[go: up one dir, main page]

JP2019001283A - vehicle - Google Patents

vehicle Download PDF

Info

Publication number
JP2019001283A
JP2019001283A JP2017117056A JP2017117056A JP2019001283A JP 2019001283 A JP2019001283 A JP 2019001283A JP 2017117056 A JP2017117056 A JP 2017117056A JP 2017117056 A JP2017117056 A JP 2017117056A JP 2019001283 A JP2019001283 A JP 2019001283A
Authority
JP
Japan
Prior art keywords
vehicle
control
speed
transmission
traveling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017117056A
Other languages
Japanese (ja)
Inventor
石川 尚
Takashi Ishikawa
尚 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2017117056A priority Critical patent/JP2019001283A/en
Publication of JP2019001283A publication Critical patent/JP2019001283A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Controls For Constant Speed Travelling (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Transmission Device (AREA)

Abstract

To provide a vehicle capable of smoothly performing operations from deceleration to acceleration without delay while travelling is performed by driving support.SOLUTION: The vehicle includes: an internal combustion engine; a transmission; a recognition unit which recognizes an other vehicle located in front of the vehicle; a support unit which controls support driving of the vehicle so that a relative position with respect to the other vehicle has a predetermined positional relationship and/or constant speed travelling, in which a travelling speed of the vehicle is equal to or lower than a target speed, is performed; and a control unit which controls the internal combustion engine and the transmission gear ratio of the transmission according to support control of the support unit. When the vehicle travels according to the support control, and the support unit predicts or detects that the other vehicle is in a near space closer to the vehicle than a space which satisfies the predetermined positional relationship ahead in a travelling direction of the vehicle, the control unit performs downshift control which increases the transmission gear ratio of the transmission, and when the support unit predicts or detects that the other vehicle is not in the space after the downshift control, the control unit controls the vehicle to be accelerated by driving power from the internal combustion engine.SELECTED DRAWING: Figure 3

Description

本発明は、車両に関する。   The present invention relates to a vehicle.

近年、車両の運転者の負担軽減や事故回避のため、様々な運転支援装置が開発され、実用化されている。このような運転支援装置の一つとして、アダプティブ・クルーズ・コントロール(Adaptive Cruise Control)機能(以下「ACC機能」という。)を備えるものが知られている。一般に、ACC機能は、アクセルやブレーキの操作頻度が比較的少ない高速道路での走行時に使用されることが前提となっている。運転支援装置は、運転者がACC機能を有効化する操作を行った際に目標速度を設定し、先行車両がいない場合には目標速度で定速走行を行い、先行車両がいる場合には一定の車間距離(目標車間距離)を維持しながら追従走行を行うように、車両の駆動力及び制動力を制御する。   In recent years, various driving support devices have been developed and put into practical use in order to reduce the burden on the driver of the vehicle and avoid accidents. As one of such driving assistance devices, one having an adaptive cruise control function (hereinafter referred to as “ACC function”) is known. In general, it is assumed that the ACC function is used when traveling on a highway where the operation frequency of an accelerator and a brake is relatively low. The driving support device sets a target speed when the driver performs an operation for activating the ACC function, performs constant speed traveling at the target speed when there is no preceding vehicle, and is constant when there is a preceding vehicle. The driving force and braking force of the vehicle are controlled so as to follow the vehicle while maintaining the following inter-vehicle distance (target inter-vehicle distance).

特開2003−025869号公報JP 2003-025869 A

特許文献1には、上記説明したACC機能に含まれる追従走行制御と、エンジンブレーキが必要な走行条件で変速機の変速制御により自動的にエンジンブレーキが効くようにする自動エンジンブレーキ制御との少なくともいずれか一方を利用可能な車両において、追従走行制御を行うよう指令されても、車間距離が目標車間距離以上である間は自動エンジンブレーキ制御を継続し、車間距離が目標車間距離未満になった時に自動エンジンブレーキ制御を中止する技術が記載されている。当該技術は、エンジンブレーキが必要な降坂路の走行中では実際上、車間距離が目標車間距離に達するまでエンジンブレーキを効かせておいても差し支えないとの思想を有する。当該技術によれば、エンジンブレーキが必要な降坂路を走行中に追従走行制御が開始されたが、車間距離が目標車間距離以上であれば自動エンジンブレーキ制御が継続するために、降坂路を走行中に自動エンジンブレーキ制御が非作動にされた場合に生じる突如加速を防止できる。   Patent Document 1 includes at least the following traveling control included in the ACC function described above and automatic engine brake control that automatically activates the engine brake by the shift control of the transmission under a traveling condition that requires engine braking. Even if one of the vehicles that can use either one is instructed to perform follow-up driving control, the automatic engine brake control is continued while the inter-vehicle distance is equal to or greater than the target inter-vehicle distance, and the inter-vehicle distance is less than the target inter-vehicle distance. A technique that sometimes stops automatic engine brake control is described. This technology has the idea that the engine brake may be applied until the vehicle-to-vehicle distance reaches the target vehicle-to-vehicle distance during traveling on a downhill road that requires engine braking. According to the technology, follow-up running control is started while driving downhill roads that require engine braking, but if the inter-vehicle distance is greater than or equal to the target inter-vehicle distance, automatic engine brake control will continue, and the downhill road will run. Sudden acceleration that occurs when the automatic engine brake control is deactivated can be prevented.

上記説明した特許文献1の技術では、追従走行制御の作動時に、先行車両との車間距離が目標車間距離に達するまでは、変速機の変速(ダウンシフト)による自動エンジンブレーキ制御が作動する。しかし、その後、先行車両が加速して車間距離が開いていく際の制御については考慮されていない。   In the technique of Patent Document 1 described above, automatic engine brake control by shifting (downshift) of the transmission is operated until the inter-vehicle distance from the preceding vehicle reaches the target inter-vehicle distance when the follow-up running control is operated. However, the control when the preceding vehicle accelerates and the inter-vehicle distance increases thereafter is not considered.

本発明の目的は、運転支援による走行中に行われる減速から加速までの運転をスムーズに遅滞なく行うことができる車両を提供することである。   An object of the present invention is to provide a vehicle that can smoothly perform a driving from deceleration to acceleration performed during driving by driving assistance without delay.

上記の目的を達成するために、請求項1に記載の発明は、
内燃機関(例えば、後述の実施形態での内燃機関101)と、
前記内燃機関の駆動回転を変速して駆動輪に伝達する変速機(例えば、後述の実施形態での変速機103)と、を備える車両であって、
前記車両の前方に位置する他の車両を認識する認識部(例えば、後述の実施形態での認識部109)と、
前記認識部が認識する前記他の車両との相対位置が所定の位置関係となるよう、及び/又は、前記車両の走行速度が目標速度以下での定速走行を行うよう、前記車両の運転を支援する制御を行う支援部(例えば、後述の実施形態での支援部111)と、
前記支援部の支援制御に従い、前記内燃機関及び前記変速機の変速比を制御する制御部(例えば、後述の実施形態でのECU107)と、を備え、
前記制御部は、前記車両が前記支援部の支援制御に従った走行中に、
前記認識部の認識内容に基づいて、前記車両の進行方向に沿った前方の前記所定の位置関係を満たす空間よりも前記車両寄りの近接空間に、他の車両が存在することを前記支援部が予測又は検知した場合は、前記変速機の変速比を大きくするダウンシフト制御を行い、
前記ダウンシフト制御後に、前記認識部の認識内容に基づいて、前記他の車両が前記空間に存在しなくなることを前記支援部が予測又は検知した場合は、前記内燃機関からの動力によって前記車両が加速する制御を行う、車両である。
In order to achieve the above object, the invention described in claim 1
An internal combustion engine (for example, an internal combustion engine 101 in an embodiment described later);
A vehicle (for example, a transmission 103 in an embodiment to be described later) that shifts and transmits drive rotation of the internal combustion engine to drive wheels,
A recognizing unit that recognizes another vehicle located in front of the vehicle (for example, a recognizing unit 109 in an embodiment described later);
The vehicle is operated so that the relative position with the other vehicle recognized by the recognition unit is in a predetermined positional relationship and / or the vehicle travels at a constant speed below a target speed. A support unit that performs control to support (for example, a support unit 111 in an embodiment described later);
A control unit (e.g., an ECU 107 in an embodiment described later) for controlling the gear ratio of the internal combustion engine and the transmission according to the support control of the support unit,
The control unit, while the vehicle is traveling according to the support control of the support unit,
Based on the recognition content of the recognition unit, the support unit determines that another vehicle exists in a close space closer to the vehicle than a space satisfying the predetermined positional relationship ahead along the traveling direction of the vehicle. If predicted or detected, downshift control to increase the transmission gear ratio is performed,
After the downshift control, when the support unit predicts or detects that the other vehicle does not exist in the space based on the recognition content of the recognition unit, the vehicle is driven by the power from the internal combustion engine. A vehicle that performs acceleration control.

請求項2に記載の発明は、請求項1に記載の発明において、
前記制御部は、前記ダウンシフト制御後に前記車両が加速する制御を行う際、前記ダウンシフト制御後の前記変速機の変速比を維持するか、前記変速機の変速比を前記ダウンシフト制御後の前記変速機の変速比から小さくするアップシフト制御を行う。
The invention according to claim 2 is the invention according to claim 1,
The control unit maintains the transmission gear ratio after the downshift control when the vehicle accelerates after the downshift control, or changes the transmission gear ratio after the downshift control. Upshift control is performed to reduce the transmission gear ratio.

請求項3に記載の発明は、請求項2に記載の発明において、
前記制御部は、前記ダウンシフト制御後に前記他の車両との相対位置が前記所定の位置関係になった後、前記アップシフト制御を行う。
The invention according to claim 3 is the invention according to claim 2,
The control unit performs the upshift control after the relative position with the other vehicle becomes the predetermined positional relationship after the downshift control.

請求項4に記載の発明は、請求項1から3のいずれか1項に記載の発明において、
前記制御部は、前記ダウンシフト制御を行う際には、前記車両と前記他の車両との相対速度に基づいて、前記ダウンシフト制御後の前記変速機の変速比を決定する。
The invention according to claim 4 is the invention according to any one of claims 1 to 3,
When the downshift control is performed, the control unit determines a gear ratio of the transmission after the downshift control based on a relative speed between the vehicle and the other vehicle.

請求項5に記載の発明は、請求項1から3のいずれか1項に記載の発明において、
前記制御部は、前記ダウンシフト制御を行う際には、前記車両と前記他の車両との間の距離に基づいて、前記ダウンシフト制御後の前記変速機の変速比を決定する。
The invention according to claim 5 is the invention according to any one of claims 1 to 3,
When the downshift control is performed, the control unit determines a gear ratio of the transmission after the downshift control based on a distance between the vehicle and the other vehicle.

請求項6に記載の発明は、請求項1から5のいずれか1項に記載の発明において、
前記制御部は、前記ダウンシフト制御を行うと共に、前記内燃機関の燃料カットを行う。
The invention according to claim 6 is the invention according to any one of claims 1 to 5,
The control unit performs the downshift control and performs fuel cut of the internal combustion engine.

請求項7に記載の発明は、請求項1から6のいずれか1項に記載の発明において、
前記認識部は、走行に関する前記他の車両の動き又は前記他の車両の灯体の点灯状態を検知し、
前記制御部は、前記認識部が検知した情報に基づいて、前記近接空間に前記他の車両が存在することを前記支援部が予測又は検知すると、前記ダウンシフト制御を行う。
The invention according to claim 7 is the invention according to any one of claims 1 to 6,
The recognizing unit detects a movement of the other vehicle related to traveling or a lighting state of a lamp body of the other vehicle,
The control unit performs the downshift control when the support unit predicts or detects that the other vehicle exists in the close space based on the information detected by the recognition unit.

