JP2019024044A - Thermoelectric property measuring apparatus and thermoelectric property measuring method - Google Patents
Thermoelectric property measuring apparatus and thermoelectric property measuring method Download PDFInfo
- Publication number
- JP2019024044A JP2019024044A JP2017142754A JP2017142754A JP2019024044A JP 2019024044 A JP2019024044 A JP 2019024044A JP 2017142754 A JP2017142754 A JP 2017142754A JP 2017142754 A JP2017142754 A JP 2017142754A JP 2019024044 A JP2019024044 A JP 2019024044A
- Authority
- JP
- Japan
- Prior art keywords
- temperature difference
- thermoelectric
- measured
- coefficient
- current value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
【課題】ゼーベック係数Sをより高精度に測定する熱電物性測定装置及び熱電物性測定方法を提供する。【解決手段】本発明の熱電物性測定装置1は、測定対象物12の一端12aと他端12bとの間に電位差VAを加える電源14と、前記一端12aと前記他端12bとの間に温度差を加える温度差発生部16と、前記一端12aと前記他端12bとの間を流れる電流値を測定する電流計13と、前記電源14により前記一端12aと前記他端12bとの間に前記電位差VAを加えたときに、前記電流計13により測定された第1電流値ΔIV、及び、前記温度差発生部16により前記一端12aと前記他端12bとの間に温度差ΔTを加えたときに、前記電流計13により測定された第2電流値IT、を用いてゼーベック係数Sを求める演算部20と、を備える。【選択図】図1PROBLEM TO BE SOLVED: To provide a thermoelectric physical property measuring device and a thermoelectric physical property measuring method for measuring the Seebeck coefficient S with higher accuracy. SOLUTION: In the thermoelectric property measuring device 1 of the present invention, a power source 14 for applying a potential difference VA between one end 12a and the other end 12b of a measurement object 12 and a temperature between the one end 12a and the other end 12b. The temperature difference generating unit 16 for adding a difference, the current meter 13 for measuring the current value flowing between the one end 12a and the other end 12b, and the power supply 14 between the one end 12a and the other end 12b. When the first current value ΔIV measured by the current meter 13 and the temperature difference ΔT between the one end 12a and the other end 12b are added by the temperature difference generating unit 16 when the potential difference VA is applied. In addition, a calculation unit 20 for obtaining a Seebeck coefficient S using the second current value IT measured by the current meter 13 is provided. [Selection diagram] Fig. 1
Description
本発明は、熱電物性測定装置及び熱電物性測定方法に関する。 The present invention relates to a thermoelectric property measuring apparatus and a thermoelectric property measuring method.
熱電物性としてのゼーベック係数Sは、測定対象物の両端に温度差ΔT=Th−Tc(Th:高温部の温度、Tc:低温部の温度)が与えられたときに、測定対象物の両端に発生する起電力をΔvとして、従来、以下の式を用いて定義されている。
S=Δv/ΔT・・・(1)
そして、このゼーベック係数Sを求める場合、測定対象物の両端に温度差ΔTを与え、測定対象物の両端に発生した起電力Δvを電圧計で測定し、上記式(1)を用いて演算されている(例えば特許文献1参照)。
The Seebeck coefficient S as the thermoelectric property is obtained when the temperature difference ΔT = Th−Tc (Th: temperature of the high temperature part, Tc: temperature of the low temperature part) is given to both ends of the measurement object. Conventionally, the generated electromotive force is defined as Δv using the following equation.
S = Δv / ΔT (1)
When obtaining the Seebeck coefficient S, a temperature difference ΔT is given to both ends of the measurement object, and an electromotive force Δv generated at both ends of the measurement object is measured with a voltmeter, and is calculated using the above equation (1). (For example, refer to Patent Document 1).
しかし、このようにゼーベック係数Sを、起電力Δvより直接求める方法には以下の問題がある。
起電力Δvの測定には、電圧計が用いられる。電圧計で測定対象物の2点間の電圧を測定する際の理想的な条件は、電圧計の内部に電流が流れないこと、すなわち2点間が開放端であることである。電圧計の内部抵抗を大きくすることにより開放端に近い状態にして電流値を小さくすることはできる。しかし、電流値を完全にゼロにすることはできない。したがって、起電力Δvの測定精度には限界があり、ゆえに上記(1)式に基づいたゼーベック係数Sの演算の高精度化には限界がある。
However, the method for directly obtaining the Seebeck coefficient S from the electromotive force Δv has the following problems.
A voltmeter is used to measure the electromotive force Δv. The ideal condition when measuring the voltage between two points of the measurement object with the voltmeter is that no current flows inside the voltmeter, that is, the point between the two points is an open end. By increasing the internal resistance of the voltmeter, the current value can be reduced in a state close to the open end. However, the current value cannot be made completely zero. Therefore, there is a limit to the measurement accuracy of the electromotive force Δv, and therefore there is a limit to increasing the accuracy of the calculation of the Seebeck coefficient S based on the equation (1).
本発明は、ゼーベック係数S、すなわち熱電物性をより高精度に求めることが可能な熱電物性測定装置及び熱電物性測定方法を提供することを目的とする。 An object of the present invention is to provide a thermoelectric property measuring apparatus and a thermoelectric property measuring method capable of obtaining Seebeck coefficient S, that is, thermoelectric property with higher accuracy.
本発明は上記課題を解決するために以下のものを提供する。
(1)測定対象物の一端と他端との間に電位差を加える電源と、前記一端と前記他端との間に温度差を加える温度差発生部と、前記一端と前記他端との間を流れる電流値を測定する電流計と、前記電源により前記一端と前記他端との間に前記電位差を加えたときに、前記電流計により測定された第1電流値、及び、前記温度差発生部により前記一端と前記他端との間に温度差を加えたときに、前記電流計により測定された第2電流値、を用いてゼーベック係数を求める演算部と、を備える熱電物性測定装置。
The present invention provides the following in order to solve the above problems.
(1) A power source for applying a potential difference between one end and the other end of the measurement object, a temperature difference generating unit for applying a temperature difference between the one end and the other end, and between the one end and the other end A first current value measured by the ammeter when the potential difference is applied between the one end and the other end by the power source, and generation of the temperature difference A thermoelectric property measuring apparatus comprising: a calculation unit that obtains a Seebeck coefficient using a second current value measured by the ammeter when a temperature difference is applied between the one end and the other end by a unit.
(2)前記演算部は、前記第1電流値をΔIV、前記第2電流値をΔIT、前記電源により前記一端と前記他端との間に加えた電位差をΔVA、及び、前記温度差発生部により前記一端と前記他端との間に加えた温度差をΔT、としたときに、前記ゼーベック係数Sを、S=(ΔIT・ΔVA)/(ΔIV・ΔT)を用いて求めてもよい。 (2) The computing unit sets the first current value to ΔI V , the second current value to ΔI T , a potential difference applied between the one end and the other end by the power source to ΔV A , and the temperature the temperature difference applied between the other end and the one end by the difference generating unit when the [Delta] T, and, the Seebeck coefficient S, S = with (ΔI T · ΔV a) / (ΔI V · ΔT) You may ask.
(3)前記演算部は、前記第1電流値をΔIV、前記第2電流値をΔIT、前記電源により前記一端と前記他端との間に加えた電位差をΔVA、前記温度差発生部により前記一端と前記他端との間に加えた温度差をΔT、前記測定対象物の前記一端から前記他端までの長さをl、及び、前記長さ方向と直交する断面積をAとしたときに、電気伝導率L11を、L11=(l/A)×(ΔIV/ΔVA)を用いて求め、熱電係数L12を、L12=(l/A)(ΔIT/ΔT)を用いて求め、前記電気伝導率L11、及び前記熱電係数L12を用いて、前記ゼーベック係数Sを、S=L12/L11を用いて求めてもよい。 (3) The calculation unit generates the first current value as ΔI V , the second current value as ΔI T , a potential difference applied between the one end and the other end by the power source as ΔV A , and generation of the temperature difference. ΔT is a temperature difference applied between the one end and the other end by the unit, l is a length from the one end to the other end of the measurement object, and A is a cross-sectional area orthogonal to the length direction. Then, the electrical conductivity L 11 is obtained using L 11 = (l / A) × (ΔI V / ΔV A ), and the thermoelectric coefficient L 12 is calculated as L 12 = (l / A) (ΔI T / ΔT), and the Seebeck coefficient S may be determined using S = L 12 / L 11 using the electrical conductivity L 11 and the thermoelectric coefficient L 12 .
(4)前記測定対象物の前記一端と前記他端との間の電圧を測定する電圧計を備え、前記測定対象物の前記一端から前記他端までの長さをl、及び、前記長さ方向と直交する断面積をAとしたときに、前記電源により前記一端と前記他端との間に電位差ΔVAが加えられたときに前記電流計により測定された電流ΔIV (2)を用いて、以下の式より電気伝導率L11 (2)を求め、
L11 (2)=(l/A)(ΔIV (2)/ΔVA)
前記電源により前記一端と前記他端との間に前記電位差ΔVAが加えられたときに前記電圧計により測定された電圧ΔVVと、前記電流計により測定された電流ΔIV (4)を用いて、以下の式より電気伝導率L11 (4)を求め、
L11 (4)=(l/A)(ΔIV (4)/ΔVV)
前記電気伝導率L11 (2)と、前記電気伝導率L11 (4)とを用いて、以下の式より接触抵抗rを求め、
r=R(2)−R(4)=(1/L11 (2)−1/L11 (4))(l/A)
前記温度差発生部により前記一端と前記他端との間に前記温度差ΔTが加えられたときに前記電流計により測定された電圧値ΔIT (2)を用いて、以下の式より熱電係数L12 (2)を求め、
L12 (2)=(l/A)(ΔIT (2)/ΔT)
前記熱電係数L12 (2)を前記接触抵抗rを用いて補正して、以下の式より熱電係数L12 (4)を求め、
L12 (4)={(R(4)+r)/R(4)}L12 (2)
前記電気伝導率L11 (4)と前記熱電係数L12 (4)を用いて、以下の式よりゼーベック係数Sを求めてもよい。
S=L12 (4)/L11 (4)
(4) A voltmeter that measures a voltage between the one end and the other end of the measurement object is provided, the length from the one end to the other end of the measurement object is l, and the length Using a current ΔI V (2) measured by the ammeter when a potential difference ΔV A is applied between the one end and the other end by the power source, where A is a cross-sectional area perpendicular to the direction. The electrical conductivity L 11 (2) is obtained from the following formula,
L 11 (2) = (l / A) (ΔI V (2) / ΔV A )
Using the voltage ΔV V measured by the voltmeter when the potential difference ΔV A is applied between the one end and the other end by the power source, and the current ΔI V (4) measured by the ammeter The electrical conductivity L 11 (4) is obtained from the following formula,
L 11 (4) = (l / A) (ΔI V (4) / ΔV V )
Using the electrical conductivity L 11 (2) and the electrical conductivity L 11 (4) , the contact resistance r is obtained from the following equation:
r = R (2) -R ( 4) = (1 / L 11 (2) -1 / L 11 (4)) (l / A)
Using the voltage value ΔI T (2) measured by the ammeter when the temperature difference ΔT is applied between the one end and the other end by the temperature difference generator, a thermoelectric coefficient is obtained from the following equation: Find L 12 (2)
L 12 (2) = (l / A) (ΔI T (2) / ΔT)
The thermoelectric coefficient L 12 (2) is corrected using the contact resistance r, and the thermoelectric coefficient L 12 (4) is obtained from the following equation:
L 12 (4) = {(R (4) + r) / R (4) } L 12 (2)
The Seebeck coefficient S may be obtained from the following equation using the electrical conductivity L 11 (4) and the thermoelectric coefficient L 12 (4) .
S = L 12 (4) / L 11 (4)
他の態様として、本発明は上記課題を解決するために以下のものを提供する。
(5)測定対象物の一端と他端との間に温度差を加える温度差発生部と、前記一端と前記他端との間を流れる電流値を測定する電流計と、演算部と、を備え、前記演算部は、前記温度差発生部により前記一端と前記他端との間に温度差を加えたときに、前記電流計により測定された第2電流値をΔIT、前記温度差発生部により前記一端と前記他端との間に加えた温度差をΔT、前記測定対象物の前記一端から前記他端までの長さをl、及び、前記長さ方向と直交する断面積をAとしたときに、熱電係数L12を、L12=(l/A)(ΔIT/ΔT)を用いて求める、
熱電物性測定装置。
In another aspect, the present invention provides the following in order to solve the above problems.
(5) A temperature difference generating unit that adds a temperature difference between one end and the other end of the measurement object, an ammeter that measures a current value flowing between the one end and the other end, and an arithmetic unit. The arithmetic unit is configured to generate a second current value measured by the ammeter as ΔI T when the temperature difference is applied between the one end and the other end by the temperature difference generating unit, and to generate the temperature difference. ΔT is a temperature difference applied between the one end and the other end by the unit, l is a length from the one end to the other end of the measurement object, and A is a cross-sectional area orthogonal to the length direction. Then, the thermoelectric coefficient L 12 is obtained using L 12 = (l / A) (ΔI T / ΔT).
Thermoelectric property measuring device.
更なる態様として、本発明は上記課題を解決するために以下のものを提供する。
(6)測定対象物の一端と他端との間に電位差を加える電源と、前記一端と前記他端との間に温度差を加える温度差発生部と、前記一端と前記他端との間を流れる電流値を測定する電流計と、前記測定対象物の前記一端と他端との間の電圧を測定する電圧計と、演算部と、を備え、前記演算部は、前記測定対象物の前記一端から前記他端までの長さl、及び、前記長さ方向と直交する断面積Aとしたときに、前記電源により前記一端と前記他端との間に電位差ΔVAが加えられたときに前記電流計により測定された電流ΔIV (2)を用いて、以下の式より電気伝導率L11 (2)を求め、
L11 (2)=(l/A)(ΔIV (2)/ΔVA)
前記電源により前記一端と前記他端との間に前記電位差ΔVAが加えられたときに前記電圧計により測定された電圧ΔVVと、前記電流計により測定された電流ΔIV (4)を用いて、以下の式より電気伝導率L11 (4)を求め、
L11 (4)=(l/A)(ΔIV (4)/ΔVV)
前記電気伝導率L11 (2)と、前記電気伝導率L11 (4)とを用いて、以下の式より接触抵抗rを求め、
r=R(2)−R(4)=(1/L11 (2)−1/L11 (4))(l/A)
前記温度差発生部により前記一端と前記他端との間に前記温度差ΔTが加えられたときに前記電流計により測定された電圧値ΔIT (2)を用いて、以下の式より熱電係数L12 (2)を求め、
L12 (2)=(l/A)(ΔIT (2)/ΔT)
前記熱電係数L12 (2)を前記接触抵抗rを用いて補正して、以下の式より熱電係数L12 (4)を求める、
L12 (4)={(R(4)+r)/R(4)}L12 (2)
熱電物性測定装置。
As a further aspect, the present invention provides the following to solve the above problems.
(6) A power source for applying a potential difference between one end and the other end of the measurement object, a temperature difference generating unit for applying a temperature difference between the one end and the other end, and between the one end and the other end An amperemeter for measuring a current value flowing through the voltmeter, a voltmeter for measuring a voltage between the one end and the other end of the measurement object, and a calculation unit. When a potential difference ΔV A is applied between the one end and the other end by the power source when the length l from the one end to the other end and the cross-sectional area A orthogonal to the length direction are set. And using the current ΔI V (2) measured by the ammeter, the electrical conductivity L 11 (2) is obtained from the following equation:
L 11 (2) = (l / A) (ΔI V (2) / ΔV A )
Using the voltage ΔV V measured by the voltmeter when the potential difference ΔV A is applied between the one end and the other end by the power source, and the current ΔI V (4) measured by the ammeter The electrical conductivity L 11 (4) is obtained from the following formula,
L 11 (4) = (l / A) (ΔI V (4) / ΔV V )
Using the electrical conductivity L 11 (2) and the electrical conductivity L 11 (4) , the contact resistance r is obtained from the following equation:
r = R (2) -R ( 4) = (1 / L 11 (2) -1 / L 11 (4)) (l / A)
Using the voltage value ΔI T (2) measured by the ammeter when the temperature difference ΔT is applied between the one end and the other end by the temperature difference generator, a thermoelectric coefficient is obtained from the following equation: Find L 12 (2)
L 12 (2) = (l / A) (ΔI T (2) / ΔT)
The thermoelectric coefficient L 12 (2) is corrected using the contact resistance r, and the thermoelectric coefficient L 12 (4) is obtained from the following equation:
L 12 (4) = {(R (4) + r) / R (4) } L 12 (2)
Thermoelectric property measuring device.
別の態様として、本発明は上記課題を解決するために以下のものを提供する。
(7)測定対象物の一端と他端との間に電位差を加えたときに前記一端と前記他端との間を流れた第1電流値を測定し、前記一端と前記他端との間に温度差を加えたときに前記一端と前記他端との間を流れる第2電流値を測定し、前記第1電流値と前記第2電流値を用いてゼーベック係数を求める熱電物性測定方法。
As another aspect, the present invention provides the following in order to solve the above problems.
(7) When a potential difference is applied between one end and the other end of the measurement object, a first current value that flows between the one end and the other end is measured, and between the one end and the other end A thermoelectric property measuring method for measuring a second current value flowing between the one end and the other end when a temperature difference is applied to the first and second Seed's coefficients using the first current value and the second current value.
(8)前記第1電流値をΔIV、前記第2電流値をΔIT、前記一端と前記他端との間に加えた電位差をΔVA、及び、前記一端と前記他端との間に加えた温度差をΔT、としたときに、前記ゼーベック係数Sを、S=(ΔIT・ΔVA)/(ΔIV・ΔT)を用いて求めてもよい。 (8) The first current value is ΔI V , the second current value is ΔI T , the potential difference applied between the one end and the other end is ΔV A , and the one end and the other end are When the added temperature difference is ΔT, the Seebeck coefficient S may be obtained using S = (ΔI T · ΔV A ) / (ΔI V · ΔT).
(9)前記第1電流値をΔIV、前記第2電流値をΔIT、前記一端と前記他端との間に加えた電位差をΔVA、前記一端と前記他端との間に加えた温度差をΔT、前記測定対象物の前記一端から前記他端までの長さをl、及び、前記長さ方向と直交する断面積をAとしたときに、電気伝導率L11を、L11=(l/A)(ΔIV/ΔVA)を用いて求め、熱電係数L12を、L12=(l/A)(ΔIT/ΔT)を用いて求め、前記電気伝導率L11、及び、前記熱電係数L12を用いて、前記ゼーベック係数Sを、S=L12/L11を用いて求めてもよい。 (9) The first current value is ΔI V , the second current value is ΔI T , and the potential difference applied between the one end and the other end is ΔV A , and the one end and the other end are added. When the temperature difference is ΔT, the length from the one end to the other end of the measurement object is l, and the cross-sectional area perpendicular to the length direction is A, the electrical conductivity L 11 is L 11. = (L / A) (ΔI V / ΔV A ), the thermoelectric coefficient L 12 is determined using L 12 = (l / A) (ΔI T / ΔT), and the electric conductivity L 11 , The Seebeck coefficient S may be obtained using S = L 12 / L 11 using the thermoelectric coefficient L 12 .
他の態様として、本発明は上記課題を解決するために以下のものを提供する。
(10)測定対象物の一端と他端との間に電位差を加える電源と、前記一端と前記他端との間に温度差を加える温度差発生部と、前記一端と前記他端との間を流れる電流値を測定する電流計と、前記測定対象物の前記一端と他端との間の電圧を測定する電圧計と、を備える熱物性測定装置において、前記測定対象物の前記一端から前記他端までの長さl、及び、前記長さ方向と直交する断面積Aとしたときに、前記電源により前記一端と前記他端との間に電位差ΔVAが加えられたときに前記電流計により測定された電流ΔIV (2)を用いて、以下の式より電気伝導率L11 (2)を求め、
L11 (2)=(l/A)(ΔIV (2)/ΔVA)
前記電源により前記一端と前記他端との間に前記電位差ΔVAが加えられたときに前記電圧計により測定された電圧ΔVVと、前記電流計により測定された電流ΔIV (4)を用いて、以下の式より電気伝導率L11 (4)を求め、
L11 (4)=(l/A)(ΔIV (4)/ΔVV)
前記電気伝導率L11 (2)と、前記電気伝導率L11 (4)とを用いて、以下の式より接触抵抗rを求め、
r=R(2)−R(4)=(1/L11 (2)−1/L11 (4))(l/A)
前記温度差発生部により前記一端と前記他端との間に前記温度差ΔTが加えられたときに前記電流計により測定された電圧値ΔIT (2)を用いて、以下の式より熱電係数L12 (2)を求め、
L12 (2)=(l/A)(ΔIT (2)/ΔT)
前記熱電係数L12 (2)を前記接触抵抗rを用いて補正して、以下の式より熱電係数L12 (4)を求め、
L12 (4)={(R(4)+r)/R(4)}L12 (2)
前記電気伝導率L11 (4)と前記熱電係数L12 (4)を用いて、以下の式よりゼーベック係数Sを求める、
S=L12 (4)/L11 (4)
熱電物性測定方法。
In another aspect, the present invention provides the following in order to solve the above problems.
