[go: up one dir, main page]

JP2019032210A - Defect inspection method and defect inspection device - Google Patents

Defect inspection method and defect inspection device Download PDF

Info

Publication number
JP2019032210A
JP2019032210A JP2017152532A JP2017152532A JP2019032210A JP 2019032210 A JP2019032210 A JP 2019032210A JP 2017152532 A JP2017152532 A JP 2017152532A JP 2017152532 A JP2017152532 A JP 2017152532A JP 2019032210 A JP2019032210 A JP 2019032210A
Authority
JP
Japan
Prior art keywords
coil
fan
inspection object
defect
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017152532A
Other languages
Japanese (ja)
Inventor
吉克 合田
Yoshikatsu Goda
吉克 合田
修治 豊田
Shuji Toyoda
修治 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Non Destructive Inspection Co Ltd
Original Assignee
Non Destructive Inspection Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Non Destructive Inspection Co Ltd filed Critical Non Destructive Inspection Co Ltd
Priority to JP2017152532A priority Critical patent/JP2019032210A/en
Publication of JP2019032210A publication Critical patent/JP2019032210A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

To provide a defect inspection method and a defect inspection device that are capable of efficient and precise inspection.SOLUTION: An inspection object 101 is made of a material that is conductive in an axial direction A thereof. A wire 2a is wound such that a central axis of a coil 2 is along a circumferential direction C of the inspection object 100. The coil 2 has a fan shape covering a part of an outer peripheral surface 101x of the inspection object 101. Such fan-shaped coils 2 are arranged with a predetermined interval over the outer peripheral surface 101x, where a central angle of the fan-shaped coils 2 is adjusted such that the magnetic flux extending from one end of the fan-shaped coils 2 through the inspection object 100 to the other end of the fan-shaped coils 2 is dense in the vicinity of the outer peripheral surface. The fan-shaped coils 2 are arranged with the predetermined interval over the outer peripheral surface 101x and eddy current is generated in the outer peripheral surface 101x along the axial direction A of the inspection object 101. A value attributed to the eddy current is measured with the fan-shaped coil 2, and the presence or absence of defects in the outer peripheral surface 101 is inspected on the basis of the measurement result.SELECTED DRAWING: Figure 1

Description

本発明は、欠陥検査方法及び欠陥検査装置に関する。さらに詳しくは、素線を巻回してなるコイルに交流電圧を印加して電磁誘導によって検査対象物に生じる渦電流に起因する値を測定することで前記検査対象物の欠陥の有無を検査する欠陥検査方法及び欠陥検査装置に関する。   The present invention relates to a defect inspection method and a defect inspection apparatus. More specifically, a defect for inspecting the presence or absence of a defect in the inspection object by measuring an value caused by an eddy current generated in the inspection object by electromagnetic induction by applying an AC voltage to a coil formed by winding a wire. The present invention relates to an inspection method and a defect inspection apparatus.

従来より、検査対象物の欠陥の有無を検査する方法として、上述の如き渦電流探傷試験が知られている。この試験では、コイル(プローブ)と検査対象物との距離(リフトオフ)が大きくなると、電磁誘導によって生じる渦電流が小さくなるため、検出感度が著しく低下する。よって、例えば被覆材で覆われた検査対象物の検査等では、欠陥を精度よく検出することは困難である。   Conventionally, the eddy current flaw detection test as described above is known as a method for inspecting the presence or absence of defects in an inspection object. In this test, when the distance (lift-off) between the coil (probe) and the inspection object is increased, the eddy current generated by electromagnetic induction is reduced, so that the detection sensitivity is significantly reduced. Therefore, for example, in the inspection of the inspection object covered with the covering material, it is difficult to accurately detect the defect.

また、例えば特許文献1に記載の如きケーブルの検査方法が知られている。この検査方法では、隣り合うストランドを組としてストランドに直接交流電圧を印加し、ストランド間の静電容量に関連する値を測定している。そのため、ストランド間に絶縁不良(短絡)があると、ストランド間で静電容量が生じず、検査精度が低下するおそれがあった。また、損傷が大きい場合、その損傷箇所より下流に電流が流れないため、下流側の検査が困難となる場合もあった。さらに、ケーブル全体の損傷結果を得るために、ストランドの組み合わせを変えて何度も測定しなければならず、作業性の向上が望まれていた。しかも、ストランドが被覆されていると、ストランドを露出する作業が必要となり、さらに作業性が低下していた。   Further, for example, a cable inspection method described in Patent Document 1 is known. In this inspection method, an alternating voltage is directly applied to the strands with adjacent strands as a set, and a value related to the capacitance between the strands is measured. For this reason, if there is an insulation failure (short circuit) between the strands, there is a possibility that capacitance does not occur between the strands and the inspection accuracy is lowered. In addition, when the damage is large, current does not flow downstream from the damaged portion, so that the downstream inspection may be difficult. Furthermore, in order to obtain the damage result of the whole cable, the combination of the strands must be changed and measured many times, and improvement in workability has been desired. Moreover, if the strands are coated, an operation for exposing the strands is required, and the workability is further reduced.

特開2013−167602号公報JP 2013-167602 A

かかる従来の実情に鑑みて、本発明は、効率よく且つ高精度に検査することの可能な欠陥検査方法及び欠陥検査装置を提供することを目的とする。   In view of such a conventional situation, an object of the present invention is to provide a defect inspection method and a defect inspection apparatus capable of inspecting efficiently and with high accuracy.

上記目的を達成するため、本発明に係る欠陥検査方法の特徴は、素線を巻回してなるコイルに交流電圧を印加して電磁誘導によって検査対象物に生じる渦電流に起因する値を測定することで前記検査対象物の欠陥の有無を検査する構成において、前記検査対象物は、その軸方向に導電性を有する材料よりなり、前記素線は、前記コイルの中心軸が前記検査対象物の周方向に沿うように巻回されてあり、前記コイルは、前記検査対象物の外周面の一部を覆う扇状を呈し、この扇状コイルを前記外周面に対し所定の間隙をおいて配置した際に、前記扇状コイルの一端から前記検査対象物を通過して前記扇状コイルの他端へ向かう磁束が前記外周面近傍で密となるように前記扇状コイルの中心角を調整し、前記扇状コイルを前記外周面に対し所定の間隙をおいて配置し、前記扇状コイルに前記交流電圧を印加して前記電磁誘導によって前記外周面に前記検査対象物の軸方向に沿う渦電流を生じさせ、前記渦電流に起因する値を前記扇状コイルで測定し、その測定結果に基づいて前記外周面の欠陥の有無を検査することにある。   In order to achieve the above object, the defect inspection method according to the present invention is characterized in that an alternating voltage is applied to a coil formed by winding an element wire to measure a value caused by eddy current generated in an inspection object by electromagnetic induction. Thus, in the configuration for inspecting whether there is a defect in the inspection object, the inspection object is made of a material having conductivity in the axial direction, and the wire has a central axis of the coil of the inspection object. The coil is wound along a circumferential direction, and the coil has a fan shape covering a part of the outer peripheral surface of the inspection object, and the fan coil is disposed with a predetermined gap with respect to the outer peripheral surface. The center angle of the fan coil is adjusted so that the magnetic flux passing from the one end of the fan coil to the other end of the fan coil through the inspection object becomes dense near the outer peripheral surface, Predetermined against the outer peripheral surface A gap is provided, the AC voltage is applied to the fan-shaped coil to generate an eddy current along the axial direction of the inspection object on the outer peripheral surface by the electromagnetic induction, and the value resulting from the eddy current is The measurement is performed with a fan coil, and the presence or absence of a defect on the outer peripheral surface is inspected based on the measurement result.

上記構成によれば、素線をコイルの中心軸が検査対象物の周方向に沿うように巻回してあるので、軸方向に導電性を有する材料よりなる検査対象物に対しその軸方向に沿う渦電流を生じさせることができる。そして、コイルは、検査対象物の外周面の一部を覆う扇状を呈し、この扇状コイルを検査対象物の外周面に対し所定の間隙をおいて配置した際に、扇状コイルの一端から検査対象物を通過して扇状コイルの他端へ向かう磁束が外周面近傍で密となるように扇状コイルの中心角を調整する。これにより、検査対象物の外周面に対し所定の間隙(リフトオフ)をおいても、検査対象となる部位近傍の磁束密度を向上させることで、検査対象物の外周面にその軸方向に沿う渦電流を増加させて、検出精度を向上させることができる。しかも、検査対象物の外周面に対し所定の間隙(リフトオフ)をおいて渦電流に起因する値を測定するので、高速に検査でき検査効率が高い。   According to the above configuration, since the element wire is wound so that the central axis of the coil is along the circumferential direction of the inspection object, the axial direction is applied to the inspection object made of a material having conductivity in the axial direction. Eddy currents can be generated. The coil has a fan shape covering a part of the outer peripheral surface of the inspection object, and when the fan coil is disposed with a predetermined gap with respect to the outer peripheral surface of the inspection object, the coil is inspected from one end of the fan coil. The central angle of the fan coil is adjusted so that the magnetic flux passing through the object and going to the other end of the fan coil becomes dense near the outer peripheral surface. As a result, even if a predetermined gap (lift-off) is provided with respect to the outer peripheral surface of the inspection object, a vortex along the axial direction is formed on the outer peripheral surface of the inspection object by improving the magnetic flux density in the vicinity of the region to be inspected. The detection accuracy can be improved by increasing the current. Moreover, since the value resulting from the eddy current is measured with a predetermined gap (lift-off) with respect to the outer peripheral surface of the inspection object, the inspection can be performed at high speed and the inspection efficiency is high.

