JP2019034254A - Apparatus and method for treating waste lithium ion battery - Google Patents
Apparatus and method for treating waste lithium ion battery Download PDFInfo
- Publication number
- JP2019034254A JP2019034254A JP2017155086A JP2017155086A JP2019034254A JP 2019034254 A JP2019034254 A JP 2019034254A JP 2017155086 A JP2017155086 A JP 2017155086A JP 2017155086 A JP2017155086 A JP 2017155086A JP 2019034254 A JP2019034254 A JP 2019034254A
- Authority
- JP
- Japan
- Prior art keywords
- lithium ion
- ion battery
- waste lithium
- heating
- roasting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 48
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 48
- 239000002699 waste material Substances 0.000 title claims abstract description 38
- 238000000034 method Methods 0.000 title claims description 12
- 238000010438 heat treatment Methods 0.000 claims abstract description 45
- 239000002918 waste heat Substances 0.000 claims 1
- 239000008151 electrolyte solution Substances 0.000 abstract description 8
- 239000011230 binding agent Substances 0.000 abstract description 2
- 239000000243 solution Substances 0.000 abstract 1
- 239000000463 material Substances 0.000 description 15
- 239000007789 gas Substances 0.000 description 13
- 239000003792 electrolyte Substances 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 4
- 229910017052 cobalt Inorganic materials 0.000 description 4
- 239000010941 cobalt Substances 0.000 description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 4
- 229910052744 lithium Inorganic materials 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000003763 carbonization Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- -1 lithium hexafluorophosphate Chemical compound 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009172 bursting Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 208000028659 discharge Diseases 0.000 description 1
- 239000011883 electrode binding agent Substances 0.000 description 1
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/84—Recycling of batteries or fuel cells
Landscapes
- Tunnel Furnaces (AREA)
- Gasification And Melting Of Waste (AREA)
- Processing Of Solid Wastes (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Vertical, Hearth, Or Arc Furnaces (AREA)
Abstract
Description
本発明は、廃リチウムイオン電池を処理する装置及び方法に関し、特に、廃リチウムイオン電池から安全かつ効率的に有価物を回収する装置及び方法に関する。 The present invention relates to an apparatus and method for treating a waste lithium ion battery, and more particularly to an apparatus and method for safely and efficiently recovering valuable materials from a waste lithium ion battery.
リチウムイオン電池は、ハイブリッド自動車や電気自動車等の電動車両用の電源として用いられ、アルミ箔にリチウム、コバルト、ニッケル等を塗布した正極材、銅箔に黒鉛等を塗布した負極材、電解液、セパレーター等から構成されている。リチウムイオン電池には、アルミニウム、リチウム、コバルト、ニッケル、銅等の有価物が含まれているため、使用後廃棄されたリチウムイオン電池(以下、適宜「LIB」と略称する。)からこれらを回収することは、資源の乏しいわが国にとって極めて重要である。 A lithium ion battery is used as a power source for electric vehicles such as hybrid cars and electric cars, and is made of a positive electrode material coated with lithium, cobalt, nickel or the like on an aluminum foil, a negative electrode material coated with graphite or the like on a copper foil, an electrolyte solution, It consists of a separator and the like. Since lithium ion batteries contain valuable materials such as aluminum, lithium, cobalt, nickel, copper, etc., these are recovered from lithium ion batteries discarded after use (hereinafter abbreviated as “LIB” as appropriate). To do is extremely important for Japan, which is scarce of resources.
LIBから有価物を回収するために、焙焼、破砕又は粉砕、篩分け、選別等が行われている。 In order to recover valuable materials from LIB, roasting, crushing or crushing, sieving, sorting and the like are performed.
例えば、特許文献1には、LIBを回転炉に投入し、還元雰囲気下において300〜650℃で焙焼処理を行うことで、LIBに含まれるアルミニウムを溶融させずに電解液を揮発させ、LIBから有価物を回収し易くする方法が開示される。 For example, Patent Document 1 discloses that LIB is charged into a rotary furnace and roasted at 300 to 650 ° C. in a reducing atmosphere to volatilize the electrolyte without melting aluminum contained in LIB. Disclosed is a method for facilitating the recovery of valuable materials from the manufacturing process.