(10) A power source for applying a potential difference between one end and the other end of the measurement object, a temperature difference generating unit for applying a temperature difference between the one end and the other end, and between the one end and the other end In a thermophysical property measuring apparatus, comprising: an ammeter for measuring a current value flowing through the voltmeter; and a voltmeter for measuring a voltage between the one end and the other end of the measurement object. When the potential difference ΔV A is applied between the one end and the other end by the power source when the length l to the other end and the cross-sectional area A orthogonal to the length direction are taken, the ammeter Using the current ΔI V (2) measured by the following equation, the electrical conductivity L 11 (2) is obtained from the following equation:
L 11 (2) = (l / A) (ΔI V (2) / ΔV A )
Using the voltage ΔV V measured by the voltmeter when the potential difference ΔV A is applied between the one end and the other end by the power source, and the current ΔI V (4) measured by the ammeter The electrical conductivity L 11 (4) is obtained from the following formula,
L 11 (4) = (l / A) (ΔI V (4) / ΔV V )
Using the electrical conductivity L 11 (2) and the electrical conductivity L 11 (4) , the contact resistance r is obtained from the following equation:
r = R (2) -R ( 4) = (1 / L 11 (2) -1 / L 11 (4)) (l / A)
Using the voltage value ΔI T (2) measured by the ammeter when the temperature difference ΔT is applied between the one end and the other end by the temperature difference generator, a thermoelectric coefficient is obtained from the following equation: Find L 12 (2)
L 12 (2) = (l / A) (ΔI T (2) / ΔT)
The thermoelectric coefficient L 12 (2) is corrected using the contact resistance r, and the thermoelectric coefficient L 12 (4) is obtained from the following equation:
L 12 (4) = {(R (4) + r) / R (4) } L 12 (2)
Using the electrical conductivity L 11 (4) and the thermoelectric coefficient L 12 (4) , the Seebeck coefficient S is obtained from the following equation.
S = L 12 (4) / L 11 (4)
Thermoelectric property measurement method.
更なる態様として、本発明は上記課題を解決するために以下のものを提供する。
(11)測定対象物の一端と他端との間に温度差ΔTを加えたときに前記一端と前記他端との間を流れる第2電流値ΔITを測定し、前記測定対象物の前記一端から前記他端までの長さをl、及び、前記長さ方向と直交する断面積をAとしたときに、熱電係数L12を、L12=(l/A)(ΔIT/ΔT)を用いて求める、熱電物性測定方法。
As a further aspect, the present invention provides the following to solve the above problems.
(11) a second current value [Delta] I T flowing between the end and the other end upon application of a temperature difference ΔT between the one end and the other end of the measurement object is measured, the said measurement object When the length from one end to the other end is 1 and the cross-sectional area orthogonal to the length direction is A, the thermoelectric coefficient L 12 is L 12 = (l / A) (ΔI T / ΔT) Thermoelectric properties measurement method obtained using
別の態様として、本発明は上記課題を解決するために以下のものを提供する。
(12)測定対象物の一端と他端との間に電位差を加える電源と、前記一端と前記他端との間に温度差を加える温度差発生部と、前記一端と前記他端との間を流れる電流値を測定する電流計と、前記測定対象物の前記一端と他端との間の電圧を測定する電圧計と、を備える物性想定装置において、前記測定対象物の前記一端から前記他端までの長さl、及び、前記長さ方向と直交する断面積Aとしたときに、前記電源により前記一端と前記他端との間に電位差ΔVAが加えられたときに前記電流計により測定された電流ΔIV (2)を用いて、以下の式より電気伝導率L11 (2)を求め、
L11 (2)=(l/A)(ΔIV (2)/ΔVA)
前記電源により前記一端と前記他端との間に前記電位差ΔVAが加えられたときに前記電圧計により測定された電圧ΔVVと、前記電流計により測定された電流ΔIV (4)を用いて、以下の式より電気伝導率L11 (4)を求め、
L11 (4)=(l/A)(ΔIV (4)/ΔVV)
前記電気伝導率L11 (2)と、前記電気伝導率L11 (4)とを用いて、以下の式より接触抵抗rを求め、
r=R(2)−R(4)=(1/L11 (2)−1/L11 (4))(l/A)
前記温度差発生部により前記一端と前記他端との間に前記温度差ΔTが加えられたときに前記電流計により測定された電圧値ΔIT (2)を用いて、以下の式より熱電係数L12 (2)を求め、
L12 (2)=(l/A)(ΔIT (2)/ΔT)
前記熱電係数L12 (2)を前記接触抵抗rを用いて補正して、以下の式より熱電係数L12 (4)を求める、
L12 (4)={(R(4)+r)/R(4)}L12 (2)
熱電物性測定方法。
As another aspect, the present invention provides the following in order to solve the above problems.
(12) A power source for applying a potential difference between one end and the other end of the measurement object, a temperature difference generating unit for applying a temperature difference between the one end and the other end, and between the one end and the other end In the physical property assumption apparatus comprising: an ammeter that measures a current value flowing through the voltmeter; and a voltmeter that measures a voltage between the one end and the other end of the measurement object; from the one end of the measurement object to the other When the potential difference ΔV A is applied between the one end and the other end by the power source when the length l to the end and the cross-sectional area A orthogonal to the length direction are set, the ammeter Using the measured current ΔI V (2) , the electrical conductivity L 11 (2) is obtained from the following equation:
L 11 (2) = (l / A) (ΔI V (2) / ΔV A )
Using the voltage ΔV V measured by the voltmeter when the potential difference ΔV A is applied between the one end and the other end by the power source, and the current ΔI V (4) measured by the ammeter The electrical conductivity L 11 (4) is obtained from the following formula,
L 11 (4) = (l / A) (ΔI V (4) / ΔV V )
Using the electrical conductivity L 11 (2) and the electrical conductivity L 11 (4) , the contact resistance r is obtained from the following equation:
r = R (2) -R ( 4) = (1 / L 11 (2) -1 / L 11 (4)) (l / A)
Using the voltage value ΔI T (2) measured by the ammeter when the temperature difference ΔT is applied between the one end and the other end by the temperature difference generator, a thermoelectric coefficient is obtained from the following equation: Find L 12 (2)
L 12 (2) = (l / A) (ΔI T (2) / ΔT)
The thermoelectric coefficient L 12 (2) is corrected using the contact resistance r, and the thermoelectric coefficient L 12 (4) is obtained from the following equation:
L 12 (4) = {(R (4) + r) / R (4) } L 12 (2)
Thermoelectric property measurement method.
本発明によれば、ゼーベック係数S、すなわち熱電物性をより高精度に求めることが可能な熱電物性測定装置及び熱電物性測定方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the thermoelectric property measuring apparatus and thermoelectric property measuring method which can obtain | require Seebeck coefficient S, ie, a thermoelectric property, with higher precision can be provided.
(第1実施形態)
(熱電物性測定装置1の説明)
図1は本発明の第1実施形態における熱電物性測定装置1を説明するブロック図である。本実施形態の熱電物性測定装置1は、熱電物性としてゼーベック係数Sを求める装置であり、図示するように、測定部10と演算部20とを備える。
(First embodiment)
(Description of thermoelectric property measuring apparatus 1)
FIG. 1 is a block diagram illustrating a thermoelectric
測定部10は、ゼーベック係数Sの測定対象物(以下、試料12という)を載置する試料載置部11と、試料載置部11に載置された試料12の一端12aと他端12bとを接続する第1回路C1とを備える。第1回路C1には、電流計13と、試料12の一端12aと電流計13との間に設けられた第1スイッチS1と、が配置されている。
The
第1回路C1における電流計13から第1スイッチS1側に延びる配線部分は、2方向に分岐している。分岐している一方には第1端子aが設けられ、分岐している他方には第2端子bが設けられ、第2端子bと電流計13との間には電源14が配置されている。
第1スイッチS1は、電流計13側において、第1端子aと第2端子bとの間でスイッチングが可能である。第1スイッチS1が第1端子a側に接続されると、第1回路C1は、試料12の一端12aから電源14を通らず、電流計13を通って他端12bへと接続される。第1スイッチS1が第2端子b側に接続されると、第1回路C1は、試料12の一端12aから電源14及び電流計13を通って他端12bへと接続される。
The wiring portion extending from the
The first switch S1 can be switched between the first terminal a and the second terminal b on the
また、測定部10は、試料12の一端12aと他端12bとを接続する第2回路C2を備え、第2回路C2には電圧計15と、試料の他端12bと電圧計15との間に設けられた第2スイッチS2と、が配置されている。
さらに測定部10は、試料12の一端12aと他端12bとの間に温度差を加える温度差発生部16も備える。
The
Furthermore, the
演算部20は、後に詳述するが、電源14により試料12の一端12aと他端12bとの間に電位差ΔVAが加えられたときに、電流計13により測定された一端12aと他端12bとの間を流れる第1電流値ΔIVと、温度差発生部16により試料12の一端12aと他端12bとの間に温度差ΔTが加えられたときに、電流計13により測定された一端12aと他端12bとの間を流れる第2電流値ΔITとを用いて、ゼーベック係数S等を求める演算を行う。
Calculating
(ゼーベック係数Sの演算方法)
一般的にゼーベック係数Sは、試料12の両端に温度差ΔTを与え、試料12の両端に発生した起電力Δvを測定し、以下の式(1)を用いて演算される。
S=Δv/ΔT・・・(1)
(Calculation method of Seebeck coefficient S)
In general, the Seebeck coefficient S is calculated using the following formula (1) by giving a temperature difference ΔT to both ends of the
S = Δv / ΔT (1)
しかし、本実施形態では、上記式(1)を用いたゼーベック係数Sの演算は行わない。以下、本実施形態によるゼーベック係数Sの求め方について説明する。 However, in this embodiment, the Seebeck coefficient S is not calculated using the above equation (1). Hereinafter, a method for obtaining the Seebeck coefficient S according to the present embodiment will be described.
図2は、第1実施形態によるゼーベック係数Sの求め方を示すフローチャートである。
〔1〕まず、試料載置部11に試料12を載置する(ステップS1)。
本実施形態において、ゼーベック係数Sの測定対象物である試料12は矩形であり、一端12aと他端12bとの間の長さl、その長さ方向と直交する方向の断面積Aが一定である。ただし、これに限らず、断面積Aが長さ方向において異なるものであってもゼーベック係数Sの演算は可能である。
FIG. 2 is a flowchart showing how to obtain the Seebeck coefficient S according to the first embodiment.
