[go: up one dir, main page]

JP2019012663A - Conductive composition and method for producing conductor film - Google Patents

Conductive composition and method for producing conductor film Download PDF

Info

Publication number
JP2019012663A
JP2019012663A JP2017129650A JP2017129650A JP2019012663A JP 2019012663 A JP2019012663 A JP 2019012663A JP 2017129650 A JP2017129650 A JP 2017129650A JP 2017129650 A JP2017129650 A JP 2017129650A JP 2019012663 A JP2019012663 A JP 2019012663A
Authority
JP
Japan
Prior art keywords
conductive composition
less
mass
conductivity
bisphenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017129650A
Other languages
Japanese (ja)
Other versions
JP6879084B2 (en
Inventor
順幸 諸石
Yoriyuki Moroishi
順幸 諸石
貴史 石原
Takashi Ishihara
貴史 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2017129650A priority Critical patent/JP6879084B2/en
Publication of JP2019012663A publication Critical patent/JP2019012663A/en
Application granted granted Critical
Publication of JP6879084B2 publication Critical patent/JP6879084B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Of Electric Cables (AREA)
  • Paints Or Removers (AREA)
  • Conductive Materials (AREA)

Abstract

【課題】 発明の目的は、耐腐食性が良好であり、かつ優れた導電性を発現し、さらに印刷塗工にも適する組成物を提供することにある。【解決手段】 バインダー樹脂(A)と、導電性付与剤(B)と、有機溶剤(C)とを含む導電性組成物であって、バインダー樹脂(A)が、数平均分子量800以上7,000未満のビスフェノール型エポキシ樹脂(A−1)および数平均分子量7,000以上60,000未満のフェノキシ樹脂(A−2)からなる群より選ばれ、導電性付与剤(B)が膨張化黒鉛(B1)を含み、膨張化黒鉛の平均粒径が10μm以上、200μm以下であって、導電性付与剤(B)の含有量が、組成物の固形分100質量%中、40質量%以上90質量%以下であることを特徴とする導電性組成物。【選択図】 なしPROBLEM TO BE SOLVED: To provide a composition having good corrosion resistance, exhibiting excellent conductivity, and suitable for printing and coating. A conductive composition containing a binder resin (A), a conductivity-imparting agent (B), and an organic solvent (C), wherein the binder resin (A) has a number average molecular weight of 800 or more 7, Selected from the group consisting of a bisphenol type epoxy resin (A-1) having a number of less than 000 and a phenoxy resin (A-2) having a number average molecular weight of 7,000 or more and less than 60,000, the conductivity-imparting agent (B) is expanded graphite. The average particle size of the expanded graphite containing (B1) is 10 μm or more and 200 μm or less, and the content of the conductivity-imparting agent (B) is 40% by mass or more and 90% by mass in 100% by mass of the solid content of the composition. A conductive composition having a mass% or less. [Selection diagram] None

Description

本発明は、優れた導電性を発現する導電性組成物に関する。   The present invention relates to a conductive composition that exhibits excellent conductivity.

近年製品の軽量化、環境への配慮、及び製造コスト抑制の観点から、導電性樹脂組成物を使用した導電性塗料、及び導電性接着剤等が増加している(特許文献1)。こういった用途では、高い導電性が要求され、導電性フィラーとして、銀、銅などの金属が使われることが多い。しかし、長期信頼性が必要とされる用途では、各種の耐性、特に耐腐食性が要求され、そのような用途では、銀、銅などの金属は使用できないため、導電性炭素系フィラーがしばしば用いられることとなる。
導電性炭素系フィラーを用いた導電性組成物は、グラファイトやカーボンナノチューブなどを用いて、低抵抗な導電性組成物の検討が行われている(特許文献2、3)。しかし、金属フィラーと比較して、高い導電性を発現することが困難であり、また、炭素系フィラーは、金属と比較して比重が軽く、高い導電性を発現するために組成物内の炭素系フィラーの充填量が多くなると、スクリーン印刷等による印刷塗工が困難になるという問題がある。
In recent years, conductive paints using conductive resin compositions, conductive adhesives, and the like are increasing from the viewpoints of weight reduction of products, consideration for the environment, and reduction of manufacturing costs (Patent Document 1). In such applications, high conductivity is required, and metals such as silver and copper are often used as the conductive filler. However, in applications where long-term reliability is required, various resistances, particularly corrosion resistance, are required, and in such applications, metals such as silver and copper cannot be used, so conductive carbon-based fillers are often used. Will be.
As a conductive composition using a conductive carbon filler, a low-resistance conductive composition has been studied using graphite, carbon nanotubes, and the like (Patent Documents 2 and 3). However, it is difficult to develop high electrical conductivity compared to metal fillers, and carbon-based fillers are lighter in specific gravity than metals and carbon in the composition to exhibit high electrical conductivity. When the filling amount of the system filler is increased, there is a problem that printing coating by screen printing or the like becomes difficult.

特願2014−551472号公報Japanese Patent Application No. 2014-551472 特願2001−60413号公報Japanese Patent Application No. 2001-60413 特願2002−20515号公報Japanese Patent Application No. 2002-20515

本発明の目的は、耐腐食性が良好であり、かつ優れた導電性を発現し、さらに印刷塗工にも適する組成物を提供することにある。   An object of the present invention is to provide a composition that has good corrosion resistance, exhibits excellent electrical conductivity, and is suitable for printing coating.

本発明者らは前記課題を解決すべく鋭意検討を重ねた結果、以下に示す導電性組成物により高い導電性を発現しつつ印刷できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that printing can be performed while exhibiting high conductivity with the conductive composition shown below, and the present invention has been completed.

すなわち、本発明は、バインダー樹脂(A)と、導電性付与剤(B)と、有機溶剤(C)とを含む導電性組成物であって、バインダー樹脂(A)が、ビスフェノール型エポキシ樹脂(A−1)およびフェノキシ樹脂(A−2)からなる群より選ばれ、であり、導電性付与剤(B)が膨張化黒鉛(B1)を含み、膨張化黒鉛の平均粒径が10μm以上、200μm以下であって、導電性付与剤(B)の含有量が、組成物の固形分100質量%中、40質量%以上90質量%以下であることを特徴とする導電性組成物に関する。   That is, the present invention is a conductive composition containing a binder resin (A), a conductivity imparting agent (B), and an organic solvent (C), wherein the binder resin (A) is a bisphenol-type epoxy resin ( Selected from the group consisting of A-1) and a phenoxy resin (A-2), wherein the conductivity-imparting agent (B) contains expanded graphite (B1), and the average particle size of the expanded graphite is 10 μm or more, It is 200 micrometers or less, Comprising: It is related with the electroconductive composition characterized by being 40 mass% or more and 90 mass% or less in 100 mass% of solid content of a composition.

また、本発明は、膨張化黒鉛(B1)の平均粒径が25μm以上、150μm以下であることを特徴とする前記の導電性組成物に関する。   The present invention also relates to the above conductive composition, wherein the expanded graphite (B1) has an average particle size of 25 μm or more and 150 μm or less.

また、本発明は、形成した塗膜の体積抵抗値が10−3Ωcm以上、10−1Ωcm未満であることを特徴とする前記の導電性組成物に関する。 The present invention also relates to the above conductive composition, wherein the formed coating film has a volume resistance value of 10 −3 Ωcm or more and less than 10 −1 Ωcm.

また、本発明は、更に、導電性付与剤(B)が、カーボンブラック(B2)を含むことを特徴とする前記の導電性組成物に関する。   The present invention further relates to the above conductive composition, wherein the conductivity imparting agent (B) contains carbon black (B2).

また、本発明は、有機溶剤(C)が、25℃の時の粘度が30mPa・s以上、75000mPa・s以下である有機溶剤(C1)を含み、有機溶剤(C1)の含有量が、有機溶剤(C)の含有量100質量%中、10質量%以上であることを特徴とする前記の導電性組成物に関する。   The present invention also includes an organic solvent (C1) having an organic solvent (C1) having a viscosity at 25 ° C. of 30 mPa · s or more and 75000 mPa · s or less, and the organic solvent (C1) content is organic. It is related with the said electroconductive composition characterized by being 10 mass% or more in content of a solvent (C) 100 mass%.

また、本発明は、前記の導電性組成物を基材に塗工した後、乾燥して得た導体膜を熱プレスすることを特徴とする導体膜の製造方法に関する。   Moreover, this invention relates to the manufacturing method of the conductor film characterized by heat-pressing the conductor film obtained by apply | coating the said electroconductive composition to a base material, and drying.

また、本発明は、導体膜の体積抵抗値が10−4Ωcm以上、10−2Ωcm未満であることを特徴とする前記の導体膜の製造方法に関する。 The present invention also relates to the method for producing a conductor film, wherein the conductor film has a volume resistance value of 10 −4 Ωcm or more and less than 10 −2 Ωcm.

また、本発明は、基材に、前記の導電性組成物をスクリーン印刷によりパターニングし、導体配線とすることを特徴とする導体膜の製造方法に関する。   The present invention also relates to a method for producing a conductor film, wherein the conductive composition is patterned on a substrate by screen printing to form a conductor wiring.

本発明により、耐腐食性が良好であり、かつ高い導電性を発現し、さらに印刷塗工にも適する組成物を提供することができる。   According to the present invention, it is possible to provide a composition that has good corrosion resistance, exhibits high electrical conductivity, and is suitable for print coating.

以下、本発明の実施形態について説明する。
本発明の導電性組成物(以下、「組成物」と称す場合がある)は、バインダー樹脂(A)と導電性付与剤(B)と有機溶剤(C)とを含むことを特徴とする。
Hereinafter, embodiments of the present invention will be described.
The conductive composition of the present invention (hereinafter sometimes referred to as “composition”) includes a binder resin (A), a conductivity imparting agent (B), and an organic solvent (C).