請求項8に記載の発明は、請求項1から7のいずれか1項に記載の発明において、
前記認識部は、走行に関する前記他の車両の動き又は前記他の車両の灯体の点灯状態を検知し、
前記制御部は、前記車両が前記目標速度未満の速度で進行方向に沿った前方の前記空間に位置する他の車両との相対位置が前記所定の位置関係となるよう走行しているときに、前記認識部が検知した情報に基づいて、前記他の車両が前記空間に存在しなくなることを前記支援部が予測又は検知した場合は、前記ダウンシフト制御を行う。
The invention according to claim 8 is the invention according to any one of claims 1 to 7,
The recognizing unit detects a movement of the other vehicle related to traveling or a lighting state of a lamp body of the other vehicle,
The control unit, when the vehicle is traveling at a speed less than the target speed so that the relative position with other vehicles located in the space ahead along the traveling direction is the predetermined positional relationship, When the support unit predicts or detects that the other vehicle does not exist in the space based on the information detected by the recognition unit, the downshift control is performed.

請求項1の発明によれば、支援部の支援制御に従った走行中、自車両の進行方向に沿った前方に、他の車両が自車両の走行速度よりも低速で割り込んできそうな場合はダウンシフト制御を行って減速し、その後、上記他の車両に追従して走行するために加速を行う。また、支援部の支援制御に従った追従走行中、前方を走行する他の車両が減速しそうな場合もダウンシフト制御を行って減速し、その後、当該他の車両に追従した加速を行う。このように、運転支援による走行中に行われる減速から加速までの運転をスムーズに遅滞なく行うことができる。   According to the invention of claim 1, when traveling according to the support control of the support unit, when another vehicle seems to be able to interrupt in front of the traveling direction of the host vehicle at a lower speed than the traveling speed of the host vehicle. Deceleration is performed by downshift control, and then acceleration is performed to travel following the other vehicle. Further, during follow-up running according to the support control of the support unit, when another vehicle traveling ahead is likely to decelerate, the vehicle is decelerated by performing downshift control, and thereafter, acceleration following the other vehicle is performed. In this way, driving from deceleration to acceleration performed during driving by driving assistance can be performed smoothly and without delay.

請求項2の発明によれば、自車両の進行方向に沿った前方に割り込んできた他の車両が加速した際、又は、自車両が追従する他の車両が減速した後に加速した際、当該他の車両に追従するために自車両も加速する際には、ダウンシフトした変速段を維持したまま加速を行って、アップシフト制御を行いつつ当該加速を継続できる。その結果、追従走行時における減速からの遅滞のないスムーズな加速が可能となり、他の車両に速やかに追従できる。   According to the second aspect of the present invention, when another vehicle that has entered the front in the traveling direction of the host vehicle has accelerated, or has accelerated after the other vehicle that the host vehicle follows has decelerated, the other vehicle When the host vehicle accelerates in order to follow this vehicle, the acceleration can be continued while performing the upshift control by performing the acceleration while maintaining the downshifted gear. As a result, smooth acceleration without delay from deceleration during follow-up traveling is possible, and other vehicles can be followed quickly.

請求項3の発明によれば、自車両の進行方向に沿った前方に割り込んできた他の車両に加速して追従する際には、当該他の車両との相対位置が所定の位置関係になった後にアップシフト制御を行う。その結果、追従走行時における減速からのスムーズな加速が可能となり、他の車両にスムーズに追従できる。   According to the third aspect of the present invention, when accelerating and following another vehicle that has interrupted forward along the traveling direction of the host vehicle, the relative position with the other vehicle has a predetermined positional relationship. After that, upshift control is performed. As a result, smooth acceleration from deceleration during follow-up running is possible, and other vehicles can be smoothly followed.

他の車両との相対速度が大きいときは大きな減速度が必要である一方、当該相対速度が小さいときは大きな減速度は不要である。このため、相対速度が小さいにもかかわらず、ダウンシフト制御時の変速機の変速比を必要以上に変更すると、不必要に大きな減速が発生し、当該減速感によって乗員の快適性が損なわれる。しかし、請求項4の発明によれば、ダウンシフト制御後の変速機の変速比は、相対速度に基づいて決定されるため、減速度と乗員の快適性の両立を図ることができる。   When the relative speed with another vehicle is large, a large deceleration is required, whereas when the relative speed is small, a large deceleration is not necessary. For this reason, if the gear ratio of the transmission during downshift control is changed more than necessary even though the relative speed is small, an unnecessarily large deceleration occurs, and passenger comfort is impaired by the sense of deceleration. However, according to the invention of claim 4, since the transmission gear ratio after the downshift control is determined based on the relative speed, it is possible to achieve both deceleration and passenger comfort.

他の車両との間の距離が短いときは大きな減速度が必要である一方、上記距離が長いときは大きな減速度は不要である。このため、上記距離が長いにもかかわらず、ダウンシフト制御時の変速機の変速比を必要以上に変更すると、不必要に大きな減速が発生し、当該減速感によって乗員の快適性が損なわれる。しかし、請求項5の発明によれば、ダウンシフト制御後の変速機の変速比は、他の車両との間の距離に基づいて決定されるため、減速度と乗員の快適性の両立を図ることができる。   A large deceleration is required when the distance to another vehicle is short, whereas a large deceleration is not necessary when the distance is long. For this reason, if the transmission gear ratio during downshift control is changed more than necessary even though the distance is long, an unnecessarily large deceleration occurs, and passenger comfort is impaired by the sense of deceleration. However, according to the invention of claim 5, since the gear ratio of the transmission after the downshift control is determined based on the distance to the other vehicle, both deceleration and passenger comfort are achieved. be able to.

請求項6の発明によれば、ダウンシフト制御時に内燃機関の燃料カットを行うことで、エンジンブレーキを効果的に利用した減速が可能である。   According to the sixth aspect of the present invention, it is possible to perform deceleration using the engine brake effectively by performing fuel cut of the internal combustion engine during downshift control.

請求項7の発明によれば、支援部の支援制御に従った走行中、自車両の進行方向に沿った前方に他の車両が自車両の走行速度よりも低速で割り込んできそうな状況を、走行に関する他の車両の動き又は他の車両の灯体の点灯状態から検知した場合には、ダウンシフト制御を行う。このため、実際に他の車両が自車両の進行方向に沿った前方に低速で割り込んできたために大きな減速が必要となった場合でも、速やかな減速が可能である。また、支援部の支援制御に従った追従走行中、前方を走行する他の車両が減速しそうな状況を、走行に関する当該他の車両の動き又は当該他の車両の灯体の点灯状態から検知した場合には、ダウンシフト制御を行う。このため、実際に他の車両が減速したために大きな減速が必要となった場合でも、速やかな減速が可能である。   According to the seventh aspect of the present invention, during traveling according to the support control of the support unit, a situation in which another vehicle is likely to interrupt at a lower speed than the traveling speed of the host vehicle in front of the traveling direction of the host vehicle. When it is detected from the movement of another vehicle related to traveling or the lighting state of the lamp of another vehicle, downshift control is performed. For this reason, even when a large deceleration is necessary because another vehicle has actually interrupted at a low speed forward along the traveling direction of the host vehicle, the vehicle can be quickly decelerated. Further, during the follow-up running according to the support control of the support unit, a situation in which the other vehicle running ahead is likely to decelerate is detected from the movement of the other vehicle related to the running or the lighting state of the lamp of the other vehicle. In this case, downshift control is performed. For this reason, even when another vehicle is actually decelerated and a large deceleration is required, it is possible to quickly decelerate.

請求項8の発明によれば、支援部の支援制御に従った追従走行中、自車両の進行方向に沿った前方を走行する他の車両が上記進行方向に沿った前方の所定の位置関係を満たす空間に存在しなくなりそうな状況を検知した場合には、ダウンシフト制御を行う。このため、他の車両が上記空間に存在しなくなった場合には、目標速度への速やかな加速をスムーズに遅滞なく行うことができる。   According to the invention of claim 8, during the follow-up traveling according to the support control of the support unit, the other vehicle traveling forward along the traveling direction of the host vehicle has a predetermined positional relationship ahead along the traveling direction. Downshift control is performed when a situation that does not exist in the filled space is detected. For this reason, when other vehicles no longer exist in the said space, the quick acceleration to a target speed can be performed smoothly and without delay.

一実施形態の車両の内部構成を示すブロック図である。It is a block diagram which shows the internal structure of the vehicle of one Embodiment. 自車両との相対位置が所定の位置関係を有する他の車両と自車両の相対位置の例を示す図である。It is a figure which shows the example of the relative position of the other vehicle in which the relative position with the own vehicle has a predetermined positional relationship, and the own vehicle. 図1に示した車両がACCにて走行中に、他の車両の動きに応じて車速VP及び変速機の変速比等を変える制御を行う場合のタイミングチャートである。2 is a timing chart in the case where control is performed to change the vehicle speed VP, the transmission gear ratio, and the like according to the movement of another vehicle while the vehicle shown in FIG. 図1に示した車両がACCにて走行中に、他の車両の動きに応じて車速VP及び変速機の変速比等を変える制御を行う場合のタイミングチャートである。2 is a timing chart in the case where control is performed to change the vehicle speed VP, the transmission gear ratio, and the like according to the movement of another vehicle while the vehicle shown in FIG. (a)自車両が高速道路の本線車道である走行車線を定速走行している際、他の車両がランプウェイから自車両の前方に自車両よりも低速で走行車線に合流する第1の状況と、(b)本線車道への合流後に加速した先行車両に追従走行する第2の状況と、(c)自車両が追従している本線車道を走行中の先行車両がランプウェイに離脱する第3の状況とを示す図である。(A) When the host vehicle is traveling at a constant speed in the travel lane that is the main road of the highway, the other vehicle joins the travel lane from the rampway in front of the host vehicle at a lower speed than the host vehicle. The situation, (b) a second situation in which the vehicle follows the accelerated preceding vehicle after joining the main road, and (c) the preceding vehicle traveling on the main road followed by the host vehicle leaves the rampway. It is a figure which shows a 3rd condition. 図1に示した車両がACCにて走行中に、他の車両に対する自車両の動きに応じて車速VP及び変速機の変速比等を変える制御を行う場合のタイミングチャートである。2 is a timing chart in a case where control is performed to change the vehicle speed VP, the transmission gear ratio, and the like according to the movement of the host vehicle with respect to another vehicle while the vehicle shown in FIG. 図1に示した車両がACCにて走行中に、他の車両に対する自車両の動きに応じて車速VP及び変速機の変速比等を変える制御を行う場合のタイミングチャートである。2 is a timing chart in a case where control is performed to change the vehicle speed VP, the transmission gear ratio, and the like according to the movement of the host vehicle with respect to another vehicle while the vehicle shown in FIG. (a)高速道路の本線車道である追越車線を定速走行する自車両が、走行車線を走行する他の車両の後方に当該他の車両よりも高速で走行車線に合流する第4の状況と、(b)走行車線への合流後に加速した先行車両に追従走行する第5の状況と、(c)走行車線を先行車両に追従する自車両が追越車線に車線変更する第6の状況とを示す図である。(A) Fourth situation in which the host vehicle traveling at a constant speed on the overtaking lane, which is the main road of the expressway, joins the traveling lane behind the other vehicle traveling on the traveling lane at a higher speed than the other vehicle And (b) a fifth situation in which the vehicle follows a preceding vehicle that has accelerated after merging into the traveling lane, and (c) a sixth situation in which the host vehicle that follows the preceding vehicle in the traveling lane changes to a passing lane. FIG. 自車両が定速走行中の他の車両の動きに応じた処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the process according to the motion of the other vehicle in which the own vehicle is drive | working at constant speed. 自車両が定速走行中の他の車両の動きに応じた処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the process according to the motion of the other vehicle in which the own vehicle is drive | working at constant speed. 自車両が定速走行から追従走行に移行する際の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process at the time of the own vehicle shifting from a constant speed driving | running | working to a follow-up driving | running | working. 自車両が定速走行から追従走行に移行する際の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process at the time of the own vehicle shifting from a constant speed driving | running | working to a follow-up driving | running | working. 自車両が追従走行から定速走行に移行する際の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process at the time of the own vehicle shifting from follow driving | running | working to constant speed driving | running | working.

以下、本発明に係る車両の実施形態について、図面を参照して説明する。   Hereinafter, an embodiment of a vehicle according to the present invention will be described with reference to the drawings.

図1は、一実施形態の車両の内部構成を示すブロック図である。なお、図1中の太い実線は機械連結を示し、細い実線の矢印は制御信号又は検出信号を示す。   FIG. 1 is a block diagram illustrating an internal configuration of a vehicle according to an embodiment. In FIG. 1, a thick solid line indicates mechanical connection, and a thin solid line arrow indicates a control signal or a detection signal.

図1に示す車両は、内燃機関(ENG)101と、変速機(T/M)103と、車速センサー105と、ブレーキBRKと、ECU107と、認識部109と、支援部111とを備える。当該車両では、内燃機関101が出力した動力が、変速機103、ディファレンシャルギヤ8及び車軸9を介して、駆動輪DWに伝達される。   The vehicle shown in FIG. 1 includes an internal combustion engine (ENG) 101, a transmission (T / M) 103, a vehicle speed sensor 105, a brake BRK, an ECU 107, a recognition unit 109, and a support unit 111. In the vehicle, the power output from the internal combustion engine 101 is transmitted to the drive wheels DW via the transmission 103, the differential gear 8 and the axle 9.

以下、図1の車両が有する各構成要素について説明する。   Hereafter, each component which the vehicle of FIG. 1 has is demonstrated.

内燃機関101は、車両が走行するための動力を出力する。内燃機関101の回転軸は、変速機103の入力軸に接続されている。   The internal combustion engine 101 outputs power for running the vehicle. The rotation shaft of the internal combustion engine 101 is connected to the input shaft of the transmission 103.

変速機103は、内燃機関101の駆動回転を所定の変速比で変速して駆動輪DWに伝達する。変速機103の変速比はECU107からの指示に応じて変更される。なお、変速機103には、内燃機関101と駆動輪DWとの間の動力伝達経路を断接するクラッチCLが含まれる。変速機103は、複数の異なる変速比が段階的に設定された変速機であっても、変速比を連続的に変更可能な無段変速機であっても良い。   The transmission 103 shifts the drive rotation of the internal combustion engine 101 at a predetermined gear ratio and transmits it to the drive wheels DW. The transmission ratio of the transmission 103 is changed according to an instruction from the ECU 107. The transmission 103 includes a clutch CL that connects and disconnects a power transmission path between the internal combustion engine 101 and the drive wheels DW. The transmission 103 may be a transmission in which a plurality of different speed ratios are set in stages, or may be a continuously variable transmission capable of continuously changing the speed ratio.

車速センサー105は、車両の走行速度(車速VP)を検出する。車速センサー105によって検出された車速VPを示す信号は、ECU107に送られる。   The vehicle speed sensor 105 detects the traveling speed (vehicle speed VP) of the vehicle. A signal indicating the vehicle speed VP detected by the vehicle speed sensor 105 is sent to the ECU 107.

ブレーキBRKは、機械的ブレーキである。すなわち、ブレーキBRKは、車両の運転者によるブレーキペダルの操作に応じて制御される油圧等によって、車両を制動する。   The brake BRK is a mechanical brake. That is, the brake BRK brakes the vehicle with hydraulic pressure or the like controlled according to the operation of the brake pedal by the driver of the vehicle.

認識部109は、赤外線レーザーレーダーやミリ波レーダー等のレーダー手段、ステレオカメラや単眼カメラ等の撮像手段、又は、これらレーダー手段と撮像手段との併用によって、自車両の前方に位置する他の車両を認識する。認識部109は、レーダー手段又は撮像手段が得た情報から、自車両の前方に位置する他の車両の動きを検知したり、他の車両のブレーキランプや方向指示器等の灯体の点灯状態を検知する。   The recognition unit 109 is a radar unit such as an infrared laser radar or a millimeter wave radar, an imaging unit such as a stereo camera or a monocular camera, or another vehicle positioned in front of the host vehicle by using the radar unit and the imaging unit in combination. Recognize The recognition unit 109 detects the movement of another vehicle located in front of the host vehicle from the information obtained by the radar unit or the imaging unit, and the lighting state of a lamp body such as a brake lamp or a direction indicator of the other vehicle Is detected.

支援部111は、いわゆるアダプティブ・クルーズ・コントロール(Adaptive Cruise Control)を行って、自車両の運転を支援する。支援部111は、認識部109が認識した車外状況に応じて、定速走行制御と車間距離制御のいずれか一方を選択的に切り替えて行う。先行車両がない場合、支援部111は定速走行制御を行い、当該制御により車両は目標速度以下での定速走行を行う。定速走行時の車速と目標速度との差は所定値以下である。一方、先行車両がある場合、支援部111は車間距離制御を行い、当該制御により車両は一定の車間距離(目標車間距離)を維持しながら追従走行を行う。以下の説明では、支援部111が行う定速走行制御と車間距離制御の双方を合わせて「ACC」という。   The support unit 111 performs so-called adaptive cruise control to support driving of the host vehicle. The support unit 111 selectively switches between constant speed traveling control and inter-vehicle distance control according to the vehicle exterior situation recognized by the recognition unit 109. When there is no preceding vehicle, the support unit 111 performs constant speed traveling control, and the vehicle performs constant speed traveling at a target speed or less by the control. The difference between the vehicle speed and the target speed during constant speed traveling is less than or equal to a predetermined value. On the other hand, when there is a preceding vehicle, the support unit 111 performs inter-vehicle distance control, and the control causes the vehicle to follow and maintain a constant inter-vehicle distance (target inter-vehicle distance). In the following description, both the constant speed traveling control performed by the support unit 111 and the inter-vehicle distance control are collectively referred to as “ACC”.

なお、上述の説明における「先行車両」とは、認識部が認識する自車両の前方に位置し、自車両との相対位置が所定の位置関係を有する又は上記所定の位置関係を有すると予測される他の車両である。図2に示すように、自車両との相対位置が所定の位置関係を有する他の車両Bと自車両Aとは、同一又は隣接する車線を双方の車間距離dが略一定の状態で走行する。その結果、自車両Aの他の車両Bとの相対位置は「所定の位置関係」となる。   In addition, the “preceding vehicle” in the above description is located in front of the host vehicle recognized by the recognition unit, and the relative position with the host vehicle is predicted to have a predetermined positional relationship or the predetermined positional relationship. Other vehicles. As shown in FIG. 2, the other vehicle B and the own vehicle A having a predetermined positional relationship with the own vehicle travel in the same or adjacent lanes with the inter-vehicle distance d being substantially constant. . As a result, the relative position of the host vehicle A with the other vehicle B becomes a “predetermined positional relationship”.

ECU107は、車両の運転者によるアクセルペダル操作に応じたアクセルペダル開度(AP開度)、運転者によるブレーキペダルの操作に応じたブレーキペダル踏力(BRK踏力)、及び車速センサー105から得られた車速VP等に基づいて、内燃機関101の運転制御、変速機103における変速制御、及びブレーキBRKの制御等を行う。また、ECU107は、支援部111によるACCを有効化するためのスイッチACC_SWがオン状態であれば、運転者によるアクセルペダル操作がなくても、支援部111によるACCの制御内容に従って、内燃機関101の運転制御、変速機103における変速制御、及びブレーキBRKの制御等を行う。なお、スイッチACC_SWは、車両の走行中に運転者によって操作されることでオン状態とされる。   The ECU 107 is obtained from the accelerator pedal opening (AP opening) according to the accelerator pedal operation by the driver of the vehicle, the brake pedal pressing force (BRK pressing force) according to the operation of the brake pedal by the driver, and the vehicle speed sensor 105. Based on the vehicle speed VP and the like, operation control of the internal combustion engine 101, shift control in the transmission 103, control of the brake BRK, and the like are performed. Further, if the switch ACC_SW for enabling the ACC by the support unit 111 is in an ON state, the ECU 107 does not operate the accelerator pedal by the driver, and according to the control contents of the ACC by the support unit 111, the ECU 107 Operation control, shift control in the transmission 103, control of the brake BRK, and the like are performed. The switch ACC_SW is turned on by being operated by the driver while the vehicle is traveling.

(ACC有効時の他の車両の動きに応じた走行制御)
以下、ACCが有効であるときの、認識部109が認識する他の車両の動きに応じた、自車両における内燃機関101及び変速機103の制御について説明する。図3及び図4は、図1に示した車両がACCにて走行中に、他の車両の動きに応じて車速VP及び変速機103の変速比等を変える制御を行う場合のタイミングチャートである。図3に示す例には、自車両が高速道路の本線車道である走行車線を定速走行している際、他の車両がランプウェイから自車両の前方に自車両よりも低速で走行車線に合流する第1の状況(図5(a))と、本線車道への合流後に加速した先行車両に追従走行する第2の状況(図5(b))とが含まれ、図4に示す例には、自車両が追従している本線車道を走行中の先行車両がランプウェイに離脱する第3の状況(図5(c))が含まれている。なお、図3及び図4に示す例では、変速機103は有段の自動変速機である。
(Driving control according to the movement of other vehicles when ACC is effective)
Hereinafter, control of the internal combustion engine 101 and the transmission 103 in the host vehicle according to the movement of another vehicle recognized by the recognition unit 109 when the ACC is valid will be described. 3 and 4 are timing charts when the vehicle shown in FIG. 1 is controlled to change the vehicle speed VP and the gear ratio of the transmission 103 in accordance with the movement of other vehicles while the vehicle is running at ACC. . In the example shown in FIG. 3, when the host vehicle is traveling at a constant speed in the travel lane that is the main road of the highway, another vehicle moves from the rampway to the front of the host vehicle at a lower speed than the host vehicle. An example shown in FIG. 4 includes a first situation (FIG. 5 (a)) that merges and a second situation (FIG. 5 (b)) that travels following a preceding vehicle that has accelerated after joining the main road. Includes a third situation (FIG. 5C) in which the preceding vehicle traveling on the main road followed by the host vehicle leaves the rampway. In the example shown in FIGS. 3 and 4, the transmission 103 is a stepped automatic transmission.

図3に示す第1の状況(図5(a))では、走行車線を定速走行している自車両の認識部109がランプウェイを走行する他の車両を認識し(時点t10)、支援部111は、認識部109が検知した当該他の車両の動き等に基づいて、他の車両がランプウェイから走行車線に自車両の前方に合流すると予測する(時点t11)。また、図3に示す例では、合流が予測される他の車両の走行速度が自車両よりも遅いため、支援部111は、上記他の車両がそのまま走行車線に合流した際には、自車両の進行方向に沿った前方の上記説明した所定の位置関係を満たす空間よりも自車両寄りの近接空間に上記他の車両が存在すると予測する。この場合、走行車線に合流した他の車両と自車両との車間距離が追従走行時の目標車間距離dtよりも短くなるため、自車両は制動される可能性が高い。このため、ECU107は、変速機103の変速比を大きくする(変速段を下げる)ダウンシフト制御を行い、変速機103は例えば10段から9段にシフトダウンする。また、ECU107は、ダウンシフト制御を行うと共に、内燃機関101のフュエルカット(燃料カット)も行う。   In the first situation shown in FIG. 3 (FIG. 5A), the recognition unit 109 of the host vehicle traveling at a constant speed in the traveling lane recognizes another vehicle traveling on the rampway (time t10) and assisting. Based on the movement of the other vehicle detected by the recognition unit 109, the unit 111 predicts that another vehicle will join the front lane of the vehicle from the rampway (time t11). In the example shown in FIG. 3, since the traveling speed of the other vehicle that is predicted to join is slower than that of the own vehicle, the assisting unit 111 determines that when the other vehicle joins the traveling lane as it is, the own vehicle It is predicted that the other vehicle exists in a close space closer to the host vehicle than a space satisfying the above-described predetermined positional relationship in front of the vehicle in the traveling direction. In this case, since the inter-vehicle distance between the other vehicle that joins the traveling lane and the own vehicle becomes shorter than the target inter-vehicle distance dt during the follow-up traveling, the own vehicle is highly likely to be braked. Therefore, the ECU 107 performs downshift control for increasing the gear ratio of the transmission 103 (decreasing the gear position), and the transmission 103 is shifted down from, for example, 10 gears to 9 gears. The ECU 107 performs downshift control and also performs fuel cut (fuel cut) of the internal combustion engine 101.