[1] First, the
In the present embodiment, the
〔2〕電気伝導率L11を求める(ステップS2)
電気伝導率L11は、物体に電位差を与えたときにどれだけ電流が流れやすいか(物質中における電気伝導のしやすさ)を表す物理量である。電気伝導率L11は試料12の両端に電位差ΔVAを与え、試料12に流れる電流値ΔIVを計測して、これらの値を用いて以下の式(2)より求められる。なお、この際、試料12の両端に温度差は与えなくても与えてもよい(ΔT=0)。
L11=(l/A)(ΔIV/ΔVA)・・・(2)
[2] determining the electrical conductivity L 11 (step S2)
Electrical conductivity L 11 is a physical quantity representing how much current easily flows (and ease of the electrical conduction in the material) when a potential difference to the object. Electrical conductivity L 11 is a potential difference [Delta] V A across the
L 11 = (l / A) (ΔI V / ΔV A ) (2)
ここで、電気伝導率L11を測定する際、測定方法によって、接触抵抗rの影響を含む場合と含まない場合とがある。本実施形態で接触抵抗rは、試料12と、第1回路C1及び第2回路C2を構成する配線とを接触させたときに、その接触部で生じる抵抗である。
ゼーベック係数Sをより高精度に演算するには、接触抵抗rの影響が排除された電気伝導率L11を求めることが必要である。
Here, when measuring the electrical conductivity L 11, by the measuring method, and a case may not include the effects of contact resistance r. In this embodiment, the contact resistance r is a resistance generated at the contact portion when the
In computing the Seebeck coefficient S with higher accuracy, it is necessary to determine the electrical conductivity of L 11 the influence of the contact resistance r was eliminated.
〔2−1〕2端子法により接触抵抗rの影響を含む電気伝導率L11 (2)を求める(ステップS2−1)。
2端子法による接触抵抗rの影響を含む電気伝導率L11 (2)は以下のように求める。
まず、第1スイッチS1を第2端子bに接続し、第2スイッチS2をOFFにする。電源14をONにして、ΔVAが第1回路C1に印加された状態にする。この状態で電流計13に流れる電流値ΔIV (2)を測定する。
演算部20には、試料12の長さl,試料12の断面積Aの情報が入力されている。演算部20は、これらの値と、上記のように測定された電流値ΔIV (2)を用いて、以下の式(2−1)を用いて電気伝導率L11 (2)を演算する。
L11 (2)=(l/A)(ΔIV (2)/ΔVA)・・・(2−1)
[2-1] The electric conductivity L 11 (2) including the influence of the contact resistance r is obtained by the two-terminal method (step S2-1).
The electric conductivity L 11 (2) including the influence of the contact resistance r by the two-terminal method is obtained as follows.
First, the first switch S1 is connected to the second terminal b, and the second switch S2 is turned OFF. The
Information on the length l of the
L 11 (2) = (l / A) (ΔI V (2) / ΔV A ) (2-1)
〔2−2〕4端子法により接触抵抗rの影響を含まない電気伝導率L11 (4)を求める(ステップS2−2)。
4端子法による接触抵抗rの影響を含まない電気伝導率L11 (4)は以下のように求める。
まず、第1スイッチS1を第2端子bに接続し、第2スイッチS2をONにする。電源14をONにして、ΔVAが第1回路C1に印加された状態にする。この状態で、電圧計15により電圧ΔVVを測定するとともに、電流計13により電流値ΔIV (4)を測定する。
[2-2] An electric conductivity L 11 (4) not including the influence of the contact resistance r is obtained by the four-terminal method (step S2-2).
The electric conductivity L 11 (4) not including the influence of the contact resistance r by the four-terminal method is obtained as follows.
First, the first switch S1 is connected to the second terminal b, and the second switch S2 is turned on. The
演算部20は、電気伝導率L11 (2)と同様に、上記のように測定された電圧ΔVVと電流値ΔIV (4)とを用いて、以下の式(2−2)により電気伝導率L11 (4)を演算する。
L11 (4)=(l/A)(ΔIV (4)/ΔVV)・・・(2−2)
なお、ステップS2−1とステップS2−2の順序は逆であってもよい。
Similar to the electrical conductivity L 11 (2) , the
L 11 (4) = (l / A) (ΔI V (4) / ΔV V ) (2-2)
Note that the order of step S2-1 and step S2-2 may be reversed.
〔3〕接触抵抗rを求める(ステップS4)
次に、演算部20は、以下の式(3)を用いて、2端子測定法により求めた電気伝導率L11 (2)と、4端子測定法により求めた電気伝導率L11 (4)とから、接触抵抗rを演算する。
r=R(2)−R(4)=(1/L11 (2)−1/L11 (4))(l/A)・・・(3)
[3] Obtain contact resistance r (step S4)
Next, the
r = R (2) -R (4) = (1 / L 11 (2) -1 / L 11 (4) ) (l / A) (3)
〔4〕熱電係数(熱電応答係数,熱電応答関数,熱電定数)L12を求める(ステップS4)
次に、演算部20は、熱電係数L12を求める。熱電係数L12は、物体に温度差を加えたときにどれだけ電流が流れやすいかを示す物理量である。熱電係数L12は試料12の両端には電位差を与えず(ΔVA=0)、温度差発生部16を用いて試料12の両端に温度差ΔTを与え、試料12に流れる電流値ΔITを計測して、以下の式(4)より求められる。
L12=(l/A)(ΔIT/ΔT)・・・(4)
[4] thermoelectric coefficient (thermoelectric response factor, thermoelectric response function, thermoelectric constants) determining the L 12 (step S4)
Next, the
L 12 = (l / A) (ΔI T / ΔT) (4)
ここでも熱電係数L12を測定する際、測定方法によって、接触抵抗rの影響を含む場合と含まない場合とがある。ゼーベック係数Sをより精度高く演算するには、接触抵抗rの影響を含まない熱電係数L12を求めることが必要である。 When measuring the thermoelectric coefficient L 12 Again, the measurement method, and a case may not include the effects of contact resistance r. To more accurately calculating the Seebeck coefficient S, it is necessary to determine the thermoelectric coefficient L 12 without the influence of the contact resistance r.
〔4−1〕2端子法により接触抵抗rの影響を含む熱電係数L12 (2)を求める(ステップS4−1)。
2端子法による熱電係数L12 (2)は以下のように求める。
試料12の両端に温度差ΔTを加える。
そして、第1スイッチS1を第1端子aに接続し、第2スイッチS2をOFFにする。この状態で電流計13に流れるΔIT (2)を測定する。
[4-1] The thermoelectric coefficient L 12 (2) including the influence of the contact resistance r is obtained by the two-terminal method (step S4-1).
The thermoelectric coefficient L 12 (2) by the two-terminal method is obtained as follows.
A temperature difference ΔT is added to both ends of the
Then, the first switch S1 is connected to the first terminal a, and the second switch S2 is turned OFF. In this state, ΔI T (2) flowing through the
次いで、演算部20は、以下の式(4−1)を用いて熱電係数L12 (2)を演算する。
L12 (2)=(l/A)(ΔIT (2)/ΔT)・・・(4−1)
Then, the
L 12 (2) = (l / A) (ΔI T (2) / ΔT) ··· (4-1)
〔4−2〕接触抵抗の影響を含まない熱電係数L12 (4)の算出(ステップS4−2)
上記のように求めた接触抵抗rを用いて熱電係数L12 (2)を以下の式(4−2)により補正し、接触抵抗rの影響を含まない熱電係数L12 (4)を求める。
L12 (4)={(R(4)+r)/R(4)}L12 (2)・・・(4−2)
[4-2] Calculation of thermoelectric coefficient L 12 (4) not including the influence of contact resistance (step S4-2)
The thermoelectric coefficient L 12 (2) is corrected by the following equation (4-2) using the contact resistance r obtained as described above, and the thermoelectric coefficient L 12 (4) not including the influence of the contact resistance r is obtained.
L 12 (4) = {(R (4) + r) / R (4) } L 12 (2) (4-2)
〔5〕ゼーベック係数Sの算出(ステップS5)
次いで、上述のように求めた電気伝導率L11 (4)と、熱電係数L12 (4)を用いて、演算部20は、以下の式(5)よりゼーベック係数Sを求める。
S=L12 (4)/L11 (4)・・・(5)
また、演算部20は、単位温度当たりの発電電力であるパワーファクターPFも以下の式(6)により上述のように求めた電気伝導率L11 (4)と、熱電係数L12 (4)を用いて求めることができる。
PF=(L12 (4))2/L11 (4)・・・(6)
[5] Calculation of Seebeck coefficient S (step S5)
Next, using the electrical conductivity L 11 (4) and the thermoelectric coefficient L 12 (4) determined as described above, the
S = L 12 (4) / L 11 (4) (5)
The
PF = (L 12 (4) ) 2 / L 11 (4) (6)
なお、本測定は、
J=L11×E+L12(−dT/dx)・・・(7)
が成立する範囲で可能となる。Jは電流密度、Eは電界、lは試料12の長さである。式(7)が成り立つためには、dT/dlを大きくし過ぎないことが重要である。dT/dlが大きいとJ−Eカーブに非線形性が現れるからである。また、式(7)が成り立たない状況になった場合は、J−Eカーブの線型性を確認することで測定に問題がなかったかを確認することができる。なお、dT/dxは、試料12の長さ方向の温度勾配を示す。
This measurement is
J = L 11 × E + L 12 (−dT / dx) (7)
This is possible as long as J is the current density, E is the electric field, and l is the length of the
(第2実施形態)
第1実施形態では、接触抵抗rの影響を考慮してゼーベック係数Sを求めた。しかし、接触抵抗rは上述のように影響が軽微であるので、接触抵抗rを無視することもできる。図3は、第2実施形態によるゼーベック係数Sの求め方を示すフローチャートである。
第2実施形態の熱電物性測定装置は、第1実施形態の第1回路C1のみの構成で、2点測定のみを行う。各部については第1実施形態と同様であるので同様の符号を付して説明を省略する。
(Second Embodiment)
In the first embodiment, the Seebeck coefficient S is obtained in consideration of the influence of the contact resistance r. However, since the influence of the contact resistance r is slight as described above, the contact resistance r can be ignored. FIG. 3 is a flowchart showing how to obtain the Seebeck coefficient S according to the second embodiment.
The thermoelectric property measuring apparatus of the second embodiment performs only two-point measurement with the configuration of only the first circuit C1 of the first embodiment. Since each part is the same as that of the first embodiment, the same reference numerals are given and description thereof is omitted.