上記構成において、前記扇状コイルは、磁性材料よりなる扇状のコアに巻回されてあるとよい。これにより、コイルからの磁束の漏洩を抑制して、扇状コイルの一端から検査対象物を通過して扇状コイルの他端へ向かう磁束を増加(集中)させることができるので、検査部位に生じる渦電流がさらに増加し、検査精度を向上させることができる。   The said structure WHEREIN: The said fan-shaped coil is good to be wound by the fan-shaped core which consists of magnetic materials. Accordingly, leakage of magnetic flux from the coil can be suppressed, and magnetic flux passing from the one end of the fan coil to the other end of the fan coil can be increased (concentrated). The current further increases, and the inspection accuracy can be improved.

また、前記扇状コイルを前記検査対象物の軸方向に適宜間隔をおいて一対備え、一対の扇状コイルを前記軸方向に相対移動させると共に前記一対の扇状コイルの出力差により前記欠陥の有無を検査するとよい。これにより、コイルと検査対象物との間隙(リフトオフ)の変化により発生するノイズ(ガタ雑音)を抑制でき、さらに検査精度を向上させることができる。   In addition, a pair of the fan-shaped coils are provided at an appropriate interval in the axial direction of the inspection object, the pair of fan-shaped coils are relatively moved in the axial direction, and the presence or absence of the defect is inspected by an output difference between the pair of fan-shaped coils. Good. Thereby, noise (backlash noise) generated due to a change in the gap (lift-off) between the coil and the inspection object can be suppressed, and the inspection accuracy can be further improved.

前記扇状コイルを前記検査対象物の周方向に沿って複数配置してあっても構わない。これにより、例えば検査対象物の全周を一度の走査で精度よく検査することが可能となり、さらに検査効率が向上する。   A plurality of the fan-shaped coils may be arranged along the circumferential direction of the inspection object. Thereby, for example, the entire circumference of the inspection object can be inspected with a single scan with high accuracy, and the inspection efficiency is further improved.

上記いずれかの構成において、前記検査対象物は、導電性を有する繊維強化複合材よりなる1本のストランドであってもよく、前記検査対象物は、導電性を有する繊維強化複合材よりなる複数本のストランドで構成されていてもよい。係る場合、前記1本のストランドは被覆材により覆われてなり、前記間隙は前記被覆材の肉厚を含んでいてもよい。また、前記複数のストランドは被覆材により覆われてなり、前記間隙は前記被覆材の肉厚を含んでいてもよい。   In any one of the above configurations, the inspection object may be a single strand made of a fiber-reinforced composite material having conductivity, and the inspection object may be a plurality of fibers made of a fiber-reinforced composite material having conductivity. You may be comprised with the strand of a book. In this case, the one strand may be covered with a covering material, and the gap may include the thickness of the covering material. The plurality of strands may be covered with a covering material, and the gap may include the thickness of the covering material.

上記目的を達成するため、本発明に係る欠陥検査装置の特徴は、素線を巻回してなるコイルに交流電圧を印加して電磁誘導によって検査対象物に生じる渦電流に起因する値を測定することで前記検査対象物の欠陥の有無を検査する構成において、前記検査対象物は、その軸方向に導電性を有する材料よりなり、前記素線は、前記コイルの中心軸が前記検査対象物の周方向に沿うように巻回されてあり、前記コイルは、前記検査対象物の外周面の一部を覆う扇状を呈し、この扇状コイルを前記外周面に対し所定の間隙をおいて配置した際に、前記扇状コイルの一端から前記検査対象物を通過して前記扇状コイルの他端へ向かう磁束が前記外周面近傍で密となるように前記扇状コイルの中心角が調整され、前記外周面に対し所定の間隙をおいて配置され、前記扇状コイルに前記交流電圧を印加して前記電磁誘導によって前記検査対象物の軸方向に沿う渦電流を前記外周面に生じさせる交流印加手段と、前記渦電流に起因する値を前記扇状コイルで測定し、その測定結果に基づいて前記外周面の欠陥の有無を判定する判定手段とを有することにある。   In order to achieve the above object, the defect inspection apparatus according to the present invention is characterized in that an AC voltage is applied to a coil formed by winding an element wire to measure a value caused by an eddy current generated in an inspection object by electromagnetic induction. Thus, in the configuration for inspecting whether there is a defect in the inspection object, the inspection object is made of a material having conductivity in the axial direction, and the wire has a central axis of the coil of the inspection object. The coil is wound along a circumferential direction, and the coil has a fan shape covering a part of the outer peripheral surface of the inspection object, and the fan coil is disposed with a predetermined gap with respect to the outer peripheral surface. In addition, the central angle of the fan coil is adjusted so that the magnetic flux passing from the one end of the fan coil to the other end of the fan coil through the inspection object becomes dense near the outer periphery, With a predetermined gap AC application means for applying the AC voltage to the fan-shaped coil and generating an eddy current along the axial direction of the inspection object by the electromagnetic induction on the outer peripheral surface; and a value due to the eddy current in the fan-shaped And determining means for measuring with a coil and determining the presence or absence of a defect on the outer peripheral surface based on the measurement result.

上記構成において、前記扇状コイルは、磁性材料よりなる扇状のコアに巻回されてあるとよい。   The said structure WHEREIN: The said fan-shaped coil is good to be wound by the fan-shaped core which consists of magnetic materials.

また、前記扇状コイルは、前記検査対象物の軸方向に沿って適宜間隔をおいて一対設けられ、前記判定手段は、前記一対の扇状コイルの出力差により前記欠陥の有無を検査するとよい。   In addition, a pair of the fan-shaped coils may be provided at appropriate intervals along the axial direction of the inspection object, and the determination means may inspect for the presence / absence of the defect based on an output difference between the pair of fan-shaped coils.

前記扇状コイルを前記検査対象物の中心に対し所定の位置に保持する治具をさらに備えるとよい。係る場合、前記治具は、複数の前記扇状コイルを前記検査対象物の周方向に沿って保持するようにしてもよい。   It is preferable to further include a jig for holding the fan coil at a predetermined position with respect to the center of the inspection object. In this case, the jig may hold a plurality of the fan-shaped coils along the circumferential direction of the inspection object.

上記目的を達成するため、本発明に係る欠陥検査方法の他の特徴は、素線を巻回してなるコイルに交流電圧を印加して電磁誘導によって検査対象物に生じる渦電流に起因する値を測定することで前記検査対象物の欠陥の有無を検査する方法において、前記検査対象物は、一定の方向に導電性を有する材料よりなり、前記素線は、前記検査対象物の表面に前記一定の方向に沿う渦電流を生じさせるために前記コイルの一端から他端へ向かう磁束が前記検査対象物を通過するように巻回されてあり、前記磁束が前記表面近傍で密となるように前記コイルを前記表面に対し所定の間隙をおいて配置し、前記コイルに前記交流電圧を印加して前記電磁誘導によって前記表面に前記一定の方向に沿う渦電流を生じさせ、前記渦電流に起因する値を前記コイルで測定し、その測定結果に基づいて前記表面の欠陥の有無を検査することにある。   In order to achieve the above object, another feature of the defect inspection method according to the present invention is that an AC voltage is applied to a coil formed by winding a wire, and a value caused by eddy current generated in an inspection object by electromagnetic induction is set. In the method for inspecting whether there is a defect in the inspection object by measuring, the inspection object is made of a material having conductivity in a certain direction, and the strand is formed on the surface of the inspection object. In order to generate an eddy current along the direction of the coil, a magnetic flux from one end to the other end of the coil is wound so as to pass through the inspection object, and the magnetic flux is dense in the vicinity of the surface. A coil is disposed with a predetermined gap with respect to the surface, and the AC voltage is applied to the coil to generate an eddy current along the fixed direction on the surface by the electromagnetic induction, resulting from the eddy current. The value Measured in Le is to inspect the presence or absence of a defect of the surface based on the measurement result.

上記目的を達成するため、本発明に係る欠陥検査装置の他の特徴は、素線を巻回してなるコイルに交流電圧を印加して電磁誘導によって検査対象物に生じる渦電流に起因する値を測定することで前記検査対象物の欠陥の有無を検査する構成において、前記検査対象物は、一定の方向に導電性を有する材料よりなり、前記素線は、前記検査対象物の表面に前記一定の方向に沿う渦電流を生じさせるために前記コイルの一端から他端へ向かう磁束が前記検査対象物を通過するように巻回されてあり、前記コイルは、前記磁束が前記表面近傍で密となるように前記表面に対し所定の間隙をおいて配置され、前記コイルに前記交流電圧を印加して前記電磁誘導によって前記一定の方向に渦電流を前記表面に生じさせる交流印加手段と、前記渦電流に起因する値を前記コイルで測定し、その測定結果に基づいて前記表面の欠陥の有無を判定する判定手段とを有することにある。   In order to achieve the above object, another feature of the defect inspection apparatus according to the present invention is that a value resulting from an eddy current generated in an inspection object by electromagnetic induction by applying an AC voltage to a coil formed by winding a wire is used. In the configuration in which the inspection object is inspected for defects by measuring, the inspection object is made of a material having conductivity in a certain direction, and the strands are formed on the surface of the inspection object. In order to generate an eddy current along the direction of the coil, the coil is wound so that a magnetic flux from one end to the other end of the coil passes through the inspection object, and the coil is dense in the vicinity of the surface. AC application means disposed at a predetermined gap with respect to the surface and applying the AC voltage to the coil to generate an eddy current in the fixed direction by the electromagnetic induction, and the eddy current Caused by current The value to be measured by the coils is to have a judging means for judging presence or absence of a defect of the surface based on the measurement result.