また、特許文献2には、LIBから有価物を回収する前処理として、LIBの放電処理を行った後、LIBの安全弁を開口し、減圧下で80〜150℃で加熱して電解液を気化させる方法が開示される。 In addition, in Patent Document 2, as a pretreatment for recovering valuable materials from LIB, after LIB discharge treatment, the LIB safety valve is opened and heated at 80 to 150 ° C. under reduced pressure to vaporize the electrolyte. A method is disclosed.
さらに、特許文献3には、LIBを150〜180℃に加熱して電解液を揮発させ、揮発した電解液を安全弁を介して外部に放出することでLIBの電池機能を破壊し、電池機能を破壊したLIBを破砕し、沈降分離により有価物を回収する方法が開示される。 Furthermore, in Patent Document 3, the LIB is heated to 150 to 180 ° C. to volatilize the electrolytic solution, and the volatilized electrolytic solution is discharged to the outside through the safety valve to destroy the battery function of the LIB. A method of crushing a broken LIB and recovering valuable materials by sedimentation separation is disclosed.
しかし、上記特許文献1に記載の方法では、LIBを高温の炉に投入するため、電解液が急激に気化し、LIBが膨張して破裂するおそれを否定できなかった。 However, in the method described in Patent Document 1, since LIB is charged into a high-temperature furnace, it is impossible to deny the possibility that the electrolyte vaporizes rapidly and the LIB expands and bursts.
また、上記特許文献2に記載の方法では、LIBの安全弁を開口するため、LIBの電解液に含まれる六フッ化リン酸リチウム(LiPF6)が漏出し、この六フッ化リン酸リチウムが分解して有毒なフッ化水素が発生するおそれがあった。 Further, in the method described in Patent Document 2, since the LIB safety valve is opened, lithium hexafluorophosphate (LiPF 6 ) contained in the LIB electrolyte leaks, and the lithium hexafluorophosphate is decomposed. As a result, toxic hydrogen fluoride may be generated.
さらに、上記特許文献3に記載の方法では、加熱温度が160℃程度と低いため、LIBが膨張して破裂するのを回避することはできるものの、活物質中の電極バインダーであるPVDF(ポリフッ化ビニリデン)を分解することができず、回収される有価物の品位を下げるおそれがあった。 Furthermore, in the method described in Patent Document 3, since the heating temperature is as low as about 160 ° C., it is possible to avoid the LIB from expanding and bursting, but PVDF (polyfluoride) as an electrode binder in the active material can be avoided. Vinylidene) could not be decomposed, and the quality of the valuables recovered could be lowered.
そこで、本発明は、上記問題点に鑑みてなされたものであって、廃リチウムイオン電池から安全かつ効率的に有価物を回収することを目的とする。 Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to recover valuable materials from waste lithium ion batteries safely and efficiently.
上記目的を達成するため、本発明の廃リチウムイオン電池の処理装置は、廃リチウムイオン電池を100℃以上250℃以下で加熱する加熱領域と、該加熱後の廃リチウムイオン電池を300℃以上650℃以下で焙焼する焙焼領域とを有する熱処理炉を備えることを特徴とする。 In order to achieve the above object, a waste lithium ion battery treatment apparatus of the present invention comprises a heating region for heating a waste lithium ion battery at 100 ° C. or higher and 250 ° C. or lower, and a waste lithium ion battery after heating at 300 ° C. or higher and 650 ° C. A heat treatment furnace having a roasting region for roasting at a temperature of less than or equal to ° C. is provided.