〔1〕まず、試料載置部11に試料12を載置する(ステップS21)。
〔2〕電気伝導率L11を求める(ステップS22)
第1スイッチS1を第2端子bに接続する。電源14をONにして、ΔVが第1回路C1に印加された状態にする。この状態で電流計13に流れる電流値ΔIVを測定する。演算部20は、この電流値ΔIVを用いて、以下の式(2)により電気伝導率L11を演算する。
L11=(l/A)(ΔIV/ΔV)・・・(2)
[1] First, the
[2] determining the electrical conductivity L 11 (step S22)
The first switch S1 is connected to the second terminal b. The
L 11 = (l / A) (ΔI V / ΔV) (2)
〔3〕熱電係数L12を求める(ステップS23)
次に、熱電係数L12を求める。熱電係数L12は試料12の両端には電位差を与えず(ΔV=0)、温度差発生部16を用いて試料12の両端に温度差ΔTを与え、試料12に流れる電流値ΔITを測定する。演算部20は、この電流値ΔITを用いて、以下の式(4)により熱電係数L12を演算する。
L12=(l/A)(ΔIT/ΔT)・・・(4)
[3] obtaining a thermoelectric coefficient L 12 (step S23)
Next, determine the thermoelectric coefficient L 12. Thermoelectric coefficient L 12 is not providing a potential difference at both ends of the sample 12 ([Delta] V = 0), giving a temperature difference ΔT across the
L 12 = (l / A) (ΔI T / ΔT) (4)
〔4〕ゼーベック係数Sの算出(ステップS24)
次いで、上述のように求めた電気伝導率L11と、熱電係数L12を用いて、演算部20は、以下の式よりゼーベック係数Sを求める。
S=L12/L11・・・(5)
なお、式(5)に式(2)、(4)を代入すると以下のようになる。
S=(ΔIT・ΔV)/(ΔIV・ΔT)・・・(5−2)
したがって、演算部20は、電気伝導率L11と、熱電係数L12とを演算せずに、電流値ΔIVと電流値ΔITとから直接、ゼーベック係数Sを求めることができる。
さらに、演算部20は、第1実施形態と同様に上述のように求めた電気伝導率L11と熱電係数L12を用いて、パワーファクターPFも以下の式(6)により求めることができる。
PF=(L12)2/L11・・・(6)
[4] Calculation of Seebeck coefficient S (step S24)
Next, using the electrical conductivity L 11 and the thermoelectric coefficient L 12 obtained as described above, the
S = L 12 / L 11 (5)
It should be noted that substituting equations (2) and (4) into equation (5) yields the following.
S = (ΔI T · ΔV) / (ΔI V · ΔT) (5-2)
Therefore, the
Further, the
PF = (L 12 ) 2 / L 11 (6)
(実施形態の効果)
[1]上述のように、従来、ゼーベック係数Sは、電圧計により測定された起電力Δvを用いて式(1)S=Δv/ΔTにより求められている。
しかし、本実施形態によると、上述のようにゼーベック係数Sは式(5)S=L12/L11又は式(5−2)S=(ΔIT・ΔV)/(ΔIV・ΔT)のように表される。
ここで、例えば、後述の、Keysight社製B2911A、プレシジョンソース/メジャーユニットの場合、電流計としての最小測定分解能が10fA、電圧計としての最小測定分解能は100nVである。
したがって、ノイズ対策などが適切に行われていれば、式(5−2)により、測定した電流値を用いて演算したゼーベック係数Sの制度は、従来の式(1)により、測定した電圧値で求めたゼーベック係数Sに比べて電流測定のほうが107倍の精度が保障される。
ゆえに(1)式のようにゼーベック係数Sを求める際に直接的に用いられる値に電圧計によって計測されたΔvを用いる場合と比べて、本実施形態によると、高精度でゼーベック係数を求めることができる。
(Effect of embodiment)
[1] As described above, conventionally, the Seebeck coefficient S is obtained by the equation (1) S = Δv / ΔT using the electromotive force Δv measured by a voltmeter.
However, according to the present embodiment, as described above, the Seebeck coefficient S is expressed by the equation (5) S = L 12 / L 11 or the equation (5-2) S = (ΔI T · ΔV) / (ΔI V · ΔT). It is expressed as follows.
Here, for example, in the case of B2911A, Precision Source / Measure Unit, which will be described later, the minimum measurement resolution as an ammeter is 10 fA, and the minimum measurement resolution as a voltmeter is 100 nV.
Therefore, if measures against noise or the like are appropriately performed, the system of the Seebeck coefficient S calculated using the measured current value according to the equation (5-2) is the voltage value measured according to the conventional equation (1). towards the current measurement in compared to Seebeck coefficient S obtained are guaranteed 107 times more accurate.
Therefore, according to the present embodiment, the Seebeck coefficient can be obtained with high accuracy as compared with the case where Δv measured by the voltmeter is used as a value directly used when obtaining the Seebeck coefficient S as shown in equation (1). Can do.
なお、第1実施形態において、L11 (4)を求める際に、以下の式、
L11 (4)=(l/A)(ΔIV (4)/ΔVV)・・・(2−2)
に示すように電圧計15の測定値であるΔVVを用いている。しかし、L11 (4)は、接触抵抗rを求める以下の式、
r=R(2)−R(4)=(1/L11 (2)−1/L11 (4))(l/A)
に代入するために用いるものである。
接触抵抗rは以下の式、
L12 (4)={(R(4)+r)/R(4)}L12 (2)・・・(4−2)
においてL12 (4)を求める精度を向上させるために用いるものであるが、接触抵抗rは、4端子法で求めた試料12の抵抗値R(4)と比べて非常に小さいので、式(4−2)における接触抵抗rの影響は、そもそも大きくない。
本実施形態では、より高精度にゼーベック係数Sを求めるために、接触抵抗rの影響を考慮したものであり、影響が小さい接触抵抗rを求める際に用いる電圧計15の測定値であるΔVVに多少の誤差が含まれていても、ゼーベック係数Sの測定に対する影響は、上記式(1)とくらべると非常に小さい。
したがって、上記式(1)を用いる場合と比べてゼーベック係数Sを高精度に求めることができる。
In the first embodiment, when calculating L 11 (4) , the following equation:
L 11 (4) = (l / A) (ΔI V (4) / ΔV V ) (2-2)
As shown in FIG. 6, ΔV V which is a measured value of the
r = R (2) -R ( 4) = (1 / L 11 (2) -1 / L 11 (4)) (l / A)
Is used to assign to.
The contact resistance r is the following formula:
L 12 (4) = {(R (4) + r) / R (4) } L 12 (2) (4-2)
Since the L 12 but is intended to be used to improve the accuracy for obtaining the (4), the contact resistance r is very small compared to the resistance of
In this embodiment, in order to obtain the Seebeck coefficient S with higher accuracy, the influence of the contact resistance r is taken into consideration, and ΔV V which is a measured value of the
Therefore, the Seebeck coefficient S can be determined with higher accuracy than in the case of using the equation (1).
また、ゼーベック係数Sの測定精度が向上することにより、ゼーベック係数の分解能が向上するので、例えば1つの資料における面内のゼーベック係数の分布等を測定することも可能となる。 Further, since the resolution of the Seebeck coefficient S is improved by improving the measurement accuracy of the Seebeck coefficient S, it is possible to measure, for example, the distribution of the Seebeck coefficient in a plane in one material.
[2]本実施形態によると、熱電係数L12も電圧計による計測値を用いずに求めることができる。したがって、本実施形態によると熱電係数L12も高精度で求めることができる。 [2] According to the present embodiment can be obtained thermoelectric coefficient L 12 also without using the measurement value measured by the voltmeter. Therefore, according to this embodiment can be obtained thermoelectric coefficient L 12 also accurate.
[3]さらに、ゼーベック係数Sだけでなく、熱電材料のパワーファクターPFの高精度化も可能となる。 [3] Furthermore, not only the Seebeck coefficient S but also the power factor PF of the thermoelectric material can be made highly accurate.
以下、第2実施形態の熱電物性測定装置1を用いて実際に熱電物性を測定した実施例について説明する。実施例の熱電物性測定装置1は、電流計13及び電源部14として、Keysight社製B2911A、プレシジョンソース/メジャーユニットを用いた。このユニットは一台で2端子測定と4端子測定を切り替えて測定可能である。このユニットの性能を以下に示す。
最小電源分解能:10fA/100nV
最小測定分解能:10fA/100nV
最大出力:210V、3A DC/10.5 Aパルス
また、温度差発生部16は温度調節器による加熱制御(Th)と水冷による室温での一定温度制御(Tc)とが可能である。熱電物性を測定する試料としての熱電材料は、2×2×11.6mmのMg2Siを用いた。
Hereinafter, examples of actually measuring thermoelectric properties using the thermoelectric
Minimum power resolution: 10 fA / 100 nV
Minimum measurement resolution: 10 fA / 100 nV
Maximum output: 210 V, 3 A DC / 10.5 A pulse In addition, the
熱電物性測定装置1を用いた熱電物性の測定は、以下のように行った。
試料載置部11に試料12を載置し、第1スイッチS1を第2端子bに接続し、電源14をONにして、第1回路C1に電位差VAを印加しつつ温度差発生部16を用いて試料12の両端に温度差ΔTを与えた。
なお、実施例では、温度差ΔTを一定にして電位差ΔVAを変更して電流値ΔIを測定した。一定にする温度差ΔTは、2,3,4,5,6,7,8,9Kの8段階である。測定結果を図4に示す。
The thermoelectric property measurement using the thermoelectric
The
In the embodiment, to measure the current value ΔI by changing the potential difference [Delta] V A to the temperature difference ΔT constant. The temperature difference ΔT to be constant is 8 steps of 2, 3, 4, 5, 6, 7, 8, 9K. The measurement results are shown in FIG.
図示するように、温度差ΔTにかかわらず、ΔI−ΔVA直線の傾きは略一定であるが、温度差ΔTが大きくなるに従い、ΔI−ΔVA直線は図中下方に平行移動し、すなわちy切片(ΔI切片、ΔVA=0のときのΔI)が小さくなっている。 As shown in the figure, the slope of the ΔI−ΔV A straight line is substantially constant regardless of the temperature difference ΔT, but as the temperature difference ΔT increases, the ΔI−ΔV A straight line translates downward in the figure, ie, y The intercept (ΔI intercept, ΔI when ΔV A = 0) is small.
上述のように、L11とL12は式(2)L11=(l/A)(ΔIV/ΔV)、式(4)L12=(l/A)(ΔIT/ΔT)で表されるので、それぞれの温度差ΔTにおいて図4のグラフの傾きからL11、y切片からL12を算出した。その結果を図5に示す。なお、式(2)、(4)におけるΔIV及びΔITは、実施例においては、同時に測定し、ΔIで表す。 As described above, L 11 and L 12 are expressed by Expression (2) L 11 = (l / A) (ΔI V / ΔV) and Expression (4) L 12 = (l / A) (ΔI T / ΔT). Therefore, L 11 was calculated from the slope of the graph of FIG. 4 and L 12 was calculated from the y-intercept at each temperature difference ΔT. The result is shown in FIG. Incidentally, formula (2), [Delta] V and [Delta] I T is in (4), in the embodiment, simultaneously measured, expressed in [Delta] I.
図6は、図5のL11及びL12の値より、ゼーベック係数Sを求めた結果である。図6(a)の横軸は温度差ΔT、図6(b)の横軸は平均温度である。(a)及び(b)において、同様の結果となる。
なお、実施例では試料12の低温部を18.7℃の室温にクランプし、ヒーター側を加熱制御することで温度差ΔTを発生させている。また、平均温度は、例えばΔT=2℃のときは、(18.7+20.7)/2+273.15=292.85Kとなる。
FIG. 6 shows the result of obtaining the Seebeck coefficient S from the values of L 11 and L 12 in FIG. The horizontal axis in FIG. 6A is the temperature difference ΔT, and the horizontal axis in FIG. 6B is the average temperature. Similar results are obtained in (a) and (b).