上記本発明に係る欠陥検査方法及び欠陥検査装置の特徴によれば、効率よく且つ高精度に検査することが可能となった。   According to the feature of the defect inspection method and the defect inspection apparatus according to the present invention, it is possible to inspect efficiently and with high accuracy.

本発明の他の目的、構成及び効果については、以下の発明の実施の形態の項から明らかになるであろう。   Other objects, configurations, and effects of the present invention will become apparent from the following embodiments of the present invention.

本発明の第一実施形態に係る欠陥検査方法を示す概略図である。It is the schematic which shows the defect inspection method which concerns on 1st embodiment of this invention. 第一実施形態における検査対象となる高強度繊維複合材ケーブルの断面図である。It is sectional drawing of the high strength fiber composite material cable used as the test object in 1st embodiment. 本発明に係る欠陥検査装置のブロック図である。1 is a block diagram of a defect inspection apparatus according to the present invention. ブリッジ回路図である。It is a bridge circuit diagram. 検査状態を模式的に示すコイル及びケーブルの縦断面図である。It is a longitudinal cross-sectional view of the coil and cable which show an inspection state typically. 磁束分布を模式的に示す図である。It is a figure which shows magnetic flux distribution typically. 検査方法の一例を説明する図である。It is a figure explaining an example of an inspection method. 治具の一例を示す図である。It is a figure which shows an example of a jig | tool. コアありのコイルによる磁束分布のシミュレーション結果を示すグラフである。It is a graph which shows the simulation result of the magnetic flux distribution by the coil with a core. シミュレーション実験の条件を示す図である。It is a figure which shows the conditions of a simulation experiment. 正常品に対応する基準試験体の測定信号の一例を示す図である。It is a figure which shows an example of the measurement signal of the reference | standard test body corresponding to a normal product. 損傷品に対応する基準試験体の測定信号の一例を示す図である。It is a figure which shows an example of the measurement signal of the reference | standard test body corresponding to a damaged article. 本発明の第二実施形態におけるコイルの一例を示す図である。It is a figure which shows an example of the coil in 2nd embodiment of this invention. 本発明の第二実施形態における他のコイルの一例を示す図である。It is a figure which shows an example of the other coil in 2nd embodiment of this invention. 本発明の他の実施形態におけるコイルの一例を示す図である。It is a figure which shows an example of the coil in other embodiment of this invention. 本発明の他の実施形態におけるコイルの他の一例を示す図である。It is a figure which shows another example of the coil in other embodiment of this invention. コアなしのコイルによる磁束分布のシミュレーション結果を示す図9相当図である。FIG. 10 is a diagram corresponding to FIG. 9 illustrating a simulation result of magnetic flux distribution by a coil without a core. 図11Aに対応するリサージュ波形の一例を示す図である。It is a figure which shows an example of the Lissajous waveform corresponding to FIG. 11A. 図11Bに対応するリサージュ波形の一例を示す図である。It is a figure which shows an example of the Lissajous waveform corresponding to FIG. 11B. 本発明の他の検査対象物の一例を示す図である。It is a figure which shows an example of the other test target object of this invention.

次に、図1〜11を参照しながら、本発明の第一実施形態についてさらに詳しく説明する。
本発明の第一実施形態における検査対象は、軸方向に導電性を有する繊維強化複合材よりなるストランド101を含んでなる繊維強化複合材ケーブル(以下、単に「ケーブル」と称する。)である。例えば、本実施形態のケーブル100は、図2に示すように、中心のストランド101の周囲に6本のストランド101を略点対称に配置して撚り合わせて撚り線として構成され、その撚り線の外周を塩化ビニル等の樹脂材料よりなる被覆材102で覆ってなる。
Next, the first embodiment of the present invention will be described in more detail with reference to FIGS.
The inspection object in the first embodiment of the present invention is a fiber reinforced composite material cable (hereinafter simply referred to as “cable”) including a strand 101 made of a fiber reinforced composite material having conductivity in the axial direction. For example, as shown in FIG. 2, the cable 100 of the present embodiment is configured as a stranded wire by arranging six strands 101 around a central strand 101 in a substantially point-symmetric manner and twisting them together. The outer periphery is covered with a covering material 102 made of a resin material such as vinyl chloride.

このストランド101は、1本が数μ程度のカーボンファイバー101aを数万本程度まとめて熱可塑性等の樹脂101bで固めて(含浸させて)構成されている。被覆材102の厚み(肉厚)は、例えば外径φ8mmのケーブル100で約1mm、外径φ12mmのケーブル100で約2〜3mmとしてある。この厚みが、検査対象物としてのストランド101の外周面101xと後述するコイル2との間隙Gの一部G1となる。また、繊維強化複合材としては、例えば炭素繊維強化プラスチック(CFRP)が挙げられる。なお、本実施形態において、ケーブルとは、ワイヤーやロープ等の若干の可撓性のあるものを含む。   The strand 101 is composed of several tens of thousands of carbon fibers 101a each having a size of about several μm, and is consolidated (impregnated) with a resin 101b such as thermoplastic resin. The thickness (wall thickness) of the covering material 102 is, for example, about 1 mm for the cable 100 having an outer diameter of φ8 mm and about 2-3 mm for the cable 100 having an outer diameter of φ12 mm. This thickness becomes a part G1 of the gap G between the outer peripheral surface 101x of the strand 101 as the inspection object and the coil 2 described later. Examples of the fiber reinforced composite material include carbon fiber reinforced plastic (CFRP). In the present embodiment, the cable includes some flexible things such as a wire and a rope.

本発明の第一実施形態に係るケーブル100の欠陥検査装置1は、大略、図1に示すように、素線2aを巻回してなるコイル2と、コイル2に交流電圧を印加して電磁誘導によってストランド101の軸方向Aに沿う渦電流Eをその外周面101xに生じさせる交流印加手段としての発振器31を有し、渦電流Eに起因する値をコイル2で測定する渦電流探傷装置3と、渦電流探傷装置3の測定結果に基づいてストランド101の折れ等の損傷Dの有無を判定する判定手段としての信号処理装置4を備える。   As shown in FIG. 1, a defect inspection apparatus 1 for a cable 100 according to a first embodiment of the present invention generally includes a coil 2 formed by winding a wire 2 a and electromagnetic induction by applying an AC voltage to the coil 2. An eddy current flaw detector 3 having an oscillator 31 as an AC applying means for generating an eddy current E along the axial direction A of the strand 101 on the outer peripheral surface 101x, and measuring a value caused by the eddy current E with the coil 2. The signal processing device 4 is provided as determination means for determining the presence or absence of damage D such as breakage of the strand 101 based on the measurement result of the eddy current flaw detector 3.

図1に示すように、コイル2は、ケーブル100の外周面(複数本のストランド101の外周面101x)の一部を覆う扇状を呈する扇状コイルであり、扇状コイル2の中心軸がケーブル100(複数本のストランド101)の周方向に沿うように巻回される素線2a(巻き線)よりなる自己誘導型コイルである。このコイルは、交流により交流磁界(磁場)を発生させる励磁と、渦電流(誘導電流)の変化の検出とを同一のコイルで行う。   As shown in FIG. 1, the coil 2 is a fan-shaped coil that covers a part of the outer peripheral surface of the cable 100 (the outer peripheral surface 101 x of the plurality of strands 101), and the central axis of the fan-shaped coil 2 is the cable 100 ( This is a self-inductive coil composed of a strand 2a (winding) wound along the circumferential direction of a plurality of strands 101). This coil performs excitation for generating an alternating magnetic field (magnetic field) by alternating current and detection of a change in eddy current (induced current) with the same coil.

本実施形態における扇状コイル2は、ストランド101(ケーブル100)の軸方向Aに適宜間隔をおいて配置される一対の第一、第二コイル21,22を備える。この第一、第二コイル21,22に交流電圧を印加すると、図5に示す如く、ストランド101の外周面101xに生じる渦電流Eの電流の向きが互いに逆向きとなるように素線2aを巻回することで、出力差を検出し、その出力差によりストランド101の折れ(損傷)Dの有無を検査する。このように、対をなす第一、第二コイル21,22を用いる差動方式を採用することで、ストランド101の折れDなどの局所的な変化を高精度に検出することができる。しかも、本実施形態の如き撚り線の撚りのような緩やかな変化を相殺することも可能であり、扇状コイル2のガタ信号も相殺できるので、さらに検出精度が向上する。   The fan-shaped coil 2 in the present embodiment includes a pair of first and second coils 21 and 22 that are arranged at appropriate intervals in the axial direction A of the strand 101 (cable 100). When an alternating voltage is applied to the first and second coils 21 and 22, as shown in FIG. 5, the strand 2a is turned so that the directions of the eddy currents E generated on the outer peripheral surface 101x of the strand 101 are opposite to each other. By winding, an output difference is detected, and the presence or absence of breakage (damage) D of the strand 101 is inspected by the output difference. As described above, by adopting the differential method using the paired first and second coils 21 and 22, it is possible to detect a local change such as the fold D of the strand 101 with high accuracy. In addition, it is possible to cancel a gradual change such as twisting of a stranded wire as in the present embodiment, and it is also possible to cancel a backlash signal of the fan-shaped coil 2, so that the detection accuracy is further improved.