本発明によれば、熱処理炉の加熱領域において廃リチウムイオン電池を100℃以上250℃以下で加熱することで電解液を揮発させた後、300℃以上650℃以下で焙焼することでバインダーを分解するため、電解液が急激に気化して廃リチウムイオン電池が破裂する危険性がなく安全で、かつ後段の有価物回収装置において廃リチウムイオン電池から有価物を回収し易い状態にすることができる。 According to the present invention, the waste lithium ion battery is heated at 100 ° C. or more and 250 ° C. or less in the heating region of the heat treatment furnace, and then the binder is roasted at 300 ° C. or more and 650 ° C. or less. Because it decomposes, there is no risk that the electrolyte will rapidly vaporize and the waste lithium ion battery will explode, and it will be safe to collect valuables from the waste lithium ion battery in the valuables recovery device at the later stage. it can.
上記廃リチウムイオン電池の処理装置において、前記熱処理炉をローラーハースキルン又はトンネルキルンとすることができる。これらの炉を用いることで、加熱及び焙焼を連続して迅速に行うことができる。 In the waste lithium ion battery processing apparatus, the heat treatment furnace may be a roller hearth kiln or a tunnel kiln. By using these furnaces, heating and roasting can be performed quickly and continuously.
また、本発明の廃リチウムイオン電池の処理方法は、廃リチウムイオン電池を100℃以上250℃以下で加熱し、該加熱後の廃リチウムイオン電池を300℃以上650℃以下で焙焼することを特徴とする。本発明によれば、電解液が急激に気化して廃リチウムイオン電池が破裂する危険性がなく、廃リチウムイオン電池から有価物を回収し易い状態にすることができる。 Moreover, the processing method of the waste lithium ion battery of the present invention comprises heating the waste lithium ion battery at 100 ° C. or more and 250 ° C. or less, and roasting the heated lithium ion battery at 300 ° C. or more and 650 ° C. or less. Features. According to the present invention, there is no risk that the electrolytic solution is rapidly vaporized and the waste lithium ion battery is ruptured, and a valuable material can be easily recovered from the waste lithium ion battery.
上記廃リチウムイオン電池の処理方法において、前記加熱及び前記焙焼を還元雰囲気下で行うことにより、耐熱容器等を使用することなく直接投入された廃リチウムイオン電池に対して加熱処理することで、廃リチウムイオン電池を乾留して炭化混合物を分離すると共に、電池内の電解液を揮発化させることができる。 In the treatment method of the waste lithium ion battery, by performing the heating and the roasting in a reducing atmosphere, the waste lithium ion battery directly charged without using a heat-resistant container or the like is heat-treated, The waste lithium ion battery can be carbonized to separate the carbonized mixture, and the electrolyte in the battery can be volatilized.
以上のように、本発明によれば、廃リチウムイオン電池から安全かつ効率的に有価物を回収することができる。 As described above, according to the present invention, valuable materials can be recovered safely and efficiently from a waste lithium ion battery.
次に、本発明に係る廃リチウムイオン電池の処理装置及び処理方法の一実施形態について図面を参照しながら詳細に説明する。 Next, an embodiment of a processing apparatus and a processing method for a waste lithium ion battery according to the present invention will be described in detail with reference to the drawings.
図1は、本発明に係る廃リチウムイオン電池の処理装置に設けられる熱処理炉としてのローラーハースキルン(以下「キルン」と略称する。)を示す。このキルン1は、炉前室2、熱処理室3、炉後室4を有し、受け入れたLIBを収容した耐熱容器C(C1〜C6)を、これらの室2〜4の内部をこの順で通過するように、ローラーによって搬送する搬送装置5を備える。 FIG. 1 shows a roller hearth kiln (hereinafter abbreviated as “kiln”) as a heat treatment furnace provided in a treatment apparatus for waste lithium ion batteries according to the present invention. This kiln 1 has a furnace front chamber 2, a heat treatment chamber 3, and a furnace rear chamber 4, and the heat-resistant containers C (C1 to C6) containing the received LIB are placed in the chambers 2 to 4 in this order. A transport device 5 for transporting by a roller is provided so as to pass.