その後、支援部111は、認識部109が検知した上記他の車両の動き等に基づいて、他の車両がランプウェイから走行車線への合流を開始したと判断する(時点t12)と、車速VPを上記他の車両の走行速度に合わせるべく、ECU107はダウンシフト制御を行い、変速機103は例えば9段から7段に段階的にシフトダウンする。なお、ECU107は、ダウンシフト制御後の変速機103の段数(図3の例では7段)を、自車両と他の車両との相対速度である相対車速ΔVP(=車速VP−他の車両の走行速度)又は自車両と他の車両との間の距離に基づいて決定する。図3に示す例では、変速機103を7段にシフトダウンしても相対車速ΔVPが0にならないため、ブレーキBRKを用いた機械的な制動力により相対車速ΔVPを0まで低下させる。なお、図3に示す例では、変速機103を7段にシフトダウンした後の内燃機関101の回転数がしきい値以上の高回転状態であるために、さらにシフトダウンすることはせず、内燃機関101のフュエルカットも行っているため、ブレーキBRKを用いた機械的な制動力を加えることによって相対車速ΔVPを0まで低下させる。   Thereafter, the support unit 111 determines that another vehicle has started merging from the ramp way to the travel lane based on the movement of the other vehicle detected by the recognition unit 109 (time t12), and the vehicle speed VP. The ECU 107 performs downshift control so as to match the traveling speed of the other vehicle, and the transmission 103 shifts down from, for example, 9th to 7th. The ECU 107 determines the number of steps of the transmission 103 after the downshift control (seven steps in the example of FIG. 3) as a relative vehicle speed ΔVP (= vehicle speed VP−other vehicle's relative speed between the host vehicle and the other vehicle). Travel speed) or a distance between the host vehicle and another vehicle. In the example shown in FIG. 3, the relative vehicle speed ΔVP does not become zero even when the transmission 103 is shifted down to seven stages. Therefore, the relative vehicle speed ΔVP is reduced to zero by the mechanical braking force using the brake BRK. In the example shown in FIG. 3, since the rotational speed of the internal combustion engine 101 after the transmission 103 is shifted down to the seventh stage is a high rotation state equal to or higher than the threshold value, the gear shift is not further shifted down. Since the fuel cut of the internal combustion engine 101 is also performed, the relative vehicle speed ΔVP is reduced to 0 by applying a mechanical braking force using the brake BRK.

次に、図3に示す第2の状況(図5(b))では、自車両及び他の車両共に同一の走行車線を走行し、他の車両と自車両との車間距離が追従走行時の目標車間距離dtとなった、すなわち、自車両と他の車両との相対位置が上記説明した所定の関係になった後、当該他の車両が、自車両の進行方向に沿った前方の上記説明した所定の位置関係を満たす空間に存在しなくなることを支援部111が予測又は検知する(時点t13)と、ECU107は、支援部111による追従走行制御に従って、他の車両との相対位置が所定の位置関係を満たすべく、内燃機関101からの動力によって自車両が加速する制御を行う。当該加速制御を行う際、ECU107は、変速機103の変速比をダウンシフト制御後の変速比から段階的に小さくするアップシフト制御を行う。図3に示した例では、変速機103を7段から10段に一定の時間間隔で段階的にシフトアップしつつ内燃機関101の出力を増すことで車速VPが増加する。   Next, in the second situation shown in FIG. 3 (FIG. 5B), both the own vehicle and the other vehicle travel on the same traveling lane, and the inter-vehicle distance between the other vehicle and the own vehicle is the following traveling time. After the target inter-vehicle distance dt is reached, that is, after the relative position between the own vehicle and the other vehicle becomes the above-described predetermined relationship, the other vehicle moves forward along the traveling direction of the own vehicle. When the support unit 111 predicts or detects that the vehicle does not exist in the space satisfying the predetermined positional relationship (time t13), the ECU 107 determines that the relative position with respect to other vehicles is a predetermined position according to the follow-up traveling control by the support unit 111. In order to satisfy the positional relationship, control is performed in which the host vehicle is accelerated by the power from the internal combustion engine 101. When the acceleration control is performed, the ECU 107 performs upshift control in which the speed ratio of the transmission 103 is reduced stepwise from the speed ratio after the downshift control. In the example shown in FIG. 3, the vehicle speed VP increases by increasing the output of the internal combustion engine 101 while shifting the transmission 103 stepwise from 7 to 10 at regular time intervals.

次に、図4に示す第3の状況(図5(c))では、自車両及び他の車両共に同一の走行車線を走行し、自車両が上記他の車両に追従走行しているとき、認識部109が検知した上記他の車両の動き等に基づいて、他の車両が走行車線からランプウェイに離脱して、自車両の進行方向に沿った前方の上記説明した所定の位置関係を満たす空間に存在しなくなることを支援部111が予測又は検知する(時点t14)と、ECU107はダウンシフト制御を行い、変速機103は例えば10段から8段に段階的にシフトダウンする。なお、ECU107は、このときの車速VPと定速走行時の目標速度との差が大きいほど、ダウンシフト制御後の変速機103の変速比を大きく(段数を小さく)設定する。   Next, in the third situation shown in FIG. 4 (FIG. 5 (c)), when the host vehicle and the other vehicle travel on the same traveling lane, and the host vehicle travels following the other vehicle, Based on the movement of the other vehicle detected by the recognizing unit 109, the other vehicle leaves the driving lane to the rampway, and satisfies the predetermined positional relationship described above ahead along the traveling direction of the host vehicle. When the support unit 111 predicts or detects that the space no longer exists (time t14), the ECU 107 performs downshift control, and the transmission 103 is shifted down stepwise from, for example, 10 steps to 8 steps. The ECU 107 sets the gear ratio of the transmission 103 after the downshift control to be larger (the number of steps is smaller) as the difference between the vehicle speed VP at this time and the target speed during constant speed traveling is larger.

その後、上記他の車両が走行車線からランプウェイに離脱して、自車両と他の車両との相対位置が上記説明した所定の関係ではなくなれば(時点t15)、ECU107は、支援部111による定速走行制御に従って、内燃機関101からの動力によって自車両が目標車速まで加速する制御を行う。当該加速制御を行う際、ECU107は、変速機103の変速比をダウンシフト制御後の変速比から段階的に小さくするアップシフト制御を行う。図4に示した例では、変速機103を8段から10段に段階的にシフトアップしつつ内燃機関101の出力を増すことで車速VPが増加する。   Thereafter, when the other vehicle leaves the driving lane on the rampway and the relative position between the host vehicle and the other vehicle does not satisfy the predetermined relationship described above (time t15), the ECU 107 determines that the support unit 111 In accordance with the high-speed driving control, the vehicle is accelerated to the target vehicle speed by the power from the internal combustion engine 101. When the acceleration control is performed, the ECU 107 performs upshift control in which the speed ratio of the transmission 103 is reduced stepwise from the speed ratio after the downshift control. In the example shown in FIG. 4, the vehicle speed VP is increased by increasing the output of the internal combustion engine 101 while shifting the transmission 103 from 8 to 10 stepwise.

(ACC有効時の自車両の動きに応じた走行制御)
以下、ACCが有効であるときの、他の車両に対する自車両の動きに応じた認識部109が認識する内容に基づく、自車両における内燃機関101及び変速機103の制御について説明する。図6及び図7は、図1に示した車両がACCにて走行中に、他の車両に対する自車両の動きに応じて車速VP及び変速機103の変速比等を変える制御を行う場合のタイミングチャートである。図6に示す例には、高速道路の本線車道である追越車線を定速走行する自車両が、運転者の操作によって、走行車線を走行する他の車両の後方に当該他の車両よりも高速で合流する第4の状況(図8(a))と、走行車線への合流後に加速した先行車両に追従走行する第5の状況(図8(b))とが含まれ、図7に示す例には、走行車線を先行車両に追従走行する自車両が、運転者の操作によって、追越車線に車線変更する第6の状況(図8(c))が含まれている。なお、図6及び図7に示す例では、変速機103は有段の自動変速機である。
(Driving control according to the movement of the vehicle when ACC is effective)
Hereinafter, control of the internal combustion engine 101 and the transmission 103 in the own vehicle based on the contents recognized by the recognition unit 109 according to the movement of the own vehicle with respect to another vehicle when the ACC is valid will be described. FIGS. 6 and 7 are timings when the vehicle shown in FIG. 1 performs control to change the vehicle speed VP and the gear ratio of the transmission 103 in accordance with the movement of the host vehicle with respect to other vehicles while the vehicle is running at ACC It is a chart. In the example shown in FIG. 6, a host vehicle that travels at a constant speed on an overtaking lane, which is a main roadway of an expressway, is behind the other vehicle traveling on the traveling lane by the driver's operation. A fourth situation (FIG. 8 (a)) that merges at high speed and a fifth situation (FIG. 8 (b)) that travels following a preceding vehicle that has accelerated after joining the traveling lane are included. The example shown includes a sixth situation (FIG. 8C) in which the own vehicle that travels following the preceding vehicle in the traveling lane changes the lane to the passing lane by the driver's operation. In the example shown in FIGS. 6 and 7, the transmission 103 is a stepped automatic transmission.

図6に示す第4の状況(図8(a))では、追越車線を定速走行している自車両の認識部109が走行車線を走行する他の車両を認識し(時点t20)、支援部111は、認識部109が検知した当該他の車両との相対位置の変化等に基づいて、運転者の操作によって自車両が追越車線から走行車線に他車両の後方に合流すると予測する(時点t21)。また、図6に示す例では、自車両の走行速度が他の車両よりも速いため、支援部111は、自車両がそのまま走行車線に合流した際には、自車両の進行方向に沿った前方の上記説明した所定の位置関係を満たす空間よりも自車両寄りの近接空間に上記他の車両が存在すると予測する。この場合、走行車線に合流した自車両と他の車両との車間距離が追従走行時の目標車間距離dtよりも短くなるため、自車両は制動される可能性が高い。このため、ECU107は、変速機103の変速比を大きくする(変速段を下げる)ダウンシフト制御を行い、変速機103は例えば10段から9段にシフトダウンする。また、ECU107は、ダウンシフト制御を行うと共に、内燃機関101のフュエルカット(燃料カット)も行う。   In the fourth situation shown in FIG. 6 (FIG. 8A), the recognition unit 109 of the host vehicle traveling at a constant speed in the overtaking lane recognizes another vehicle traveling in the traveling lane (time t20). The support unit 111 predicts that the own vehicle will merge from the overtaking lane to the traveling lane behind the other vehicle by the driver's operation based on the change in the relative position with the other vehicle detected by the recognition unit 109. (Time t21). In the example shown in FIG. 6, since the traveling speed of the host vehicle is faster than other vehicles, the support unit 111 moves forward along the traveling direction of the host vehicle when the host vehicle joins the traveling lane as it is. It is predicted that the other vehicle exists in a close space closer to the host vehicle than the space satisfying the predetermined positional relationship described above. In this case, since the inter-vehicle distance between the host vehicle that joins the travel lane and the other vehicle is shorter than the target inter-vehicle distance dt during the follow-up travel, the host vehicle is highly likely to be braked. Therefore, the ECU 107 performs downshift control for increasing the gear ratio of the transmission 103 (decreasing the gear position), and the transmission 103 is shifted down from, for example, 10 gears to 9 gears. The ECU 107 performs downshift control and also performs fuel cut (fuel cut) of the internal combustion engine 101.