また、図1,5に示すように、本実施形態において、第一、第二コイル21,22の素線2aは、例えばフェライト等の磁性材料よりなる扇状(馬蹄形、U字状とも称する)のコア2bに巻回されてある。例えば、フェライトコアの場合、その比透磁率(μr)は空気(μr≒1)と比べ1000倍以上と大きいので、コア中間部からの漏洩を抑制し、扇状コイル2の一端2xからストランド101を通過して扇状コイル2の他端2yへ向かう磁束を増加(集中)させることができる。また、磁性材料よりなるコア2bを用いることで全磁束を増加するので、発生する渦電流も増大して検出信号も大きくなり、検査精度が向上する。なお、本実施形態において、コイル2(コア2b)の中心角は180°としてある。   As shown in FIGS. 1 and 5, in the present embodiment, the strands 2a of the first and second coils 21 and 22 are fan-shaped (also called horseshoe-shaped or U-shaped) made of a magnetic material such as ferrite, for example. It is wound around the core 2b. For example, in the case of a ferrite core, the relative permeability (μr) is 1000 times larger than that of air (μr≈1), so that leakage from the middle part of the core is suppressed, and the strand 101 is connected from one end 2x of the fan coil 2. It is possible to increase (concentrate) the magnetic flux that passes and travels toward the other end 2y of the fan coil 2. Further, since the total magnetic flux is increased by using the core 2b made of a magnetic material, the generated eddy current is increased, the detection signal is increased, and the inspection accuracy is improved. In the present embodiment, the central angle of the coil 2 (core 2b) is 180 °.

第一、第二コイル21,22は、例えば図7,8に示す如き治具10により、ケーブル100の中心に対し所定の位置に保持される。この治具10は、第一、第二コイル21,22が埋め込まれた開閉可能な本体部11と、この本体部11中央にケーブル100を嵌入させて保持(挟持)する凹部12とを有する。これにより、第一、第二コイル21,22とストランド101とのリフトオフの極端な変動を抑制し、相対位置関係(周方向及び径方向)を一定にする。この治具10は、第一、第二コイル21,22をストランド101の軸方向Aにケーブル100に対し相対移動可能に保持する走査手段としても機能する。なお、本実施形態における所定の間隙Gとは、被覆材102の厚み(肉厚)G1とコイル2とケーブル100との間の隙間G2よりなり、これがリフトオフ距離となる。   The first and second coils 21 and 22 are held at predetermined positions with respect to the center of the cable 100 by a jig 10 as shown in FIGS. The jig 10 includes an openable / closable main body 11 in which the first and second coils 21 and 22 are embedded, and a concave portion 12 in which the cable 100 is fitted and held (clamped) in the center of the main body 11. Thereby, the extreme fluctuation | variation of the liftoff of the 1st, 2nd coils 21 and 22 and the strand 101 is suppressed, and relative positional relationship (the circumferential direction and radial direction) is made constant. The jig 10 also functions as a scanning unit that holds the first and second coils 21 and 22 so as to be movable relative to the cable 100 in the axial direction A of the strand 101. Note that the predetermined gap G in the present embodiment includes the thickness (wall thickness) G1 of the covering material 102 and the gap G2 between the coil 2 and the cable 100, which is the lift-off distance.

図3に示すように、渦電流探傷装置3は、大略、交流印加手段としての発振器31、電力増幅器32、ブリッジ回路33、増幅器34、同期検波器35、移相器36及びフィルタ37を備える。ブリッジ回路33は、図4に示すように、固定抵抗器33a(抵抗Z1)、可変抵抗器33b(抵抗Z2)、第一コイル21(インピーダンスZ3)及び第二コイル23(インピーダンスZ4)により構成される。 As shown in FIG. 3, the eddy current flaw detector 3 generally includes an oscillator 31 as an AC application unit, a power amplifier 32, a bridge circuit 33, an amplifier 34, a synchronous detector 35, a phase shifter 36, and a filter 37. As shown in FIG. 4, the bridge circuit 33 includes a fixed resistor 33a (resistance Z 1 ), a variable resistor 33b (resistance Z 2 ), a first coil 21 (impedance Z 3 ), and a second coil 23 (impedance Z 4). ).

発振器31からの交流出力は、電力増幅器32を介してブリッジ回路33の固定抵抗器33a、可変抵抗器33b及び自己誘導型の第一、第二コイル21,22に印加される。そして、第一、第二コイル21,22のインピーダンス差ΔZ(Z3−Z4)を電圧変化ΔVとして出力する。   The AC output from the oscillator 31 is applied to the fixed resistor 33a, the variable resistor 33b, and the self-inductive first and second coils 21 and 22 of the bridge circuit 33 via the power amplifier 32. And impedance difference (DELTA) Z (Z3-Z4) of the 1st, 2nd coils 21 and 22 is output as voltage change (DELTA) V.

そして、第一、第二コイル21,22間の不平衡出力は増幅器34で増幅され、同期検波器35a,35bに送られて、移相器36a,36bの出力とあいまって検波される。そして、渦電流信号をフィルタ37a,37bや図示省略するA/D変換器を介して信号処理装置4に取り込み、測定結果等を表示器5に表示する。信号処理装置4としては、例えば渦電流探傷装置3に接続されたパーソナルコンピューター(PC)で構成される。また、本実施形態では、渦電流探傷装置3には、リジェクション手段6を介して記録計7が接続されている。   The unbalanced output between the first and second coils 21 and 22 is amplified by the amplifier 34, sent to the synchronous detectors 35a and 35b, and detected together with the outputs of the phase shifters 36a and 36b. Then, the eddy current signal is taken into the signal processing device 4 via the filters 37 a and 37 b and an A / D converter (not shown), and the measurement result is displayed on the display 5. The signal processing device 4 is configured by a personal computer (PC) connected to the eddy current flaw detector 3, for example. In the present embodiment, a recorder 7 is connected to the eddy current flaw detector 3 via a rejection means 6.

ところで、コイル2(第一、第二コイル21,22)のインピーダンスZは、複素数表示では下記の式で表される。   By the way, the impedance Z of the coil 2 (first and second coils 21 and 22) is represented by the following expression in the complex number display.

Figure 2019032210
Figure 2019032210

ω=2πfのため、周波数fが高いと1/ωCは極めて小さくなり、対象物が金属材料のような導電体の場合には無視できる。ここで、本実施形態の検査対象物であるストランド101を構成するカーボンファイバー101aは、金属に比べ、その素線方向(軸方向)への導電率が1/104と小さいが、電磁誘導現象により軸方向Aに誘導電流(渦電流)が生じる。一方、軸方向Aに直交する方向(周方向C)の導電率は金属と比べ、1/108と極めて小さく、周方向Cに誘導電流(渦電流)はほとんど流れない。すなわち、ストランド101は、軸方向Aに導電性を有する導体である。従って、本発明において、インピーダンス変化は、上記数1における素線(巻き線)2aの抵抗RとリアクタンスωLのみを考慮すればよい。 Since ω = 2πf, 1 / ωC becomes extremely small when the frequency f is high, and can be ignored when the object is a conductor such as a metal material. Here, the carbon fiber 101a constituting the strand 101, which is the inspection object of the present embodiment, has a conductivity as small as 1/10 4 in the strand direction (axial direction) compared to metal, but the electromagnetic induction phenomenon. As a result, an induced current (eddy current) is generated in the axial direction A. On the other hand, the conductivity in the direction orthogonal to the axial direction A (circumferential direction C) is as small as 1/10 8 compared to metal, and almost no induced current (eddy current) flows in the circumferential direction C. That is, the strand 101 is a conductor having conductivity in the axial direction A. Therefore, in the present invention, the impedance change only needs to take into account the resistance R and reactance ωL of the strand (winding) 2a in Equation 1 above.

ここで、素線2aは、コイル2(第一、第二コイル21,22)の中心軸がケーブル100の周方向Cに沿うようにコア2bに巻回されているので、図5,6に示すように、コア2bに巻回された素線2aのケーブル100側に位置する部分2a1は、ストランド101の軸方向Aに沿って配設される。これにより、渦電流Eをストランド101の外周面101xにその軸方向Aに沿って発生させることができる。   Here, since the strand 2a is wound around the core 2b so that the central axis of the coil 2 (first and second coils 21, 22) is along the circumferential direction C of the cable 100, FIG. As shown, the portion 2 a 1 located on the cable 100 side of the wire 2 a wound around the core 2 b is disposed along the axial direction A of the strand 101. Thereby, the eddy current E can be generated along the axial direction A on the outer peripheral surface 101 x of the strand 101.

また、カーボンファイバー101aにより構成されるストランド101を含むケーブル100にコイル2を配置して交流電流を流すと、磁束F(図中、破線で示す)はコア2b(コイル2)の他端2yから一端2xの間(コア中間部)で漏洩せずに、コア2bの内部に集中して流れる。そして、その磁束Fは、コア2bの一端2xから空間へ漏洩するが、コア2bの一端2xから他端2yまでの最短距離の磁路Mに集中する。よって、この磁路Mで磁界が大きくなるが、見かけ上の磁気抵抗が大きくなるので、一部の磁束は湾曲して広がることとなり、ケーブル100の全体に磁束(磁界)が作用する。   Further, when the coil 2 is arranged on the cable 100 including the strand 101 composed of the carbon fiber 101a and an alternating current is passed, the magnetic flux F (indicated by a broken line in the drawing) is generated from the other end 2y of the core 2b (coil 2). It flows in a concentrated manner inside the core 2b without leaking between the one end 2x (core intermediate portion). The magnetic flux F leaks from one end 2x of the core 2b to the space, but concentrates on the magnetic path M having the shortest distance from the one end 2x to the other end 2y of the core 2b. Therefore, although the magnetic field is increased in the magnetic path M, the apparent magnetic resistance is increased, so that a part of the magnetic flux is curved and spreads, and the magnetic flux (magnetic field) acts on the entire cable 100.