耐熱容器Cは、ステンレス鋼(SUS304)等の少なくとも650℃の耐熱温度を有する蓋付きの円筒状に形成される。この耐熱容器Cには、複数のLIBを収容することができる。収容されるLIBは、具体的には、電池モジュールを箱型筐体内に複数収納する電池パックであって、各々の電池モジュールには複数個のリチウムイオン電池セルが配列されている。また、図示を省略するが、耐熱容器Cには、内部の燃焼ガスを排出するための排気管や、内部の圧力が高まった場合に圧力を逃がすための減圧手段が設けられる。 The heat-resistant container C is formed in a cylindrical shape with a lid having a heat-resistant temperature of at least 650 ° C. such as stainless steel (SUS304). The heat-resistant container C can accommodate a plurality of LIBs. Specifically, the LIB accommodated is a battery pack that accommodates a plurality of battery modules in a box-type housing, and a plurality of lithium ion battery cells are arranged in each battery module. Although not shown in the figure, the heat-resistant container C is provided with an exhaust pipe for exhausting internal combustion gas and a decompression means for releasing the pressure when the internal pressure increases.
炉前室2は、開閉により耐熱容器C1の受入と、外部との遮断とを切り替えるための扉6と、排ガス処理設備(不図示)に接続される排気口7とを備える。 The furnace front chamber 2 includes a door 6 for switching between acceptance of the heat-resistant container C1 and shut-off from the outside by opening and closing, and an exhaust port 7 connected to an exhaust gas treatment facility (not shown).
熱処理室3は、加熱領域3Aと焙焼領域3Bとに分かれ、開閉により耐熱容器C2、C4の通過と、外部との遮断を切り替えるための扉8、13と、耐熱容器C3、C4を加熱・焙焼するための抵抗発熱体としての上下ヒータ9、10と、給気口11と、排気口7と同様に排ガス処理設備に接続される排気口12とを備える。加熱領域3Aと焙焼領域3Bの境界は特に存在しないが、上下ヒータ9、10等の運転条件を調整することで、加熱領域3Aと焙焼領域3Bは各々100〜250℃と、300〜650℃の温度範囲に調整される。上下ヒータ9、10に代えて、高温のガスを噴出するバーナ等を用いてもよい。 The heat treatment chamber 3 is divided into a heating area 3A and a roasting area 3B, and the doors 8 and 13 for switching between passage of the heat-resistant containers C2 and C4 and blocking of the outside by opening and closing, and the heat-resistant containers C3 and C4 are heated and Upper and lower heaters 9 and 10 serving as resistance heating elements for roasting, an air supply port 11, and an exhaust port 12 connected to the exhaust gas treatment facility in the same manner as the exhaust port 7 are provided. There is no particular boundary between the heating area 3A and the roasting area 3B, but the heating area 3A and the roasting area 3B are adjusted to 100 to 250 ° C. and 300 to 650 by adjusting the operating conditions of the upper and lower heaters 9, 10 and the like. Adjusted to a temperature range of ° C. Instead of the upper and lower heaters 9 and 10, a burner or the like that ejects high-temperature gas may be used.
炉後室4は、排気口7と同様に排ガス処理設備に接続される排気口14と、開閉により耐熱容器C5の通過と、外部との遮断を切り替えるための扉15とを備える。上記扉6、8、13、15を後述のように開閉することで、熱処理室3内の排ガスが外部へ漏出することを防止することができる。 The furnace rear chamber 4 includes an exhaust port 14 connected to the exhaust gas treatment facility in the same manner as the exhaust port 7, and a door 15 for switching between passage of the heat-resistant container C <b> 5 and blocking of the outside by opening and closing. By opening and closing the doors 6, 8, 13, and 15 as described later, it is possible to prevent the exhaust gas in the heat treatment chamber 3 from leaking to the outside.
次に、上記構成を有する処理装置の動作について、図1を参照しながら説明する。 Next, the operation of the processing apparatus having the above configuration will be described with reference to FIG.
キルン1の熱処理室3において、上下ヒータ9、10によって加熱領域3Aを100〜250℃、焙焼領域3Bを300〜650℃に加熱する。給気口11からは、大気、酸素、窒素等を必要に応じて供給する。ここで、排気口12からの排気量、給気口11からの給気量等を調整することで、熱処理室3内の排ガスが外部へ漏出しないように、内部を若干負圧に制御する。 In the heat treatment chamber 3 of the kiln 1, the heating area 3 </ b> A is heated to 100 to 250 ° C. and the roasting area 3 </ b> B is heated to 300 to 650 ° C. by the upper and lower heaters 9 and 10. Air, oxygen, nitrogen or the like is supplied from the air supply port 11 as necessary. Here, by adjusting the exhaust amount from the exhaust port 12, the supply amount from the air supply port 11, and the like, the inside is controlled to a slightly negative pressure so that the exhaust gas in the heat treatment chamber 3 does not leak to the outside.
受け入れたLIBを耐熱容器C1に収容し、扉6を開けてキルン1の炉前室2の内部の搬送装置5上に配置し、扉6を閉じ、扉8を開いて耐熱容器C2を熱処理室3の内部に搬送する。 The received LIB is accommodated in the heat-resistant container C1, the door 6 is opened and placed on the transfer device 5 inside the furnace front chamber 2 of the kiln 1, the door 6 is closed, the door 8 is opened and the heat-resistant container C2 is opened in the heat treatment chamber. 3 to the inside.
耐熱容器C3は、加熱領域3Aにおいて100〜250℃で加熱され、耐熱容器C3内のLIBに含まれる電解液が揮発する。この温度範囲であれば、電解液の急激な揮発を防止することができ、LIBが膨張して破裂する危険性がない。さらに、電解液の急激な揮発を防止するため、100〜250℃への昇温は5℃/分以下で行うことが好ましい。 The heat-resistant container C3 is heated at 100 to 250 ° C. in the heating region 3A, and the electrolyte contained in the LIB in the heat-resistant container C3 is volatilized. If it is this temperature range, rapid volatilization of electrolyte solution can be prevented and there is no danger that LIB will expand and burst. Furthermore, in order to prevent rapid volatilization of the electrolytic solution, it is preferable to raise the temperature to 100 to 250 ° C. at 5 ° C./min or less.
次に、耐熱容器C4は、300〜650℃の焙焼領域3Bに達し、耐熱容器C4内のLIBが焙焼される。これによって、LIBに含まれるPVDFが分解すると共に、樹脂部分が脆化する。 Next, the heat-resistant container C4 reaches the roasting region 3B of 300 to 650 ° C., and the LIB in the heat-resistant container C4 is roasted. As a result, PVDF contained in LIB is decomposed and the resin portion becomes brittle.
また、耐熱容器C4の内部は還元雰囲気になっており、この耐熱容器C4に収容されたLIBの樹脂製の筐体等のプラスチック類は、乾留により炭化混合物としてアルミニウム、リチウム、コバルト、ニッケル、銅等の有用金属が含まれる材料から分離された状態となっている。また、耐熱容器C4はアルミニウムの融点(660℃)よりも低い温度で加熱されるので、LIB内のアルミニウム成分が溶け出すことはない。 The inside of the heat-resistant container C4 is in a reducing atmosphere, and plastics such as a LIB resin casing housed in the heat-resistant container C4 are made of carbon, aluminum, lithium, cobalt, nickel, copper by carbonization. It is in a state separated from a material containing useful metals such as. Moreover, since the heat-resistant container C4 is heated at a temperature lower than the melting point (660 ° C.) of aluminum, the aluminum component in the LIB does not melt out.
また、LIBの電解液が揮発して生じたガスは、プラスチック等の可燃性物質が熱分解することによって発生したガスと共に、熱処理室3内に排出される。これらのガスは可燃性ガスであり、熱源として取り出して再利用することができる。また、熱処理室3の内部を負圧に制御しているため、上記可燃性ガス等が熱処理室3の外部に漏れることもない。 The gas generated by volatilization of the LIB electrolyte is discharged into the heat treatment chamber 3 together with the gas generated by the thermal decomposition of the combustible material such as plastic. These gases are flammable gases and can be taken out and reused as a heat source. Further, since the inside of the heat treatment chamber 3 is controlled to a negative pressure, the combustible gas or the like does not leak to the outside of the heat treatment chamber 3.
次いで、扉13を開いて耐熱容器C4を炉後室4に収容し、扉13を閉じた後扉15を開いて耐熱容器C5を取り出す。取り出した耐熱容器C6は、搬送装置5を介して図示しない有価物回収装置へ導入され、アルミニウム、リチウム、コバルト、ニッケル、銅等の有価物が回収される。 Next, the door 13 is opened, the heat-resistant container C4 is accommodated in the furnace rear chamber 4, the door 13 is closed, the door 15 is opened, and the heat-resistant container C5 is taken out. The taken out heat-resistant container C6 is introduced into a valuable material recovery device (not shown) via the transfer device 5, and valuable materials such as aluminum, lithium, cobalt, nickel, and copper are recovered.
排気口7、12、14からの排ガスは、排ガス処理設備において処理されて無害化された後、系外へ排出される。 The exhaust gas from the exhaust ports 7, 12, and 14 is treated in an exhaust gas treatment facility and rendered harmless, and then discharged outside the system.
上記実施の形態においては、ローラーハースキルン1を採用した場合について説明したが、例えば、搬送装置として台車を利用するトンネルキルンを用いてもよく、加熱及び焙焼を連続して迅速に行うことができる。また、これらの炉以外にも、上記温度領域の加熱、焙焼を連続して行うことのできる炉を用いることもできる。 In the said embodiment, although the case where the roller hearth kiln 1 was employ | adopted was demonstrated, the tunnel kiln which utilizes a trolley | bogie as a conveying apparatus may be used, for example, and heating and roasting can be performed rapidly rapidly. it can. In addition to these furnaces, a furnace capable of continuously performing heating and roasting in the above temperature range can also be used.
また、キルン1の内部が酸化雰囲気等であっても、耐熱容器C4の内部は還元雰囲気となるので、耐熱容器C4に収容されたLIBの樹脂製の筐体等のプラスチック類が乾留されて炭化混合物として有用金属を含む材料から分離された状態となって好ましいが、キルン1の内部を還元雰囲気とすれば、耐熱容器Cを使用せずに、LIBを直接キルン1に投入して加熱処理することで、LIBを乾留して炭化混合物を分離すると共に、電池内の電解液を揮発化させることができる。 Even if the inside of the kiln 1 is an oxidizing atmosphere or the like, the inside of the heat-resistant container C4 is a reducing atmosphere, so plastics such as a LIB resin casing housed in the heat-resistant container C4 are carbonized by carbonization. It is preferable that the mixture is separated from a material containing a useful metal as a mixture. However, if the inside of the kiln 1 is a reducing atmosphere, the LIB is directly put into the kiln 1 and heat-treated without using the heat-resistant container C. Thus, LIB can be dry distilled to separate the carbonized mixture, and the electrolyte in the battery can be volatilized.
充電された角型モジュールのリチウムイオン電池(重さ約10kg、25cm×13cm高さ10.5cm)を80Lの鉄製容器(排気管付き)に蓋を閉めて投入し、箱型電気炉により60分で200℃まで昇温し、その状態で1時間保持し、次いで60分で450℃まで昇温し、その状態で3時間保持した。その結果、図2に示すように、リチウムイオン電池に爆発を生じずに処理することができた。 Charge the charged square module lithium-ion battery (weight approx. 10kg, 25cm x 13cm height 10.5cm) into an 80L iron container (with exhaust pipe) with the lid closed and put it in a box-type electric furnace for 60 minutes. The temperature was raised to 200 ° C., held in that state for 1 hour, then heated to 450 ° C. in 60 minutes, and held in that state for 3 hours. As a result, as shown in FIG. 2, the lithium ion battery could be processed without causing an explosion.
実施例の焙焼温度のみ変更し、60分で450℃まで昇温し、その状態で5時間保持した。その結果、図3に示すように、リチウムイオン電池が爆発していた。爆発により回収物の形状が複雑化したため、有用金属の分離精度が低下した。 Only the roasting temperature of the example was changed, the temperature was raised to 450 ° C. in 60 minutes, and the state was maintained for 5 hours. As a result, the lithium ion battery exploded as shown in FIG. Since the shape of the recovered material was complicated by the explosion, the separation accuracy of useful metals decreased.
1 ローラーハースキルン
2 炉前室
3 熱処理室
3A 加熱領域
3B 焙焼領域
4 炉後室
5 搬送装置
6 扉
7 排気口
8 扉
9 上面ヒータ
10 下面ヒータ
11 給気口
12 排気口
13 扉
14 排気口
15 扉
C(C1〜C6) 耐熱容器
DESCRIPTION OF SYMBOLS 1 Roller hearth kiln 2 Furnace front room 3 Heat treatment room 3A Heating area 3B Roasting area 4 Reactor rear room 5 Transfer device 6 Door 7 Exhaust port 8 Door 9 Upper surface heater 10 Lower surface heater 11 Air supply port 12 Exhaust port 13 Door 14 Exhaust port 15 Door C (C1-C6) Heat-resistant container
Claims (4)
該加熱後の廃リチウムイオン電池を300℃以上650℃以下で焙焼することを特徴とする廃リチウムイオン電池の処理方法。 Heating the waste lithium ion battery at 100 ° C. or more and 250 ° C. or less,
A method for treating a waste lithium ion battery, wherein the waste lithium ion battery after heating is roasted at 300 ° C. or higher and 650 ° C. or lower.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017155086A JP2019034254A (en) | 2017-08-10 | 2017-08-10 | Apparatus and method for treating waste lithium ion battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017155086A JP2019034254A (en) | 2017-08-10 | 2017-08-10 | Apparatus and method for treating waste lithium ion battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2019034254A true JP2019034254A (en) | 2019-03-07 |
Family
ID=65636396
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017155086A Pending JP2019034254A (en) | 2017-08-10 | 2017-08-10 | Apparatus and method for treating waste lithium ion battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2019034254A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020140965A (en) * | 2018-04-09 | 2020-09-03 | 日本磁力選鉱株式会社 | How to handle the secondary battery |
JP2021142474A (en) * | 2020-03-11 | 2021-09-24 | 太平洋セメント株式会社 | Device and method for treating waste including valuable |
JP2021142475A (en) * | 2020-03-11 | 2021-09-24 | 太平洋セメント株式会社 | Device and method for treating waste lithium-ion battery |
JP2021163645A (en) * | 2020-03-31 | 2021-10-11 | Jx金属株式会社 | Heat treatment method for battery waste and lithium recovery method |
WO2022158441A1 (en) * | 2021-01-20 | 2022-07-28 | 株式会社アサカ理研 | Waste lithium-ion battery treatment method |
WO2023149017A1 (en) * | 2022-02-01 | 2023-08-10 | Jx金属株式会社 | Heat treatment method for lithium ion battery waste |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005026088A (en) * | 2003-07-02 | 2005-01-27 | Toyota Motor Corp | Lithium battery treatment and recycling methods |
JP2010034021A (en) * | 2008-07-03 | 2010-02-12 | Sumitomo Chemical Co Ltd | Method of recycling oxide-containing battery material from waste battery material |
CN103730704A (en) * | 2014-01-20 | 2014-04-16 | 赣州市豪鹏科技有限公司 | Method for treating waste secondary battery |
JP2017037818A (en) * | 2015-08-13 | 2017-02-16 | Jx金属株式会社 | Lithium-ion battery processing method |
-
2017
- 2017-08-10 JP JP2017155086A patent/JP2019034254A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005026088A (en) * | 2003-07-02 | 2005-01-27 | Toyota Motor Corp | Lithium battery treatment and recycling methods |
JP2010034021A (en) * | 2008-07-03 | 2010-02-12 | Sumitomo Chemical Co Ltd | Method of recycling oxide-containing battery material from waste battery material |
CN103730704A (en) * | 2014-01-20 | 2014-04-16 | 赣州市豪鹏科技有限公司 | Method for treating waste secondary battery |
JP2017037818A (en) * | 2015-08-13 | 2017-02-16 | Jx金属株式会社 | Lithium-ion battery processing method |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020140965A (en) * | 2018-04-09 | 2020-09-03 | 日本磁力選鉱株式会社 | How to handle the secondary battery |
JP2021142474A (en) * | 2020-03-11 | 2021-09-24 | 太平洋セメント株式会社 | Device and method for treating waste including valuable |
JP2021142475A (en) * | 2020-03-11 | 2021-09-24 | 太平洋セメント株式会社 | Device and method for treating waste lithium-ion battery |
JP7352499B2 (en) | 2020-03-11 | 2023-09-28 | 太平洋セメント株式会社 | Waste lithium ion battery processing equipment and processing method |
JP2021163645A (en) * | 2020-03-31 | 2021-10-11 | Jx金属株式会社 | Heat treatment method for battery waste and lithium recovery method |
JP7402733B2 (en) | 2020-03-31 | 2023-12-21 | Jx金属株式会社 | Heat treatment method for battery waste and lithium recovery method |
WO2022158441A1 (en) * | 2021-01-20 | 2022-07-28 | 株式会社アサカ理研 | Waste lithium-ion battery treatment method |
JPWO2022158441A1 (en) * | 2021-01-20 | 2022-07-28 | ||
JP7343943B2 (en) | 2021-01-20 | 2023-09-13 | 株式会社アサカ理研 | How to dispose of waste lithium-ion batteries |
WO2023149017A1 (en) * | 2022-02-01 | 2023-08-10 | Jx金属株式会社 | Heat treatment method for lithium ion battery waste |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2019034254A (en) | Apparatus and method for treating waste lithium ion battery | |
JP6474207B2 (en) | Waste lithium ion battery treatment method and treatment system | |
JP7256693B2 (en) | Processing system for waste lithium-ion batteries | |
KR101516515B1 (en) | Recycling method and treatment device for battery pack | |
WO2021201055A1 (en) | Heat treatment method for battery-waste and lithium recovery method | |
JP7017860B2 (en) | How to dispose of waste lithium-ion batteries | |
JP6716389B2 (en) | Method of collecting valuables from waste lithium-ion battery and method of creating database | |
JP6116999B2 (en) | Waste lithium battery roasting apparatus and roasting method | |
JP7179559B2 (en) | Apparatus and method for treating waste lithium-ion batteries | |
JP6557609B2 (en) | Waste lithium ion battery treatment apparatus and treatment method | |
JP7174652B2 (en) | Processing equipment for waste lithium-ion batteries | |
JP7352499B2 (en) | Waste lithium ion battery processing equipment and processing method | |
JP2020049460A (en) | Waste lithium ion battery processing equipment and processing method | |
JP2020193029A (en) | Heat-resistant container | |
FI3836289T3 (en) | METHOD FOR DISASSEMBLING ELECTROCHEMICAL ENERGY RECOVERY DEVICES AND THERMAL TREATMENT DEVICE | |
JP7592327B2 (en) | Method for treating accumulators, batteries, etc., and system for carrying out the process - Patents.com | |
JP2023158012A (en) | How to dispose of waste lithium-ion batteries | |
WO2020179692A1 (en) | Treatment system and treatment method for waste lithium ion batteries | |
US20240186604A1 (en) | Treatment method for battery waste | |
JP7163216B2 (en) | heat resistant container | |
US20250105386A1 (en) | Heat treatment method for lithium ion battery waste | |
JP2022164399A (en) | Valuable material recovery method and valuable material recovery apparatus | |
JP2021142474A (en) | Device and method for treating waste including valuable | |
JP2025010896A (en) | Waste lithium-ion battery treatment device and heating chamber used therein | |
JP6659610B2 (en) | Disposal method of in-vehicle battery pack waste |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200312 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200925 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201006 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20210330 |