その後、支援部111は、認識部109が検知した上記他の車両との相対位置の変化等に基づいて、自車両が追越車線から走行車線への合流を開始したと判断する(時点t22)と、車速VPを上記他の車両の走行速度に合わせるべく、ECU107はダウンシフト制御を行い、変速機103は例えば9段から7段に段階的にシフトダウンする。なお、ECU107は、ダウンシフト制御後の変速機103の段数(図6の例では7段)を、自車両と他の車両との相対速度である相対車速ΔVP(=車速VP−他の車両の走行速度)又は自車両と他の車両との間の距離に基づいて決定する。図6に示す例では、変速機103を7段にシフトダウンしても相対車速ΔVPが0にならないため、ブレーキBRKを用いた機械的な制動力により相対車速ΔVPを0まで低下させる。なお、図6に示す例では、変速機103を7段にシフトダウンした後の内燃機関101の回転数がしきい値以上の高回転状態であるために、さらにシフトダウンすることはせず、内燃機関101のフュエルカットも行っているため、ブレーキBRKを用いた機械的な制動力を加えることによって相対車速ΔVPを0まで低下させる。   Thereafter, the support unit 111 determines that the own vehicle has started to merge from the overtaking lane to the traveling lane based on a change in relative position with the other vehicle detected by the recognition unit 109 (time t22). Then, in order to match the vehicle speed VP with the traveling speed of the other vehicle, the ECU 107 performs downshift control, and the transmission 103 is downshifted stepwise from 9 to 7, for example. The ECU 107 determines the number of stages of the transmission 103 after the downshift control (seven stages in the example of FIG. 6) as a relative vehicle speed ΔVP (= vehicle speed VP−the speed of the other vehicle) that is the relative speed between the host vehicle and the other vehicle. Travel speed) or a distance between the host vehicle and another vehicle. In the example shown in FIG. 6, the relative vehicle speed ΔVP does not become 0 even when the transmission 103 is shifted down to 7 stages. Therefore, the relative vehicle speed ΔVP is reduced to 0 by the mechanical braking force using the brake BRK. In the example shown in FIG. 6, since the number of revolutions of the internal combustion engine 101 after the transmission 103 is shifted down to seven stages is a high revolution state that is equal to or higher than a threshold value, the gears are not further downshifted. Since the fuel cut of the internal combustion engine 101 is also performed, the relative vehicle speed ΔVP is reduced to 0 by applying a mechanical braking force using the brake BRK.

次に、図6に示す第5の状況(図8(b))では、自車両及び他の車両共に同一の走行車線を走行し、他の車両と自車両との車間距離が追従走行時の目標車間距離dtとなった、すなわち、自車両と他の車両との相対位置が上記説明した所定の関係になった後、当該他の車両が、自車両の進行方向に沿った前方の上記説明した所定の位置関係を満たす空間に存在しなくなることを支援部111が予測又は検知する(時点t23)と、ECU107は、支援部111による追従走行制御に従って、他の車両との相対位置が所定の位置関係を満たすべく、内燃機関101からの動力によって自車両が加速する制御を行う。当該加速制御を行う際、ECU107は、変速機103の変速比をダウンシフト制御後の変速比から段階的に小さくするアップシフト制御を行う。図6に示した例では、変速機103を7段から10段に一定の時間間隔で段階的にシフトアップしつつ内燃機関101の出力を増すことで車速VPが増加する。   Next, in the fifth situation shown in FIG. 6 (FIG. 8B), the host vehicle and the other vehicle travel on the same lane, and the inter-vehicle distance between the other vehicle and the host vehicle is the same as in the following travel. After the target inter-vehicle distance dt is reached, that is, after the relative position between the own vehicle and the other vehicle becomes the above-described predetermined relationship, the other vehicle moves forward along the traveling direction of the own vehicle. When the support unit 111 predicts or detects that the vehicle does not exist in the space that satisfies the predetermined positional relationship (time t23), the ECU 107 determines that the relative position with respect to another vehicle is a predetermined position according to the follow-up traveling control by the support unit 111. In order to satisfy the positional relationship, control is performed in which the host vehicle is accelerated by the power from the internal combustion engine 101. When the acceleration control is performed, the ECU 107 performs upshift control in which the speed ratio of the transmission 103 is reduced stepwise from the speed ratio after the downshift control. In the example shown in FIG. 6, the vehicle speed VP is increased by increasing the output of the internal combustion engine 101 while shifting the transmission 103 from 7 to 10 stepwise at regular time intervals.

次に、図7に示す第6の状況(図8(c))では、自車両及び他の車両共に同一の走行車線を走行し、自車両が上記他の車両に追従走行しているとき、認識部109が検知した上記他の車両との相対位置の変化等に基づいて、運転者の操作によって自車両が追越車線に車線変更して、自車両の進行方向に沿った前方の上記説明した所定の位置関係を満たす空間に存在しなくなることを支援部111が予測又は検知する(時点t24)と、ECU107はダウンシフト制御を行い、変速機103は例えば10段から8段に段階的にシフトダウンする。なお、ECU107は、このときの車速VPと定速走行時の目標速度との差が大きいほど、ダウンシフト制御後の変速機103の変速比を大きく(段数を小さく)設定する。   Next, in the sixth situation shown in FIG. 7 (FIG. 8C), when the host vehicle and the other vehicle travel on the same travel lane, and the host vehicle travels following the other vehicle, Based on the change in the relative position with the other vehicle detected by the recognition unit 109, the vehicle changes its lane to the overtaking lane by the driver's operation, and the above description along the traveling direction of the host vehicle When the support unit 111 predicts or detects that it does not exist in the space that satisfies the predetermined positional relationship (time t24), the ECU 107 performs downshift control, and the transmission 103 is stepped from, for example, 10 steps to 8 steps. Shift down. The ECU 107 sets the gear ratio of the transmission 103 after the downshift control to be larger (the number of steps is smaller) as the difference between the vehicle speed VP at this time and the target speed during constant speed traveling is larger.

その後、自車両の追越車線への車線変更が完了し、自車両と他の車両との相対位置が上記説明した所定の関係ではなくなれば(時点t25)、ECU107は、支援部111による定速走行制御に従って、内燃機関101からの動力によって自車両が目標車速まで加速する制御を行う。当該加速制御を行う際、ECU107は、変速機103の変速比をダウンシフト制御後の変速比から段階的に小さくするアップシフト制御を行う。図7に示した例では、変速機103を8段から10段に段階的にシフトアップしつつ内燃機関101の出力を増すことで車速VPが増加する。   After that, when the lane change of the host vehicle to the overtaking lane is completed and the relative position between the host vehicle and the other vehicle is not in the predetermined relationship described above (time t25), the ECU 107 performs the constant speed by the support unit 111. In accordance with the travel control, the vehicle is accelerated to the target vehicle speed by the power from the internal combustion engine 101. When the acceleration control is performed, the ECU 107 performs upshift control in which the speed ratio of the transmission 103 is reduced stepwise from the speed ratio after the downshift control. In the example shown in FIG. 7, the vehicle speed VP is increased by increasing the output of the internal combustion engine 101 while shifting up the transmission 103 from 8 to 10 stepwise.

次に、ACCが有効であるときの、他の車両又は自車両の動きに応じて支援部111及びECU107が行う処理について、図9〜図13を参照して詳細に説明する。図9及び図10のフローチャートは、自車両が定速走行中の他の車両の動きに応じた処理の流れであり、図11及び図12のフローチャートは、自車両が定速走行から追従走行に移行する際の処理の流れであり、図13のフローチャートは、自車両が追従走行から定速走行に移行する際の処理の流れである。なお、図9〜図13のフローチャートでは、自車両を「自車」といい、他の車両を「他車」という。   Next, processing performed by the support unit 111 and the ECU 107 according to the movement of another vehicle or the host vehicle when ACC is valid will be described in detail with reference to FIGS. 9 to 13. The flowcharts of FIGS. 9 and 10 are the flow of processing according to the movement of the other vehicle in which the host vehicle is traveling at a constant speed, and the flowcharts of FIGS. The flowchart of FIG. 13 is a process flow when the host vehicle shifts from the follow-up running to the constant speed running. In the flowcharts of FIGS. 9 to 13, the own vehicle is referred to as “own vehicle”, and the other vehicle is referred to as “other vehicle”.

まず、自車両が定速走行中の他の車両の動きに応じた処理について説明する。図9に示すように、支援部111は、認識部109が認識した情報に基づいて、ランプウェイ等の別車線に他の車両が存在するか否かを判断し(ステップS101)、他の車両が存在しなければステップS103に進み、存在すればステップS105に進む。ステップS103では、ECU107は、変速機103の変速段を現段に維持し、車速VPを維持するよう内燃機関101の運転を制御する。ステップS105では、支援部111は、他の車両が自車両が走行する自車線への合流動作を開始済み又は自車両が他の車両が走行する別車線への合流動作を開始済みであるか否かを判断し、合流動作開始済みでなければステップS107に進み、合流動作開始済みであればステップS121に進む。   First, a process according to the movement of another vehicle in which the host vehicle is traveling at a constant speed will be described. As shown in FIG. 9, the support unit 111 determines whether there is another vehicle on another lane such as a rampway based on the information recognized by the recognition unit 109 (step S101). If NO exists, the process proceeds to step S103, and if present, the process proceeds to step S105. In step S103, the ECU 107 controls the operation of the internal combustion engine 101 so that the gear stage of the transmission 103 is maintained at the current stage and the vehicle speed VP is maintained. In step S105, the support unit 111 determines whether another vehicle has started a merging operation to the own lane on which the own vehicle is traveling or whether the own vehicle has started a merging operation to another lane on which the other vehicle is traveling. If the joining operation has not been started, the process proceeds to step S107. If the joining operation has been started, the process proceeds to step S121.

ステップS107では、支援部111は、他の車両が自車両が走行する自車線へ合流しそうであるか又は自車両が他の車両が走行する別車線へ合流しそうであるかを判断し、合流しそうにないと判断した場合にはステップS103に進み、合流しそう、すなわち合流すると予測した場合にはステップS109に進む。なお、他の車両又は自車両が合流しそうか否かの判断は、自車両と他の車両との距離に基づいて行われる。支援部111は、上記距離が短くなると合流しそうであると判断する。   In step S107, the support unit 111 determines whether another vehicle is likely to join the own lane on which the host vehicle is traveling, or is likely to join the other lane on which the other vehicle is traveling. If it is determined that there is not, the process proceeds to step S103. Note that whether or not another vehicle or the host vehicle is likely to join is determined based on the distance between the host vehicle and the other vehicle. The support unit 111 determines that a merge is likely to occur when the distance becomes shorter.

ステップS109では、支援部111は、他の車両の走行速度が自車両よりも遅いか否かを判断し、遅くない場合はステップS111に進み、遅い場合はステップS113に進む。ステップS111では、支援部111は、他の車両の走行速度が自車両よりも速いか否かを判断し、速くない場合はステップS103に進み、速い場合は図10に示すステップS151に進む。なお、他の車両の走行速度が遅くも速くもない場合は、他の車両の走行速度が自車両の車速VPが一致する場合である。   In step S109, the support unit 111 determines whether or not the traveling speed of the other vehicle is slower than that of the host vehicle. If it is not late, the process proceeds to step S111. If it is late, the process proceeds to step S113. In step S111, the support unit 111 determines whether or not the traveling speed of the other vehicle is faster than that of the host vehicle. If not faster, the process proceeds to step S103. If faster, the process proceeds to step S151 shown in FIG. The case where the traveling speed of the other vehicle is neither slow nor fast is the case where the traveling speed of the other vehicle matches the vehicle speed VP of the host vehicle.

ステップS113では、支援部111は、内燃機関101のフュエルカット(F/C)を行うだけでは減速度が足りず、自車両よりも低速な他の車両に追いつきそうか否かを判断し、他の車両に追いつきそうでなければステップS115に進み、追いつきそうであればステップS117に進む。なお、支援部111は、自車両と他の車両の走行速度差が所定値以上であれば自車両が他の車両に追いつきそうと判断し、所定値未満であれば追いつきそうでないと判断する。ステップS115では、ECU107は、変速機103の変速段を現段に維持し、車速VPを維持するか緩減速となるよう内燃機関101の運転を制御する。一方、ステップS117では、ECU107は、変速機103の変速比を大きくする(変速段を下げる)ダウンシフト制御を行い、車速VPを維持するか緩減速となるよう内燃機関101の運転を制御する。   In step S113, the support unit 111 determines whether or not it is likely to catch up with another vehicle that is slower than the own vehicle because the deceleration is not sufficient only by performing the fuel cut (F / C) of the internal combustion engine 101. If it is not likely to catch up with the other vehicle, the process proceeds to step S115, and if it is likely to catch up, the process proceeds to step S117. The support unit 111 determines that the host vehicle is likely to catch up with another vehicle if the difference between the traveling speeds of the host vehicle and the other vehicle is greater than or equal to a predetermined value, and determines that the host vehicle is not likely to catch up if the difference is less than the predetermined value. In step S115, the ECU 107 controls the operation of the internal combustion engine 101 so that the gear stage of the transmission 103 is maintained at the current stage and the vehicle speed VP is maintained or slowed down. On the other hand, in step S117, the ECU 107 performs downshift control for increasing the gear ratio of the transmission 103 (decreasing the gear position), and controls the operation of the internal combustion engine 101 so as to maintain the vehicle speed VP or to reduce the speed slowly.

ステップS121では、支援部111は、合流動作を開始した他の車両の走行速度が自車両よりも遅いか否かを判断し、遅くない場合はステップS123に進み、遅い場合はステップS127に進む。ステップS123では、支援部111は、合流動作を開始した他の車両の走行速度が自車両よりも速いか否かを判断し、速くない場合はステップS125に進み、速い場合は図10に示すステップS151に進む。ステップS125では、ECU107は、変速機103の変速段を現段に維持し、車速VPを維持するよう内燃機関101の運転を制御する。   In step S121, the support unit 111 determines whether or not the traveling speed of the other vehicle that has started the merging operation is slower than that of the host vehicle. If not slower, the process proceeds to step S123. If slower, the process proceeds to step S127. In step S123, the support unit 111 determines whether or not the traveling speed of the other vehicle that has started the merging operation is faster than the own vehicle. If not, the process proceeds to step S125, and if it is faster, the step illustrated in FIG. The process proceeds to S151. In step S125, the ECU 107 controls the operation of the internal combustion engine 101 so that the gear stage of the transmission 103 is maintained at the current stage and the vehicle speed VP is maintained.

ステップS127では、支援部111は、内燃機関101のフュエルカット(F/C)を行うだけでは減速度が足りず、自車両よりも低速な他の車両に追いつきそうか否かを判断し、他の車両に追いつきそうでなければステップS129に進み、追いつきそうであればステップS131に進む。ステップS129では、ECU107は、変速機103の変速段を現段に維持し、内燃機関101のフュエルカットを行う。その結果、自車両は減速する。   In step S127, the support unit 111 determines whether or not the fuel cut (F / C) of the internal combustion engine 101 is insufficient to slow down the vehicle and catch up with another vehicle that is slower than the host vehicle. If it is not likely to catch up with the other vehicle, the process proceeds to step S129, and if it is likely to catch up, the process proceeds to step S131. In step S129, the ECU 107 maintains the gear stage of the transmission 103 at the current stage and performs fuel cut of the internal combustion engine 101. As a result, the host vehicle decelerates.

ステップS131では、支援部111は、変速機103の変速段が最下段であるか、内燃機関101の回転数がしきい値以上の高回転状態であるとの条件を満たすか否かを判断し、当該条件を満たさない場合はステップS133に進み、満たす場合はステップS135に進む。ステップS133では、ECU107は、変速機103のダウンシフト制御を行い、内燃機関101のフュエルカットを行う。その結果、自車両は減速する。一方、ステップS135では、ECU107は、変速機103の変速段を現段に維持し、内燃機関101のフュエルカットを行い、かつ、ブレーキBRKが作動するよう制御する。その結果、自車両は減速する。   In step S131, the support unit 111 determines whether or not the condition that the gear stage of the transmission 103 is the lowest stage or the high speed state where the rotational speed of the internal combustion engine 101 is equal to or higher than a threshold value is satisfied. If the condition is not satisfied, the process proceeds to step S133. If satisfied, the process proceeds to step S135. In step S133, the ECU 107 performs downshift control of the transmission 103 and performs fuel cut of the internal combustion engine 101. As a result, the host vehicle decelerates. On the other hand, in step S135, the ECU 107 controls the transmission 103 so that the gear stage of the transmission 103 is maintained, the fuel cut of the internal combustion engine 101 is performed, and the brake BRK is operated. As a result, the host vehicle decelerates.

図9のステップS111及びステップS123において、他の車両の走行速度が自車両よりも速いと判断した場合に進む図10に示すステップS151では、支援部111は、他の車両と自車両との走行速度の差に基づいて、変速機103の現状の変速段での加速では、他の車両に追従するために必要な加速力が得られず、一定時間内に速度合わせできない状態であるかを判断する。すなわち、支援部111は、他の車両との車速差が所定値Δth以上である(車速差≧Δth)かを判断し、車速差<ΔthであればステップS153に進み、車速差≧ΔthであればステップS155に進む。ステップS153では、ECU107は、変速機103の変速段を現段に維持し、自車両が加速するよう内燃機関101の運転を制御する。   In step S <b> 151 shown in FIG. 10, which proceeds when it is determined in step S <b> 111 and step S <b> 123 in FIG. 9 that the traveling speed of the other vehicle is faster than the own vehicle, the support unit 111 travels between the other vehicle and the own vehicle. Based on the difference in speed, it is determined whether the acceleration at the current gear position of the transmission 103 does not provide the acceleration force required to follow another vehicle, and the speed cannot be adjusted within a certain time. To do. That is, the support unit 111 determines whether the vehicle speed difference with other vehicles is equal to or greater than a predetermined value Δth (vehicle speed difference ≧ Δth). If the vehicle speed difference <Δth, the process proceeds to step S153, and if the vehicle speed difference ≧ Δth. If so, the process proceeds to step S155. In step S153, the ECU 107 maintains the gear stage of the transmission 103 at the current stage, and controls the operation of the internal combustion engine 101 so that the host vehicle accelerates.

ステップS155では、支援部111は、変速機103の変速段が最下段であるか、内燃機関101の回転数がしきい値以上の高回転状態であるとの条件を満たすか否かを判断し、当該条件を満たさない場合はステップS157に進み、満たす場合はステップS159に進む。ステップS157では、ECU107は、変速機103のダウンシフト制御を行い、自車両が加速するよう内燃機関101の運転を制御する。一方、ステップS159では、ECU107は、変速機103の変速段を現段に維持し、自車両が加速するよう内燃機関101の運転を制御する。   In step S155, the support unit 111 determines whether or not the condition that the speed of the transmission 103 is the lowest speed or the high speed state where the rotational speed of the internal combustion engine 101 is equal to or higher than a threshold is satisfied. If the condition is not satisfied, the process proceeds to step S157. If the condition is satisfied, the process proceeds to step S159. In step S157, the ECU 107 performs downshift control of the transmission 103 and controls the operation of the internal combustion engine 101 so that the host vehicle is accelerated. On the other hand, in step S159, the ECU 107 controls the operation of the internal combustion engine 101 so that the speed of the transmission 103 is maintained at the current speed and the host vehicle is accelerated.

次に、自車両が定速走行から追従走行に移行する際の処理について説明する。図11に示すように、支援部111は、自車両が追従する予定の他の車両の走行速度が自車両よりも遅いか否かを判断し(ステップS201)、遅くない場合はステップS203に進み、遅い場合は図9に示したステップS127に進む。ステップS203では、支援部111は、自車両が追従する予定の他の車両の走行速度が自車両よりも速いか否かを判断し、速くない場合はステップS205に進み、速い場合は図12に示すステップS221に進む。なお、他の車両の走行速度が遅くも速くもない場合は、他の車両の走行速度が自車両の車速VPが一致する場合である。   Next, processing when the host vehicle shifts from constant speed traveling to follow-up traveling will be described. As shown in FIG. 11, the support unit 111 determines whether the traveling speed of another vehicle that the host vehicle is to follow is slower than the host vehicle (step S201), and if not, the process proceeds to step S203. If it is late, the process proceeds to step S127 shown in FIG. In step S203, the support unit 111 determines whether the traveling speed of another vehicle that the host vehicle is to follow is faster than the host vehicle. If not, the process proceeds to step S205. It progresses to step S221 shown. The case where the traveling speed of the other vehicle is neither slow nor fast is the case where the traveling speed of the other vehicle matches the vehicle speed VP of the host vehicle.

ステップS205では、支援部111は、他の車両の走行速度と車速VPとが一致してから一定時間が経過したか否かを判断し、一定時間が経過する前であればステップS207に進み、一定時間が経過した後であればステップS209に進む。ステップS207では、ECU107は、変速機103の変速段を現段に維持し、上記他の車両に追従するよう内燃機関101の運転を制御する。   In step S205, the support unit 111 determines whether or not a predetermined time has elapsed since the traveling speed of the other vehicle coincides with the vehicle speed VP. If the predetermined time has not elapsed, the process proceeds to step S207. If the fixed time has elapsed, the process proceeds to step S209. In step S207, the ECU 107 controls the operation of the internal combustion engine 101 so as to follow the other vehicle while maintaining the gear stage of the transmission 103 at the current stage.

ステップS209では、支援部111は、変速機103の変速段が最終目標段であるか否かを判断し、最終目標段でなければステップS211に進み、最終目標段であればステップS217に進む。なお、最終目標段は、シフトマップ等に基づく車速VPに応じた変速段である。ステップS211では、支援部111は、前回のアップシフトから一定時間が経過したか否かを判断し、一定時間が経過する前であればステップS213に進み、一定時間が経過した後であればステップS215に進む。ステップS213では、ECU107は、変速機103の変速段は現段のまま、上記他の車両に追従するよう内燃機関101の運転を制御する。ステップS215では、ECU107は、変速機103の変速比を小さくする(変速段を上げる)アップシフト制御を行い、上記他の車両に追従するよう内燃機関101の運転を制御する。ステップS217では、ECU107は、変速機103の変速段は現段のまま、上記他の車両に追従するよう内燃機関101の運転を制御する。   In step S209, the support unit 111 determines whether or not the shift stage of the transmission 103 is the final target stage. If it is not the final target stage, the process proceeds to step S211. If it is the final target stage, the process proceeds to step S217. Note that the final target stage is a shift stage according to the vehicle speed VP based on a shift map or the like. In step S211, the support unit 111 determines whether or not a certain time has elapsed since the previous upshift. If the certain time has not elapsed, the process proceeds to step S213, and if the certain time has elapsed, the step 111 is performed. The process proceeds to S215. In step S213, the ECU 107 controls the operation of the internal combustion engine 101 so as to follow the other vehicle while the gear stage of the transmission 103 remains the current stage. In step S215, the ECU 107 performs upshift control to reduce the gear ratio of the transmission 103 (increase the gear position) and control the operation of the internal combustion engine 101 so as to follow the other vehicle. In step S217, the ECU 107 controls the operation of the internal combustion engine 101 so as to follow the other vehicle while the speed stage of the transmission 103 remains the current stage.

図11のステップS203において、他の車両の走行速度が自車両よりも速いと判断した場合に進む図12に示すステップS221では、支援部111は、自車両が追従する予定の他の車両の走行速度が自車両の定速走行時における目標車速以下であるか否かを判断し、目標車速より大きければステップS223に進み、目標車速以下であればステップS225に進む。ステップS223では、ECU107は、変速機103の変速段を現段に維持し、自車両が定速走行時における目標車速で走行するよう内燃機関101の運転を制御する。   In step S203 shown in FIG. 12 which proceeds when it is determined in step S203 in FIG. 11 that the traveling speed of the other vehicle is faster than that of the own vehicle, the support unit 111 travels the other vehicle scheduled to be followed by the own vehicle. It is determined whether or not the speed is equal to or lower than the target vehicle speed when the host vehicle is traveling at a constant speed. If the speed is higher than the target vehicle speed, the process proceeds to step S223. In step S223, the ECU 107 controls the operation of the internal combustion engine 101 so that the speed of the transmission 103 is maintained at the current speed and the host vehicle travels at the target vehicle speed during constant speed travel.

ステップS225では、支援部111は、他車の加速に対して、変速機103の現状の変速段での加速で追従可能かを判断し、現段の加速で追従可能であればステップS227に、現段の加速で追従可能でなければステップS229に進む。ステップS227では、ECU107は、変速機103の変速段を現段に維持し、上記他の車両に追従するよう内燃機関101の運転を制御する。ステップS119では、ECU107は、変速機103のアップシフト制御を行い、上記他の車両に追従するよう内燃機関101の運転を制御する。   In step S225, the support unit 111 determines whether it is possible to follow the acceleration of the other vehicle by the acceleration at the current gear position of the transmission 103. If it can be followed by the current acceleration, the process proceeds to step S227. If no follow-up is possible at the current stage of acceleration, the process proceeds to step S229. In step S227, the ECU 107 maintains the gear stage of the transmission 103 at the current stage and controls the operation of the internal combustion engine 101 so as to follow the other vehicle. In step S119, the ECU 107 performs upshift control of the transmission 103, and controls the operation of the internal combustion engine 101 so as to follow the other vehicle.

次に、自車両が追従走行から定速走行に移行する際の処理について説明する。図13に示すように、支援部111は、自車両の進行方向に沿った前方の上記説明した所定の位置関係を満たす空間に、自車両の前方を走行していた他の車両が存在しなくなったか否かを判断し(ステップS301)、存在する場合はステップS303に進み、存在しなくなった場合はステップS321に進む。ステップS303では、他の車両が上記空間に存在しなくなりそうであるかを判断し、存在しそうと判断した場合にはステップS305に進み、存在しなくなりそう、すなわち、存在しなくなると予測した場合にはステップS307に進む。   Next, a process when the host vehicle shifts from the following traveling to the constant speed traveling will be described. As shown in FIG. 13, the support unit 111 has no other vehicle traveling ahead of the host vehicle in a space that satisfies the above-described predetermined positional relationship in front of the host vehicle along the traveling direction. (Step S301), if it exists, the process proceeds to step S303, and if it does not exist, the process proceeds to step S321. In step S303, it is determined whether or not another vehicle is likely to exist in the space. If it is determined that the vehicle does not exist, the process proceeds to step S305. Advances to step S307.

ステップS305では、ECU107は、変速機103の変速段を現段に維持し、上記他の車両に追従するよう内燃機関101の運転を制御する。ステップS307では、支援部111は、追従走行中の自車両の現状の車速VPと定速走行時における目標車速との差がしきい値以上であるか否かを判断し、当該差がしきい値未満であればステップS305に進み、しきい値以上であればステップS309に進む。ステップS309では、支援部111は、変速機103の変速段がシフトマップ等に基づく車速VPに応じた最終目標段と一致するか、内燃機関101の回転数がしきい値以上の高回転状態であるとの条件を満たすか否かを判断し、当該条件を満たさない場合はステップS305に進み、満たす場合はステップS311に進む。ステップS311では、ECU107は、変速機103のダウンシフト制御を行い、上記他の車両に追従するよう内燃機関101の運転を制御する。   In step S305, the ECU 107 controls the operation of the internal combustion engine 101 so as to follow the other vehicle while maintaining the gear stage of the transmission 103 at the current stage. In step S307, the support unit 111 determines whether or not the difference between the current vehicle speed VP of the subject vehicle that is running following and the target vehicle speed during constant speed traveling is greater than or equal to a threshold value. If it is less than the value, the process proceeds to step S305, and if it is greater than or equal to the threshold value, the process proceeds to step S309. In step S309, the support unit 111 determines whether the gear stage of the transmission 103 matches the final target stage corresponding to the vehicle speed VP based on the shift map or the like, or the internal combustion engine 101 is in a high speed state where the rotational speed is equal to or higher than a threshold value. It is determined whether or not a certain condition is satisfied. If the condition is not satisfied, the process proceeds to step S305. If satisfied, the process proceeds to step S311. In step S311, the ECU 107 performs downshift control of the transmission 103 and controls the operation of the internal combustion engine 101 so as to follow the other vehicle.

ステップS321では、支援部111は、追従走行中の自車両の現状の車速VPが定速走行時における目標車速に近づいたか否かを判断し、車速VPが目標車速に近づいていない場合はステップS323に進み、近づいた場合はステップS331に進む。ステップS323では、支援部111は、車速VPと目標車速との差がしきい値以上であるか否かを判断し、当該差がしきい値未満であればステップS325に進み、しきい値以上であればステップS327に進む。ステップS325では、ECU107は、変速機103の変速段は現段のまま、定速走行時の目標車速まで加速するよう内燃機関101の運転を制御する。ステップS327では、支援部111は、変速機103の変速段がシフトマップ等に基づく車速VPに応じた最終目標段と一致するか否かを判断し、一致しなければステップS325に進み、一致すればステップS329に進む。ステップS329では、ECU107は、変速機103の変速段はダウンシフト制御後の変速段のまま、定速走行時の目標車速まで加速するよう内燃機関101の運転を制御する。   In step S321, the support unit 111 determines whether or not the current vehicle speed VP of the subject vehicle that is following the vehicle is approaching the target vehicle speed during constant speed travel. If the vehicle speed VP is not close to the target vehicle speed, step S323 If the process approaches, the process proceeds to step S331. In step S323, the support unit 111 determines whether or not the difference between the vehicle speed VP and the target vehicle speed is greater than or equal to a threshold value. If the difference is less than the threshold value, the process proceeds to step S325 and exceeds the threshold value. If so, the process proceeds to step S327. In step S325, the ECU 107 controls the operation of the internal combustion engine 101 so as to accelerate to the target vehicle speed at the time of constant speed running while the gear stage of the transmission 103 remains the current stage. In step S327, the support unit 111 determines whether or not the gear position of the transmission 103 matches the final target speed corresponding to the vehicle speed VP based on the shift map or the like. If not, the process proceeds to step S325. If so, the process proceeds to step S329. In step S329, the ECU 107 controls the operation of the internal combustion engine 101 so as to accelerate to the target vehicle speed during constant speed running while the speed stage of the transmission 103 remains the speed stage after the downshift control.

ステップS331では、支援部111は、前回のアップシフトから所定時間が経過したか否かを判断し、所定時間経過前であればステップS333に進み、所定時間経過後であればステップS335に進む。ステップS335では、支援部111は、変速機103の変速段がシフトマップ等に基づく車速VPに応じた最終目標段と一致するか否かを判断し、一致すればステップS333に進み、一致しなければステップS337に進む。ステップS333では、ECU107は、変速機103の変速段は現段のまま、定速走行時の目標車速で走行するよう内燃機関101の運転を制御する。ステップS337では、ECU107は、変速機103のアップシフト制御を行い、定速走行時の目標車速で走行するよう内燃機関101の運転を制御する。   In step S331, the support unit 111 determines whether or not a predetermined time has elapsed since the previous upshift. If the predetermined time has not elapsed, the process proceeds to step S333, and if the predetermined time has elapsed, the process proceeds to step S335. In step S335, the support unit 111 determines whether or not the shift speed of the transmission 103 matches the final target speed corresponding to the vehicle speed VP based on the shift map or the like. If they match, the process proceeds to step S333 and must match. If so, the process proceeds to step S337. In step S333, the ECU 107 controls the operation of the internal combustion engine 101 so that the transmission 103 travels at the target vehicle speed during constant speed travel while the speed stage of the transmission 103 remains the current stage. In step S337, the ECU 107 performs upshift control of the transmission 103, and controls the operation of the internal combustion engine 101 to travel at the target vehicle speed during constant speed travel.

以上説明したように、本実施形態によれば、定速走行中、自車両の前方に他の車両が低速で割り込んできそうな場合はダウンシフト制御を行って減速し、その後、上記他の車両に追従して走行するために加速を行う。また、支援部111の支援制御に従った追従走行中、前方を走行する他の車両が減速しそうな場合もダウンシフト制御を行って減速し、その後、当該他の車両に追従した加速を行っても良い。このように、他の車両に追従するために自車両も加速する際には、ダウンシフトした変速段を維持したまま加速を行って、アップシフト制御を行いつつ当該加速を継続できる。その結果、追従走行時における減速からの遅滞のないスムーズな加速が可能となり、他の車両に速やかに追従できる。   As described above, according to the present embodiment, when traveling at a constant speed, if another vehicle is likely to interrupt the front of the host vehicle at a low speed, the vehicle is decelerated by performing a downshift control, and then the other vehicle. Accelerate to travel following. Also, during follow-up running according to the support control of the support unit 111, even when another vehicle traveling ahead is likely to decelerate, the vehicle is decelerated by performing downshift control, and thereafter, acceleration following the other vehicle is performed. Also good. Thus, when the host vehicle also accelerates to follow another vehicle, the acceleration can be continued while performing the upshift control by performing the acceleration while maintaining the downshifted gear. As a result, smooth acceleration without delay from deceleration during follow-up traveling is possible, and other vehicles can be followed quickly.

また、定速走行中に自車両の前方に割り込んできた他の車両に加速して追従する際には、当該他の車両との相対位置が所定の位置関係になった後にアップシフト制御を行う。その結果、追従走行時における減速からのスムーズな加速が可能となり、他の車両にスムーズに追従できる。   In addition, when accelerating and following another vehicle that has entered the front of the host vehicle while traveling at a constant speed, the upshift control is performed after the relative position with the other vehicle reaches a predetermined positional relationship. . As a result, smooth acceleration from deceleration during follow-up running is possible, and other vehicles can be smoothly followed.

また、他の車両との相対速度が大きいときは大きな減速度が必要である一方、当該相対速度が小さいときは大きな減速度は不要である。このため、相対速度が小さいにもかかわらず、ダウンシフト制御時の変速機の変速比を必要以上に変更すると、不必要に大きな減速が発生し、当該減速感によって乗員の快適性が損なわれる。本実施形態では、ダウンシフト制御後の変速機の変速比は、相対速度に基づいて決定されるため、減速度と乗員の快適性の両立を図ることができる。   Further, when the relative speed with other vehicles is large, a large deceleration is required, whereas when the relative speed is small, a large deceleration is not necessary. For this reason, if the gear ratio of the transmission during downshift control is changed more than necessary even though the relative speed is small, an unnecessarily large deceleration occurs, and passenger comfort is impaired by the sense of deceleration. In the present embodiment, the speed ratio of the transmission after downshift control is determined based on the relative speed, so that both deceleration and passenger comfort can be achieved.

また、他の車両との間の距離が短いときは大きな減速度が必要である一方、上記距離が長いときは大きな減速度は不要である。このため、上記距離が長いにもかかわらず、ダウンシフト制御時の変速機の変速比を必要以上に変更すると、不必要に大きな減速が発生し、当該減速感によって乗員の快適性が損なわれる。本実施形態では、ダウンシフト制御後の変速機の変速比は、他の車両との間の距離に基づいて決定されるため、減速度と乗員の快適性の両立を図ることができる。   Further, a large deceleration is required when the distance to another vehicle is short, whereas a large deceleration is not necessary when the distance is long. For this reason, if the transmission gear ratio during downshift control is changed more than necessary even though the distance is long, an unnecessarily large deceleration occurs, and passenger comfort is impaired by the sense of deceleration. In the present embodiment, the transmission gear ratio after downshift control is determined based on the distance to another vehicle, so that both deceleration and passenger comfort can be achieved.

また、ダウンシフト制御時に内燃機関の燃料カットを行うことで、エンジンブレーキを効果的に利用した減速が可能である。   Further, by performing fuel cut of the internal combustion engine during downshift control, it is possible to perform deceleration using engine braking effectively.

また、定速走行中、自車両の前方に他の車両が低速で割り込んできそうな状況を、走行に関する他の車両の動き又は他の車両の灯体の点灯状態から検知した場合には、ダウンシフト制御を行う。このため、実際に他の車両が自車両の進行方向に沿った前方に低速で割り込んできたために大きな減速が必要となった場合でも、速やかな減速が可能である。また、追従走行中、前方を走行する他の車両が減速しそうな状況を、走行に関する当該他の車両の動き又は当該他の車両の灯体の点灯状態から検知した場合には、ダウンシフト制御を行う。このため、実際に他の車両が減速したために大きな減速が必要となった場合でも、速やかな減速が可能である。   In addition, if a situation in which another vehicle is likely to interrupt the front of the host vehicle at a low speed during constant speed traveling is detected from the movement of another vehicle related to traveling or the lighting state of another vehicle's lamp, Shift control is performed. For this reason, even when a large deceleration is necessary because another vehicle has actually interrupted at a low speed forward along the traveling direction of the host vehicle, the vehicle can be quickly decelerated. In addition, when a situation in which another vehicle traveling ahead is likely to decelerate during the following traveling is detected from the movement of the other vehicle related to traveling or the lighting state of the lamp body of the other vehicle, downshift control is performed. Do. For this reason, even when another vehicle is actually decelerated and a large deceleration is required, it is possible to quickly decelerate.

また、追従走行中、自車両の前方を走行する他の車両が自車両の進行方向に沿った前方の所定の位置関係を満たす空間に存在しなくなりそうな状況を検知した場合には、ダウンシフト制御を行うことで、その後の、目標速度への速やかな加速をスムーズに遅滞なく行うことができる。   Also, if it is detected that there is no other vehicle traveling ahead of the host vehicle in a space that satisfies the predetermined positional relationship ahead of the host vehicle along the traveling direction of the host vehicle, a downshift is performed. By performing the control, the subsequent quick acceleration to the target speed can be performed smoothly and without delay.

なお、本発明は、前述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。   In addition, this invention is not limited to embodiment mentioned above, A deformation | transformation, improvement, etc. are possible suitably.

101 内燃機関
103 変速機
105 車速センサー
107 ECU
109 認識部
111 支援部
8 ディファレンシャルギヤ
9 車軸
BRK ブレーキ
DW 駆動輪
101 Internal combustion engine 103 Transmission 105 Vehicle speed sensor 107 ECU
109 Recognizing unit 111 Supporting unit 8 Differential gear 9 Axle BRK Brake DW Drive wheel

Claims (8)

内燃機関と、
前記内燃機関の駆動回転を変速して駆動輪に伝達する変速機と、を備える車両であって、
前記車両の前方に位置する他の車両を認識する認識部と、
前記認識部が認識する前記他の車両との相対位置が所定の位置関係となるよう、及び/又は、前記車両の走行速度が目標速度以下での定速走行を行うよう、前記車両の運転を支援する制御を行う支援部と、
前記支援部の支援制御に従い、前記内燃機関及び前記変速機の変速比を制御する制御部と、を備え、
前記制御部は、前記車両が前記支援部の支援制御に従った走行中に、
前記認識部の認識内容に基づいて、前記車両の進行方向に沿った前方の前記所定の位置関係を満たす空間よりも前記車両寄りの近接空間に、他の車両が存在することを前記支援部が予測又は検知した場合は、前記変速機の変速比を大きくするダウンシフト制御を行い、
前記ダウンシフト制御後に、前記認識部の認識内容に基づいて、前記他の車両が前記空間に存在しなくなることを前記支援部が予測又は検知した場合は、前記内燃機関からの動力によって前記車両が加速する制御を行う、車両。
An internal combustion engine;
A transmission that shifts and transmits drive rotation of the internal combustion engine to drive wheels,
A recognition unit for recognizing another vehicle located in front of the vehicle;
The vehicle is operated so that the relative position with the other vehicle recognized by the recognition unit is in a predetermined positional relationship and / or the vehicle travels at a constant speed below a target speed. A support unit that performs control to support;
A control unit for controlling a gear ratio of the internal combustion engine and the transmission according to the support control of the support unit,
The control unit, while the vehicle is traveling according to the support control of the support unit,
Based on the recognition content of the recognition unit, the support unit determines that another vehicle exists in a close space closer to the vehicle than a space satisfying the predetermined positional relationship ahead along the traveling direction of the vehicle. If predicted or detected, downshift control to increase the transmission gear ratio is performed,
After the downshift control, when the support unit predicts or detects that the other vehicle does not exist in the space based on the recognition content of the recognition unit, the vehicle is driven by the power from the internal combustion engine. A vehicle that performs acceleration control.
請求項1に記載の車両であって、
前記制御部は、前記ダウンシフト制御後に前記車両が加速する制御を行う際、前記ダウンシフト制御後の前記変速機の変速比を維持するか、前記変速機の変速比を前記ダウンシフト制御後の前記変速機の変速比から小さくするアップシフト制御を行う、車両。
The vehicle according to claim 1,
The control unit maintains the transmission gear ratio after the downshift control when the vehicle accelerates after the downshift control, or changes the transmission gear ratio after the downshift control. A vehicle that performs upshift control for reducing the transmission gear ratio.
請求項2に記載の車両であって、
前記制御部は、前記ダウンシフト制御後に前記他の車両との相対位置が前記所定の位置関係になった後、前記アップシフト制御を行う、車両。
The vehicle according to claim 2,
The said control part is a vehicle which performs the said upshift control after the relative position with respect to the said other vehicle becomes the said predetermined positional relationship after the said downshift control.
請求項1から3のいずれか1項に記載の車両であって、
前記制御部は、前記ダウンシフト制御を行う際には、前記車両と前記他の車両との相対速度に基づいて、前記ダウンシフト制御後の前記変速機の変速比を決定する、車両。
The vehicle according to any one of claims 1 to 3,
The control unit, when performing the downshift control, determines a gear ratio of the transmission after the downshift control based on a relative speed between the vehicle and the other vehicle.
請求項1から3のいずれか1項に記載の車両であって、
前記制御部は、前記ダウンシフト制御を行う際には、前記車両と前記他の車両との間の距離に基づいて、前記ダウンシフト制御後の前記変速機の変速比を決定する、車両。
The vehicle according to any one of claims 1 to 3,
The control unit, when performing the downshift control, determines a gear ratio of the transmission after the downshift control based on a distance between the vehicle and the other vehicle.
請求項1から5のいずれか1項に記載の車両であって、
前記制御部は、前記ダウンシフト制御を行うと共に、前記内燃機関の燃料カットを行う、車両。
The vehicle according to any one of claims 1 to 5,
The said control part is a vehicle which performs the fuel cut of the said internal combustion engine while performing the said downshift control.
請求項1から6のいずれか1項に記載の車両であって、
前記認識部は、走行に関する前記他の車両の動き又は前記他の車両の灯体の点灯状態を検知し、
前記制御部は、前記認識部が検知した情報に基づいて、前記近接空間に前記他の車両が存在することを前記支援部が予測又は検知すると、前記ダウンシフト制御を行う、車両。
The vehicle according to any one of claims 1 to 6,
The recognizing unit detects a movement of the other vehicle related to traveling or a lighting state of a lamp body of the other vehicle,
The control unit performs the downshift control when the support unit predicts or detects that the other vehicle exists in the close space based on information detected by the recognition unit.
請求項1から7のいずれか1項に記載の車両であって、
前記認識部は、走行に関する前記他の車両の動き又は前記他の車両の灯体の点灯状態を検知し、
前記制御部は、前記車両が前記目標速度未満の速度で進行方向に沿った前方の前記空間に位置する他の車両との相対位置が前記所定の位置関係となるよう走行しているときに、前記認識部が検知した情報に基づいて、前記他の車両が前記空間に存在しなくなることを前記支援部が予測又は検知した場合は、前記ダウンシフト制御を行う、車両。
The vehicle according to any one of claims 1 to 7,
The recognizing unit detects a movement of the other vehicle related to traveling or a lighting state of a lamp body of the other vehicle,
The control unit, when the vehicle is traveling at a speed less than the target speed so that the relative position with other vehicles located in the space ahead along the traveling direction is the predetermined positional relationship, A vehicle that performs the downshift control when the support unit predicts or detects that the other vehicle no longer exists in the space based on information detected by the recognition unit.
JP2017117056A 2017-06-14 2017-06-14 vehicle Pending JP2019001283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017117056A JP2019001283A (en) 2017-06-14 2017-06-14 vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017117056A JP2019001283A (en) 2017-06-14 2017-06-14 vehicle

Publications (1)

Publication Number Publication Date
JP2019001283A true JP2019001283A (en) 2019-01-10

Family

ID=65005569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017117056A Pending JP2019001283A (en) 2017-06-14 2017-06-14 vehicle

Country Status (1)

Country Link
JP (1) JP2019001283A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111762164A (en) * 2019-03-26 2020-10-13 本田技研工业株式会社 Vehicle control device, vehicle control method, and storage medium
US12115964B1 (en) 2023-07-26 2024-10-15 Toyota Motor Engineering & Manufacturing North America, Inc. Gear selection for merging into faster traffic

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002013623A (en) * 2000-06-29 2002-01-18 Jatco Transtechnology Ltd Speed change controller for automatic transmission
JP2003205764A (en) * 2002-01-16 2003-07-22 Nissan Motor Co Ltd Travel controller for vehicle
JP2004197891A (en) * 2002-12-20 2004-07-15 Nissan Motor Co Ltd Change gear ratio controller and leading car follow-up controller
JP2004270718A (en) * 2003-03-05 2004-09-30 Nissan Motor Co Ltd Driving force control device for vehicle
JP2011126406A (en) * 2009-12-17 2011-06-30 Mitsubishi Motors Corp Driving support device
JP2014502759A (en) * 2010-12-29 2014-02-03 ボルボ ラストバグナー アーベー Inter-vehicle distance control system
JP2015224691A (en) * 2014-05-27 2015-12-14 三菱自動車工業株式会社 Vehicle driving support device
JP2016207016A (en) * 2015-04-24 2016-12-08 日産自動車株式会社 Travel control device and data structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002013623A (en) * 2000-06-29 2002-01-18 Jatco Transtechnology Ltd Speed change controller for automatic transmission
JP2003205764A (en) * 2002-01-16 2003-07-22 Nissan Motor Co Ltd Travel controller for vehicle
JP2004197891A (en) * 2002-12-20 2004-07-15 Nissan Motor Co Ltd Change gear ratio controller and leading car follow-up controller
JP2004270718A (en) * 2003-03-05 2004-09-30 Nissan Motor Co Ltd Driving force control device for vehicle
JP2011126406A (en) * 2009-12-17 2011-06-30 Mitsubishi Motors Corp Driving support device
JP2014502759A (en) * 2010-12-29 2014-02-03 ボルボ ラストバグナー アーベー Inter-vehicle distance control system
JP2015224691A (en) * 2014-05-27 2015-12-14 三菱自動車工業株式会社 Vehicle driving support device
JP2016207016A (en) * 2015-04-24 2016-12-08 日産自動車株式会社 Travel control device and data structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111762164A (en) * 2019-03-26 2020-10-13 本田技研工业株式会社 Vehicle control device, vehicle control method, and storage medium
US12115964B1 (en) 2023-07-26 2024-10-15 Toyota Motor Engineering & Manufacturing North America, Inc. Gear selection for merging into faster traffic

Similar Documents

Publication Publication Date Title
JP3775353B2 (en) Preceding vehicle tracking control device
CN100581866C (en) Method and system for assisting a driver of a vehicle
JP6989704B2 (en) Vehicle control device
WO2018105226A1 (en) Drive mode-switching control device and drive mode-switching control method
CN110001638B (en) Travel control device for autonomous vehicle
CN110001639B (en) Travel control device for autonomous vehicle
JP2019084916A (en) Travel control device for automatic operation vehicle
JP2017001485A (en) Vehicular drive support apparatus
JP2002283874A (en) Following run controller for vehicle
US20050137775A1 (en) Vehicle driving support apparatus
WO2022224587A1 (en) Vehicle control device
US20190111931A1 (en) Vehicle control device
JP2002211267A (en) Follow-up run control device for vehicle
JP2015170095A (en) Preceding vehicle follow-up system, preceding vehicle follow-up method, and preceding vehicle follow-up program
JP4926859B2 (en) Vehicle driving support device
JP2019001283A (en) vehicle
JP7070450B2 (en) Vehicle travel control device
WO2019244676A1 (en) Traveling control device and traveling control method
JP5118468B2 (en) Vehicle travel control device.
JP2000118369A (en) Vehicle travel control device
JP7556266B2 (en) Vehicle driving control method and driving control device
JP2023109355A (en) Vehicle driving support device
JP2019182353A (en) Travel control device
US11305772B2 (en) Driving assistance apparatus
JP2023133827A (en) Operation support device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190108