磁束Fにより発生した渦電流Eは、その磁束Fの変化を打ち消す方向に磁束を発生させる。従って、例えば最短距離の磁路Mがケーブル100の中心のストランド101を通過(横切る)するように位置させたとしても、外周面101xで発生する渦電流Eによって生じた磁束によってケーブル100の中心での磁束(磁界)は打ち消されて小さくなると推測される。   The eddy current E generated by the magnetic flux F generates a magnetic flux in a direction that cancels the change in the magnetic flux F. Therefore, for example, even if the magnetic path M with the shortest distance is positioned so as to pass (cross) the strand 101 at the center of the cable 100, the magnetic flux generated by the eddy current E generated on the outer peripheral surface 101x is caused at the center of the cable 100. It is presumed that the magnetic flux (magnetic field) is canceled and becomes smaller.

そこで、発明者らは、コイル2(コア2b)の形状と磁束Fの拡がりとの関係について、磁束密度分布のシミュレーション実験を行った。その結果を図9に示す。なお、このシミュレーションでは、図10に示すように、ケーブル100の直径d=φ12mmのものを対象とし、コイル2(コア2b)の軸方向中央部2nを基準としてケーブル100側へ離隔した距離をコイル表面からの距離(mm)とした。   Thus, the inventors conducted a magnetic flux density distribution simulation experiment on the relationship between the shape of the coil 2 (core 2b) and the spread of the magnetic flux F. The result is shown in FIG. In this simulation, as shown in FIG. 10, the cable 100 having a diameter d = φ12 mm is used as an object, and the distance separated toward the cable 100 with respect to the axial center 2n of the coil 2 (core 2b) is defined as the coil. It was set as the distance (mm) from the surface.

図9に示すように、コイル2の中心角θ1=180°の場合(コア2b1)、磁束密度はコイル表面からの距離Lが約4.9mm(強さ)の地点が大きくなった。また、中心角θ2=120°の場合(コア2b2)は同距離Lが約0.9mm(強さ)の地点、中心角θ3=90°の場合(コア2b3)は同距離Lが約0mm(強さ)の地点でそれぞれ大きくなった。このように、コイル2の中心角θを調整することで、被覆材102の厚み等の間隙G(リフトオフ距離)に応じてコイル2の一端2xからストランド101を通過して他端2yへ向かう磁束Fがストランド101の外周面101x近傍で磁束を密にする(磁界を強くする)ことが可能である。   As shown in FIG. 9, when the central angle θ1 = 180 ° of the coil 2 (core 2b1), the magnetic flux density increased at a point where the distance L from the coil surface was about 4.9 mm (strength). When the central angle θ2 = 120 ° (core 2b2), the same distance L is about 0.9 mm (strength), and when the central angle θ3 = 90 ° (core 2b3), the same distance L is about 0 mm ( Strength increased at each point. Thus, by adjusting the central angle θ of the coil 2, the magnetic flux passing from the one end 2 x of the coil 2 through the strand 101 to the other end 2 y according to the gap G (lift-off distance) such as the thickness of the covering material 102. F can increase the magnetic flux density (intensify the magnetic field) in the vicinity of the outer peripheral surface 101x of the strand 101.

特に、本実施形態の検査対象である繊維強化複合材よりなるストランド101の場合、ストランド101の折れDは、まず、外側に位置するストランド101の外周面101xで発生する。上述したように、ストランド101の外周面101x近傍で磁束を密とする(磁場を強くする)ことができるので、ケーブル径や被覆材102の肉厚等(間隙G)に応じてコイル2の中心角θを調整することで、ストランド101の折れDの初期状態を検出できる。しかも、金属と比べて導電率が低いストランド101において、ストランド101の外周面101x近傍の磁束を密とするので、渦電流Eを増大させることができ、検査精度がよい。   In particular, in the case of the strand 101 made of the fiber-reinforced composite material to be inspected in the present embodiment, the fold D of the strand 101 first occurs on the outer peripheral surface 101x of the strand 101 located on the outside. As described above, since the magnetic flux can be made dense (intensify the magnetic field) in the vicinity of the outer peripheral surface 101x of the strand 101, the center of the coil 2 can be selected according to the cable diameter, the thickness of the covering material 102, etc. (gap G). By adjusting the angle θ, the initial state of the fold D of the strand 101 can be detected. Moreover, since the magnetic flux in the vicinity of the outer peripheral surface 101x of the strand 101 is made dense in the strand 101 having a lower conductivity than that of the metal, the eddy current E can be increased and the inspection accuracy is good.

ここで、本発明に係るケーブル100の検査方法について説明する。
まず、検査対象のケーブル100の被覆材102の厚み(肉厚)G1及びコイル2とケーブル100との隙間G2(接触状態)を含む間隙Gを考慮し、コイル2の一端2xからストランド101を通過してコイル2の他端2yへ向かう磁束Fがストランド101の外周面101x近傍で密となるようにコイル2(コア2b)の中心角θを決定(調整)する。次に、ケーブル100と同種のものを基準試験体として正常品(健全部のみ)及び損傷品(損傷部Dあり)を用意し、その基準試験体を用いて試験周波数、位相、ゲイン、フィルタ、探傷速度等の検査条件を決定する。なお、位相については、ガタ信号及びきず信号がX方向又はY方向に表れるように調整する。また、損傷品とは、ケーブル100内のストランド101の一部又は全部が折れたものである。
Here, the inspection method of the cable 100 according to the present invention will be described.
First, the strand 101 passes through the strand 101 from one end 2x of the coil 2 in consideration of the thickness G1 of the covering material 102 of the cable 100 to be inspected and the gap G including the gap G2 (contact state) between the coil 2 and the cable 100. Then, the central angle θ of the coil 2 (core 2b) is determined (adjusted) so that the magnetic flux F toward the other end 2y of the coil 2 becomes dense near the outer peripheral surface 101x of the strand 101. Next, a normal product (only a healthy part) and a damaged product (with a damaged part D) are prepared using the same type as the cable 100 as a reference test body, and the test frequency, phase, gain, filter, Determine inspection conditions such as flaw detection speed. The phase is adjusted so that the backlash signal and the flaw signal appear in the X direction or the Y direction. Further, the damaged product is a product in which part or all of the strand 101 in the cable 100 is broken.

設定した検査条件で基準試験体にて信号を測定し、その測定データから閾値(絶対値又はp−p値)を設定する。例えば、図11Aに例示する正常品の測定データの最大値よりも大で且つ図11Bに例示する損傷品(ストランド101が7本破損)のきず信号より小さい信号レベルを閾値(例えば、1V)として設定する。そして、例えば図7に示すように、第一、第二コイル21,22を治具10によりストランド101の外周面101xに対し間隙Gをおいてケーブル100を挿通(挟持)させ、まず健全部で第一、第二コイル21,22のブリッジバランスをとる。そして、扇状コイル2に交流電圧を印加して電磁誘導によってストランド101の外周面101xにその軸方向Aに沿う渦電流Eを生じさせ、治具10を軸方向Aに移動(走査)させることで信号を測定し、閾値を超えた場合に折れDが存在すると判定する。   A signal is measured with a reference specimen under the set inspection conditions, and a threshold value (absolute value or pp value) is set from the measurement data. For example, a signal level that is larger than the maximum value of the measurement data of the normal product illustrated in FIG. 11A and smaller than the flaw signal of the damaged product illustrated in FIG. Set. Then, for example, as shown in FIG. 7, the first and second coils 21 and 22 are inserted (clamped) by the jig 10 with a gap G with respect to the outer peripheral surface 101x of the strand 101. The bridge of the first and second coils 21 and 22 is balanced. Then, an AC voltage is applied to the fan-shaped coil 2 to generate an eddy current E along the axial direction A on the outer peripheral surface 101x of the strand 101 by electromagnetic induction, and the jig 10 is moved (scanned) in the axial direction A. The signal is measured, and it is determined that a fold D exists when the threshold value is exceeded.

次に、本発明の第二実施形態について説明する。なお、以下の実施形態において、上記第一実施形態と同様の部材等には同一の符号を付してある。
上記第一実施形態において、コイル2にはストランド101の外周面101x(ケーブル100)の一部を覆う扇状を呈する扇状コイルを用いた。しかし、ストランド101の外周面101x近傍(検査対象物の表面近傍)で磁束Fが密となるようにコイル2を所定の間隙Gをおいて配置し得る態様であれば、扇状コイルに限られない。
Next, a second embodiment of the present invention will be described. In the following embodiments, the same reference numerals are given to the same members as those in the first embodiment.
In the first embodiment, the coil 2 is a fan coil that has a fan shape covering a part of the outer peripheral surface 101 x (cable 100) of the strand 101. However, as long as the coil 2 can be arranged with a predetermined gap G so that the magnetic flux F is dense in the vicinity of the outer peripheral surface 101x of the strand 101 (near the surface of the inspection object), it is not limited to a fan-shaped coil. .