In the embodiment, the temperature difference ΔT is generated by clamping the low temperature portion of the
図6に示すように、平均温度が293〜296K程度の付近では、実施例のゼーベック係数Sは−350〜−325μV/K程度であった。 As shown in FIG. 6, in the vicinity of the average temperature of about 293 to 296K, the Seebeck coefficient S of the example was about −350 to −325 μV / K.
なお、測定データに直線回帰処理を施すことで精度の向上がさらに可能になる。
図7はI−VAグラフのデータを直線回帰によってフィッティングしたものであり、(a)はΔTが2Kの場合、(b)はΔTが0.4Kの場合である。
図示するように、データ点にはノイズなどのバラつきが生じる、さらに式(4)L12=(l/A)(ΔIT/ΔT)で表されるL12は、温度差ΔTが小さくなるについて、y切片付近でのΔITの変化も小さくなるので、L12の高精度の算出が困難になってくる。
このような場合に、直線回帰処理をすることで、y切片や傾きの精度を向上することができる。一般的に誤差(ERR)については、ERR∝1/√(測定回数)の関係がある。例えば、2500点測定した場合、点数があるので、y切片1点を計測した場合に比べて50倍の精度を得ることができる。
The accuracy can be further improved by performing linear regression processing on the measurement data.
7A and 7B are obtained by fitting the data of the I-V A graph by linear regression. FIG. 7A shows the case where ΔT is 2K, and FIG. 7B shows the case where ΔT is 0.4K.
As shown in the figure, the data point has variations such as noise. Further, L 12 expressed by the equation (4) L12 = (l / A) (ΔI T / ΔT) has a small temperature difference ΔT. since the change of [Delta] I T is also reduced in the vicinity of the y-intercept, accurate calculation of L 12 it becomes difficult.
In such a case, the accuracy of the y-intercept and inclination can be improved by performing linear regression processing. In general, the error (ERR) has a relationship of ERR∝1 / √ (number of measurements). For example, when 2500 points are measured, there are points, so that it is possible to obtain 50 times the accuracy compared to the case where one y-intercept is measured.
従来のゼーベック係数評価装置も平均化処理は行うが、ある温度差に対して得られる電圧は1つであり、この測定を複数回繰り返すことで精度を上げている。したがって2500回の測定点よりも少ない回数で行うことが一般的である。
実施例では、ある温度差に対して、印加電界を変化させながら各々の電界下における電流密度の計測を2500点行った。なお、実施例ではこの2500点の計測を1回行っているが、2500点の測定を複数回行うことでさらに精度を向上することができる。また、計測点数は計器の設定上の問題なので、より点数を多くとれる測定器や複数台の測定器の活用によっても精度は向上可能である。
ちなみに直線回帰処理の際に得られる標準誤差が本測定の精度となるが、その標準誤差は、以下の結果のようになっている。なお、実施例では、2500回測定を行っている。
In the example, for a certain temperature difference, 2500 points of current density were measured under each electric field while changing the applied electric field. In the embodiment, the measurement at 2500 points is performed once, but the accuracy can be further improved by performing the measurement at 2500 points a plurality of times. In addition, since the number of measurement points is a problem in the setting of the instrument, the accuracy can be improved by utilizing a measuring instrument that can obtain more points or a plurality of measuring instruments.
Incidentally, the standard error obtained during the linear regression process is the accuracy of this measurement. The standard error is as shown in the following results. In the example, the measurement is performed 2500 times.
このように、本実施例によると、I−V直線の傾きaの標準誤差が10−5のオーダ、I切片(V=0)bの標準誤差が10−8のオーダであり、0.4Kという小さな温度差であったとしても、標準誤差が極めて小さくなっており、傾きaやI切片bを高精度に求めることができた。 Thus, according to this embodiment, the standard error of the slope a of the IV line is on the order of 10 −5 , the standard error of the I intercept (V = 0) b is on the order of 10 −8 , and 0.4K Even with such a small temperature difference, the standard error was extremely small, and the slope a and I intercept b could be obtained with high accuracy.
1 熱電物性測定装置
10 測定部
11 試料載置部
12 試料
12a 一端
12b 他端
13 電流計
14 電源
15 電圧計
16 温度差発生部
20 演算部
C1 第1回路
C2 第2回路
a 端子
b 端子
r 接触抵抗
DESCRIPTION OF
Claims (12)
前記一端と前記他端との間に温度差を加える温度差発生部と、
前記一端と前記他端との間を流れる電流値を測定する電流計と、
前記電源により前記一端と前記他端との間に前記電位差を加えたときに、前記電流計により測定された第1電流値、及び、前記温度差発生部により前記一端と前記他端との間に温度差を加えたときに、前記電流計により測定された第2電流値、を用いてゼーベック係数を求める演算部と、
を備える熱電物性測定装置。 A power source for applying a potential difference between one end and the other end of the measurement object;
A temperature difference generator for adding a temperature difference between the one end and the other end;
An ammeter for measuring a current value flowing between the one end and the other end;
When the potential difference is applied between the one end and the other end by the power source, the first current value measured by the ammeter and between the one end and the other end by the temperature difference generator A calculation unit for obtaining a Seebeck coefficient using a second current value measured by the ammeter when a temperature difference is added to
Thermoelectric property measuring apparatus comprising:
前記第1電流値をΔIV、
前記第2電流値をΔIT、
前記電源により前記一端と前記他端との間に加えた電位差をΔVA、及び、
前記温度差発生部により前記一端と前記他端との間に加えた温度差をΔT、としたときに、
前記ゼーベック係数Sを、S=(ΔIT・ΔVA)/(ΔIV・ΔT)を用いて求める、
請求項1に記載の熱電物性測定装置。 The computing unit is
ΔI V , the first current value,
ΔI T , the second current value,
The potential difference applied between the one end and the other end by the power source is ΔV A , and
When the temperature difference applied between the one end and the other end by the temperature difference generator is ΔT,
The Seebeck coefficient S is determined using S = (ΔI T · ΔV A ) / (ΔI V · ΔT).
The thermoelectric property measuring apparatus according to claim 1.
前記第1電流値をΔIV、
前記第2電流値をΔIT、
前記電源により前記一端と前記他端との間に加えた電位差をΔVA、
前記温度差発生部により前記一端と前記他端との間に加えた温度差をΔT、
前記測定対象物の前記一端から前記他端までの長さをl、及び、前記長さ方向と直交する断面積をAとしたときに、
電気伝導率L11を、L11=(l/A)×(ΔIV/ΔVA)を用いて求め、
熱電係数L12を、L12=(l/A)(ΔIT/ΔT)を用いて求め、
前記電気伝導率L11、及び前記熱電係数L12を用いて、前記ゼーベック係数Sを、S=L12/L11を用いて求める、
請求項1に記載の熱電物性測定装置。 The computing unit is
ΔI V , the first current value,
ΔI T , the second current value,
A potential difference applied between the one end and the other end by the power source is expressed as ΔV A ,
The temperature difference applied between the one end and the other end by the temperature difference generator is ΔT,
When the length from the one end to the other end of the measurement object is l, and the cross-sectional area perpendicular to the length direction is A,
The electrical conductivity L 11 is determined using L 11 = (l / A) × (ΔI V / ΔV A ),
The thermoelectric coefficient L 12 is determined using L 12 = (l / A) (ΔI T / ΔT),
Using the electrical conductivity L 11 and the thermoelectric coefficient L 12 , the Seebeck coefficient S is determined using S = L 12 / L 11 .
The thermoelectric property measuring apparatus according to claim 1.
前記測定対象物の前記一端から前記他端までの長さをl、及び、前記長さ方向と直交する断面積をAとしたときに、
前記電源により前記一端と前記他端との間に電位差ΔVAが加えられたときに前記電流計により測定された電流ΔIV (2)を用いて、以下の式より電気伝導率L11 (2)を求め、
L11 (2)=(l/A)(ΔIV (2)/ΔVA)
前記電源により前記一端と前記他端との間に前記電位差ΔVAが加えられたときに前記電圧計により測定された電圧ΔVVと、前記電流計により測定された電流ΔIV (4)を用いて、以下の式より電気伝導率L11 (4)を求め、
L11 (4)=(l/A)(ΔIV (4)/ΔVV)
前記電気伝導率L11 (2)と、前記電気伝導率L11 (4)とを用いて、以下の式より接触抵抗rを求め、
r=R(2)−R(4)=(1/L11 (2)−1/L11 (4))(l/A)
前記温度差発生部により前記一端と前記他端との間に前記温度差ΔTが加えられたときに前記電流計により測定された電圧値ΔIT (2)を用いて、以下の式より熱電係数L12 (2)を求め、
L12 (2)=(l/A)(ΔIT (2)/ΔT)
前記熱電係数L12 (2)を前記接触抵抗rを用いて補正して、以下の式より熱電係数L12 (4)を求め、
L12 (4)={(R(4)+r)/R(4)}L12 (2)
前記電気伝導率L11 (4)と前記熱電係数L12 (4)を用いて、以下の式よりゼーベック係数Sを求める、
S=L12 (4)/L11 (4)
請求項1に記載の熱電物性測定装置。 A voltmeter for measuring a voltage between the one end and the other end of the measurement object;
When the length from the one end to the other end of the measurement object is l, and the cross-sectional area perpendicular to the length direction is A,
Using the current ΔI V (2) measured by the ammeter when a potential difference ΔV A is applied between the one end and the other end by the power source, the electrical conductivity L 11 (2 )
L 11 (2) = (l / A) (ΔI V (2) / ΔV A )
Using the voltage ΔV V measured by the voltmeter when the potential difference ΔV A is applied between the one end and the other end by the power source, and the current ΔI V (4) measured by the ammeter The electrical conductivity L 11 (4) is obtained from the following formula,
L 11 (4) = (l / A) (ΔI V (4) / ΔV V )
Using the electrical conductivity L 11 (2) and the electrical conductivity L 11 (4) , the contact resistance r is obtained from the following equation:
r = R (2) -R ( 4) = (1 / L 11 (2) -1 / L 11 (4)) (l / A)
Using the voltage value ΔI T (2) measured by the ammeter when the temperature difference ΔT is applied between the one end and the other end by the temperature difference generator, a thermoelectric coefficient is obtained from the following equation: Find L 12 (2)
L 12 (2) = (l / A) (ΔI T (2) / ΔT)
The thermoelectric coefficient L 12 (2) is corrected using the contact resistance r, and the thermoelectric coefficient L 12 (4) is obtained from the following equation:
L 12 (4) = {(R (4) + r) / R (4) } L 12 (2)
Using the electrical conductivity L 11 (4) and the thermoelectric coefficient L 12 (4) , the Seebeck coefficient S is obtained from the following equation.
S = L 12 (4) / L 11 (4)
The thermoelectric property measuring apparatus according to claim 1.
前記一端と前記他端との間を流れる電流値を測定する電流計と、
演算部と、を備え、
前記演算部は、
前記温度差発生部により前記一端と前記他端との間に温度差を加えたときに、前記電流計により測定された第2電流値をΔIT、
前記温度差発生部により前記一端と前記他端との間に加えた温度差をΔT、
前記測定対象物の前記一端から前記他端までの長さをl、及び、前記長さ方向と直交する断面積をAとしたときに、
熱電係数L12を、L12=(l/A)(ΔIT/ΔT)を用いて求める、
熱電物性測定装置。 A temperature difference generator that adds a temperature difference between one end and the other end of the measurement object;
An ammeter for measuring a current value flowing between the one end and the other end;
An arithmetic unit,
The computing unit is
When a temperature difference is applied between the one end and the other end by the temperature difference generating unit, a second current value measured by the ammeter is expressed as ΔI T ,
The temperature difference applied between the one end and the other end by the temperature difference generator is ΔT,
When the length from the one end to the other end of the measurement object is l, and the cross-sectional area perpendicular to the length direction is A,
The thermoelectric coefficient L 12 is determined using L 12 = (l / A) (ΔI T / ΔT).
Thermoelectric property measuring device.
前記一端と前記他端との間に温度差を加える温度差発生部と、
前記一端と前記他端との間を流れる電流値を測定する電流計と、
前記測定対象物の前記一端と他端との間の電圧を測定する電圧計と、
演算部と、を備え、
前記演算部は、
前記測定対象物の前記一端から前記他端までの長さl、及び、前記長さ方向と直交する断面積Aとしたときに、
前記電源により前記一端と前記他端との間に電位差ΔVAが加えられたときに前記電流計により測定された電流ΔIV (2)を用いて、以下の式より電気伝導率L11 (2)を求め、
L11 (2)=(l/A)(ΔIV (2)/ΔVA)
前記電源により前記一端と前記他端との間に前記電位差ΔVAが加えられたときに前記電圧計により測定された電圧ΔVVと、前記電流計により測定された電流ΔIV (4)を用いて、以下の式より電気伝導率L11 (4)を求め、
L11 (4)=(l/A)(ΔIV (4)/ΔVV)
前記電気伝導率L11 (2)と、前記電気伝導率L11 (4)とを用いて、以下の式より接触抵抗rを求め、
r=R(2)−R(4)=(1/L11 (2)−1/L11 (4))(l/A)
前記温度差発生部により前記一端と前記他端との間に前記温度差ΔTが加えられたときに前記電流計により測定された電圧値ΔIT (2)を用いて、以下の式より熱電係数L12 (2)を求め、
L12 (2)=(l/A)(ΔIT (2)/ΔT)
前記熱電係数L12 (2)を前記接触抵抗rを用いて補正して、以下の式より熱電係数L12 (4)を求める、
L12 (4)={(R(4)+r)/R(4)}L12 (2)
熱電物性測定装置。 A power source for applying a potential difference between one end and the other end of the measurement object;
A temperature difference generator for adding a temperature difference between the one end and the other end;
An ammeter for measuring a current value flowing between the one end and the other end;
A voltmeter for measuring a voltage between the one end and the other end of the measurement object;
An arithmetic unit,
The computing unit is
When the length l from the one end to the other end of the measurement object and the cross-sectional area A orthogonal to the length direction,
Using the current ΔI V (2) measured by the ammeter when a potential difference ΔV A is applied between the one end and the other end by the power source, the electrical conductivity L 11 (2 )
L 11 (2) = (l / A) (ΔI V (2) / ΔV A )
Using the voltage ΔV V measured by the voltmeter when the potential difference ΔV A is applied between the one end and the other end by the power source, and the current ΔI V (4) measured by the ammeter The electrical conductivity L 11 (4) is obtained from the following formula,
L 11 (4) = (l / A) (ΔI V (4) / ΔV V )
Using the electrical conductivity L 11 (2) and the electrical conductivity L 11 (4) , the contact resistance r is obtained from the following equation:
r = R (2) -R ( 4) = (1 / L 11 (2) -1 / L 11 (4)) (l / A)
Using the voltage value ΔI T (2) measured by the ammeter when the temperature difference ΔT is applied between the one end and the other end by the temperature difference generator, a thermoelectric coefficient is obtained from the following equation: Find L 12 (2)
L 12 (2) = (l / A) (ΔI T (2) / ΔT)
The thermoelectric coefficient L 12 (2) is corrected using the contact resistance r, and the thermoelectric coefficient L 12 (4) is obtained from the following equation:
L 12 (4) = {(R (4) + r) / R (4) } L 12 (2)
Thermoelectric property measuring device.
前記一端と前記他端との間に温度差を加えたときに前記一端と前記他端との間を流れる第2電流値を測定し、
前記第1電流値と前記第2電流値を用いてゼーベック係数を求める熱電物性測定方法。 Measuring a first current value flowing between the one end and the other end when a potential difference is applied between the one end and the other end of the measurement object;
Measuring a second current value flowing between the one end and the other end when a temperature difference is applied between the one end and the other end;
A thermoelectric property measuring method for obtaining a Seebeck coefficient using the first current value and the second current value.
前記第2電流値をΔIT、
前記一端と前記他端との間に加えた電位差をΔVA、及び、
前記一端と前記他端との間に加えた温度差をΔT、としたときに、
前記ゼーベック係数Sを、S=(ΔIT・ΔVA)/(ΔIV・ΔT)を用いて求める、
請求項7に記載の熱電物性測定方法。 ΔI V , the first current value,
ΔI T , the second current value,
A potential difference applied between the one end and the other end is expressed as ΔV A , and
When the temperature difference applied between the one end and the other end is ΔT,
The Seebeck coefficient S is determined using S = (ΔI T · ΔV A ) / (ΔI V · ΔT).
The thermoelectric property measuring method according to claim 7.
前記第2電流値をΔIT、
前記一端と前記他端との間に加えた電位差をΔVA、
前記一端と前記他端との間に加えた温度差をΔT、
前記測定対象物の前記一端から前記他端までの長さをl、及び、前記長さ方向と直交する断面積をAとしたときに、
電気伝導率L11を、L11=(l/A)(ΔIV/ΔVA)を用いて求め、
熱電係数L12を、L12=(l/A)(ΔIT/ΔT)を用いて求め、
前記電気伝導率L11、及び、前記熱電係数L12を用いて、前記ゼーベック係数Sを、S=L12/L11を用いて求める、
請求項7に記載の熱電物性測定方法。 ΔI V , the first current value,
ΔI T , the second current value,
A potential difference applied between the one end and the other end is expressed as ΔV A ,
ΔT, the temperature difference applied between the one end and the other end
When the length from the one end to the other end of the measurement object is l, and the cross-sectional area perpendicular to the length direction is A,
The electrical conductivity L 11 is determined using L 11 = (l / A) (ΔI V / ΔV A ),
The thermoelectric coefficient L 12 is determined using L 12 = (l / A) (ΔI T / ΔT),
Using the electrical conductivity L 11 and the thermoelectric coefficient L 12 , the Seebeck coefficient S is determined using S = L 12 / L 11 .
The thermoelectric property measuring method according to claim 7.
前記一端と前記他端との間に温度差を加える温度差発生部と、
前記一端と前記他端との間を流れる電流値を測定する電流計と、
前記測定対象物の前記一端と他端との間の電圧を測定する電圧計と、
を備える熱物性測定装置において、
前記測定対象物の前記一端から前記他端までの長さl、及び、前記長さ方向と直交する断面積Aとしたときに、
前記電源により前記一端と前記他端との間に電位差ΔVAが加えられたときに前記電流計により測定された電流ΔIV (2)を用いて、以下の式より電気伝導率L11 (2)を求め、
L11 (2)=(l/A)(ΔIV (2)/ΔVA)
前記電源により前記一端と前記他端との間に前記電位差ΔVAが加えられたときに前記電圧計により測定された電圧ΔVVと、前記電流計により測定された電流ΔIV (4)を用いて、以下の式より電気伝導率L11 (4)を求め、
L11 (4)=(l/A)(ΔIV (4)/ΔVV)
前記電気伝導率L11 (2)と、前記電気伝導率L11 (4)とを用いて、以下の式より接触抵抗rを求め、
r=R(2)−R(4)=(1/L11 (2)−1/L11 (4))(l/A)
前記温度差発生部により前記一端と前記他端との間に前記温度差ΔTが加えられたときに前記電流計により測定された電圧値ΔIT (2)を用いて、以下の式より熱電係数L12 (2)を求め、
L12 (2)=(l/A)(ΔIT (2)/ΔT)
前記熱電係数L12 (2)を前記接触抵抗rを用いて補正して、以下の式より熱電係数L12 (4)を求め、
L12 (4)={(R(4)+r)/R(4)}L12 (2)
前記電気伝導率L11 (4)と前記熱電係数L12 (4)を用いて、以下の式よりゼーベック係数Sを求める、
S=L12 (4)/L11 (4)
熱電物性測定方法。 A power source for applying a potential difference between one end and the other end of the measurement object;
A temperature difference generator for adding a temperature difference between the one end and the other end;
An ammeter for measuring a current value flowing between the one end and the other end;
A voltmeter for measuring a voltage between the one end and the other end of the measurement object;
In a thermophysical property measuring apparatus comprising:
When the length l from the one end to the other end of the measurement object and the cross-sectional area A orthogonal to the length direction,
Using the current ΔI V (2) measured by the ammeter when a potential difference ΔV A is applied between the one end and the other end by the power source, the electrical conductivity L 11 (2 )
L 11 (2) = (l / A) (ΔI V (2) / ΔV A )
Using the voltage ΔV V measured by the voltmeter when the potential difference ΔV A is applied between the one end and the other end by the power source, and the current ΔI V (4) measured by the ammeter The electrical conductivity L 11 (4) is obtained from the following formula,
L 11 (4) = (l / A) (ΔI V (4) / ΔV V )
Using the electrical conductivity L 11 (2) and the electrical conductivity L 11 (4) , the contact resistance r is obtained from the following equation:
r = R (2) -R ( 4) = (1 / L 11 (2) -1 / L 11 (4)) (l / A)
Using the voltage value ΔI T (2) measured by the ammeter when the temperature difference ΔT is applied between the one end and the other end by the temperature difference generator, a thermoelectric coefficient is obtained from the following equation: Find L 12 (2)
L 12 (2) = (l / A) (ΔI T (2) / ΔT)
The thermoelectric coefficient L 12 (2) is corrected using the contact resistance r, and the thermoelectric coefficient L 12 (4) is obtained from the following equation:
L 12 (4) = {(R (4) + r) / R (4) } L 12 (2)
Using the electrical conductivity L 11 (4) and the thermoelectric coefficient L 12 (4) , the Seebeck coefficient S is obtained from the following equation.
S = L 12 (4) / L 11 (4)
Thermoelectric property measurement method.
前記測定対象物の前記一端から前記他端までの長さをl、及び、前記長さ方向と直交する断面積をAとしたときに、
熱電係数L12を、L12=(l/A)(ΔIT/ΔT)を用いて求める、
熱電物性測定方法。 A second current value [Delta] I T flowing between the end and the other end was measured when applying a temperature difference ΔT between the one end and the other end of the measurement object,
When the length from the one end to the other end of the measurement object is l, and the cross-sectional area perpendicular to the length direction is A,
The thermoelectric coefficient L 12 is determined using L 12 = (l / A) (ΔI T / ΔT).
Thermoelectric property measurement method.
前記一端と前記他端との間に温度差を加える温度差発生部と、
前記一端と前記他端との間を流れる電流値を測定する電流計と、
前記測定対象物の前記一端と他端との間の電圧を測定する電圧計と、
を備える物性想定装置において、
前記測定対象物の前記一端から前記他端までの長さl、及び、前記長さ方向と直交する断面積Aとしたときに、
前記電源により前記一端と前記他端との間に電位差ΔVAが加えられたときに前記電流計により測定された電流ΔIV (2)を用いて、以下の式より電気伝導率L11 (2)を求め、
L11 (2)=(l/A)(ΔIV (2)/ΔVA)
前記電源により前記一端と前記他端との間に前記電位差ΔVAが加えられたときに前記電圧計により測定された電圧ΔVVと、前記電流計により測定された電流ΔIV (4)を用いて、以下の式より電気伝導率L11 (4)を求め、
L11 (4)=(l/A)(ΔIV (4)/ΔVV)
前記電気伝導率L11 (2)と、前記電気伝導率L11 (4)とを用いて、以下の式より接触抵抗rを求め、
r=R(2)−R(4)=(1/L11 (2)−1/L11 (4))(l/A)
前記温度差発生部により前記一端と前記他端との間に前記温度差ΔTが加えられたときに前記電流計により測定された電圧値ΔIT (2)を用いて、以下の式より熱電係数L12 (2)を求め、
L12 (2)=(l/A)(ΔIT (2)/ΔT)
前記熱電係数L12 (2)を前記接触抵抗rを用いて補正して、以下の式より熱電係数L12 (4)を求める、
L12 (4)={(R(4)+r)/R(4)}L12 (2)
熱電物性測定方法。 A power source for applying a potential difference between one end and the other end of the measurement object;
A temperature difference generator for adding a temperature difference between the one end and the other end;
An ammeter for measuring a current value flowing between the one end and the other end;
A voltmeter for measuring a voltage between the one end and the other end of the measurement object;
In a physical property assumption device comprising:
When the length l from the one end to the other end of the measurement object and the cross-sectional area A orthogonal to the length direction,
Using the current ΔI V (2) measured by the ammeter when a potential difference ΔV A is applied between the one end and the other end by the power source, the electrical conductivity L 11 (2 )
L 11 (2) = (l / A) (ΔI V (2) / ΔV A )
Using the voltage ΔV V measured by the voltmeter when the potential difference ΔV A is applied between the one end and the other end by the power source, and the current ΔI V (4) measured by the ammeter The electrical conductivity L 11 (4) is obtained from the following formula,
L 11 (4) = (l / A) (ΔI V (4) / ΔV V )
Using the electrical conductivity L 11 (2) and the electrical conductivity L 11 (4) , the contact resistance r is obtained from the following equation:
r = R (2) -R ( 4) = (1 / L 11 (2) -1 / L 11 (4)) (l / A)
Using the voltage value ΔI T (2) measured by the ammeter when the temperature difference ΔT is applied between the one end and the other end by the temperature difference generator, a thermoelectric coefficient is obtained from the following equation: Find L 12 (2)
L 12 (2) = (l / A) (ΔI T (2) / ΔT)
The thermoelectric coefficient L 12 (2) is corrected using the contact resistance r, and the thermoelectric coefficient L 12 (4) is obtained from the following equation:
L 12 (4) = {(R (4) + r) / R (4) } L 12 (2)
Thermoelectric property measurement method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017142754A JP7033292B2 (en) | 2017-07-24 | 2017-07-24 | Thermoelectric property measuring device and thermoelectric property measuring method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017142754A JP7033292B2 (en) | 2017-07-24 | 2017-07-24 | Thermoelectric property measuring device and thermoelectric property measuring method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019024044A true JP2019024044A (en) | 2019-02-14 |
JP7033292B2 JP7033292B2 (en) | 2022-03-10 |
Family
ID=65368981
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017142754A Active JP7033292B2 (en) | 2017-07-24 | 2017-07-24 | Thermoelectric property measuring device and thermoelectric property measuring method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7033292B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230119818A1 (en) * | 2021-10-14 | 2023-04-20 | Saudi Arabian Oil Company | Thermoelectric polymer system for corrosion monitoring |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09298318A (en) * | 1996-05-02 | 1997-11-18 | Katsutoshi Ono | Thermoelectric conversion element |
JP2004165233A (en) * | 2002-11-11 | 2004-06-10 | National Institute Of Advanced Industrial & Technology | Seebeck coefficient measuring device |
JP2004214279A (en) * | 2002-12-27 | 2004-07-29 | Japan Science & Technology Agency | Cooling device for electronic components using thermoelectric conversion materials |
JP2008170259A (en) * | 2007-01-11 | 2008-07-24 | Toyota Motor Corp | Thermoelectric material evaluation substrate and thermoelectric material evaluation system |
JP2011185697A (en) * | 2010-03-08 | 2011-09-22 | Sintokogio Ltd | Thermoelectric material evaluation device and thermoelectric characteristic evaluation method |
JP3196069U (en) * | 2014-12-05 | 2015-02-19 | 介面光電股▲ふん▼有限公司 | Thermoelectric generator |
JP2016153367A (en) * | 2015-02-13 | 2016-08-25 | 株式会社Nextコロイド分散凝集技術研究所 | Carbon nanotube dispersion, manufacturing method therefor, carbon nanotube-containing thermoelectric transducer and manufacturing method therefor |
JP2017011218A (en) * | 2015-06-25 | 2017-01-12 | 国立大学法人広島大学 | Composition for forming thermoelectric conversion thin film and method for producing thermoelectric conversion thin film |
JP2017040556A (en) * | 2015-08-20 | 2017-02-23 | 国立研究開発法人物質・材料研究機構 | Sample stage, thermoelectric property evaluation apparatus, method for evaluating thermoelectric property, and method for evaluating electrode |
-
2017
- 2017-07-24 JP JP2017142754A patent/JP7033292B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09298318A (en) * | 1996-05-02 | 1997-11-18 | Katsutoshi Ono | Thermoelectric conversion element |
JP2004165233A (en) * | 2002-11-11 | 2004-06-10 | National Institute Of Advanced Industrial & Technology | Seebeck coefficient measuring device |
JP2004214279A (en) * | 2002-12-27 | 2004-07-29 | Japan Science & Technology Agency | Cooling device for electronic components using thermoelectric conversion materials |
JP2008170259A (en) * | 2007-01-11 | 2008-07-24 | Toyota Motor Corp | Thermoelectric material evaluation substrate and thermoelectric material evaluation system |
JP2011185697A (en) * | 2010-03-08 | 2011-09-22 | Sintokogio Ltd | Thermoelectric material evaluation device and thermoelectric characteristic evaluation method |
JP3196069U (en) * | 2014-12-05 | 2015-02-19 | 介面光電股▲ふん▼有限公司 | Thermoelectric generator |
JP2016153367A (en) * | 2015-02-13 | 2016-08-25 | 株式会社Nextコロイド分散凝集技術研究所 | Carbon nanotube dispersion, manufacturing method therefor, carbon nanotube-containing thermoelectric transducer and manufacturing method therefor |
JP2017011218A (en) * | 2015-06-25 | 2017-01-12 | 国立大学法人広島大学 | Composition for forming thermoelectric conversion thin film and method for producing thermoelectric conversion thin film |
JP2017040556A (en) * | 2015-08-20 | 2017-02-23 | 国立研究開発法人物質・材料研究機構 | Sample stage, thermoelectric property evaluation apparatus, method for evaluating thermoelectric property, and method for evaluating electrode |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230119818A1 (en) * | 2021-10-14 | 2023-04-20 | Saudi Arabian Oil Company | Thermoelectric polymer system for corrosion monitoring |
US11815444B2 (en) * | 2021-10-14 | 2023-11-14 | Saudi Arabian Oil Company | Thermoelectric polymer system for corrosion monitoring |
Also Published As
Publication number | Publication date |
---|---|
JP7033292B2 (en) | 2022-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102545426B1 (en) | Multi-Pin Probe Supports Parallel Measurements | |
CN109541513B (en) | Alternating current micro-current tracing device and method | |
Hermach | AC-DC comparators for audio-frequency current and voltage measurements of high accuracy | |
JP2011185697A (en) | Thermoelectric material evaluation device and thermoelectric characteristic evaluation method | |
CN102967624B (en) | Device for testing Seebeck coefficient | |
US10088439B2 (en) | Thermophysical property measurement method and thermophysical property measurement apparatus | |
CN114829956A (en) | Method and power unit for estimating parameters of a junction of a power semiconductor element | |
CN111721802A (en) | Device and method for comprehensive measurement of thermal and electrical physical properties of two-dimensional materials | |
Voljc et al. | Direct measurement of AC current by measuring the voltage drop on the coaxial current shunt | |
CN111965212B (en) | Thermophysical property calculation method, thermophysical property test system, electronic device, and storage medium | |
CN107607214B (en) | Temperature measuring method and electromigration testing method | |
JP7033292B2 (en) | Thermoelectric property measuring device and thermoelectric property measuring method | |
Rietveld et al. | DC characterization of AC current shunts for wideband power applications | |
KR100974650B1 (en) | Resistance measuring device and measuring method | |
JP4528954B1 (en) | Method and apparatus for measuring specific heat capacity and hemispherical total emissivity of conductive samples | |
CN112526425A (en) | Thermal resistance measuring instrument calibration method and device based on thermal resistance standard component | |
CN110260997A (en) | A thermal resistance temperature measuring device | |
JPWO2017169462A1 (en) | Thermophysical property measuring method and thermophysical property measuring device | |
TWI871461B (en) | Method for measuring a property in response to a temperature modulation, method for screening a test sample, and method for determining the temperature coefficient of resistance | |
Amagai et al. | Improved electrothermal simulation for low-frequency characterization of a single-junction thermal converter | |
Li et al. | Interlaboratory comparison of high direct voltage resistor dividers | |
Klonz et al. | Multijunction thermal converter with adjustable output voltage/current characteristics | |
Dziuba et al. | Resistive voltage-ratio standard and measuring circuit | |
Konjevod et al. | Ac-Dc Characterization of Coaxial Current Shunts and Application of the hunt in the Digital Sampling Wattmeter | |
Avramov-Zamurovic et al. | Low-frequency characteristics of thin-film multijunction thermal voltage converters |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200611 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210430 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210622 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210804 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220125 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220218 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7033292 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |