、1−ヒドロキシシクロヘキシルフェニルケトン0.490 mol、メトキシ酢酸0.222mol、ジメチルアセトアミド200ml、乳酸エチル600mlの組成で調製した金属錯体溶液をスピンコーターにより、当該ガラス基板上に塗布し、120℃×10分の乾燥処理を行い、350℃の大気雰囲気内で焼成を行い、改質層として厚さ25nmの多孔質セラミックス皮膜(O:64.2at%、Ti:19.5at%、Cu:9.7at%、C:6.6at%)を備える改質層付ガラス基板を得ることができる。そして、当該改質層の表面を原子間力顕微鏡により測定すると平均表面粗さ(Ra)が3.0nmとなっており、ガラス基材表面から平均表面粗さ(Ra)が約10%増加していることが確認できている。   The specific manufacturing method of the glass substrate with a modified layer described above is illustrated below. As the glass substrate 5, borosilicate glass (Tempax float, width 50 mm × length 50 mm × thickness 0.7 mm) having an average surface roughness (Ra) of 2.6 nm measured by an atomic force microscope was used. And metal complex prepared by the composition of titanium tetraisopropoxide 0.141 mol, copper acetate 0.107 mol, 1-hydroxycyclohexyl phenyl ketone 0.490 mol, methoxyacetic acid 0.222 mol, dimethylacetamide 200 ml, ethyl lactate 600 ml The solution is applied onto the glass substrate by a spin coater, dried at 120 ° C. for 10 minutes, fired in an air atmosphere at 350 ° C., and a porous ceramic film (O 2 O) having a thickness of 25 nm as a modified layer. : 64.2 at%, Ti: 19.5 at%, Cu: 9.7 at%, C: 6.6 at%) can be obtained. When the surface of the modified layer is measured with an atomic force microscope, the average surface roughness (Ra) is 3.0 nm, and the average surface roughness (Ra) is increased by about 10% from the glass substrate surface. It has been confirmed that.

次に、図3(C)に示すように、上述の改質層付ガラス基板の表面及びスルーホール形成用孔3の内周壁に、回路等を形成するための導電金属層6を設ける。この導電金属層6は、銅・銅合金・ニッケル・ニッケル合金等である。導電金属層6の形成には、無電解めっき法を用いる。スルーホール形成用孔の内壁へのめっき層の形成が求められること、コスト的な観点から見ても無電解めっき法を採用することが好ましいからである。そして、無電解めっき法を用いて形成した銅・銅合金・ニッケル・ニッケル合金等の導電金属層6は、一般的に厚さ0.1μm〜2.0μmの無電解めっき皮膜となる。この無電解めっき被膜以上の厚いめっき被膜が要求される場合には、その後電解めっき法で必要な厚さにめっきアップして回路形成等を行うための導電金属層(なお、図面の中では、めっきアップの有無を問わず、導電金属層6として示している。)及びスルーホール4とすることが、良好な生産性を確保するという観点から好ましい。   Next, as shown in FIG. 3C, a conductive metal layer 6 for forming a circuit or the like is provided on the surface of the glass substrate with a modified layer and the inner peripheral wall of the through-hole forming hole 3. The conductive metal layer 6 is made of copper, copper alloy, nickel, nickel alloy or the like. An electroless plating method is used to form the conductive metal layer 6. This is because formation of a plating layer on the inner wall of the through-hole forming hole is required, and it is preferable to employ an electroless plating method from the viewpoint of cost. The conductive metal layer 6 made of copper, copper alloy, nickel, nickel alloy or the like formed by using an electroless plating method is generally an electroless plating film having a thickness of 0.1 μm to 2.0 μm. When a thicker plating film than the electroless plating film is required, a conductive metal layer for forming a circuit by plating up to a required thickness by an electrolytic plating method (in the drawing, Regardless of the presence or absence of plating up, it is shown as the conductive metal layer 6) and through holes 4 are preferable from the viewpoint of securing good productivity.

ここで、導電金属層付きガラス基板の具体的製造方法に関して例示しておく。 上述の改質層付ガラス基板を、pH=10.5、2g/Lの水素化ホウ素ナトリウム水溶液中で2分間還元処理を行い、CuSO・5HOが3.75g/L、EDTA4Na・4HOが14.0g/L、フォルムアルデヒド溶液が8ml/L、2,2’−ビピリジルが10mg/L、ポリエチレングリコール−1000が50mg/L、pH=12.0、溶液温度60℃の無電解銅めっき液に10分間浸漬し、改質層の表面に厚さ150nmの無電解銅めっき皮膜を形成した。そして、無電解銅めっきが終了すると、乾燥を行い、CuSO・5HOが75g/L、HSOが150g/L、Clイオンが40mg/L、添加剤(JCU株式会社製 CUBRITE21)の電解銅めっき液を用いて電気銅めっきして、厚さ20μmまでめっきアップし、導電金属層付きガラス基板を得ることができる。 Here, the specific manufacturing method of the glass substrate with a conductive metal layer will be exemplified. The above-mentioned glass substrate with a modified layer is subjected to reduction treatment for 2 minutes in an aqueous solution of sodium borohydride at pH = 10.5 and 2 g / L, CuSO 4 .5H 2 O is 3.75 g / L, EDTA4Na · 4H 2 O is 14.0 g / L, formaldehyde solution 8 ml / L, 2,2'-bipyridyl is 10 mg / L, polyethylene glycol-1000 is 50mg / L, pH = 12.0, electroless the solution temperature 60 ° C. It was immersed in a copper plating solution for 10 minutes to form an electroless copper plating film having a thickness of 150 nm on the surface of the modified layer. When the electroless copper plating is completed, drying is performed, CuSO 4 .5H 2 O is 75 g / L, H 2 SO 4 is 150 g / L, Cl ions are 40 mg / L, and additives (CUBRITE 21 manufactured by JCU Corporation). Electrolytic copper plating using the electrolytic copper plating solution, and plating up to a thickness of 20 μm can provide a glass substrate with a conductive metal layer.

次に、図3(C)に示す導電金属層付きガラス基板とした後は、常法に基づき、当該導電金属層付きガラス基板の表面にある導電金属層6にエッチングレジストを設けて、エッチングパターンを露光し、現像して、エッチング加工を行うことで、図3(D)に示すような回路7及びスルーホール4を備えた回路付きガラス基板11が得られる。より具体的にいえば、導電金属層付きガラス基板の導電金属層の表面にエッチングレジストとして液体レジスト、ドライフィルム等を設け、所望のエッチングパターンを露光し、現像して、エッチング加工を行うことで、回路付きガラス基板を得ることができる。なお、引き剥がし強さを測定するための幅10mmの直線回路を形成し、引き剥がし強さを測定してみると、0.2kN/mであった。この引き剥がし強さの測定には、東洋精機製作所製のストログラフE2−L05を用いて、引張速度50mm/分の条件を採用した。   Next, after forming the glass substrate with a conductive metal layer shown in FIG. 3C, an etching resist is provided on the conductive metal layer 6 on the surface of the glass substrate with the conductive metal layer according to a conventional method, and an etching pattern is obtained. Is exposed, developed, and etched to obtain a glass substrate 11 with a circuit having a circuit 7 and a through hole 4 as shown in FIG. More specifically, by providing a liquid resist, a dry film, etc. as an etching resist on the surface of the conductive metal layer of the glass substrate with a conductive metal layer, exposing a desired etching pattern, developing, and performing an etching process. A glass substrate with a circuit can be obtained. In addition, it was 0.2 kN / m when the 10-mm-wide linear circuit for measuring peeling strength was formed and peeling strength was measured. For the measurement of the peel strength, a condition of a tensile speed of 50 mm / min was adopted using a strograph E2-L05 manufactured by Toyo Seiki Seisakusho.

更に、当該回路付きガラス基板11は、事後的なアフターベーキング処理を施すことも好ましい。このアフターベーキング処理の条件には、300℃〜400℃×10分〜60分を採用することが好ましい。この加熱条件を下回る場合には、回路付きガラス基板10の回路7とガラス基板5との密着性を向上させることができない。一方、この加熱条件を上回る場合には、ガラス基板5、多孔質セラミックス皮膜又は多孔質ガラス皮膜の劣化が起こり、ガラス基板5に対する回路7の密着性が低下する傾向があるため好ましくない。なお、上述の引き剥がし強さが0.2kN/mであった回路付きガラス基板11を、350℃×60分の加熱を施し、再度、引き剥がし強さを測定すると0.4kN/mと向上することからも回路付きガラス基板に関しては、回路形成後に適正なアフターベーキング工程を設けることが好ましいと判断できる。   Furthermore, it is also preferable that the glass substrate with circuit 11 is subjected to a post-baking process. As conditions for this after-baking treatment, it is preferable to employ 300 ° C. to 400 ° C. × 10 minutes to 60 minutes. If the heating condition is not satisfied, the adhesion between the circuit 7 of the glass substrate with circuit 10 and the glass substrate 5 cannot be improved. On the other hand, exceeding this heating condition is not preferable because the glass substrate 5, the porous ceramic film or the porous glass film is deteriorated and the adhesion of the circuit 7 to the glass substrate 5 tends to be lowered. The glass substrate with circuit 11 having the above-described peeling strength of 0.2 kN / m was heated to 350 ° C. for 60 minutes, and when the peeling strength was measured again, it improved to 0.4 kN / m. Therefore, it can be judged that it is preferable to provide an appropriate after-baking step after forming the circuit for the glass substrate with circuit.

<積層工程>
この工程では、図4に示すごとく、埋設スルーホール付絶縁層10の両面に回路付きガラス基板11を対向配置して、積層加工することで、絶縁層の両面に回路付きガラス基板を備える回路付きガラス基板含有多層配線板1を得る。このときの積層条件は、埋設スルーホール付絶縁層10の絶縁層2の構成樹脂材料の種類に応じて定める。積層前の段階において、当該絶縁層2は半硬化状態の樹脂を含んでいる。例えば、熱硬化性のエポキシ樹脂を含む場合には、170℃〜180℃×60分程度の条件でプレス成形が施される。このとき、絶縁層2の半硬化状態の樹脂が再流動化して、埋設スルーホール付絶縁層10と回路付きガラス基板11とが張り合わせられる。この再流動化した絶縁層2の構成樹脂が、当該回路付きガラス基板11の回路7の無い露出表面には、改質層である多孔質セラミックス皮膜又は多孔質ガラス皮膜がある。この改質層は凹凸形状を備えるため、その凹凸形状により再流動化した樹脂成分がアンカー効果を示し、層間の張り合わせ信頼性が向上する。このときの露出表面は、平均粗さRaが1nm以上、より好ましくは10nm以上であり、水の接触角が0°<θ<90°の濡れ性に優れた粗面状態であることが好ましい。また、更なる高多層板を得る必要がある場合には、図5に例示したように積層することも可能である。即ち、本件出願による回路付きガラス基板含有多層配線板1とは、その層構成の中に「回路付きガラス基板11/埋設スルーホール付き絶縁層10/回路付きガラス基板11」の層構成を少なくとも一つ含むものといい表すことができる。
<Lamination process>
In this step, as shown in FIG. 4, a glass substrate 11 with a circuit is disposed opposite to both surfaces of an insulating layer 10 with a buried through hole, and laminated, thereby providing a circuit with a glass substrate with a circuit on both surfaces of the insulating layer. A glass substrate-containing multilayer wiring board 1 is obtained. The lamination conditions at this time are determined according to the type of the constituent resin material of the insulating layer 2 of the embedded insulating layer with through-hole 10. In the stage before lamination, the insulating layer 2 contains a semi-cured resin. For example, when a thermosetting epoxy resin is included, press molding is performed under conditions of about 170 ° C. to 180 ° C. × 60 minutes. At this time, the semi-cured resin of the insulating layer 2 is reflowed, and the embedded through-hole insulating layer 10 and the circuit-attached glass substrate 11 are bonded together. There is a porous ceramic film or a porous glass film as a modified layer on the exposed surface of the glass substrate 11 with a circuit where the constituent resin of the reflowed insulating layer 2 is not provided with the circuit 7. Since this modified layer has a concavo-convex shape, the resin component reflowed by the concavo-convex shape exhibits an anchor effect, and the bonding reliability between the layers is improved. The exposed surface at this time is preferably a rough surface state having an average roughness Ra of 1 nm or more, more preferably 10 nm or more, and excellent wettability with a water contact angle of 0 ° <θ <90 °. Moreover, when it is necessary to obtain a further high multilayer board, it is also possible to laminate | stack as illustrated in FIG. That is, the glass substrate-containing multilayer wiring board 1 according to the present application has at least one layer configuration of “glass substrate with circuit 11 / insulating layer with embedded through hole 10 / glass substrate with circuit 11” in the layer configuration. Can be described as including.

B.回路付きガラス基板含有多層配線板の利用態様
以上のようにして得られる回路付きガラス基板含有多層配線板1は、その使用方法に関して特段の限定は無いが、タッチパネル回路を備える基板作成において、有用に活用できる。通常、タッチパネル用の回路には、お互いに交差するX方向回路とY方向回路があり、相互の回路が、タッチ操作時に接触して短絡しないようにジャンパー線を設ける必要がある。しかし、本件出願に係る回路付きガラス基板含有多層配線板1の層構成を備えていれば、ジャンパー線不要のタッチパネル回路の設計が可能となるからである。即ち、本件出願に係る回路付きガラス基板含有多層配線板1を用いることで、タッチパネル回路に限らず、ジャンパー線を必要とした回路からジャンパー線をなくすことが可能となる。
B. Use aspect of glass substrate-containing multilayer wiring board with circuit The glass substrate-containing multilayer wiring board 1 with circuit obtained as described above is not particularly limited with respect to its usage, but is useful in making a substrate with a touch panel circuit. Can be used. Normally, touch panel circuits include an X-direction circuit and a Y-direction circuit that intersect each other, and it is necessary to provide a jumper line so that the mutual circuits do not come into contact with each other during a touch operation. However, if the glass substrate-containing multilayer wiring board 1 with a circuit according to the present application is provided, the touch panel circuit that does not require jumper wires can be designed. That is, by using the glass substrate-containing multilayer wiring board 1 with a circuit according to the present application, it is possible to eliminate the jumper wire from a circuit that requires a jumper wire as well as a touch panel circuit.

本件出願に係る回路付きガラス基板含有多層配線板は、「回路付きガラス基板/埋設スルーホール付き絶縁層/回路付きガラス基板」の単純化した層構成を備えている。このようにガラス基板に要求される品質を満足しつつも、通常の積層板に使用される絶縁層構成材を部分的に用いることで、既存の積層装置及び積層条件を採用することができるため、既存の積層板製造設備の使用が可能で社会資本の損失も、生産コストの上昇も招かない。また、本件出願に係る回路付きガラス基板含有多層配線板は、ガラス基板に要求される製品品質を満足した高性能の製品を市場に安価に提供できる。   The glass substrate-containing multilayer wiring board with circuit according to the present application has a simplified layer configuration of “glass substrate with circuit / insulating layer with embedded through hole / glass substrate with circuit”. In this way, while satisfying the quality required for the glass substrate, it is possible to adopt the existing laminating apparatus and laminating conditions by partially using the insulating layer constituent material used for a normal laminated plate. It is possible to use existing laminated board manufacturing equipment, and there is no loss of social capital and no increase in production costs. Moreover, the glass substrate-containing multilayer wiring board with circuit according to the present application can provide a high-performance product satisfying the product quality required for the glass substrate at a low price on the market.

1 回路付きガラス基板含有多層配線板
2 絶縁層
3 スルーホール形成用孔
4 スルーホール孔
4’ 埋設スルーホール
5 ガラス基板
6 導電金属層
7 回路
8 導電材による埋設部
10 埋設スルーホール付絶縁層
11 回路付きガラス基板
DESCRIPTION OF SYMBOLS 1 Glass substrate containing circuit board containing multilayer wiring board 2 Insulating layer 3 Through-hole formation hole 4 Through-hole hole 4 'Embedded through-hole 5 Glass substrate 6 Conductive metal layer 7 Circuit 8 Conductive material embedded part 10 Embedded through-hole insulating layer 11 Glass substrate with circuit

Claims (8)

埋設スルーホール付き絶縁層の両面に回路付きガラス基板を備える回路付きガラス基板含有多層配線板であって、
当該埋設スルーホール付き絶縁層は、当該埋設スルーホール付き絶縁層を介して配した2枚の回路付きガラス基板の回路同士を電気的に接続するための導電材を充填した埋設スルーホールを備え、
当該回路付きガラス基板は、ガラス基板の表面に所定の回路を備え、且つ、当該埋設スルーホール付き絶縁層に設けた埋設スルーホールと連結するためのスルーホールを備えることを特徴とする回路付きガラス基板含有多層配線板。
A glass substrate-containing multilayer wiring board with a circuit comprising a glass substrate with a circuit on both sides of an insulating layer with a buried through hole,
The insulating layer with a buried through hole includes a buried through hole filled with a conductive material for electrically connecting the circuits of two glass substrates with a circuit arranged via the insulating layer with a buried through hole,
The glass substrate with a circuit is provided with a predetermined circuit on the surface of the glass substrate, and has a through hole for connecting with a buried through hole provided in the insulating layer with the buried through hole. Board-containing multilayer wiring board.
前記回路付きガラス基板は、ガラス基板の両面に所定の回路を備えるものである請求項1に記載の回路付きガラス基板含有多層配線板。   The glass substrate-containing multilayer wiring board according to claim 1, wherein the glass substrate with circuit includes a predetermined circuit on both surfaces of the glass substrate. 前記埋設スルーホール付き絶縁層は、1×10Ω以上の絶縁抵抗を有する熱硬化性樹脂又は熱可塑性樹脂のいずれかを用いたものである請求項1又は請求項2に記載の回路付きガラス基板含有多層配線板。 3. The glass with circuit according to claim 1, wherein the insulating layer with an embedded through-hole is one using a thermosetting resin or a thermoplastic resin having an insulation resistance of 1 × 10 6 Ω or more. Board-containing multilayer wiring board. 前記埋設スルーホール付き絶縁層は、骨格材を含むものである請求項3又は請求項4に記載の回路付きガラス基板含有多層配線板。   The glass substrate-containing multilayer wiring board with circuit according to claim 3 or 4, wherein the insulating layer with a buried through hole includes a skeleton material. 前記埋設スルーホール付き絶縁層の埋設スルーホールに配する導電材は、1×10Ω以下の絶縁抵抗を示す銅ペースト・銀ペースト等の導電性ペースト、導電性フィラーを含有する導電性樹脂、半田材のいずれかを用いたものである請求項1〜請求項5のいずれか一項に記載の回路付きガラス基板含有多層配線板。 The conductive material disposed in the buried through hole of the insulating layer with the buried through hole is a conductive paste such as a copper paste / silver paste showing an insulation resistance of 1 × 10 2 Ω or less, a conductive resin containing a conductive filler, The glass substrate-containing multilayer wiring board with circuit according to any one of claims 1 to 5, wherein any one of solder materials is used. 請求項1〜請求項5のいずれか1項に記載の回路付きガラス基板含有多層配線板の製造方法であって、以下の工程を備えることを特徴とする回路付きガラス基板含有多層配線板の製造方法。
埋設スルーホール付き絶縁層の製造工程: 絶縁層構成材にガラス製絶縁層の回路同士を電気的に接続するための所定のスルーホール形成用孔を設ける孔明加工を施し、当該スルーホール形成用孔の孔内に導電材を充填して埋設スルーホールを形成し、埋設スルーホール付き絶縁層を得る。
回路付きガラス基板の製造工程: 板状のガラス基板を準備し、当該ガラス基板にスルーホール形成用孔を設ける孔明加工を施し、その後、当該ガラス基板の両面及び当該スルーホール形成用孔の内周壁に導電金属層を設けスルーホール孔を備える導電金属層付きガラス基板とする。そして、当該導電金属層付きガラス基板の表面にある導電金属層をエッチング加工して回路形成することで回路付きガラス基板を得る。
積層工程: 埋設スルーホール付き絶縁層の埋設スルーホールと、当該回路付きガラス基板のスルーホール孔とが対向するように、当該埋設スルーホール付き絶縁層の片面側及び他面側に回路付きガラス基板を配して、積層加工することで、埋設スルーホール付き絶縁層の両面に回路付きガラス基板を備える回路付きガラス基板含有多層配線板を得る。
It is a manufacturing method of the glass substrate containing multilayer wiring board with a circuit of any one of Claims 1-5, Comprising: The manufacturing of the glass substrate containing multilayer wiring board with a circuit characterized by including the following processes. Method.
Manufacturing process of insulating layer with embedded through hole: The through hole forming hole is formed by providing a predetermined through hole forming hole for electrically connecting the glass insulating layer circuits to the insulating layer constituting material. The hole is filled with a conductive material to form a buried through hole, and an insulating layer with a buried through hole is obtained.
Manufacturing process of glass substrate with circuit: A plate-like glass substrate is prepared, and a perforating process for providing a through hole forming hole on the glass substrate is performed, and then both surfaces of the glass substrate and an inner peripheral wall of the through hole forming hole. A conductive metal layer is provided on the glass substrate, and a glass substrate with a conductive metal layer having a through-hole hole is formed. And the glass substrate with a circuit is obtained by carrying out the etching process of the conductive metal layer in the surface of the said glass substrate with a conductive metal layer, and forming a circuit.
Lamination process: A glass substrate with a circuit on one side and the other side of the insulating layer with an embedded through hole so that the embedded through hole of the insulating layer with the embedded through hole faces the through hole of the glass substrate with the circuit. Are arranged and processed to obtain a glass substrate-containing multilayer wiring board with a circuit comprising a glass substrate with a circuit on both surfaces of an insulating layer with an embedded through hole.
前記回路付きガラス基板の製造工程において、当該ガラス基板にスルーホール形成用孔を設ける孔明加工は、超短パルスレーザーを用いて行うものである請求項6に記載の回路付きガラス基板含有多層配線板の製造方法。 The glass substrate-containing multilayer wiring board with circuit according to claim 6, wherein in the manufacturing process of the glass substrate with circuit, the drilling process for providing a through-hole forming hole in the glass substrate is performed using an ultrashort pulse laser. Manufacturing method. 請求項1〜請求項5のいずれか1項に記載の回路付きガラス基板含有多層配線板であって、タッチパネル用回路を備えた回路付きガラス基板を用いて得られるタッチパネル用の回路付きガラス基板含有多層配線板。   A glass substrate-containing multilayer wiring board with a circuit according to any one of claims 1 to 5, wherein the glass substrate with a circuit for a touch panel is obtained using a glass substrate with a circuit provided with a circuit for a touch panel. Multilayer wiring board.
JP2017156044A 2017-08-10 2017-08-10 Multi-layer wiring board containing glass substrate with circuit and manufacturing method thereof Pending JP2019036607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017156044A JP2019036607A (en) 2017-08-10 2017-08-10 Multi-layer wiring board containing glass substrate with circuit and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017156044A JP2019036607A (en) 2017-08-10 2017-08-10 Multi-layer wiring board containing glass substrate with circuit and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2019036607A true JP2019036607A (en) 2019-03-07

Family

ID=65637752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017156044A Pending JP2019036607A (en) 2017-08-10 2017-08-10 Multi-layer wiring board containing glass substrate with circuit and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2019036607A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113660770A (en) * 2020-05-12 2021-11-16 台湾爱司帝科技股份有限公司 Conductive glass substrate and manufacturing system and manufacturing method thereof
JP7114036B1 (en) 2021-04-19 2022-08-08 株式会社Nsc glass interposer
WO2024087238A1 (en) * 2022-10-28 2024-05-02 陈旺寿 Glass-based backlight plate for mini led display and manufacturing method
WO2024106066A1 (en) * 2022-11-14 2024-05-23 Toppanホールディングス株式会社 Wiring substrate and method for manufacturing wiring substrate
WO2024252560A1 (en) * 2023-06-07 2024-12-12 株式会社レゾナック Method for manufacturing multilayer substrate, and semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288577A (en) * 2007-04-18 2008-11-27 Fujikura Ltd Substrate treatment method, through-wire substrate and its manufacturing method, and electronic component
JP2015121829A (en) * 2012-04-18 2015-07-02 シャープ株式会社 Color filter integrated touch panel
JP2016111244A (en) * 2014-12-09 2016-06-20 日本特殊陶業株式会社 Wiring board and manufacturing method thereof
JP2018116951A (en) * 2017-01-16 2018-07-26 富士通株式会社 Circuit board, circuit board manufacturing method, and electronic apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288577A (en) * 2007-04-18 2008-11-27 Fujikura Ltd Substrate treatment method, through-wire substrate and its manufacturing method, and electronic component
JP2015121829A (en) * 2012-04-18 2015-07-02 シャープ株式会社 Color filter integrated touch panel
JP2016111244A (en) * 2014-12-09 2016-06-20 日本特殊陶業株式会社 Wiring board and manufacturing method thereof
JP2018116951A (en) * 2017-01-16 2018-07-26 富士通株式会社 Circuit board, circuit board manufacturing method, and electronic apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113660770A (en) * 2020-05-12 2021-11-16 台湾爱司帝科技股份有限公司 Conductive glass substrate and manufacturing system and manufacturing method thereof
JP7114036B1 (en) 2021-04-19 2022-08-08 株式会社Nsc glass interposer
WO2022224855A1 (en) * 2021-04-19 2022-10-27 株式会社Nsc Glass substrate, and glass interposer
JP2022165424A (en) * 2021-04-19 2022-10-31 株式会社Nsc Glass substrate and glass interposer
JP2022165139A (en) * 2021-04-19 2022-10-31 株式会社Nsc glass interposer
JP7704431B2 (en) 2021-04-19 2025-07-08 株式会社Nsc Glass Substrate and Glass Interposer
WO2024087238A1 (en) * 2022-10-28 2024-05-02 陈旺寿 Glass-based backlight plate for mini led display and manufacturing method
WO2024106066A1 (en) * 2022-11-14 2024-05-23 Toppanホールディングス株式会社 Wiring substrate and method for manufacturing wiring substrate
WO2024252560A1 (en) * 2023-06-07 2024-12-12 株式会社レゾナック Method for manufacturing multilayer substrate, and semiconductor device

Similar Documents

Publication Publication Date Title
JP2019036607A (en) Multi-layer wiring board containing glass substrate with circuit and manufacturing method thereof
TWI392410B (en) Multilayer printed wiring board and manufacturing method thereof
JP5392732B2 (en) Copper surface-to-resin adhesive layer, wiring board, and adhesive layer forming method
US4970107A (en) Composite article comprising a copper element and a process for producing it
JP5580135B2 (en) Printed wiring board manufacturing method and printed wiring board
JP2001007468A (en) Wiring board, multilayered wiring board, and their manufacture
JPH1140902A (en) Printed wiring board and manufacturing method thereof
US20160330836A1 (en) Printed wiring board
JP2000101248A (en) Multiple multilayer printed wiring board
US5444189A (en) Printed wiring board and production thereof
JP3940617B2 (en) Wiring board and manufacturing method thereof
CN105856792B (en) Method for manufacturing single-sided thin metal substrate
JP7337185B2 (en) wiring board
JP4508141B2 (en) Stainless steel transfer substrate, stainless steel transfer substrate with plating circuit layer
TWI437943B (en) Method for manufacturing multilayer flexible printed circuit board
JP4225009B2 (en) Multilayer wiring board manufacturing method and multilayer wiring board using the same
JPH09181452A (en) Multilayer printed wiring board manufacturing method
JPS6242598A (en) Ceramic multilayer interconnection board and manufacture thereof
TWI647989B (en) Roll-to-roll processed flexible circuit board and quick method for forming the same
JP2006173650A (en) Multilayer wiring board
JPH02164094A (en) Manufacture of printed wiring board
TWI468450B (en) A dielectric structure containing a resin composition
JP2005191244A (en) Build-up multilayer wiring board and manufacturing method thereof
KR200412591Y1 (en) Multilayer printed circuit board with bump hole with bumper in inner layer
JP2005191242A (en) Build-up multilayer wiring board and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210917