図12に示す例では、コア2b’が断面視略コの字状を呈し、端部2x’,2y’がケーブル100側へ突出して対向させてある。素線2aは、ストランド101(検査対象物)の外周面101x(表面)にその軸方向(一定の方向)に沿う渦電流Eを生じさせるために、コイルの一端2x’から他端2y’へ向かう磁束Fがストランド101を通過するように巻回されてある。そして、磁束Fが外周面101x近傍で密となるようにコイル2’をストランド101の外周面101xに対し所定の間隙G(被覆材102の肉厚G1及び空間G3)をおいて配置する。これにより、コイル2b’に交流電圧を印加することで上記実施形態と同様にストランド101の折れDの検出が可能となる。   In the example shown in FIG. 12, the core 2 b ′ has a substantially U shape in cross section, and the end portions 2 x ′ and 2 y ′ protrude toward the cable 100 and face each other. The strand 2a is formed from one end 2x ′ of the coil to the other end 2y ′ in order to generate an eddy current E along the axial direction (constant direction) on the outer peripheral surface 101x (surface) of the strand 101 (inspection object). The magnetic flux F is wound so that it passes through the strand 101. Then, the coil 2 'is arranged with a predetermined gap G (the thickness G1 of the covering material 102 and the space G3) with respect to the outer peripheral surface 101x of the strand 101 so that the magnetic flux F is dense in the vicinity of the outer peripheral surface 101x. As a result, by applying an alternating voltage to the coil 2b ', it is possible to detect the break D of the strand 101 as in the above embodiment.

さらに、断面視略コの字形状に限られず、例えば図13に示す如き、矩形のコイル2’’でも同様に検査可能であり、図9に示すシミュレーション結果によればコイル表面からの距離Lが約0mm(強さ)の地点で磁束密度が大きくなった。なお、本第二実施形態によれば、ケーブル100の如き検査対象に限らず、一定の方向に導電性を有する材料よりなる例えば平板状や管状のものでも検査可能である。そして、素線2aは、検査対象物101の外周面101xに一定の方向に沿う渦電流Eを生じさせるために、コイル2の一端2xから他端2yへ向かう磁束Fが検査対象物101を通過するように巻回されているとよい。   Furthermore, it is not limited to a substantially U-shaped cross-sectional view, and for example, a rectangular coil 2 ″ as shown in FIG. 13 can be similarly inspected. According to the simulation result shown in FIG. 9, the distance L from the coil surface is The magnetic flux density increased at a point of about 0 mm (strength). In addition, according to this 2nd embodiment, it can test | inspect not only the test object like the cable 100 but the thing which consists of a material which has electroconductivity in a fixed direction, for example, a flat form. The element wire 2a causes the magnetic flux F from the one end 2x to the other end 2y of the coil 2 to pass through the inspection object 101 in order to generate an eddy current E along a certain direction on the outer peripheral surface 101x of the inspection object 101. It is good that it is wound to do.

最後に、本発明のさらに他の実施形態の可能性について言及する。
上記第一実施形態において、コイル2(第一、第二コイル21,22)は、その中心角θが180°の自己誘導型コイルを1つ配置した。しかし、コイル2(第一、第二コイル21,22)は1つに限られず、2つ以上(複数)用いることも可能である。例えば、図14に示すように、その中心角θが180°の自己誘導型コイル2,2をケーブル100に対し隙間をおいて対称に配置してもよい。これにより、各々のコイル2,2が自身に近接するケーブル100部分(リフトオフが小さい箇所)のストランド101を検査でき、一度の走査でケーブル100全周の検査が可能となり、検査効率が向上する。もちろん、一対の場合に限られず、例えば中心角θが90°の自己誘導型コイル2をケーブル100の中心に対し略点対称に4つ配置することも可能である。
Finally, reference is made to the possibilities of yet another embodiment of the invention.
In the first embodiment, the coil 2 (first and second coils 21 and 22) has one self-inductive coil having a central angle θ of 180 °. However, the number of coils 2 (first and second coils 21 and 22) is not limited to one, and two or more (a plurality) may be used. For example, as shown in FIG. 14, the self-inductive coils 2 and 2 having a central angle θ of 180 ° may be arranged symmetrically with a gap with respect to the cable 100. Thereby, the strand 101 of the cable 100 part (location where lift-off is small) where each coil 2 and 2 is close to itself can be inspected, and the entire circumference of the cable 100 can be inspected by one scan, and the inspection efficiency is improved. Of course, the present invention is not limited to a pair, and for example, four self-inductive coils 2 having a central angle θ of 90 ° can be arranged substantially point-symmetrically with respect to the center of the cable 100.

さらに、図14の例では、同一周方向Cにコイル2を一対配置したが、これに限らず、軸方向Aの異なる位置で周方向位置をずらして各コイル2を配置することも可能である。例えば、図15に示すように、中心角θが120°のコイル2をケーブル100の軸方向Aの異なる位置で周方向Cにずらして配置しても構わない。この例においても、3つのコイル2でケーブル100の全周をカバーできるので、一度の走査で各ストランド101の折れDを検出可能となる。   Furthermore, in the example of FIG. 14, a pair of coils 2 are arranged in the same circumferential direction C. However, the present invention is not limited to this, and each coil 2 can be arranged by shifting the circumferential position at different positions in the axial direction A. . For example, as shown in FIG. 15, the coil 2 having a central angle θ of 120 ° may be arranged at a different position in the axial direction A of the cable 100 and shifted in the circumferential direction C. Also in this example, since the entire circumference of the cable 100 can be covered by the three coils 2, the fold D of each strand 101 can be detected by one scan.

また、コイル2をケーブル100(ストランド101)の軸方向Aに相対移動可能に保持でき且つコイル2とストランド101とのリフトオフの極端な変動を抑制し得る態様であれば、治具10の態様は上記第一実施形態にものに限られない。上記第一実施形態の治具10であれば、装置にケーブル100が組み込まれているような場合であっても、装置からケーブル100を取り外すことなく測定(保守検査)できる。一方、例えばケーブル100の製造時に検査するのであれば、コイル2(治具10)を固定しケーブル100を挿通させた状態でケーブル100を移動させることも可能であり、例えば、ケーブル100の全周を覆うドーナツ状のコイル2を用いることが考えられる。しかし、ドーナツ状コイルでは、無端ソレノイドとなり磁束Fがコイル外部にほとんど漏洩しないので、渦電流Eが極端に減少し検査が困難となる。すなわち、コイル2には、一端2xと他端2yとの間に少なくとも隙間(ギャップ)を設ける必要がある。   In addition, if the coil 2 can be held so as to be relatively movable in the axial direction A of the cable 100 (strand 101) and the extreme variation in lift-off between the coil 2 and the strand 101 can be suppressed, the aspect of the jig 10 is The present invention is not limited to the first embodiment. With the jig 10 of the first embodiment, even if the cable 100 is incorporated in the apparatus, measurement (maintenance inspection) can be performed without removing the cable 100 from the apparatus. On the other hand, if the inspection is performed at the time of manufacturing the cable 100, for example, it is possible to move the cable 100 with the coil 2 (the jig 10) fixed and the cable 100 being inserted. It is conceivable to use a donut-shaped coil 2 that covers the surface. However, in the donut-shaped coil, it becomes an endless solenoid, and the magnetic flux F hardly leaks outside the coil, so that the eddy current E is extremely reduced and the inspection becomes difficult. That is, the coil 2 needs to have at least a gap (gap) between the one end 2x and the other end 2y.

上記各実施形態において、コイル2は、フェライトよりなるコア2bに素線2aを巻回して構成した。しかし、コア2bはフェライトコアに限らず他の磁性材料であってもよい。発明者らの実験によれば、コア2bを省略した場合においても、図16に示すように、コイル2の一端2xからストランド101を通過してコイル2の他端2yへ向かう磁束Fがストランド101の外周面101x近傍で密となるようにコイル2の中心角θを調整すれば、検査可能であることが判明している。しかし、これら結果を比較すると、コア2bを有する方が磁束密度が大きく且つ距離Lが大きくなっても磁束密度の減少がゆるやかである。この点からもコア2bを用いる方が、磁束が増大して渦電流が大きくなるので、精度の点で上記第一実施形態が優れている。   In each of the above embodiments, the coil 2 is configured by winding the wire 2a around the core 2b made of ferrite. However, the core 2b is not limited to a ferrite core, and may be another magnetic material. According to the experiments by the inventors, even when the core 2b is omitted, as shown in FIG. 16, the magnetic flux F passing from the one end 2x of the coil 2 through the strand 101 to the other end 2y of the coil 2 is It has been found that the inspection is possible by adjusting the central angle θ of the coil 2 so as to be dense in the vicinity of the outer peripheral surface 101x. However, when these results are compared, the magnetic flux density decreases more gradually when the core 2b is provided and the distance L increases. Also in this respect, the first embodiment is superior in terms of accuracy because the magnetic flux increases and the eddy current increases when the core 2b is used.

上記各実施形態において、きず信号とノイズ信号とを分離して(X方向及びY方向)検査した。しかし、ストランド101(検査対象物)の軸方向(一定の方向)に渦電流Eを発生させてあるので、きず信号S1とノイズ信号S2とは方向が異なるので、図17に示す如きリサージュ波形を用いて欠陥の有無を検出(判定)することも可能である。   In each of the above embodiments, the flaw signal and the noise signal are separated (in the X direction and the Y direction) and inspected. However, since the eddy current E is generated in the axial direction (constant direction) of the strand 101 (inspection object), the flaw signal S1 and the noise signal S2 have different directions. Therefore, the Lissajous waveform as shown in FIG. It is also possible to detect (determine) the presence or absence of a defect.

上記各実施形態において、ケーブル100は、中心のストランド101の周囲に6本のストランド101を略点対称に配置して撚り合わせて撚り線として構成され、その撚り線の外周を塩化ビニル等の樹脂材料よりなる被覆材102で覆って構成されていた。しかし、検査対象はこれに限られるものではない。例えば、図18(a)(c)に示す如く、1本のストランド101や19本のストランド101よりなるケーブル100であっても検査可能である。   In each of the above embodiments, the cable 100 is configured by twisting the six strands 101 around the central strand 101 and twisting them together, and the outer periphery of the twisted wire is made of resin such as vinyl chloride. It was configured to be covered with a covering material 102 made of a material. However, the inspection object is not limited to this. For example, as shown in FIGS. 18 (a) and 18 (c), even a cable 100 composed of one strand 101 or 19 strands 101 can be inspected.

また、図18に示すように、被覆材102のないものであってもよい。上述したように、ストランド101の外周面101xとコイル2との間に間隙Gがあれば検査可能である。常にコイル2とストランド101の外周面101xとを密着させておく必要はなく、非接触状態で高速に検査可能である。なお、上記実施形態において、繊維強化複合材として、炭素繊維強化プラスチック(CFRP)を例に説明したが、これに限られるものではなく、例えば炭化ケイ素繊維等、上述の電気的特性を有する繊維強化複合材料(繊維素材)であればよい。   Moreover, as shown in FIG. 18, the thing without the covering material 102 may be sufficient. As described above, if there is a gap G between the outer peripheral surface 101x of the strand 101 and the coil 2, the inspection is possible. It is not always necessary to keep the coil 2 and the outer peripheral surface 101x of the strand 101 in close contact, and inspection can be performed at high speed in a non-contact state. In the above embodiment, the carbon fiber reinforced plastic (CFRP) has been described as an example of the fiber reinforced composite material. However, the present invention is not limited to this, and for example, a fiber reinforced fiber having the above-described electrical characteristics such as silicon carbide fiber. It may be a composite material (fiber material).

上記各実施形態において、検査装置1を渦電流探傷装置3、判定手段としての信号処置装置4(パーソナルコンピュータ)及び表示器5より構成した。しかし、この態様に限られるものではなく、例えば、判定手段4及び表示手段5等を含む渦電流探傷装置により検査装置1を構成することも可能である。また、上記各実施形態において、自己誘導型の差動方式を採用したがこれに限られない。但し、差動方式が検出精度の点で優れている。なお、上記各実施形態において、インピーダンス差として電圧変化を出力したが、渦電流に関連する値はこれに限られるものではない。   In each of the above embodiments, the inspection apparatus 1 is composed of the eddy current flaw detection apparatus 3, the signal treatment apparatus 4 (personal computer) as a determination means, and the display 5. However, the present invention is not limited to this mode. For example, the inspection apparatus 1 can be configured by an eddy current flaw detector including the determination unit 4 and the display unit 5. In each of the above embodiments, a self-inductive differential method is employed, but the present invention is not limited to this. However, the differential method is superior in terms of detection accuracy. In each of the above embodiments, the voltage change is output as the impedance difference, but the value related to the eddy current is not limited to this.

1:欠陥検査装置、2:コイル、2a:素線、2b:コア、2x:一端、2y:他端、3:渦電流探傷装置、4:信号処置装置(判定手段)、5:表示手段、6:リジェクション手段、7:記録計、10:治具、21:第一コイル、22:第二コイル、31:発振器(交流印加手段)、32:電力増幅器、33:ブリッジ回路、33a:固定抵抗器、33b:可変抵抗器、34:増幅器、35:同期検波器、36:移相器、37:フィルタ、100:高強度繊維複合材ケーブル、101:ストランド、101a:カーボンファイバー、101b:樹脂、101x:外周面、102:被覆材、A:軸方向、C:周方向、D:損傷(折れ)、E:渦電流、F:磁束、G:間隙、M:最短磁路 1: defect inspection device, 2: coil, 2a: wire, 2b: core, 2x: one end, 2y: other end, 3: eddy current flaw detector, 4: signal treatment device (determination means), 5: display means, 6: Rejecting means, 7: Recorder, 10: Jig, 21: First coil, 22: Second coil, 31: Oscillator (AC applying means), 32: Power amplifier, 33: Bridge circuit, 33a: Fixed Resistor, 33b: Variable resistor, 34: Amplifier, 35: Synchronous detector, 36: Phase shifter, 37: Filter, 100: High-strength fiber composite cable, 101: Strand, 101a: Carbon fiber, 101b: Resin , 101x: outer peripheral surface, 102: coating material, A: axial direction, C: circumferential direction, D: damage (folding), E: eddy current, F: magnetic flux, G: gap, M: shortest magnetic path

Claims (15)

素線を巻回してなるコイルに交流電圧を印加して電磁誘導によって検査対象物に生じる渦電流に起因する値を測定することで前記検査対象物の欠陥の有無を検査する欠陥検査方法であって、
前記検査対象物は、その軸方向に導電性を有する材料よりなり、
前記素線は、前記コイルの中心軸が前記検査対象物の周方向に沿うように巻回されてあり、
前記コイルは、前記検査対象物の外周面の一部を覆う扇状を呈し、
この扇状コイルを前記外周面に対し所定の間隙をおいて配置した際に、前記扇状コイルの一端から前記検査対象物を通過して前記扇状コイルの他端へ向かう磁束が前記外周面近傍で密となるように前記扇状コイルの中心角を調整し、
前記扇状コイルを前記外周面に対し所定の間隙をおいて配置し、
前記扇状コイルに前記交流電圧を印加して前記電磁誘導によって前記外周面に前記検査対象物の軸方向に沿う渦電流を生じさせ、
前記渦電流に起因する値を前記扇状コイルで測定し、
その測定結果に基づいて前記外周面の欠陥の有無を検査する欠陥検査方法。
A defect inspection method for inspecting the presence or absence of a defect in the inspection object by applying an alternating voltage to a coil formed by winding an element wire and measuring a value caused by eddy current generated in the inspection object by electromagnetic induction. And
The inspection object is made of a material having conductivity in its axial direction,
The strand is wound so that the central axis of the coil is along the circumferential direction of the inspection object,
The coil has a fan shape covering a part of the outer peripheral surface of the inspection object,
When the fan-shaped coil is disposed with a predetermined gap with respect to the outer peripheral surface, the magnetic flux passing from the one end of the fan coil to the other end of the fan-shaped coil through the inspection object is densely adjacent to the outer peripheral surface. Adjust the central angle of the fan coil so that
The fan coil is arranged with a predetermined gap with respect to the outer peripheral surface,
Applying the AC voltage to the fan-shaped coil to cause an eddy current along the axial direction of the inspection object on the outer peripheral surface by the electromagnetic induction,
Measure the value due to the eddy current with the fan coil,
A defect inspection method for inspecting the presence or absence of a defect on the outer peripheral surface based on the measurement result.
前記扇状コイルは、磁性材料よりなる扇状のコアに巻回されてある請求項1記載の欠陥検査方法。 The defect inspection method according to claim 1, wherein the fan coil is wound around a fan-shaped core made of a magnetic material. 前記扇状コイルを前記検査対象物の軸方向に適宜間隔をおいて一対備え、一対の扇状コイルを前記軸方向に相対移動させると共に前記一対の扇状コイルの出力差により前記欠陥の有無を検査する請求項1又は2記載の欠陥検査方法。 A pair of the fan-shaped coils are provided at an appropriate interval in the axial direction of the inspection object, the pair of fan-shaped coils are relatively moved in the axial direction, and the presence / absence of the defect is inspected based on an output difference between the pair of fan-shaped coils. Item 3. The defect inspection method according to Item 1 or 2. 前記扇状コイルを前記検査対象物の周方向に沿って複数配置してある請求項1〜3のいずれかに記載の欠陥検査方法。 The defect inspection method according to claim 1, wherein a plurality of the fan-shaped coils are arranged along a circumferential direction of the inspection object. 前記検査対象物は、導電性を有する繊維強化複合材よりなる1本のストランドである請求項1〜4のいずれかに記載の欠陥検査方法。 The defect inspection method according to claim 1, wherein the inspection object is a single strand made of a fiber-reinforced composite material having conductivity. 前記検査対象物は、導電性を有する繊維強化複合材よりなる複数本のストランドである請求項1〜4のいずれかに記載の欠陥検査方法。 The defect inspection method according to claim 1, wherein the inspection object is a plurality of strands made of a conductive fiber-reinforced composite material. 前記1本のストランドは被覆材により覆われてなり、前記間隙は前記被覆材の肉厚を含む請求項5記載の欠陥検査方法。 The defect inspection method according to claim 5, wherein the one strand is covered with a covering material, and the gap includes a thickness of the covering material. 前記複数本のストランドは被覆材により覆われてなり、前記間隙は前記被覆材の肉厚を含む請求項6記載の欠陥検査方法。 The defect inspection method according to claim 6, wherein the plurality of strands are covered with a covering material, and the gap includes a thickness of the covering material. 素線を巻回してなるコイルに交流電圧を印加して電磁誘導によって検査対象物に生じる渦電流に起因する値を測定することで前記検査対象物の欠陥の有無を検査する欠陥検査装置であって、
前記検査対象物は、その軸方向に導電性を有する材料よりなり、
前記素線は、前記コイルの中心軸が前記検査対象物の周方向に沿うように巻回されてあり、
前記コイルは、前記検査対象物の外周面の一部を覆う扇状を呈し、この扇状コイルを前記外周面に対し所定の間隙をおいて配置した際に、前記扇状コイルの一端から前記検査対象物を通過して前記扇状コイルの他端へ向かう磁束が前記外周面近傍で密となるように前記扇状コイルの中心角が調整され、前記外周面に対し所定の間隙をおいて配置され、
前記扇状コイルに前記交流電圧を印加して前記電磁誘導によって前記検査対象物の軸方向に沿う渦電流を前記外周面に生じさせる交流印加手段と、
前記渦電流に起因する値を前記扇状コイルで測定し、その測定結果に基づいて前記外周面の欠陥の有無を判定する判定手段とを有する欠陥検査装置。
A defect inspection apparatus that inspects the presence or absence of defects in the inspection object by applying an alternating voltage to a coil formed by winding a wire and measuring a value caused by eddy current generated in the inspection object by electromagnetic induction. And
The inspection object is made of a material having conductivity in its axial direction,
The strand is wound so that the central axis of the coil is along the circumferential direction of the inspection object,
The coil has a fan shape covering a part of the outer peripheral surface of the inspection object, and when the fan coil is arranged with a predetermined gap with respect to the outer peripheral surface, the inspection object starts from one end of the fan coil. The central angle of the fan-shaped coil is adjusted so that the magnetic flux passing through the other end of the fan-shaped coil becomes dense near the outer peripheral surface, and is arranged with a predetermined gap with respect to the outer peripheral surface,
AC applying means for applying the AC voltage to the fan-shaped coil and generating an eddy current along the axial direction of the inspection object by the electromagnetic induction on the outer peripheral surface;
A defect inspection apparatus comprising: a determination unit that measures a value caused by the eddy current with the fan coil and determines the presence or absence of a defect on the outer peripheral surface based on the measurement result.
前記扇状コイルは、磁性材料よりなる扇状のコアに巻回されてある請求項9記載の欠陥検査装置。 The defect inspection apparatus according to claim 9, wherein the fan-shaped coil is wound around a fan-shaped core made of a magnetic material. 前記扇状コイルは、前記検査対象物の軸方向に沿って適宜間隔をおいて一対設けられ、前記判定手段は、前記一対の扇状コイルの出力差により前記欠陥の有無を検査する請求項9又は10記載の欠陥検査装置。 The said fan-shaped coil is provided with a pair at appropriate intervals along the axial direction of the said test object, The said determination means test | inspects the presence or absence of the said defect with the output difference of a pair of said fan-shaped coil. Defect inspection apparatus as described. 前記扇状コイルを前記検査対象物の中心に対し所定の位置に保持する治具をさらに備える請求項9〜11のいずれかに記載の欠陥検査装置。 The defect inspection apparatus according to claim 9, further comprising a jig that holds the fan-shaped coil at a predetermined position with respect to a center of the inspection object. 前記治具は、複数の前記扇状コイルを前記検査対象物の周方向に沿って保持する請求項12記載の欠陥検査装置。 The defect inspection apparatus according to claim 12, wherein the jig holds a plurality of the fan coils along a circumferential direction of the inspection object. 素線を巻回してなるコイルに交流電圧を印加して電磁誘導によって検査対象物に生じる渦電流に起因する値を測定することで前記検査対象物の欠陥の有無を検査する欠陥検査方法であって、
前記検査対象物は、一定の方向に導電性を有する材料よりなり、
前記素線は、前記検査対象物の表面に前記一定の方向に沿う渦電流を生じさせるために前記コイルの一端から他端へ向かう磁束が前記検査対象物を通過するように巻回されてあり、
前記磁束が前記表面近傍で密となるように前記コイルを前記表面に対し所定の間隙をおいて配置し、
前記コイルに前記交流電圧を印加して前記電磁誘導によって前記表面に前記一定の方向に沿う渦電流を生じさせ、
前記渦電流に起因する値を前記コイルで測定し、
その測定結果に基づいて前記表面の欠陥の有無を検査する欠陥検査方法。
A defect inspection method for inspecting the presence or absence of a defect in the inspection object by applying an alternating voltage to a coil formed by winding an element wire and measuring a value caused by eddy current generated in the inspection object by electromagnetic induction. And
The inspection object is made of a material having conductivity in a certain direction,
The strand is wound so that a magnetic flux from one end of the coil to the other end passes through the inspection object in order to generate an eddy current along the predetermined direction on the surface of the inspection object. ,
The coil is arranged with a predetermined gap with respect to the surface so that the magnetic flux is dense near the surface,
Applying the alternating voltage to the coil to cause an eddy current along the fixed direction on the surface by the electromagnetic induction;
Measure the value due to the eddy current with the coil,
A defect inspection method for inspecting the presence or absence of defects on the surface based on the measurement result.
素線を巻回してなるコイルに交流電圧を印加して電磁誘導によって検査対象物に生じる渦電流に起因する値を測定することで前記検査対象物の欠陥の有無を検査する欠陥検査装置であって、
前記検査対象物は、一定の方向に導電性を有する材料よりなり、
前記素線は、前記検査対象物の表面に前記一定の方向に沿う渦電流を生じさせるために前記コイルの一端から他端へ向かう磁束が前記検査対象物を通過するように巻回されてあり、
前記コイルは、前記磁束が前記表面近傍で密となるように前記表面に対し所定の間隙をおいて配置され、
前記コイルに前記交流電圧を印加して前記電磁誘導によって前記一定の方向に渦電流を前記表面に生じさせる交流印加手段と、
前記渦電流に起因する値を前記コイルで測定し、その測定結果に基づいて前記表面の欠陥の有無を判定する判定手段とを有する欠陥検査装置。
A defect inspection apparatus that inspects the presence or absence of defects in the inspection object by applying an alternating voltage to a coil formed by winding a wire and measuring a value caused by eddy current generated in the inspection object by electromagnetic induction. And
The inspection object is made of a material having conductivity in a certain direction,
The strand is wound so that a magnetic flux from one end of the coil to the other end passes through the inspection object in order to generate an eddy current along the predetermined direction on the surface of the inspection object. ,
The coil is arranged with a predetermined gap with respect to the surface so that the magnetic flux is dense near the surface,
AC applying means for applying the AC voltage to the coil to generate an eddy current in the fixed direction by the electromagnetic induction on the surface;
A defect inspection apparatus comprising: a determination unit that measures a value caused by the eddy current with the coil and determines the presence or absence of a defect on the surface based on the measurement result.
JP2017152532A 2017-08-07 2017-08-07 Defect inspection method and defect inspection device Pending JP2019032210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017152532A JP2019032210A (en) 2017-08-07 2017-08-07 Defect inspection method and defect inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017152532A JP2019032210A (en) 2017-08-07 2017-08-07 Defect inspection method and defect inspection device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017246025A Division JP6373472B1 (en) 2017-12-22 2017-12-22 Defect inspection method and defect inspection apparatus

Publications (1)

Publication Number Publication Date
JP2019032210A true JP2019032210A (en) 2019-02-28

Family

ID=65523371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017152532A Pending JP2019032210A (en) 2017-08-07 2017-08-07 Defect inspection method and defect inspection device

Country Status (1)

Country Link
JP (1) JP2019032210A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102517365B1 (en) * 2022-12-05 2023-04-04 한국건설기술연구원 Apparatus for Monitoring Status of Tendon, System and Method for Detecting Damage of Tendon using such Apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102517365B1 (en) * 2022-12-05 2023-04-04 한국건설기술연구원 Apparatus for Monitoring Status of Tendon, System and Method for Detecting Damage of Tendon using such Apparatus

Similar Documents

Publication Publication Date Title
US7705589B2 (en) Sensor for detecting surface defects of metal tube using eddy current method
JP3572460B2 (en) Eddy current probe
EP2406623B1 (en) Eddy current flaw detection probe
US20090167298A1 (en) System and method for the nondestructive testing of elongate bodies and their weldbond joints
KR101720831B1 (en) Through-coil arrangement, test apparatus with through-coil arrangement and testing method
CN112352166B (en) Electromagnetic eddy current probe utilizing three-dimensional excitation coil
JPH06331602A (en) Method and equipment for checking structural defect of long magnetic material nondestructively
JP6181851B2 (en) Surface characteristic inspection method and surface characteristic inspection apparatus
JP4247723B2 (en) Eddy current flaw detection method and eddy current flaw detection apparatus
CN102483391B (en) Method for inspecting an austenitic stainless steel weld
JP6373472B1 (en) Defect inspection method and defect inspection apparatus
Wang et al. A novel AC-MFL probe based on the parallel cables magnetizing technique
Yanfei et al. A new detection method of the surface broken wires of the steel wire rope using an eddy current differential probe
JP2019032209A (en) Fiber-reinforced composite cable inspection method and inspection device
JP2011203092A (en) Sensor, testing apparatus and testing method
JP2019032210A (en) Defect inspection method and defect inspection device
JP3572452B2 (en) Eddy current probe
JP6373471B1 (en) Inspection method and inspection apparatus for fiber reinforced composite cable
Faraj et al. Construct coil probe using GMR sensor for eddy current testing
JP6378554B2 (en) Nondestructive inspection apparatus and nondestructive inspection method
KR102283396B1 (en) Sensor Probe tesing System for Eddy Current Nondestructive Testing
JP7301506B2 (en) Eddy current flaw detector and eddy current flaw detection method
JP2020159983A (en) Eddy current flaw detection probe and eddy current flaw detector
JP7627031B2 (en) Eddy current testing equipment
JP2016065813A (en) Magnetic sensor array calibration method and magnetic sensor array calibration device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171222