<バインダー樹脂(A)>
本発明に用いられるバインダー樹脂としては、体積抵抗値と基材への密着性および耐久性の観点からビスフェノール型エポキシ樹脂(A−1)およびフェノキシ樹脂(A−2)からなる群より選ばれる。体積抵抗値は、熱プレス中の樹脂分が流動しやすいため良好な結果となる。
ビスフェノール型エポキシ樹脂(A−1)は、比較的低分子量(数平均分子量800以上7,000未満)であって、官能基としてエポキシ基の反応が期待される。一方、フェノキシ樹脂(A−2)は、比較的高分子量(数平均分子量7,000以上60,000未満)であって、後述するようにエポキシ基の有無は問わず、その分子量故に官能基濃度が小さく、時に熱可塑性樹脂として認識されることもある。
<Binder resin (A)>
The binder resin used in the present invention is selected from the group consisting of a bisphenol type epoxy resin (A-1) and a phenoxy resin (A-2) from the viewpoints of volume resistivity, adhesion to a substrate, and durability. The volume resistance value is good because the resin component in the hot press easily flows.
The bisphenol type epoxy resin (A-1) has a relatively low molecular weight (number average molecular weight of 800 or more and less than 7,000) and is expected to react with an epoxy group as a functional group. On the other hand, the phenoxy resin (A-2) has a relatively high molecular weight (number average molecular weight of 7,000 or more and less than 60,000) and does not have an epoxy group, as will be described later. Is small and sometimes recognized as a thermoplastic resin.

[ビスフェノール型エポキシ樹脂(A−1)]
ビスフェノール型エポキシ樹脂(A−1)は、ビスフェノール化合物に由来する分子骨格および1分子中に1つ以上のエポキシ基を含むエポキシ樹脂である。
このようなビスフェノール型エポキシ樹脂(A−1)は、例えば少なくともビスフェノール化合物を含む一分子中に2つ以上の水酸基を有する化合物と、エピクロロヒドリンとを、水酸化ナトリウムなどの塩基存在下で重合する公知公用の方法により得ることができるが、同様の構造を有する樹脂が得られる限りにおいて合成方法は限定されない。
また、ビスフェノール化合物を必須成分として用いる限りにおいて、脂肪族ジオール化合物やポリエーテルポリオール化合物、カルポキシル基末端ブタジエンニトリルゴム(以下CTENという)などの液状ゴム化合物などのビスフェノール化合物以外の成分と共重合されていてもよい。また、さらに上記エポキシ樹脂とアミン化合物とを反応させたアミン変性体や、側鎖水酸基にエチレンオキシドやプロピレンオキシド、ε‐カプロラクトン等を付加させた側鎖変性体、および一部のビスフェノール同士をアセタール結合により連結したアセタール変性体なども用いることができる。
[Bisphenol type epoxy resin (A-1)]
The bisphenol type epoxy resin (A-1) is an epoxy resin containing a molecular skeleton derived from a bisphenol compound and one or more epoxy groups in one molecule.
Such a bisphenol type epoxy resin (A-1) comprises, for example, a compound having two or more hydroxyl groups in one molecule containing at least a bisphenol compound and epichlorohydrin in the presence of a base such as sodium hydroxide. Although it can be obtained by a publicly known method for polymerization, the synthesis method is not limited as long as a resin having a similar structure is obtained.
In addition, as long as the bisphenol compound is used as an essential component, it is copolymerized with components other than the bisphenol compound such as an aliphatic diol compound, a polyether polyol compound, and a liquid rubber compound such as a carboxy nitrile-terminated butadiene nitrile rubber (hereinafter referred to as CTEN). May be. Furthermore, an amine-modified product obtained by reacting the epoxy resin with an amine compound, a side-chain modified product obtained by adding ethylene oxide, propylene oxide, ε-caprolactone, etc. to the side chain hydroxyl group, and a part of bisphenols are acetal bonded. The acetal modified body etc. which were connected by these can also be used.

上記ビスフェノール化合物としては、フェノール化合物2分子とケトンまたはアルデヒド化合物1分子との縮合物として得られる2官能フェノール化合物であればよく、例えば、ビスフェノールF、ビスフェノールA、ビスフェノールS、ビスフェノールC、ビスフェノールE、ビスフェノールZ、ビスフェノールG、ビスフェノールTMC、ビスフェノールMおよび、BisP−AP、TM−BPF、BisOC−F、BisP−MIBK、BisP−B、BisOPP−A、BisOCHP−A、Bis26X−A、BisOTBH−A、メチレンビスP−CR(以上本州化学工業社の製品名)、ビスフェノールP、ビスキシレノールP(以上三菱化学ファイン社の製品名)、ビスフェノールフルオレンや、これらの水素添加物等が挙げられる。これらは合成原料として単独で用いてもよいし、2種以上を併用して用いてもよい。   The bisphenol compound may be a bifunctional phenol compound obtained as a condensate of two molecules of a phenol compound and one molecule of a ketone or aldehyde compound. For example, bisphenol F, bisphenol A, bisphenol S, bisphenol C, bisphenol E, Bisphenol Z, Bisphenol G, Bisphenol TMC, Bisphenol M and BisP-AP, TM-BPF, BisOC-F, BisP-MIBK, BisP-B, BisOPP-A, BisOCHP-A, Bis26X-A, BisOTBH-A, Methylenebis Examples include P-CR (product name of Honshu Chemical Industry Co., Ltd.), bisphenol P, bisxylenol P (product name of Mitsubishi Chemical Fine Co., Ltd.), bisphenol fluorene, and hydrogenated products thereof. It is. These may be used alone as a synthetic raw material or in combination of two or more.

このようなビスフェノール型エポキシ樹脂(A−1)の市販品の例としては、例えばjER828、jER1007、jER1010、YL6810(三菱化学社製)などのビスフェノールA型エポキシ樹脂、jER806、jER4004P、jER4010P(三菱化学社製)などのビスフェノールF型エポキシ樹脂、EPOK−MK R−710、EPOK−MK R−1710(プリンテック社製)などのビスフェノールE型エポキシ樹脂、YX8000、YX8034(三菱化学社製)、ST−3000、ST−4000D(新日鐵住金化学社製)などの水添ビスフェノールA型エポキシ樹脂、jER−872(三菱化学社製)などのダイマー酸変性型エポキシ樹脂、EXA−4850−150、EXA−4850−1000(DIC社製)などのアセタール変性ビスフェノールA型エポキシ樹脂、EXA−4816(DIC社製)などの長鎖炭化水素鎖変性ビスフェノールA型エポキシ樹脂、EPR−1415−1、EPR−2000(ADEKA社製)などのNBR変性ビスフェノールA型エポキシ樹脂などが挙げられるが、これらに限定されない。これらは単独で用いてもよいし、2種以上を併用して用いてもよい。   Examples of such commercially available products of bisphenol type epoxy resin (A-1) include bisphenol A type epoxy resins such as jER828, jER1007, jER1010, and YL6810 (manufactured by Mitsubishi Chemical Corporation), jER806, jER4004P, jER4010P (Mitsubishi Chemical). Bisphenol F type epoxy resin such as EPOK-MK R-710, EPOK-MK R-1710 (manufactured by Printec), YX8000, YX8034 (manufactured by Mitsubishi Chemical), ST- 3000, ST-4000D (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), hydrogenated bisphenol A type epoxy resin, jER-872 (manufactured by Mitsubishi Chemical Co., Ltd.), dimer acid-modified epoxy resin, EXA-4850-150, EXA- 4850-1000 (DI Acetal-modified bisphenol A type epoxy resin such as EXA-4816 (manufactured by DIC), EPR-1415-1, EPR-2000 (manufactured by ADEKA) NBR-modified bisphenol A-type epoxy resins such as, but not limited to. These may be used alone or in combination of two or more.

<フェノキシ樹脂(A−2)>
本発明に用いられるフェノキシ樹脂(A−2)としては、上記ビスフェノール化合物とエピクロロヒドリン、或いは上記ビスフェノール化合物と少なくとも1分子中に2個のエポキシ基を有するエポキシ化合物とを重合して得られるものであっって、比較的高分子量(数平均分子量7,000以上60,000未満程度)のものをいう。
フェノキシ樹脂(A−2)がエポキシ基を有す場合、前述のビスフェノール型エポキシ樹脂(A−1)との違いは数平均分子量である。
また、ビスフェノール化合物とエピクロロヒドリンもしくは2官能以上のエポキシ化合物との反応に由来する構造を有するものであって、前述のように比較的高分子量であれば、樹脂中のエポキシ基に、エポキシ基に対する反応性を有す化合物を反応させ、エポキシ基を消滅させたものも、フェノキシ樹脂(A−2)として用いることができる。
さらにビスフェノール型エポキシ樹脂(A−1)の場合と同様、ビスフェノール化合物とエピクロロヒドリン等との反応の結果生じる側鎖水酸基に対して、エチレンオキシドやプロピレンオキシドなどのアルキレンオキシド類、ε‐カプロラクトンやδ‐バレロラクトンなどのラクトン類、無水コハク酸、無水マレイン酸、無水フタル酸、テトラヒドロ無水フタル酸などの酸無水物、オクタデシルイソシアネートなどの単官能イソシアネート等を付加させた側鎖変性体であってもよい。
<Phenoxy resin (A-2)>
The phenoxy resin (A-2) used in the present invention is obtained by polymerizing the bisphenol compound and epichlorohydrin or the bisphenol compound and an epoxy compound having at least two epoxy groups in one molecule. It has a relatively high molecular weight (number average molecular weight of about 7,000 to less than 60,000).
When the phenoxy resin (A-2) has an epoxy group, the difference from the bisphenol type epoxy resin (A-1) is the number average molecular weight.
In addition, it has a structure derived from the reaction of a bisphenol compound and epichlorohydrin or a bifunctional or higher functional epoxy compound, and has a relatively high molecular weight as described above, the epoxy group in the resin is bonded to the epoxy group. A compound in which an epoxy group is eliminated by reacting a compound having reactivity with a group can also be used as the phenoxy resin (A-2).
Further, as in the case of the bisphenol-type epoxy resin (A-1), the side chain hydroxyl group resulting from the reaction of the bisphenol compound with epichlorohydrin, etc., alkylene oxides such as ethylene oxide and propylene oxide, ε-caprolactone, A side-chain modified product to which lactones such as δ-valerolactone, acid anhydrides such as succinic anhydride, maleic anhydride, phthalic anhydride, and tetrahydrophthalic anhydride, and monofunctional isocyanates such as octadecyl isocyanate are added. Also good.

上記1分子中に2個のエポキシ基を有するエポキシ化合物としては、上記のビスフェノール型エポキシ樹脂(A−1)を用いてもよく、それ以外では、ヘキサンジオールジグリシジルエーテルやノナンジオールジグリシジルエーテルなどの脂肪族ジグリシジルエーテル、jER871(三菱化学社製)などのダイマー酸ジグリシジルエステル、エポライト200Eやエポライト400E(共栄社化学社製)などのポリエチレングリコールジグリシジルエーテル、エポライト70Pやエポライト400P(共栄社化学社製)などのポリプロピレングリコールジグリシジルエーテル、YX4000、YL8121などのビフェニル型ジグリシジルエーテル、YX8800(三菱化学社製)などのアントラセンジグリシジルエーテル、GAN、GOT(日本化薬社製)などのジグリシジルアミンなどが挙げられるが、これらに限定されない。これらの1分子中に2個のエポキシ基を有するエポキシ化合物は1種のみを用いて重合を行ってもよいし、2種以上を併用してもよい。   As the epoxy compound having two epoxy groups in one molecule, the above-mentioned bisphenol type epoxy resin (A-1) may be used, and in other cases, hexanediol diglycidyl ether, nonanediol diglycidyl ether, etc. Aliphatic diglycidyl ether, dimer acid diglycidyl ester such as jER871 (Mitsubishi Chemical), polyethylene glycol diglycidyl ether such as Epolite 200E and Epolite 400E (Kyoeisha Chemical), Epolite 70P and Epolite 400P (Kyoeisha Chemical Co., Ltd.) Polypropylene glycol diglycidyl ether such as YX4000 and YL8121, anthracene diglycidyl ether such as YX8800 (manufactured by Mitsubishi Chemical), GAN, GO (Manufactured by Nippon Kayaku Co., Ltd.) diglycidyl amine such as, but not limited thereto. These epoxy compounds having two epoxy groups in one molecule may be polymerized using only one kind, or two or more kinds may be used in combination.

また、本発明に必要な特性を満たす限りにおいて、ビスフェノール化合物と1分子中に2個のエポキシ基を有するエポキシ化合物とを反応させてフェノキシ樹脂(A−2)を得る際、さらに1分子中に1個のエポキシ基を有するエポキシ化合物や1分子中に3個以上のエポキシ基を有するエポキシ化合物を併用してもよい。
1分子中に1個のエポキシ基を有するエポキシ化合物としては、ブチルグリシジルエーテル、(阪本薬品工業社製)、エポライトM−1230(共栄社化学社製)などの脂肪族単官能エポキシ化合物や、SY−OCG、SY−OPG阪本薬品工業社製)などの芳香族単官能エポキシ化合物などが挙げられる。
1分子中に3個以上のエポキシ基を有するエポキシ化合物としては、例えばTEPICシリーズ(日油社製)やjER630(三菱化学社製)などが挙げられる。
Moreover, as long as the characteristics required for the present invention are satisfied, when a phenoxy resin (A-2) is obtained by reacting a bisphenol compound with an epoxy compound having two epoxy groups in one molecule, further in one molecule. An epoxy compound having one epoxy group or an epoxy compound having three or more epoxy groups in one molecule may be used in combination.
Examples of the epoxy compound having one epoxy group in one molecule include aliphatic monofunctional epoxy compounds such as butyl glycidyl ether (manufactured by Sakamoto Yakuhin Kogyo Co., Ltd.), Epolite M-1230 (manufactured by Kyoeisha Chemical Co., Ltd.), SY- And aromatic monofunctional epoxy compounds such as OCG and SY-OPG manufactured by Sakamoto Yakuhin Kogyo Co., Ltd.
Examples of the epoxy compound having three or more epoxy groups in one molecule include TEPIC series (manufactured by NOF Corporation) and jER630 (manufactured by Mitsubishi Chemical Corporation).

このようなフェノキシ樹脂(A−2)の市販品の例としては、例えばjER−1256(三菱化学社製)やYP−50(新日鐵住金化学社製)、PKFE、PKHH(ガブリエルパフォーマンスプロダクツ社製)などのビスフェノールA型フェノキシ樹脂、jER−4275(三菱化学社製)、YP−70(新日鐵住金化学社製)などのビスフェノールA/ビスフェノールF共重合型フェノキシ樹脂、YPS−007A30(新日鐵住金化学社)などのビスフェノールA/ビスフェノールS共重合型フェノキシ樹脂、PKCP−67、PKCP−80(ガブリエルパフォーマンスプロダクツ社製)等の側鎖カプロラクトン変性ビスフェノールA型フェノキシ樹脂、KAYARAD ZFR−1901、KAYARAD ZAR−2000(日本化薬社製)等の側鎖無水物変性体等が挙げられる。   Examples of such commercially available products of phenoxy resin (A-2) include, for example, jER-1256 (manufactured by Mitsubishi Chemical Corporation), YP-50 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), PKFE, PKHH (Gabriel Performance Products, Inc.) Bisphenol A type phenoxy resin such as jER-4275 (manufactured by Mitsubishi Chemical Co., Ltd.), YP-70 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), bisphenol A / bisphenol F copolymer phenoxy resin, YPS-007A30 (new) Bisphenol A / bisphenol S copolymer type phenoxy resin such as Nippon Steel & Sumikin Chemical Co., Ltd., side chain caprolactone-modified bisphenol A type phenoxy resin such as PKCP-67 and PKCP-80 (manufactured by Gabriel Performance Products), KAYARAD ZFR-1901, KAYARAD ZAR-2000 (Japan Side chain anhydride modified products such as Kayaku Co., Ltd.).

本発明では、前記ビスフェノール型エポキシ樹脂(A−1)、もしくはフェノキシ樹脂(A−2)と他バインダー樹脂をさらに併用しても良い。併用する事が出来るバインダー樹脂としては、ポリウレタン系、アクリロニトリル系、アクリル系、ブタジエン系、ポリアミド系、ポリビニルブチラール系、ポリオレフィン系、ポリエステル系、ポリスチレン系、EVA系、ポリフッ化ビニリデン系及びシリコン系樹脂等からなる群から選ばれる1 種以上を含むことができる。これらの樹脂に限定されるわけではない。
バインダー樹脂は、導電性組成物を基材に塗工した後に、硬化剤と硬化(架橋)反応させることもできる。
In the present invention, the bisphenol type epoxy resin (A-1) or phenoxy resin (A-2) and another binder resin may be used in combination. Examples of binder resins that can be used in combination include polyurethane, acrylonitrile, acrylic, butadiene, polyamide, polyvinyl butyral, polyolefin, polyester, polystyrene, EVA, polyvinylidene fluoride, and silicon resins. 1 type or more chosen from the group which consists of can be included. It is not necessarily limited to these resins.
The binder resin can also be cured (crosslinked) with a curing agent after the conductive composition is applied to the substrate.

<導電性付与剤(B)>
本発明の導電性組成物は、導電性付与剤として膨張化黒鉛(B1)を含むことを特徴とする。
(膨張化黒鉛(B1))
本発明で用いられる膨張化黒鉛とは、鱗片状黒鉛を化学処理した膨張黒鉛(膨張性黒鉛ともいう;ExpandableGraphite)を、熱処理して膨張化させた後、微細化したものである。なお、微細化前に圧延しグラファイトシート化したものを粉砕して得られた膨張化黒鉛粉末も含む。
膨張化黒鉛としては、従来公知の膨張化黒鉛から適宜選択され得る。市販の膨張化黒鉛を用いてもよい。市販の膨張化黒鉛としては、例えば、伊藤黒鉛工業社製のEC1500、EC1000、EC500、EC300、EC100、EC50が挙げられる(いずれも商品名)。
膨張化黒鉛の形状に関しては、特に限定されるものではない。例えばさらに薄片状に処理された薄片状の膨張化黒鉛などが挙げられる。
膨張化黒鉛は、他の黒鉛と比べて少量の含有量で高い導電性を発現することが可能となっている。例えば、一般的な鱗状黒鉛よりも少量で高い導電性を発現する傾向にある。
膨張化黒鉛の平均粒径は、10μm〜200μであり、25〜150μmがより好ましい。形成される導電膜の導電性向上の点から10μm以上であることが好ましく、導電性組成物の塗工性および形成される導電膜の基材への密着性の点から200μm以下であることが好ましい。
また、D10(μm)とD90(μm)の粒径の差分が、60μm以上であることが好ましい。
なお本発明における「平均粒径」とはレーザー回折・散乱法によって求めた粒度分布における積算値50%での粒径を意味する。D10(μm)とD90(μm)は、積算値10%、90%の粒径を意味する。
測定は、以下の条件で行うものとする。
測定機器:マイクロトラックMT3300EXII(マイクロトラック・ベル株式会社)
測定サンプル調整方法:黒鉛0.63g、トルエン11.87gを蓋付きガラス瓶(M-70)に添加した後、遊星攪拌(株式会社シンキー製:あわとり錬太郎、攪拌時間:3分)を行い分散液を作製し、測定を実施する。
導電性組成物の固形分量を100質量%とした時の導電性付与剤(B1)の含有量は、40質量%〜90質量%であり、より好ましくは、50質量%〜85質量%である。形成される導電膜の導電性向上の点から40質量%以上が好ましく、導電性組成物の塗工性および形成される導電膜の基材への密着性の点から90質量%以下が好ましい。
<Conductivity imparting agent (B)>
The conductive composition of the present invention is characterized by containing expanded graphite (B1) as a conductivity-imparting agent.
(Expanded graphite (B1))
The expanded graphite used in the present invention is expanded graphite obtained by chemically treating flaky graphite (also referred to as expandable graphite; Expandable Graphite), which is expanded by heat treatment and then refined. In addition, the expanded graphite powder obtained by pulverizing what was rolled into a graphite sheet before refining is also included.
The expanded graphite can be appropriately selected from conventionally known expanded graphite. Commercially expanded graphite may be used. Examples of commercially available expanded graphite include EC1500, EC1000, EC500, EC300, EC100, and EC50 (all are trade names) manufactured by Ito Graphite Industries.
The shape of the expanded graphite is not particularly limited. For example, flaky expanded graphite further processed into a flaky shape can be mentioned.
Expanded graphite can exhibit high conductivity with a small content compared to other graphites. For example, there is a tendency that high conductivity is expressed in a smaller amount than general scale-like graphite.
The average particle diameter of the expanded graphite is 10 μm to 200 μm, and more preferably 25 to 150 μm. The thickness is preferably 10 μm or more from the viewpoint of improving the conductivity of the conductive film to be formed, and is 200 μm or less from the viewpoint of the coating property of the conductive composition and the adhesion of the conductive film to be formed to the substrate. preferable.
Moreover, it is preferable that the difference of the particle size of D10 (micrometer) and D90 (micrometer) is 60 micrometers or more.
The “average particle size” in the present invention means the particle size at an integrated value of 50% in the particle size distribution obtained by the laser diffraction / scattering method. D10 (μm) and D90 (μm) mean an integrated value of 10% and a particle size of 90%.
Measurement shall be performed under the following conditions.
Measuring instrument: Microtrack MT3300EXII (Microtrack Bell Co., Ltd.)
Measurement sample adjustment method: 0.63 g of graphite and 11.87 g of toluene were added to a glass bottle with a lid (M-70), and then dispersed by planetary stirring (Sinky Co., Ltd .: Ryotaro Awatori, stirring time: 3 minutes). Prepare the liquid and perform the measurement.
The content of the conductivity-imparting agent (B1) when the solid content of the conductive composition is 100% by mass is 40% by mass to 90% by mass, and more preferably 50% by mass to 85% by mass. . 40 mass% or more is preferable from the point of the electroconductive improvement of the electrically conductive film formed, and 90 mass% or less is preferable from the point of the adhesiveness to the base material of the electrically conductive composition formed and the electrically conductive film formed.

(カーボンブラック(B2))
本発明では導電性付与剤としては、さらにカーボンブラックを併用することができる。膨張化黒鉛とカーボンブラックを併用することで、カーボンブラックが膨張化黒鉛の導電パスをつなぐ役割を果たし、熱プレス工程を経なくても高い導電性を発現する傾向にある。
カーボンブラックは、アセチレンブラック、ケッチェンブラック、ファーネストブラック等従来公知の導電性カーボンの使用が可能である。
膨張化黒鉛(B1)とカーボンブラック(B2)の質量組成比は、膨張化黒鉛、カーボンブラックの総質量を100質量%とした時、膨張化黒鉛は、60〜90質量%、カーボンブラックは10〜40質量%が好ましい。膨張化黒鉛由来の高い導電性を活かすという点からカーボンブラック(B2)は40質量%以下が好ましく、膨張化黒鉛間の導電パスをつなぐという点からカーボンブラック(B2)は10質量%以上であることが
好ましい。
(Carbon black (B2))
In the present invention, carbon black can be used in combination as the conductivity imparting agent. By using the expanded graphite and carbon black in combination, the carbon black plays a role of connecting the conductive path of the expanded graphite, and tends to exhibit high conductivity even without going through a hot press process.
As the carbon black, conventionally known conductive carbon such as acetylene black, ketjen black, and furnace black can be used.
The mass composition ratio between expanded graphite (B1) and carbon black (B2) is as follows. When the total mass of expanded graphite and carbon black is 100% by mass, expanded graphite is 60 to 90% by mass, and carbon black is 10%. -40 mass% is preferable. Carbon black (B2) is preferably 40% by mass or less from the viewpoint of utilizing the high conductivity derived from expanded graphite, and carbon black (B2) is 10% by mass or more from the viewpoint of connecting a conductive path between the expanded graphite. It is preferable.

(その他の導電性付与剤)
その他の導電性付与剤としては、膨張化黒鉛以外の黒鉛、カーボンナノチューブ、グラフェン、酸化グラフェン、コークスが挙げられる。ただし、物性を損なわない範囲であればこの限りではない。また、1種または2種以上を併用することもできる。
(Other conductivity-imparting agents)
Examples of other conductivity imparting agents include graphite other than expanded graphite, carbon nanotubes, graphene, graphene oxide, and coke. However, this is not limited as long as the physical properties are not impaired. Moreover, 1 type (s) or 2 or more types can also be used together.

<有機溶剤(C)>
有機溶剤は、メタノール、エタノール、プロパノール、ブタノール、エチレングリコールメチルエーテル、ジエチレングリコールメチルエーテル等のアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル類、ヘキサン、ヘプタン、オクタン等の炭化水素類、ベンゼン、トルエン、キシレン、クメン等の芳香族類、酢酸エチル、酢酸ブチル等のエステル類などの内から導電性組成物の組成に応じ適当なものが使用できる。また、溶剤は2種以上用いてもよい。質量
尚、スクリーン印刷などのインキ組成物に一定以上の粘性が要求される印刷塗工方式を採用する場合、25℃の時の粘度は、30mPa・s〜75000mPa・sの有機溶剤(C1)を有機溶剤(C)100質量%中、10質量%以上含むことが好ましい。形成される導電膜の導電性向上の点からはバインダー(A)量の少なくすることが望まれるが、バインダー(A)量が少ないと、導電性付与剤(B)の分散性が低下し、導電性組成物の塗工性も低下する。導電性付与剤(B)の分散性向上、および導電性組成物を塗工に適した粘性にする「疑似バインダー」としての機能の点から、25℃において30mPa・s以上の有機溶剤を用いることが好ましい。一方、導電性付与剤(B)の分散性向上の点からは、粘度が高すぎないことが好ましく、具体的には、25℃において75000mPa・s以下の有機溶剤を用いることが好ましい。
このような有機溶剤(C1)としては、例えば、ターピネオール、ジヒドロターピネオール、2,4-ジエチル-1,5-ペンタンジオール、1、3−ブチレングリコール、イソボルニルシクロヘキサノールが挙げられる。ここで示すところの高粘度溶剤は、二種以上用いて良い。
さらに、有機溶剤(C1)は、メチルエチルケトン、トルエン、イソプロピルアルコールのような25℃の時の粘度が30mPa・s未満の低粘度溶剤と併用して使用することも可能である。
<Organic solvent (C)>
Organic solvents include alcohols such as methanol, ethanol, propanol, butanol, ethylene glycol methyl ether, diethylene glycol methyl ether, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, etc. Suitable for the composition of the conductive composition from among ethers such as hexane, heptane, octane and other hydrocarbons, benzene, toluene, xylene, cumene and other aromatics, ethyl acetate, butyl acetate and other esters Can be used. Two or more solvents may be used. Mass In addition, when adopting a printing coating method such as screen printing that requires a certain viscosity or more, the viscosity at 25 ° C. is an organic solvent (C1) of 30 mPa · s to 75000 mPa · s. It is preferable to contain 10% by mass or more in 100% by mass of the organic solvent (C). From the viewpoint of improving the conductivity of the conductive film to be formed, it is desired to reduce the amount of the binder (A), but if the amount of the binder (A) is small, the dispersibility of the conductivity-imparting agent (B) decreases, The applicability of the conductive composition also decreases. From the viewpoint of improving the dispersibility of the conductivity-imparting agent (B) and functioning as a “pseudo binder” that makes the conductive composition suitable for coating, use an organic solvent of 30 mPa · s or more at 25 ° C. Is preferred. On the other hand, from the viewpoint of improving the dispersibility of the conductivity-imparting agent (B), the viscosity is preferably not too high. Specifically, it is preferable to use an organic solvent of 75000 mPa · s or less at 25 ° C.
Examples of such an organic solvent (C1) include terpineol, dihydroterpineol, 2,4-diethyl-1,5-pentanediol, 1,3-butylene glycol, and isobornylcyclohexanol. Two or more high-viscosity solvents shown here may be used.
Furthermore, the organic solvent (C1) can be used in combination with a low viscosity solvent having a viscosity of less than 30 mPa · s at 25 ° C., such as methyl ethyl ketone, toluene, and isopropyl alcohol.

ここで示す粘度とは、以下の測定方法で得られた数値のことを示す。
アントンパール・ジャパン社製のレオメーター(MCR302)を用いて測定した。測定方法としては、測定サンプルを設置後以下の条件で測定し、せん断開始から60秒後の数値を読み取ることとする。
測定治具:コーンプレートCP25−2(この治具で測定できない場合は、コーンプレートCP50−1を使用する)。
回転数:1000(1/sec)
プレート温度:25℃
The viscosity shown here refers to a numerical value obtained by the following measurement method.
It measured using the rheometer (MCR302) by Anton Paar Japan. As a measuring method, after setting a measurement sample, the measurement is performed under the following conditions, and a numerical value 60 seconds after the start of shearing is read.
Measuring jig: Cone plate CP25-2 (If this jig cannot be used, cone plate CP50-1 is used).
Rotation speed: 1000 (1 / sec)
Plate temperature: 25 ° C

<その他の成分>
本発明の導電性組成物には、必要に応じて、本発明による効果を妨げない範囲で、紫外線吸収剤、紫外線安定剤、ラジカル補足剤、充填剤、チクソトロピー付与剤、老化防止剤、酸化防止剤、帯電防止剤、難燃剤、熱伝導性改良剤、可塑剤、ダレ防止剤、防汚剤、防腐剤、殺菌剤、消泡剤、レベリング剤、ブロッキング防止剤、硬化剤、増粘剤、顔料分散剤、シランカップリング剤等の各種の添加剤を添加してもよい。
<硬化剤D>
硬化剤としては、バインダー樹脂の有する官能基と反応するものであれば、特に限定されないが、アミノ基を複数有する化合物や酸無水物基を複数有する化合物の他、多官能アジリジン化合物、多官能イソシネート化合物等が挙げられる。
<Other ingredients>
In the conductive composition of the present invention, an ultraviolet absorber, an ultraviolet stabilizer, a radical scavenger, a filler, a thixotropy imparting agent, an anti-aging agent, and an antioxidant are added to the conductive composition of the present invention, as necessary. Agent, antistatic agent, flame retardant, thermal conductivity improver, plasticizer, anti-sagging agent, antifouling agent, antiseptic, disinfectant, antifoaming agent, leveling agent, anti-blocking agent, curing agent, thickener, Various additives such as a pigment dispersant and a silane coupling agent may be added.
<Curing agent D>
The curing agent is not particularly limited as long as it reacts with the functional group of the binder resin. In addition to a compound having a plurality of amino groups or a compound having a plurality of acid anhydride groups, a polyfunctional aziridine compound, a polyfunctional isocyanate. Compounds and the like.

<導電性組成物>
本発明の導電性組成物は、上記、バインダー樹脂、膨張化黒鉛、有機溶剤を必須成分とし、更に、必要に応じて、その他の成分を配合後、均一に分散することで製造することができる。
分散方法は、バインダー樹脂を溶剤に溶解し、導電性フィラーを添加した後、遊星攪拌や三本ロール、二本ロール、スキャンデックス、ビーズミルによって行う。使用する溶剤はバインダー樹脂を溶かすものであれば特に制限されない。物性を低下させない範囲であれば上記以外の分散方法を用いても良い。
ただし、硬化剤を使用する場合は、硬化剤の添加は、導電性組成物の分散後に行うものとする。硬化剤添加後は、遊星攪拌、ミックスローター、ディスパー等によって適宜混合する。混合方法は特に限定されない。
<Conductive composition>
The conductive composition of the present invention can be produced by using the above-mentioned binder resin, expanded graphite, and organic solvent as essential components, and, if necessary, mixing other components and then uniformly dispersing them. .
The dispersing method is carried out by dissolving the binder resin in a solvent and adding a conductive filler, followed by planetary stirring, three-roll, two-roll, scandex, or bead mill. The solvent to be used is not particularly limited as long as it dissolves the binder resin. A dispersion method other than the above may be used as long as the physical properties are not lowered.
However, when using a hardening | curing agent, addition of a hardening | curing agent shall be performed after dispersion | distribution of an electroconductive composition. After adding the curing agent, the mixture is appropriately mixed by planetary stirring, a mix rotor, a disper, or the like. The mixing method is not particularly limited.

<基材>
基材は、ポリエチレンテレフタレート(以下、PETという)、ポリエチレン−2,6−ナフタレート(以下、PENという)、ポリイミド、ポリ塩化ビニル、ポリアミド、二軸延伸ポリプロピレン(以下、OPPという)、無延伸ポリプロピレン(以下、CPPという)などのフィルムが挙げられるが特に限定されることはない。
<Base material>
The base material is polyethylene terephthalate (hereinafter referred to as PET), polyethylene-2,6-naphthalate (hereinafter referred to as PEN), polyimide, polyvinyl chloride, polyamide, biaxially stretched polypropylene (hereinafter referred to as OPP), unstretched polypropylene ( Hereinafter, a film such as CPP) may be mentioned, but the film is not particularly limited.

<導体膜>
本発明の導体膜は、導電性組成物を塗工し、乾燥することで形成される。
導電性組成物の基材への塗工方法を以下に示す。塗工方法は、公知の方法を用いればよく、インクジェット法、スプレー法、スピンコート法、ディップ法、ロールコート法、ブレードコート法、ドクターロール法、ドクターブレード法、カーテンコート法、スリットコート法、スクリーン印刷法、反転印刷法等を挙げることができるが、特に限定されない。
乾燥条件は、特に制限はなく、熱風乾燥、赤外線や減圧法を利用したものが挙げられる。熱風乾燥の場合、膜厚や選択した有機溶剤にもよるが、通常60〜200℃程度で乾燥させる。また、基材としてPETやPEN等のプラスチックフィルムを用いる場合は、基材が熱で変形する場合があるため、60〜150℃がより好ましい。
導電膜を導体配線として使用する場合、導電性と取扱い性の観点から、塗工後の膜厚は、50〜1000μmが好ましい。
<Conductor film>
The conductor film of the present invention is formed by applying a conductive composition and drying.
The method for applying the conductive composition to the substrate is shown below. The coating method may be a known method, such as an inkjet method, a spray method, a spin coating method, a dip method, a roll coating method, a blade coating method, a doctor roll method, a doctor blade method, a curtain coating method, a slit coating method, A screen printing method, a reverse printing method, and the like can be given, but not particularly limited.
Drying conditions are not particularly limited, and examples include those using hot air drying, infrared rays or a reduced pressure method. In the case of hot air drying, although it depends on the film thickness and the selected organic solvent, it is usually dried at about 60 to 200 ° C. Moreover, when using plastic films, such as PET and PEN, as a base material, since a base material may deform | transform with heat, 60-150 degreeC is more preferable.
When using a conductive film as the conductor wiring, the film thickness after coating is preferably 50 to 1000 μm from the viewpoints of conductivity and handleability.

塗工後の導電膜をさらに低抵抗化するためには、熱プレス処理をすることが好ましい。熱プレス処理後の体積抵抗値は、10−4Ωcm以上、10−2Ωcm未満が好ましい。   In order to further reduce the resistance of the conductive film after coating, it is preferable to perform a hot press treatment. The volume resistance value after the hot press treatment is preferably 10 −4 Ωcm or more and less than 10 −2 Ωcm.

<熱プレス方法>
熱プレス方法は、導電膜と基材にダメージを与えない範囲であればどのような方法でも良い。例えば、ロール加圧法、プレス加圧法等が挙げられる。圧力、温度、プレス時間、ロール速度は本発明の物性を損なわない範囲であれば、特に限定されない。温度に関しては、フィルム基材を使用する場合、熱で変形する可能性があるため、50℃〜200℃が好ましい。
組成物を導体配線と使用する場合、熱プレス後の膜厚は、30〜200μmが好ましい。
<Hot press method>
The hot pressing method may be any method as long as the conductive film and the substrate are not damaged. For example, a roll pressurization method, a press pressurization method, etc. are mentioned. The pressure, temperature, press time, and roll speed are not particularly limited as long as the physical properties of the present invention are not impaired. Regarding the temperature, when a film substrate is used, it may be deformed by heat, and therefore, 50 ° C to 200 ° C is preferable.
When using the composition as a conductor wiring, the film thickness after hot pressing is preferably 30 to 200 μm.

以下に、実施例により、本発明をさらに具体的に説明するが、以下の実施例は本発明の権利範囲を何ら制限するものではない。なお、実施例における、「部」および「%」は、「質量部」および「質量%」をそれぞれ表し、Mwは質量平均分子量、Tgはガラス転移温度を意味する。   The present invention will be described more specifically with reference to the following examples. However, the following examples do not limit the scope of rights of the present invention. In the examples, “parts” and “%” represent “parts by mass” and “% by mass”, respectively, Mw means mass average molecular weight, and Tg means glass transition temperature.

[バインダー樹脂(A)]
<実施例用>
(A−1−a)jER−1007:三菱化学社製ビスフェノールA型エポキシ樹脂、固形分100%、数平均分子量2,900
(A−1−b)jER−4010P:三菱化学社製ビスフェノールF型エポキシ樹脂、固形分100%、数平均分子量5,500
(A−1−c)EXA−4850−150:DIC社製アセタール変性型ビスフェノールA型エポキシ樹脂、固形分100%、数平均分子量1,000
(A−2−a)jER−1256:三菱化学社製ビスフェノールA型フェノキシ樹脂、固形分100%、数平均分子量10,000
(A−2−b)PKFE:ガブリエルパフォーマンスプロダクツ社製ビスフェノールA型フェノキシ樹脂、数平均分子量16,000
(A−2−c)jER−4275:三菱化学社製ビスフェノールA/ビスフェノールF共重合型フェノキシ樹脂、固形分100%、数平均分子量8,000
(A−2−d)PKCP−67:ガブリエルパフォーマンスプロダクツ社製側鎖ε−カプロラクトン変性型ビスフェノールA型フェノキシ樹脂、固形分100%、数平均分子量22,500
(A−2−e)KAYARAD ZFR−1491:日本化薬社製側鎖テトラヒドロフタル酸無水物・グリシジルアクリレート変性型ビスフェノールF型フェノキシ樹脂、固形分50%(メトキシプロピルアセテート溶液)、数平均分子量12,000
[Binder resin (A)]
<For Examples>
(A-1-a) jER-1007: bisphenol A type epoxy resin manufactured by Mitsubishi Chemical Corporation, solid content 100%, number average molecular weight 2,900
(A-1-b) jER-4010P: bisphenol F type epoxy resin manufactured by Mitsubishi Chemical Corporation, solid content 100%, number average molecular weight 5,500
(A-1-c) EXA-4850-150: DIC Acetal-modified bisphenol A epoxy resin, solid content 100%, number average molecular weight 1,000
(A-2-a) jER-1256: bisphenol A phenoxy resin manufactured by Mitsubishi Chemical Corporation, solid content 100%, number average molecular weight 10,000
(A-2-b) PKFE: Bisphenol A type phenoxy resin manufactured by Gabriel Performance Products, number average molecular weight 16,000
(A-2-c) jER-4275: bisphenol A / bisphenol F copolymer phenoxy resin manufactured by Mitsubishi Chemical Corporation, solid content 100%, number average molecular weight 8,000
(A-2-d) PKCP-67: Side chain ε-caprolactone modified bisphenol A type phenoxy resin manufactured by Gabriel Performance Products, solid content 100%, number average molecular weight 22,500
(A-2-e) KAYARAD ZFR-1491: Nippon Kayaku Co., Ltd. side chain tetrahydrophthalic anhydride / glycidyl acrylate modified bisphenol F type phenoxy resin, solid content 50% (methoxypropyl acetate solution), number average molecular weight 12 , 000

<比較例用>
(A−3−a)N−730A:DIC製、フェノ−ルノボラック型エポキシ樹脂、固形分100%
(A−3−b)Nipol AR42W:日本ゼオン製、アクリルゴムポリマー、固形分100%
(A−3−c)エスレックBM−2:積水化学工業製、ポリビニルブチラール、固形分100%
(A−3−d)ショウノールBRG−556:アイカSDKフェノール製、ノボラック型フェノール樹脂、固形分100%
(A−3−e)JP03:日本酢ビ・ポバール製、ポリビニルアルコール、固形分100%
(A−3−f)K−30:日本触媒製、ポリビニルピロリドン、固形分100%
<For comparative example>
(A-3-a) N-730A: DIC, phenol novolac epoxy resin, solid content 100%
(A-3-b) Nipol AR42W: manufactured by Nippon Zeon, acrylic rubber polymer, solid content 100%
(A-3-c) ESREC BM-2: Sekisui Chemical Co., Ltd., polyvinyl butyral, 100% solid content
(A-3-d) Shounol BRG-556: Aika SDK Phenol, novolak type phenol resin, solid content 100%
(A-3-e) JP03: Made of Nippon Vinegar and Poval, polyvinyl alcohol, solid content 100%
(A-3-f) K-30: manufactured by Nippon Shokubai, polyvinylpyrrolidone, solid content 100%

<数平均分子量(Mn)の測定方法>
Mnの測定は東ソー株式会社製GPC(ゲルパーミエーションクロマトグラフィー)「HPC−8020」を用いた。GPCは溶媒(THF;テトラヒドロフラン)に溶解した物質をその分子サイズの差によって分離定量する液体クロマトグラフィーである。本発明における測定は、カラムに「LF−604」(昭和電工株式会社製:迅速分析用GPCカラム:6mmID×150mmサイズ)を直列に2本接続して用い、流量0.6ml/min、カラム温度40℃の条件で行い、質量平均分子量(Mn)の決定はポリスチレン換算で行った。
<Measuring method of number average molecular weight (Mn)>
For measurement of Mn, GPC (gel permeation chromatography) “HPC-8020” manufactured by Tosoh Corporation was used. GPC is liquid chromatography that separates and quantifies substances dissolved in a solvent (THF; tetrahydrofuran) based on the difference in molecular size. For the measurement in the present invention, “LF-604” (manufactured by Showa Denko KK: GPC column for rapid analysis: 6 mm ID × 150 mm size) is connected in series to the column, the flow rate is 0.6 ml / min, the column temperature. The measurement was performed at 40 ° C., and the mass average molecular weight (Mn) was determined in terms of polystyrene.

<バインダー樹脂溶液の調整>
実施例、比較例で使用するバインダー樹脂を表1に示すように、以下に示す溶剤1〜を使用して固形分率20%の溶液に調整した。混合溶媒の組成比は質量比で記載。
1:トルエン/MEK/IPA(1/1/1)
2:ターピネオール
3:ターピネオール/イソボルニルシクロヘキサノール(7/3)
4:ジエチレングリコールモノエチルエーテルアセテート(以下、EDGAC)
5:水/EtOH(1/1)
<Adjustment of binder resin solution>
As shown in Table 1, the binder resins used in Examples and Comparative Examples were adjusted to solutions having a solid content of 20% using the following solvents 1 to 5 . The composition ratio of the mixed solvent is described as a mass ratio.
1: Toluene / MEK / IPA (1/1/1)
2: Turpineol 3: Turpineol / Isobornylcyclohexanol (7/3)
4: Diethylene glycol monoethyl ether acetate (hereinafter referred to as EDGAC)
5: Water / EtOH (1/1)

<実施例1>
バインダー樹脂A−1−a−1の溶液に導電性付与剤と有機溶剤を表2に示す種類と配合量で添加し、最後に、その溶液と同質量のガラスビーズ(3mm)を加えて、スキャンデックスによる分散を行い、ビーズを除いた後、導電性組成物を得た。その組成物をPETフィルムにアプリケーター12milで塗工後、80℃で5分間乾燥させることで塗膜を得て、後述する方法に従い体積抵抗値を求めた。
別途、前記の塗膜を油圧ラミネータで熱プレス(120℃)して、後述する方法に従い各種評価を実施した。熱プレスする場合、必要に応じて剥離フィルム、剥離紙を塗工物の上に設置してもよい。その場合、物性評価前に剥離フィルムを剥がす。
<Example 1>
Add the conductivity-imparting agent and organic solvent to the binder resin A-1-a-1 solution in the types and amounts shown in Table 2, and finally add glass beads (3 mm) of the same mass as the solution. After conducting dispersion with scandex and removing the beads, a conductive composition was obtained. The composition was applied to a PET film with an applicator 12 mil and then dried at 80 ° C. for 5 minutes to obtain a coating film. The volume resistance value was determined according to the method described later.
Separately, the above-mentioned coating film was hot-pressed (120 ° C.) with a hydraulic laminator, and various evaluations were performed according to methods described later. In the case of hot pressing, a release film and release paper may be installed on the coated material as necessary. In that case, the release film is peeled off before the physical property evaluation.

1.熱プレス方法
以下に示す条件で塗膜の熱プレスを実施した。
使用油圧ラミネーター機:大成ラミネーター(株)製油圧ラミネーターNP500S型
ポンプ圧:2MPa
ロール速度:0.2m/min
上下ロール温度:120℃
1. Hot press method The hot press of the coating film was implemented on condition shown below.
Used hydraulic laminator machine: Taisei Laminator Co., Ltd. hydraulic laminator NP500S pump pressure: 2MPa
Roll speed: 0.2m / min
Upper and lower roll temperature: 120 ° C

2.体積固有抵抗値の測定
得られた組成物とPETフィルムの積層物を1.5cm×3cmに裁断し、低抵抗率計(株式会社三菱化学アナリテック製:ロレスターGXMCP−T700)を用いて組成物の体積抵抗値の測定を行った。「△」、「○」、「◎」評価の場合、実用上問題ない。
・プレス前塗膜の導電性判定基準
◎:体積抵抗値が10−2Ωcm未満
○:体積抵抗値が10−2Ωcm以上、10−1Ωcm未満
△:体積抵抗値が10−1Ωcm以上、10Ωcm未満
×:体積抵抗値が10Ωcm以上
・熱プレス後塗膜の導電性判定基準
○:体積抵抗値が10−2Ωcm未満
△:体積抵抗値が10−2Ωcm以上、10−1Ωcm未満
×:体積抵抗値が10−1Ωcm以上
2. Measurement of Volume Resistivity Value A laminate of the obtained composition and a PET film was cut into 1.5 cm × 3 cm, and the composition was measured using a low resistivity meter (manufactured by Mitsubishi Chemical Analytech Co., Ltd .: Lorester GXMCP-T700). The volume resistance value of was measured. In the case of “△”, “◯”, “◎” evaluation, there is no practical problem.
Criteria for judging conductivity of coating film before press A: Volume resistance value is less than 10 −2 Ωcm ○: Volume resistance value is 10 −2 Ωcm or more, less than 10 −1 Ωcm Δ: Volume resistance value is 10 −1 Ωcm or more, 10 0 [Omega] cm less ×: conductive criterion volume resistivity of 10 0 [Omega] cm or more, hot pressing after coating ○: volume resistivity of less than 10 -2 [Omega] cm △: volume resistivity of 10 -2 [Omega] cm or higher, 10 - Less than 1 Ωcm x: Volume resistance value is 10 −1 Ωcm or more

3.印刷塗工性評価
印刷塗工性の優劣を塗膜の空隙の有無で評価した。評価方法としては、熱プレス後の塗膜を蛍光灯の光で透かして見たときの空隙の多さの度合いで以下に示す三段階で評価を行った。
○:空隙なし
△:わずかに空隙があるが導電性の評価を行う分には問題ない程度
×:空隙が多数あり導電性の評価ができない
3. Evaluation of print coatability The superiority or inferiority of print coatability was evaluated by the presence or absence of voids in the coating film. As an evaluation method, evaluation was carried out in the following three stages according to the degree of the number of voids when the coated film after hot pressing was viewed through a fluorescent lamp.
○: No void Δ: There is a slight void, but there is no problem for the evaluation of conductivity. ×: There are many voids and the conductivity cannot be evaluated.

4.塗膜の密着性の評価
熱プレス後の基材からの剥離度合を以下の三段階で評価した。実用上、「△」以上なら問題ない。
○:剥がれなし
△:一部剥離
×:完全剥離
4. Evaluation of adhesion of coating film The degree of peeling from the substrate after hot pressing was evaluated in the following three stages. In practice, there is no problem if it is greater than “Δ”.
○: No peeling △: Partial peeling ×: Complete peeling

5.耐久性試験
耐久性の優劣を以下に示す方法で評価した。作製した熱プレス処理済みの塗膜を基材と共に濃度3%の塩水に浸漬し、80℃下で5000時間放置した後、乾燥させてから、体積固有抵抗値を測定し、浸漬前の体積固有抵抗値を基準として以下の評価を行った。実用上「△」以上なら問題ない。(体積固有抵抗値の測定方法は前述と同様)
○:体積抵抗値上昇せず
△:体積抵抗値が上昇するが、10−2Ωcm未満の値を維持
×:体積抵抗値が10−2Ωcm以上まで上昇
5. Durability test The durability was evaluated by the following method. The prepared heat-pressed coating film was immersed in 3% salt water together with the base material, allowed to stand at 80 ° C. for 5000 hours, and then dried, and then measured for volume resistivity. The following evaluation was performed based on the resistance value. There is no problem if it is more than “△” in practical use. (Measurement method of volume resistivity is the same as above)
○: Volume resistance value does not increase Δ: Volume resistance value increases, but maintains a value of less than 10 −2 Ωcm ×: Volume resistance value increases to 10 −2 Ωcm or more

<実施例2>
バインダー樹脂A−1−a−1に導電性付与剤と有機溶剤を表2に示す種類と配合量で添加し、その溶液と同質量のガラスビーズ(3mm)を加えて、スキャンデックスによる分散を行い、ビーズを除いた。次に、スミジュールBL3175:住化コベストロウレタン社製 ブロックイソシアネート硬化剤(固形分75%)をトルエンで希釈し、固形分50%とした硬化剤溶液D−1−1を表1に示す配合量で添加後、十分に攪拌して、導電性組成物を得た。その組成物をPETフィルムにアプリケーター12milで塗工後、80℃で5分間乾燥させることで塗膜を得た。
そして、表1に該当する各種評価を実施した。さらに、得られた塗膜を油圧ラミネータで熱プレスし(120℃)、150℃30分間の加熱条件で硬化した後、表2に該当する各種評価を実施した。熱プレスする場合、必要に応じて剥離フィルム、剥離紙を塗工物の上に設置してもよい。その場合、物性評価前に剥離フィルムを剥がす。
<Example 2>
Add the conductivity-imparting agent and the organic solvent to the binder resin A-1-a-1 in the types and amounts shown in Table 2, add glass beads (3 mm) of the same mass as the solution, and disperse by Scandex. And the beads were removed. Next, Sumidur BL3175: Sumika Covestro Urethane Co., Ltd. Block isocyanate curing agent (solid content: 75%) diluted with toluene to contain a curing agent solution D-1-1 having a solid content of 50% is shown in Table 1. After the addition in an amount, the mixture was sufficiently stirred to obtain a conductive composition. The composition was applied to a PET film with an applicator 12 mil and then dried at 80 ° C. for 5 minutes to obtain a coating film.
And various evaluation corresponding to Table 1 was implemented. Furthermore, the obtained coating film was hot-pressed with a hydraulic laminator (120 ° C.) and cured under heating conditions of 150 ° C. for 30 minutes, and then various evaluations corresponding to Table 2 were performed. In the case of hot pressing, a release film and release paper may be installed on the coated material as necessary. In that case, the release film is peeled off before the physical property evaluation.

<実施例3>
バインダー樹脂A−1−a−2に導電性付与剤と有機溶剤を表2に示す種類と配合量で添加し、三本ロールによる分散を行った。その導電性組成物をPETフィルムに対してシルクスクリーン(40メッシュ)で印刷後、100℃で10分間、150℃で60分間乾燥させることで、塗膜を得て、表1に該当する各種物性評価を実施した。さらに得られた塗膜を油圧ラミネーターで熱プレスして(120℃)、表2に該当する各種物性評価を実施した。なお、プレス前膜厚は250μm、プレス後膜厚は80μmとした。
<Example 3>
A conductivity-imparting agent and an organic solvent were added to the binder resin A-1-a-2 in the types and blending amounts shown in Table 2 and dispersed with a three-roll. The conductive composition was printed on a PET film with a silk screen (40 mesh) and then dried at 100 ° C. for 10 minutes and at 150 ° C. for 60 minutes to obtain a coating film. Various physical properties corresponding to Table 1 Evaluation was performed. Furthermore, the obtained coating film was hot-pressed with a hydraulic laminator (120 ° C.), and various physical properties corresponding to Table 2 were evaluated. The film thickness before pressing was 250 μm, and the film thickness after pressing was 80 μm.

<実施例5、9、13、17、21、27、比較例1〜8>
表2〜7に記載されている配合物の種類と配合量以外は、実施例1と同様にスキャンデックスによって分散し導電性組成物を得、アプリケーターで塗工して塗膜を形成し、評価した。
<Examples 5, 9, 13, 17, 21, 27, Comparative Examples 1-8>
Except for the types and amounts of the formulations described in Tables 2 to 7, the conductive composition was dispersed by Scandex in the same manner as in Example 1 and coated with an applicator to form a coating film. Evaluation did.

<実施例4、6、8、10、12、14、16、18、20、22、24、28、30、34、36>
表2〜5に記載されている配合物の種類と配合量以外は、実施例1または3と同様にしてスキャンデックスまたは3本ロールによって分散した後、実施例2と同様に硬化剤を加えて導電性組成物を得、アプリケーターで塗工して、またはシルクスクリーン印刷で印刷して塗膜を形成し、評価した。
<Examples 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 30, 34, 36>
Except for the types and amounts of the compounds listed in Tables 2 to 5, after being dispersed by scandex or three rolls in the same manner as in Example 1 or 3, a curing agent was added in the same manner as in Example 2. A conductive composition was obtained and applied with an applicator or printed with silk screen printing to form a coating and evaluated.

<実施例7、11、15、19、23、25、26、29、31、32、35>
表2〜6に記載されている配合物の種類と配合量以外は、実施例3と同様に3本ロールによって分散し導電性組成物を得、シルクスクリーン印刷で印刷して塗膜を形成し、評価した。
<Examples 7, 11, 15, 19, 23, 25, 26, 29, 31, 32, 35>
Except for the types and amounts of the compounds listed in Tables 2 to 6, a conductive composition was obtained by dispersing with three rolls in the same manner as in Example 3 and printed by silk screen printing to form a coating film. ,evaluated.

<比較例9>
市販されている膜厚20μm程度の銅箔で耐久性試験を実施した。
<Comparative Example 9>
The durability test was conducted with a commercially available copper foil having a thickness of about 20 μm.

<導電性付与剤(B)>
(膨張化黒鉛(B1))
・LEP(日本黒鉛工業):平均粒径137μm
・CMX−40(日本黒鉛工業):平均粒径60μm
・GR−25(日本黒鉛工業):平均粒径31μm
・EC10(伊藤黒鉛工業):平均粒径190μm
・EC100(伊藤黒鉛工業):平均粒径190μm
・EC300(伊藤黒鉛工業):平均粒径50μm
・EC1500(伊藤黒鉛工業):平均粒径8μm
(カーボンブラック(B2))
・ECP600JD(ライオンスペシャリティケミカル)
・EC300JD(ライオンスペシャリティケミカル)
(鱗状黒鉛)
・CPB(日本黒鉛工業):平均粒径38μm
(薄片状黒鉛)
・UP−50N(日本黒鉛工業):平均粒径95μm
<Conductivity imparting agent (B)>
(Expanded graphite (B1))
・ LEP (Nippon Graphite Industries): Average particle size of 137μm
CMX-40 (Nippon Graphite Industries): average particle size 60 μm
GR-25 (Nippon Graphite Industries): Average particle size 31 μm
EC10 (Ito Graphite Industry): average particle size 190μm
EC100 (Ito Graphite Industry): average particle size 190μm
EC300 (Ito Graphite Industry): average particle size 50 μm
EC1500 (Ito Graphite Industry): Average particle size 8μm
(Carbon black (B2))
・ ECP600JD (Lion Specialty Chemical)
・ EC300JD (Lion Specialty Chemical)
(Scale graphite)
CPB (Nippon Graphite Industries): average particle size 38μm
(Flaky graphite)
・ UP-50N (Nippon Graphite Industries): Average particle size 95μm

<有機溶剤(C)>
・トルエン:粘度0.66mPa・s
・MEK:0.49mPa・s
・IPA:2.00mPa・s
・ターピネオール:53mPa・s
・イソボルニルシクロヘキサノール:70000mPa・s
・EDGAC:2.6mPa・s
<Organic solvent (C)>
Toluene: viscosity 0.66 mPa · s
・ MEK: 0.49 mPa · s
IPA: 2.00 mPa · s
・ Turpineol: 53mPa ・ s
・ Isobornylcyclohexanol: 70000 mPa · s
・ EDGAC: 2.6 mPa · s

<硬化剤D>
・スミジュールBL3175:住化コベストロウレタン社製 ブロックイソシアネート硬化剤(固形分75%)
D−1−1:スミジュールBL3175をトルエンで希釈し、固形分50%の硬化剤溶液D−1−1を得た。
D−1−2:スミジュールBL3175をターピネオールで希釈し、固形分50%の硬化剤溶液D−1−2を得た。
・リカシッドTH:新日本理化社製 テトラヒドロ無水フタル酸(固形分100%)
D−2−1:リカシッドTHをトルエンで希釈し、固形分50%の硬化剤溶液D−2−1を得た。
D−2−2:リカシッドTHをターピネオールで希釈し、固形分50%の硬化剤溶液D−2−2を得た。
・キュアゾール2E4MZ:四国化成社製 イミダゾール硬化剤(固形分100%)を
D−3−1:キュアゾール2E4MZをトルエンで希釈し、固形分50%の硬化剤溶液D−3−1を得た。
D−3−2:キュアゾール2E4MZをターピネオールで希釈し、固形分50%の硬化剤溶液D−3−2を得た。
<Curing agent D>
・ Sumijour BL3175: Sumika Cobestro Urethane Co., Ltd. Block isocyanate curing agent (solid content 75%)
D-1-1: Sumidur BL3175 was diluted with toluene to obtain a curing agent solution D-1-1 having a solid content of 50%.
D-1-2: Sumidur BL3175 was diluted with terpineol to obtain a curing agent solution D-1-2 having a solid content of 50%.
・ Rikacid TH: Tetrahydrophthalic anhydride (solid content 100%) manufactured by Shin Nippon Rika Co., Ltd.
D-2-1: Ricacid TH was diluted with toluene to obtain a curing agent solution D-2-1 having a solid content of 50%.
D-2-2: Ricacid TH was diluted with terpineol to obtain a curing agent solution D-2-2 having a solid content of 50%.
-Cure sol 2E4MZ: Shikoku Kasei Co., Ltd. imidazole hardening | curing agent (solid content 100%) was D-3-1: Curazole 2E4MZ was diluted with toluene, and the hardening | curing agent solution D-3-1 of 50% of solid content was obtained.
D-3-2: Curazole 2E4MZ was diluted with terpineol to obtain a curing agent solution D-3-2 having a solid content of 50%.

なお、表中、スキャンデックスによる分散を「S」、3本ロールによる分散を「3本」、アプリケーターによる塗工を「A」、シルクスクリーン印刷による印刷を「SS」と略記した。   In the table, dispersion by scandex is abbreviated as “S”, dispersion by 3 rolls is “3”, coating by applicator is “A”, and printing by silk screen printing is abbreviated as “SS”.

比較例1〜3は最適なバインダー樹脂を使用していないため、導電性、印刷性が悪い結果であった。比較例4、5は、最適なバインダー樹脂を使用していないため、密着性、耐久性が悪い結果であった。比較例6は、膨張化黒鉛の平均粒径が小さいため、低い導電性となっていた。比較例7、8は、膨張化黒鉛を使用していないために、低い導電性となっていた。比較例9は、耐久性試験の結果、銅箔表面に不導体が形成され、耐久性評価は、「×」となっていた。
実施例1〜47は、平均粒径が大きい膨張化黒鉛と基材への良好な密着性と熱プレス後の十分な塗膜強度を兼ね備えたバインダー樹脂を使用しており、高い導電性と基材への良好な密着性を示した。
Since Comparative Examples 1-3 did not use the optimal binder resin, it was a result with bad electroconductivity and printability. In Comparative Examples 4 and 5, since an optimal binder resin was not used, the adhesion and durability were poor. In Comparative Example 6, since the average particle size of the expanded graphite was small, the conductivity was low. Comparative Examples 7 and 8 had low conductivity because expanded graphite was not used. In Comparative Example 9, as a result of the durability test, a nonconductor was formed on the surface of the copper foil, and the durability evaluation was “x”.
Examples 1 to 47 use expanded graphite having a large average particle size and a binder resin having good adhesion to a substrate and sufficient coating strength after hot pressing, and have high conductivity and basicity. It showed good adhesion to the material.

Claims (8)

バインダー樹脂(A)と、導電性付与剤(B)と、有機溶剤(C)とを含む導電性組成物であって、バインダー樹脂(A)が、数平均分子量800以上7,000未満のビスフェノール型エポキシ樹脂(A−1)および数平均分子量7,000以上60,000未満のフェノキシ樹脂(A−2)からなる群より選ばれ、導電性付与剤(B)が膨張化黒鉛(B1)を含み、膨張化黒鉛の平均粒径が10μm以上、200μm以下であって、導電性付与剤(B)の含有量が、組成物の固形分100質量%中、40質量%以上90質量%以下であることを特徴とする導電性組成物。   A conductive composition containing a binder resin (A), a conductivity imparting agent (B), and an organic solvent (C), wherein the binder resin (A) has a number average molecular weight of 800 or more and less than 7,000. Selected from the group consisting of a type epoxy resin (A-1) and a phenoxy resin (A-2) having a number average molecular weight of 7,000 or more and less than 60,000, and the conductivity-imparting agent (B) is an expanded graphite (B1). The expanded graphite has an average particle size of 10 μm or more and 200 μm or less, and the content of the conductivity-imparting agent (B) is 40% by mass or more and 90% by mass or less in 100% by mass of the solid content of the composition. A conductive composition characterized by being. 膨張化黒鉛(B1)の平均粒径が25μm以上、150μm以下であることを特徴とする請求項1記載の導電性組成物。   2. The conductive composition according to claim 1, wherein the expanded graphite (B1) has an average particle size of 25 μm or more and 150 μm or less. 形成した塗膜の体積抵抗値が10−3Ωc以上、10−1Ωcm未満であることを特徴とする請求項1または2記載の導電性組成物。 3. The conductive composition according to claim 1, wherein a volume resistance value of the formed coating film is 10 −3 Ωc or more and less than 10 −1 Ωcm. 更に、導電性付与剤(B)が、カーボンブラック(B2)を含むことを特徴とする請求項1〜3いずれか1項に記載の導電性組成物。   Furthermore, electroconductivity imparting agent (B) contains carbon black (B2), The electroconductive composition of any one of Claims 1-3 characterized by the above-mentioned. 有機溶剤(C)が、25℃の時の粘度が30mPa・s以上、75000mPa・s以下である有機溶剤(C1)を含み、有機溶剤(C1)の含有量が、有機溶剤(C)の含有量100質量%中、10質量%以上であることを特徴とする請求項1〜4いずれか1項に記載の導電性組成物。   The organic solvent (C) contains an organic solvent (C1) having a viscosity at 25 ° C. of 30 mPa · s or more and 75000 mPa · s or less, and the content of the organic solvent (C1) is the content of the organic solvent (C). It is 10 mass% or more in quantity 100 mass%, The electrically conductive composition of any one of Claims 1-4 characterized by the above-mentioned. 導電性組成物を基材に塗工した後、乾燥させて得られた導体膜を、熱プレスすることで得られる導体膜の体積抵抗値が10−4Ωcm以上、10−2Ωcm未満であることを特徴とする請求項1〜5いずれか1項に記載の導電性組成物。 After the conductive composition is applied to the substrate, the conductor film obtained by drying the conductor film has a volume resistance of 10 −4 Ωcm or more and less than 10 −2 Ωcm. The conductive composition according to any one of claims 1 to 5, wherein: 請求項1〜6いずれか1項に記載の導電性組成物を基材に塗工した後、乾燥して得た導体膜を熱プレスすることを特徴とする導体膜の製造方法。   A method for producing a conductor film, comprising: applying a conductive composition according to any one of claims 1 to 6 to a substrate, and then hot-pressing the conductor film obtained by drying. 請求項1〜6いずれか1項に記載の導電性組成物をスクリーン印刷によりパターニングし、導体配線とすることを特徴とする導体膜の製造方法。
A method for producing a conductor film, wherein the conductive composition according to any one of claims 1 to 6 is patterned by screen printing to form a conductor wiring.
JP2017129650A 2017-06-30 2017-06-30 Method for manufacturing conductive composition and conductor film Expired - Fee Related JP6879084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017129650A JP6879084B2 (en) 2017-06-30 2017-06-30 Method for manufacturing conductive composition and conductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017129650A JP6879084B2 (en) 2017-06-30 2017-06-30 Method for manufacturing conductive composition and conductor film

Publications (2)

Publication Number Publication Date
JP2019012663A true JP2019012663A (en) 2019-01-24
JP6879084B2 JP6879084B2 (en) 2021-06-02

Family

ID=65227440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017129650A Expired - Fee Related JP6879084B2 (en) 2017-06-30 2017-06-30 Method for manufacturing conductive composition and conductor film

Country Status (1)

Country Link
JP (1) JP6879084B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020177869A (en) * 2019-04-22 2020-10-29 凸版印刷株式会社 Coating agent and printed matter
CN114381184A (en) * 2021-12-24 2022-04-22 江苏云湖新材料科技有限公司 Bi-component flake graphite epoxy static conductive anticorrosive paint with excellent comprehensive performance and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04198271A (en) * 1990-11-27 1992-07-17 Mitsui Mining Co Ltd Conductive paste composition
JPH0992026A (en) * 1995-02-08 1997-04-04 Hitachi Chem Co Ltd Complex conductive powder, conductive paste, manufacture of conductive paste, electric circuit, and manufacture of electric circuit
WO2014013899A1 (en) * 2012-07-20 2014-01-23 東洋紡株式会社 Conductive paste for laser etching, conductive thin film, and conductive laminate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04198271A (en) * 1990-11-27 1992-07-17 Mitsui Mining Co Ltd Conductive paste composition
JPH0992026A (en) * 1995-02-08 1997-04-04 Hitachi Chem Co Ltd Complex conductive powder, conductive paste, manufacture of conductive paste, electric circuit, and manufacture of electric circuit
WO2014013899A1 (en) * 2012-07-20 2014-01-23 東洋紡株式会社 Conductive paste for laser etching, conductive thin film, and conductive laminate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020177869A (en) * 2019-04-22 2020-10-29 凸版印刷株式会社 Coating agent and printed matter
JP7314599B2 (en) 2019-04-22 2023-07-26 凸版印刷株式会社 Coating agent and printed matter
CN114381184A (en) * 2021-12-24 2022-04-22 江苏云湖新材料科技有限公司 Bi-component flake graphite epoxy static conductive anticorrosive paint with excellent comprehensive performance and preparation method thereof

Also Published As

Publication number Publication date
JP6879084B2 (en) 2021-06-02

Similar Documents

Publication Publication Date Title
CN106189918B (en) Conductive adhesive, conductive adhesive sheet, electromagnetic wave shielding sheet and printing distributing board
CN104751941B (en) Heat-curing type conductive paste
TWI733657B (en) Heat-curing conductive paste
TWI596172B (en) Conductive liquid composition
TWI752117B (en) Conductive paste, conductive film, method for producing conductive film, conductive fine wiring, and method for producing conductive fine wiring
JPH08315885A (en) Circuit connecting material
JP6343903B2 (en) Conductive paste and printed circuit using the same
JP5767498B2 (en) Conductive paste
JP6879084B2 (en) Method for manufacturing conductive composition and conductor film
JP6939150B2 (en) Method for manufacturing conductive composition and conductor film
JP2019056104A (en) Conductive composition and wiring board using the same
JP2013131385A (en) Conductive paste
JP2010153507A (en) Conductive bump forming composition and printed wiring board using the same
JP6301366B2 (en) Electronic component adhesive material and electronic component bonding method
JP2011184528A (en) Circuit connecting material
JP2008153230A (en) Circuit connecting material
CN104882189A (en) Conductive composition and conductor
JP4947229B2 (en) Film-like circuit connecting material manufacturing method
JP5013027B2 (en) Electrode connection method
JP5009430B2 (en) Film-like circuit connection material
JP6897368B2 (en) Method for manufacturing conductive composition and conductor film
JP2006054180A (en) Circuit connecting material
TW202217860A (en) Conductive paste and conductive film
JP2023018665A (en) Conductive resin composition
CN118098676A (en) Roll-type conductive bonding sheet, wiring board with metal reinforcing plate, and electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210412

R151 Written notification of patent or utility model registration

Ref document number: 6879084

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees